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Optimization of piecewise smooth shapes under
uncertainty using the example of Navier–Stokes flow

Caroline Geiersbach, Tim Suchan, Kathrin Welker

Abstract
We investigate a complex system involving multiple shapes to be optimized in a do-

main, taking into account geometric constraints on the shapes and uncertainty appearing
in the physics. We connect the differential geometry of product shape manifolds with
multi-shape calculus, which provides a novel framework for the handling of piecewise
smooth shapes. This multi-shape calculus is applied to a shape optimization problem
where shapes serve as obstacles in a system governed by steady state incompressible
Navier–Stokes flow. Numerical experiments use our recently developed stochastic aug-
mented Lagrangian method and we investigate the choice of algorithmic parameters
using the example of this application.

1 Introduction

Shape optimization is concerned with identifying shapes, or subsets of Rd, behaving in an
optimal way with respect to a given physical system. Many problems of interest involve a system
in the form of a partial differential equation (PDE), the solution of which depends on one or
more shapes defining the domain. Some applications involve additional geometric constraints
on the shapes, leading to nonsmooth problems that cannot be solved using standard descent-
type algorithms. Moreover, there has been an increasing interest in incorporating uncertain
parameters or inputs in shape optimization models.
Shape optimization is commonly applied in engineering in order to optimize shapes. Theory and
algorithms in shape optimization can be based on techniques from differential geometry, e.g., a
Riemannian manifold structure can be used to define the distances of two shapes. Thus, shape
spaces are of particular interest in shape optimization. The shape space Be(S1,R2) briefly
investigated in [41] is an important example of a smooth manifold allowing a Riemannian
structure, where the term smooth shall refer to infinite differentiability in this paper. This
shape space is considered in recent publications (cf., e.g., [24, 26, 50, 51, 52]), but Be(S1,R2)
is in general not sufficient to carry out optimization algorithms on piecewise smooth shapes.
In particular, a piecewise smooth shape is often encountered as an optimal shape for fluid-
mechanical problems, see e.g. [44]. Some effort has been put into constructing a shape space
that contains non-smooth shapes. A shape space which is a diffeological space is defined in [60].
Recently, a space containing shapes in R2 that can be identified with a Riemannian product
manifold but at the same time admits piecewise smooth curves as elements was constructed
[46]. In this paper, we focus on this shape space. In many applications in shape optimization,
it is also desirable to consider multiple shapes to be optimized [1, 16, 37]. A first approach for
optimizing multiple smooth shapes was presented in [25] and applied in [26, 46].
An early work in incorporating uncertainty in shape optimization [18] placed stochastic models
in the context of stochastic programming, a classical topic concerned with optimization subject
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to uncertainty. A helpful guide on models and methods in shape optimization under uncertainty
is [39]. For problems with a finite or low stochastic dimension, or in the special case where the
problem’s structure can be exploited [20], the stochastic quantity may be exactly represented
or discretized using the stochastic Galerkin method or polynomial chaos; cf. [4, 19, 48]. For
larger dimensions, ensemble-based approaches are typically needed. This includes stochastic
collocation [39] and Monte Carlo-based methods. In the context of optimization, if a random
sample is generated and the original problem is replaced by a proxy problem with this sample,
one speaks of sample average approximation. Another approach is stochastic approximation,
which involves dynamically sampling as part of the underlying method. Stochastic approxima-
tion for shape spaces was proposed in [24] and further developed for multi-shape problems in
[25].
In this paper, we handle a stochastic shape optimization problem of the form

min
u∈M

{
E[J(u, ξ)] =

∫
Ω
J(u, ξ(ω)) dP(ω)

}
subject to (s.t.) hi(u) ≤ 0 ∀i ∈ {1, . . . , n}.

(1)

Here, u := (u1, . . . , us) is a vector of s shapes in a shape space M, ξ is a random vector
with probability measure P : Ω→ [0, 1], and the functions hi : M→ R are constraints on the
shapes. We focus on further developing shape calculus to handle problems involving the novel
manifold of piecewise smooth shapes from [46]. We define the multi-material derivative as
well as the multi-shape derivative and its stochastic version and connect it with this manifold.
Furthermore, we compute the multi-shape derivative for a system subject to Navier–Stokes flow
under uncertainty with deterministic geometric constraints on the shapes. To solve this problem
computationally, we use the stochastic augmented Lagrangian method recently proposed in
[26]. The method uses the framework of stochastic approximation on shape spaces from
[24, 25], combined with an augmented Lagrangian procedure based on [35, 56] for updating
penalty parameters and Lagrange multipliers. In contrast to [26], we do not require infinitely
smooth shapes. It is, however, still possible to define a stochastic multi-shape derivative for
nonsmooth shapes, which is used in the inner loop procedure of the stochastic augmented
Lagrangian method.
The paper is structured as follows. In Section 2, we present the shape space of piecewise smooth
shapes and connect it with multi-shape calculus. In particular, we define the (stochastic) multi-
shape derivative, which is needed for the application. In Section 3, we describe an example
multi-shape optimization problem and compute its stochastic multi-shape derivative using a
novel multi-material derivative approach. In Section 4, we detail the stochastic augmented
Lagrangian method for multi-shape optimization and present numerical results demonstrating
the convergence rates from our theory and compare results from stochastic and deterministic
optimization. We conclude with a short discussion in Section 5.

2 Multi-shape calculus for optimizing piecewise smooth
shapes

In Section 2.1, we introduce a space containing shapes in R2 that can be identified with a Rie-
mannian product manifold but at the same time admits piecewise smooth curves as elements.
This shape space was first defined in [46] and is suitable for our application in Section 3,
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Optimization of piecewise smooth shapes under uncertainty 3

a fluid-mechanical problem constrained by the Navier–Stokes equations. In Section 2.2, we
define the (stochastic) multi-shape derivative for this shape space.

2.1 The product shape manifold of piecewise smooth shapes

Let U1, . . . ,UN be manifolds equipped with Riemannian metrics Gi′ = (Gi′
u)u∈Ui′ , i′ =

1, . . . , N . We define the Riemannian product manifold UN by UN := U1 × · · · × UN =∏N
i′=1 Ui′ . The product metric GN to the corresponding product shape space UN can be de-

fined via GN = ∑N
i′=1 π

∗
i′Gi

′ , where π∗i′ are the pullbacks associated with canonical projections
πi′ : UN → Ui′ , i′ = 1, . . . , N (cf. [25]). As in [46], we define the s-dimensional shape space
on UN by

Ms(UN) :=
{
u = (u1, . . . , us) |ui ∈

ki+ni−1∏
l=ki

Ul ∀i = 1, . . . , s,
s∑
i=1

ni = N and

k1 = 1, ki+1 = ki + ni ∀i = 1, . . . , s− 1
}
.

An element in Ms(UN) is defined as a vector of s shapes u1, . . . , us, where each shape ui is
an element of the product of ni smooth manifolds. Note that any element u = (u1, . . . , us) ∈
Ms(UN) can be understood as an element ũ = (ũ1, . . . , ũN) ∈ UN . Thus, we identify
TuMs(UN) = TũUN and the Riemannian metric G = (Gu)u∈Ms(UN ) with GN = (GNũ )ũ∈UN .

Since we are interested in optimizing piecewise smooth shapes, we restrict the choice of
shapes in Ms(UN) to piecewise smooth shapes that are glued together. More precisely, we
assume that each shape (u1, . . . , us) ∈ Ms(UN) is single closed: either ui ∈ Be(S1,R2) or
ui = (uki

, . . . , uki+ni−1) ∈ (Be([0, 1],R2))ni with the additional conditions

ui : [0, 1)→ R2 injective with
uki+h(1) = uki+h+1(0)∀h = 0, . . . , ni − 2 and uki

(0) = uki+ni−1(1).
(2)

Here, the shape spaces are defined by

Be(S1,R2) := Emb(S1,R2)/Diff(S1),
Be([0, 1],R2) := Emb([0, 1],R2)/Diff([0, 1]),

where Emb(·,R2) denotes the set of all embeddings into R2 and Diff(·) is the set of all
diffeomorphisms. Since a smooth curve1 can be defined by an embedding (cf., e.g., [36, Chapter
2, Definition 2.22]), these spaces represent all simple closed smooth curves in R2 and all simple
open smooth curves in R2, respectively. Both spaces are smooth manifolds allowing Riemannian
structures (cf., e.g., [40, 41]). A closed curve with kinks is interpreted as a glued-together
curve of open smooth curves, i.e., elements of Be([0, 1],R2). In contrast, a shape defined as
an element in Be(S1,R2) has no kinks in the shape geometry; in the following application, we
will not consider this case. We focus on glued-together piecewise smooth shapes. For this, it
will be convenient to define

M c
s :=

{
u ∈Ms(Be([0, 1],R2)N) | ui = (uki

, . . . , uki+ni−1) ∈ (Be([0, 1],R2))ni

with (2) ∀i = 1, . . . , s,
s∑
i=1

ni = N
}
.

1Throughout this paper, a curve c is to be understood as a continuous function c : I → R2, where I 6= ∅
is an interval in R.
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Remark 1 An element of Be(S1,R2), by definition, is smooth and so does not contain kinks.
The product shape manifold described above from [46] allows for a larger set of possible
shapes and also includes shapes from Be(S1,R2). In computations, the number ni of glued-
together smooth shapes, i.e., the maximum number of kinks of each single closed shape ui
with i = 1, . . . , s, can be chosen to be the number of nodes belonging to the discretization of
this shape. In this way, elements cannot leave the shape space over the course of optimization.

2.2 Multi-shape derivative

As already mentioned, we are interested in optimizing with respect to multiple glued-together
piecewise smooth shapes. For this, we will need to apply the definition of the partial shape
derivative and the multi-shape derivative given in [25] to our setting. Let u = (u1, . . . , us) ∈
M c

s . We identify a curve with its image; for each glued-together piecewise smooth shape ui,
we define the corresponding subset in R2 by

ûi := {x ∈ {uki
([0, 1]), . . . , uki+ni−1([0, 1])} |

(uki
, . . . , uki+ni−1) ∈ (Be([0, 1],R2))ni with (2)} (3)

and the set of the corresponding vector of subsets of R2 by

M̂ c
s = {û = (û1, . . . , ûs) ⊂ (R2)s}.

We define a function U : M c
s → M̂ c

s ,u 7→ û corresponding to the identification described in
(3). In this way, we can identify a function H : M c

s → R defined on the manifold with the
function Ĥ : M̂ c

s → R defined on subsets of R2 via H(u) = Ĥ(U(u)) for all u ∈M c
s .

For the definition of the partial shape derivative, we need transformations of the individual
subsets ûi. Let D ⊂ R2 be a domain containing s non-overlapping shapes û ∈ M̂ c

s . Let
∆1, . . . ,∆s be a partition of D into s non-empty, connected, bounded sets with Lipschitz
boundaries such that ûi ⊂ ∆i for all i = 1, . . . , s. We denote shapes deformed in a direction
W ∈ Ck

0 (D,R2) by

F
W |∆i
t (ûi) = {y ∈ D | y = x+ tW |∆i

(x)∀x ∈ ûi} (4)

and the vector of shapes (deformed in the i-th entry) by

ûti = (û1, . . . , , F
W |∆i
t (ûi), . . . , ûs).

A example of an admissible partition of D and the deformation of the shapes û can be found
in Figure 1.
For i = 1, . . . , s, the i-th partial Eulerian derivative of a function at ûi in the direction W |∆i

is defined by

diĤ(û)[W |∆i
] := lim

t→0+

Ĥ(ûti)− Ĥ(û)
t

. (5)

If for all directionsW ∈ Ck
0 (D,R2) and for all i = 1, . . . , s the i-th partial Eulerian derivative

(5) exists and the mapping

Ck
0 (D,R2)→ R, W 7→ diĤ(û)[W |∆i

]
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û1

û2

∆2

∆1
∆3

F
W |∆1
t (û1)

F
W |∆3
t (û3)

F
W |∆2
t (û2)

W |∆1

W |∆2

W |∆3

û3

Figure 1: Sketch of an admissible partition ∆1,∆2,∆3 of a domain D containing three shapes
u1, u2, u3. Each admissible domain ∆i is deformed by the vector field W |∆i

.

is linear and continuous, the expression diĤ(û)[W |∆i
] is called the i-th partial shape derivative

of Ĥ at û in direction W |∆i
. If all these partial shape derivatives exist, then

dĤ(û)[W ] :=
s∑
i=1

diĤ(û)[W |∆i
] (6)

defines the multi-shape derivative of Ĥ at û in the direction W ∈ Ck
0 (D,R2).

We now define the stochastic multi-shape derivative. Let Ĵ : M̂ c
s × Ξ → R be an objective

function that is parametrized with respect to some set Ξ ⊂ Rm. Let (Ω,F ,P) be a complete
probability space, where Ω is the sample space, F ⊂ 2Ω is the σ-algebra of events, and
P : Ω → [0, 1] is a probability measure. Suppose z := ξ(ω) is a fixed realization of a random
vector ξ : Ω → Ξ. For i = 1, . . . , s, the i-th partial Eulerian derivative of a the parametrized
function Ĵ at ûi (for a fixed realization z) in the direction W |∆i

is defined by

diĴ(û, z)[W |∆i
] := lim

t→0+

Ĵ(ûti, z)− Ĵ(û, z)
t

. (7)

If for all directions W |∆i
∈ Ck

0 (D,R2) and for all i = 1, . . . , s the i-th partial Eulerian
derivative (7) exists and the mapping

Ck
0 (D,R2)→ R, W 7→ diĴ(û, z)[W |∆i

]

is linear and continuous, the expression diĴ(û, z)[W |∆i
] is called the i-th partial shape deriva-

tive of Ĵ at û (for a fixed realization z) in directionW |∆i
. If all these partial shape derivatives

exist, then

dĴ(û, z)[W ] :=
s∑
i=1

diĴ(û, z)[W |∆i
] (8)
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defines the multi-shape derivative of Ĵ at û (for a fixed realization z) in the direction W ∈
Ck

0 (D,R2). Finally, a stochastic multi-shape derivative is defined as the superposition of (8)
with the random vector ξ, i.e., dĴ(û, ξ)[W ], where for almost every ω we have

dĴ(û, ξ(ω))[W ] :=
s∑
i=1

diĴ(û, ξ(ω))[W |∆i
].

3 Application to Navier–Stokes flow

In this section, we focus on a fluid-mechanical application where viscous energy dissipation is to
be minimized with respect to shapes in a connected subset of R2. In Section 3.1 we introduce
the model and the corresponding adjoint equation. Moreover, we provide the detailed shape
derivative calculation to the model problem in Section 3.2.

3.1 Model formulation

Fluid mechanics play a significant role in science and engineering to model the kinematic and
dynamic behavior of fluids. One part of fluid mechanics is concerned with the evolution of a
fluid subject to mass and momentum conservation [21, 32]. This part can be mathematically
described by the Navier–Stokes equations. These equations can be used to model fluid flow
of two-dimensional [13, 15, 17, 38] to time-dependent three-dimensional problems [2, 10, 12],
potentially in real-time with uses in computer graphics, as shown in [11, 30, 55]. In this section,
we consider steady-state incompressible Navier–Stokes flow with random inputs. Uncertainty
quantification in combination with fluid mechanics has been studied in, e.g., [5, 6], and in the
context of shape optimization [47].
Let u := (u1, . . . , us) ∈ M c

s be a vector of shapes belonging to the product shape manifold
of piecewise smooth shapes and recall the notation û = (û1, . . . , ûs) ∈ M̂ c

s introduced in the
previous section to denote its image in R2. Consider a hold-all domain D and a non-empty,
bounded and connected set Dû ⊂ D defined such that ∂D = Γ, ∂Dû = Γ t û1 t · · · t ûs
and û ⊂ Dû, where Γ is the outer boundary that is fixed and split into two disjoint parts
ΓD and ΓN representing a Dirichlet and Neumann boundary, respectively. We denote the
obstacles outside Dû by Dûi

such that ∂Dûi
= ûi for all i. To avoid trivial solutions in

the following problem, additional geometrical constraints have to be added, as discussed in,
e.g., [51]. Here, we implement inequality constraints in our problem description to increase the
space of admissible shapes. For each shape ûi, we introduce one inequality constraint for its
volume, see (11e), as well as lower and upper bounds for its barycenter, see (11f). The volume
of the domain Dûi

and the kth coordinate of the corresponding barycenter are given by

vol(ûi) =
∫
Dûi

1 dx = 1
2

∫
ûi

x · n ds, (9a)

(bary(ûi))k =
∫
Dûi

xk
vol(ûi)

dx = 1
2 vol(ûi)

∫
ûi

x2
knk ds, (9b)

respectively. Here, the n describes the unit outward normal of Dûi
, i.e., the unit inward normal

of Dû, and · denotes the standard scalar product of two vectors, i.e., x · n = ∑2
j=1 xjnj.

Further, we require vol(ûi) > 0 ∀i = 1, . . . , s.
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Optimization of piecewise smooth shapes under uncertainty 7

The Frobenius inner product for A,B ∈ R2×2 is denoted by A : B = ∑2
j=1

∑2
k=1AjkBjk.

For a vector field v : R2 → R2, we define the gradient by ∇v = (∇v1,∇v2)>, where ∇vj =
( ∂vj

∂x1
, ∂vj

∂x2
), and the Laplacian by ∆v = (∆v1,∆v2)>, where ∆vj = ∑2

k=1
∂2vj

∂x2
k
. The divergence

is defined by div v = ∑2
j=1

∂vj

∂xj
. The constant ν represents the fluid viscosity; for simplicity,

we do not model this as a random quantity. Additionally, f : D → R2 is a (deterministic)
external force acting on the domain D. Now, suppose we have a probability space (Ω,F ,P)
and a random vector ξ that is compactly supported in Ξ ⊆ Rm. Let g : D×Ξ→ R2 represent
the velocity distribution on ΓD ∪ û, where for every z ∈ Ξ, we have g(·, z) ∈ H1/2(ΓD ∪ û).
For the random input g(·, ξ(ω)), we will use the abbreviation gz := g(·, z) for a realization
z = ξ(ω) ∈ Ξ.
We consider a common shape optimization problem (cf. [42, 43, 45]) involving the minimization
of dissipated energy, where the physical system is described by the steady-state incompressible
Navier–Stokes equations. We modify this problem to include uncertainty in the form of a
boundary term g as described above; the dissipated energy is to be minimized in expectation.
More precisely, we solve the problem

min
û∈M̂c

s

{
ĵ(û) = ν

2

∫
Ω

∫
Dû

∇vξ(ω)(x) : ∇vξ(ω)(x) dx dP(ω)
}
, (10)

subject to, almost surely,

−ν∆vξ(x) + (vξ(x) · ∇)vξ(x) +∇pξ(x) = f(x) x ∈ Dû, (11a)
div (vξ(x)) = 0 x ∈ Dû, (11b)

vξ(x) = gξ(x) x ∈ ΓD ∪ û, (11c)
−ν∇vξ(x)n(x) + pξ(x)n(x) = 0 x ∈ ΓN , (11d)

vol(ûi) ≥ V i ∀i = 1, . . . , s, (11e)
Bi ≤ bary(ûi) ≤ Bi ∀i = 1, . . . , s. (11f)

Here, vξ is the random fluid velocity and pξ is the random pressure such that for almost
every ω ∈ Ω, we have vξ(ω) : Dû → R2 and pξ(ω) : Dû → R. Together, (11a)–(11b) are the
steady-state incompressible Navier–Stokes equations complemented by the boundary condi-
tions (11c)– (11d) with uncertainty induced by the input gξ.
Let V (Dû) = {v ∈ H1(Dû,R2) : v|ΓD∪û = 0} denote the function space associated to the
velocity for a fixed Dû. We assume f ∈ H1(Dû,R2) in view of the higher regularity required
for the shape derivative below. The weak formulation (see [23, Chapter 8]) for a fixed z = ξ(ω)
is given by: find vz ∈ H1(Dû,R2) and pz ∈ L2(Dû) such that vz − gz ∈ V (Dû) and∫

Dû

ν∇vz : ∇ϕ+ ((vz · ∇)vz) ·ϕ− pz div (ϕ)− f ·ϕ dx = 0 ∀ϕ ∈ V (Dû), (12a)∫
Dû

ψ div (vz) dx = 0 ∀ψ ∈ L2(Dû). (12b)

We define ĥ : M̂ c
s → R5s and ĥi : M̂ c

1 → R5 by

ĥ(û) =


[Vi − vol(ûi)]i∈{1,...,s}

[Bi − bary(ûi)]i∈{1,...,s}[
bary(ûi)−Bi

]
i∈{1,...,s}

 and ĥi(ûi) =


Vi − vol(ûi)

Bi − bary(ûi)
bary(ûi)−Bi
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and the parametrized objective function by Ĵ(û, z) := ν
2
∫
Dû
∇vz(x) : ∇vz(x) dx. As we will

rely on the stochastic augmented Lagrangian method in computations, we will also need the
parametrized augmented Lagrangian, defined for µ > 0 by

L̂A(û,λ, z;µ) = Ĵ(û, z) +
∫
Dû

ν∇vz : ∇ϕz + ((vz · ∇)vz) ·ϕz dx

+
∫
Dû

−pz div (ϕz)− f ·ϕz + ψz div (vz) dx

+ µ

2

∥∥∥∥∥max
(

0, ĥ(û) + λ

µ

)∥∥∥∥∥
2

2
− ‖λ‖

2
2

2µ ,

(13)

where vz ∈ H1(Dû,R2) and pz ∈ L2(Dû) solve (12) and ϕz ∈ V (Dû) and ψz ∈ L2(Dû)
solve the (weak form of the) adjoint equation (cf., e.g., [33, p. 114]) for a fixed z ∈ Ξ:∫

Dû

ν∇ϕ̃ : (∇vz +∇ϕz) + ((ϕ̃ · ∇)vz) ·ϕz
+((vz · ∇)ϕ̃) ·ϕz + ψz div (ϕ̃) dx = 0 ∀ϕ̃ ∈ V (Dû),

(14a)

∫
Dû

− div (ϕz) ψ̃ dx = 0 ∀ψ̃ ∈ L2(Dû). (14b)

3.2 Calculation of the stochastic multi-shape derivative

To compute the multi-shape derivative for problem (10)–(11), let L̂A : M̂ c
s × Rn × Ξ →

R and ĥ : M̂ c
s → R be the functions defined by L̂A(û,λ, z;µ) = LA(U(u),λ, z;µ) and

ĥ(û) = h(U(u)) for all u ∈ M s
c . We consider vector fields from the set W(Dû) := {W ∈

H1(Dû,R2) : W |Γ = 0}; the condition W |Γ = 0 ensures that the outer boundary of the
hold-all domain does not move.
There are a lot of options to calculate the shape derivative of shape functionals. An overview
about the min-max approach [22], the chain rule approach [54], the Lagrange method of
Céa [14] and the rearrangement method [34] is given in [58]. In addition, there are so-called
material-free approaches available (see, e.g., [57]). In this paper, we focus on a material
derivative approach.
To calculate the shape derivative of (13), we need to define the multi-material derivative and
to derive several expressions, e.g., the material derivative of vector-valued functions. Then, we
will be able to calculate the shape derivative of the augmented Lagrangian.

3.2.1 Necessary formulas regarding the shape derivative

Multi-material derivative A definition of the material derivative in the setting of product
spaces needs to be specified; we will call it the multi-material derivative in the following. For
the moment, we consider the setting from Section 2.2, i.e., that D is a domain that contains
û ∈ M̂ c

s and is partitioned into subsets ∆1, . . . ,∆s such that ûi ⊂ ∆i for all i = 1, . . . , s. For
W ∈ Ck

0 (D,R2), we define

∆t
i := F

W |∆i
t (∆i) = {y ∈ D | y = x+ tW |∆i

(x)∀x ∈ ∆i}

for all i = 1, . . . , s and t ≥ 0. The domainD can then be seen as dependent on the transforma-
tions Ft. Therefore, it is convenient to define Dt := (∪si=1∆t

i)∪∂∆t with ∂∆t := ∪si=1∂∆t
i\∂D
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and ∂∆ := ∂∆0. Thanks to this partition, we notice that a point x ∈ D can be related to the
corresponding x ∈ ∆i or x ∈ ∂∆ for all i = 1, . . . , s. Now, we can formulate the definition of
the multi-material derivative.

Definition 3.1 Let p : D → R. For W ∈ Ck
0 (D,R2), we consider Dt := (∪si=1∆t

i) ∪ ∂∆t.
Moreover, let {pt : Dt → R, t ≤ T}, {ptb := pt|∂∆t : ∂∆t → R, t ≤ T}, and {pti :=
pt|∆t

i
: ∆t

i → R, t ≤ T} with T > 0 denote families of mappings for all i = 1, . . . , s. We
define

dmi
p(x) :=


lim
t→0+

(
pt

i◦F
W |∆i
t

)
(x)−p0

i (x)

t
= d+

dt

(
pti ◦ F

W |∆i
t

)
(x)

t=0
if x ∈ ∆i,

0 else

for all i = 1, . . . , s and

dms+1p(x) :=


lim
t→0+

(
pt

b◦F
W |∂∆
t

)
(x)−p0

b(x)

t
= d+

dt

(
ptb ◦ FW |∂∆

t

)
(x)

t=0
if x ∈ ∂∆,

0 else.

We call dmi
p(x) the i-th partial material derivative of p at x ∈ D. The multi-material

derivative of p at x ∈ D is denoted by dmp(x) or ṗ(x) and given by

dmp(x) =
s+1∑
i=1

dmi
p(x).

Material derivative of vector-valued functions For the moment, we consider the general
setting in Rd with D̃ ⊂ Rd. The material derivative of a sufficiently smooth function p =
(p1, . . . , pd)> : D̃ × R → Rd is denoted by dm(p) or ṗ, where the second argument denotes
the size of perturbation t as in (4). Similar to [8], we suppress the second argument in case
there is no possibility of confusion. We will also need a generalization of [8, equation (25)] for
vector-valued functions: the material derivative of ∇p in the direction of a sufficiently smooth
vector field W ∈ Ck

0 (D̃,Rd) is given by

dm(∇p) = ∇dm(p)−∇p∇W . (15)

Given a second function q = (q1, . . . , qd)> : D̃ × R→ Rd, we have the following identity

∇p∇q : I =
d∑

k=1

d∑
j=1

d∑
i=1

∂pi
∂xj

∂qj
∂xk

δik =
d∑

k=1

d∑
j=1

∂pk
∂xj

∂qj
∂xk

= ∇p> : ∇q, (16)

where δik is the Kronecker delta and I ∈ Rd×d the identity matrix.

Quotient shape derivative rule We consider again the general setting in Rd with D̃ ⊂ Rd.
The shape derivative of the barycenter constraint term (9b) is required. Let q : D̃ × R →
R and W ∈ Ck

0 (D̃,Rd) be sufficiently smooth. We consider the domain integral Q(t) :=
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∫
D̃ q(x, t) dx and assume Q(t) 6= 0 for all t ≥ 0 in a neighborhood of zero. Adapting the
standard definition of the shape derivative of a domain integral Q(t) (cf. [8, 31]) yields

dQ−1(0)[W ] = d
dt

1∫
D̃ q(FWt (x), t) dx

∣∣∣∣∣
t=0+

= −
d
dt
∫
D̃ q(FWt (x), t) dx

∣∣∣
t=0+

(
∫
D̃ q(x, 0) dx)2

= −dQ(0)[W ]
Q(x, 0)2 .

(17)

3.2.2 Shape derivative of the augmented Lagrangian

We return to our example and now split the parametrized augmented Lagrangian L̂A : M̂ s
c ×

R5s × Ξ→ R into separate terms via

L̂A(û,λ, z;µ) =
8∑

χ=1
L̂χ(û,λ, z;µ),

where

L̂1(û,λ, z;µ) =
∫
Dû

ν

2 ∇v : ∇v dx, L̂2(û,λ, z;µ) =
∫
Dû

ν∇v : ∇ϕ dx,

L̂3(û,λ, z;µ) =
∫
Dû

((vz · ∇)vz) ·ϕz dx, L̂4(û,λ, z;µ) =
∫
Dû

−p div (ϕ) dx,

L̂5(û,λ, z;µ) =
∫
Dû

−f ·ϕ dx, L̂6(û,λ, z;µ) =
∫
Dû

ψ div (v) dx,

L̂7(û,λ, z;µ) = µ

2

∥∥∥∥∥max
(

0, ĥ(û) + λ

µ

)∥∥∥∥∥
2

2
, and L̂8(û,λ, z;µ) = −‖λ‖

2
2

2µ .

To compute the shape derivative of each L̂χ in direction W ∈ W(Dû) and for a fixed real-
ization, we use the definition of the material derivative and shape derivative as described in
[8, Definition 1 and 2] with respect toW , the concept of partial shape derivatives and partial
material derivatives described in Section 2.2 and Definition 3.1, and the linearity of the shape
derivative. This gives

dûL̂A(û,λ, z;µ)[W ]

=
s∑
i=1

diL̂A(û,λ, z;µ)[W |∆i
] =

s∑
i=1

8∑
χ=1

diL̂χ(û,λ, z;µ)[W |∆i
].

(18)

Using the rules of the material derivative in [8, section 5] and (15), as well as dm(ν) = 0, we
get

diL̂1(û,λ, z;µ) [W |∆i
] = di

(∫
∆i

ν

2 ∇vz : ∇vz dx
)

[W |∆i
]

=
∫

∆i

ν

2 (dmi
(∇vz) : ∇vz +∇vz : dmi

(∇vz))

+ div (W |∆i
)
(
ν

2 ∇vz : ∇vz
)

dx

=
∫

∆i

ν∇dmi
(vz) : ∇vz − ν (∇vz∇W |∆i

) : ∇vz

+ div (W |∆i
)
(
ν

2 ∇vz : ∇vz
)

dx.

(19a)
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Performing an analogous calculation for diL̂2(û,λ, z;µ) [W |∆i
] yields

diL̂2(û,λ, z;µ) [W |∆i
] = di

(∫
∆i

ν∇vz : ∇ϕz dx
)

[W |∆i
]

=
∫

∆i

ν∇dmi
(vz) : ∇ϕz − ν (∇vz∇W |∆i

) : ∇ϕz + ν∇vz : ∇dmi
(ϕz)

− ν∇vz : (∇ϕz∇W |∆i
) + div (W |∆i

) (ν∇vz : ∇ϕz) dx.

(19b)

The shape derivative of L̂3 is given by

diL̂3(û,λ, z;µ) [W |∆i
] = di

(∫
∆i

((vz · ∇)vz) ·ϕz dx
)

[W |∆i
]

=
∫

∆i

dmi
((vz · ∇)vz) ·ϕz + ((vz · ∇)vz) · dmi

(ϕz)

+ div (W |∆i
) (((vz · ∇)vz) ·ϕz) dx

=
∫

∆i

((dmi
(vz) · ∇)vz) ·ϕz + ((vz · ∇)dmi

(vz)) ·ϕz
− ((∇W |∆i

vz · ∇)vz) ·ϕz + ((vz · ∇)vz) · dmi
(ϕz)

+ div (W |∆i
) (((vz · ∇)vz) ·ϕz) dx.

(19c)

Using (16) and dmi
I = 0, we get the shape derivative

diL̂4(û,λ, z;µ) [W |∆i
] = di

(∫
∆i

−pz div (ϕz) dx
)

[W |∆i
]

=
∫

∆i

−dmi
(pz) div (ϕz)− pzdmi

(∇ϕz : I) + div (W |∆i
) (−pz div (ϕz)) dx

=
∫

∆i

−dmi
(pz) div (ϕz)− pz (∇dmi

(ϕz)−∇ϕz∇W |∆i
) : I

+ div (W |∆i
) (−pz div (ϕz)) dx

=
∫

∆i

−dmi
(pz) div (ϕz)− pz div (dmi

(ϕz)) + pz∇ϕz> : ∇W |∆i

+ div (W |∆i
) (−pz div (ϕz)) dx.

(19d)

Using ḟ = ∇fW |∆i
since f is not dependent on the shape, see e.g. [8, Chapter 4, Example

2], the shape derivative diL̂5(û,λ, z;µ) [W |∆i
] results in

diL̂5(û,λ, z;µ) [W |∆i
] = di

(∫
∆i

−f ·ϕz dx
)

[W |∆i
]

=
∫

∆i

−dmi
(f) ·ϕz − f · dmi

(ϕz) + div (W |∆i
) (−f ·ϕz) dx

=
∫

∆i

−(∇fW |∆i
) ·ϕz − f · dmi

(ϕz) + div (W |∆i
) (−f ·ϕz) dx.

(19e)

The shape derivative of L̂6 can be calculated analogously to the one of L̂4. We get

diL̂6(û,λ, z;µ) [W |∆i
] = di

(∫
∆i

ψz div (vz) dx
)

[W |∆i
]

=
∫

∆i

dmi
(ψz) div (vz) + ψz div (dmi

(vz))− ψz∇vz> : ∇W |∆i

+ div (W |∆i
) (ψz div (vz)) dx.

(19f)
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Choosing a W̃ ∈ H1(Dûi
,R2) for the computation of diL̂7(û,λ, z;µ) [W |∆i

] yields

di

µ
2

∥∥∥∥∥max
(

0, ĥ(û) + λ

µ

)∥∥∥∥∥
2

2

[W̃ ]

= µ

((
ĥ(û) + λ

µ

)
−max

(
0, ĥ(û) + λ

µ

))
di
(
ĥ(û) + λ

µ

)[
W̃
]

= µ

((
ĥ(û) + λ

µ

)
−max

(
0, ĥ(û) + λ

µ

))
di(ĥ(û))

[
W̃
]
.

It is required to calculate diĥ(û)
[
W̃
]
, where we first note that the partial shape derivative of

any constraints in ĥ(û) is zero, except for ĥi(ûi), and insert (9):

diĥi(ûi)
[
W̃
]

= di


Vi − vol(ûi)

Bi − bary(ûi)
bary(ûi)−Bi

[W̃ ]
= di



− ∫Dûi
1 dx

−
∫

Dûi

x dx∫
Dûi

1 dx∫
Dûi

x dx∫
Dûi

1 dx


[
W̃
]
.

Then, using the divergence theorem with the unit inward normal n of Dûi
, which is equivalent

to the unit outward normal of Dû, gives the identity

di
(∫

Dûi

1 dx
)[
W̃
]

=
∫
Dûi

div (W̃ ) dx =
∫
ûi

−W̃ · n ds.

Similar to [8, section 4, example 1], using the identity above and applying the quotient rule of
the shape derivative given in (17) with

∫
Dûi

1 dx > 0 ∀i = 1, . . . , s, see (9), we get

di

∫Dûi
x dx∫

Dûi
1 dx

[W̃ ]

= 1∫
Dûi

1 dxdi
(∫

Dûi

x dx
)[
W̃
]

+ di

 1∫
Dûi

1 dx

[W̃ ] ∫
Dûi

x dx

= 1∫
Dûi

1 dx

∫
Dûi

W̃ · ∇x+ x div (W̃ ) dx−
∫
Dûi
x dx(∫

Dûi
1 dx

)2

∫
Dûi

div (W̃ ) dx

= 1
vol(ûi)

∫
ûi

x
(
W̃ · (−n)

)
ds− bary(ûi)

vol(ûi)

∫
ûi

W̃ · (−n) ds

= 1
vol(ûi)

∫
ûi

− (x− bary(ûi))
(
W̃ · n

)
ds.

The direction W̃ on ui is equivalent to the directionW ∈ W(Dû) on ui, therefore the shape
derivative diL̂7(û,λ, z;µ) [W |∆i

] follows as

diL̂7(û,λ, z;µ) [W |∆i
] = µ

((
ĥi(ûi) + λi

µ

)
−max

(
0, ĥi(ûi) + λi

µ

))

·


∫
ûi
W |∆i

· n ds
1

vol(ûi)
∫
ûi

(x− bary(ûi)) (W |∆i
· n) ds

1
vol(ûi)

∫
ûi

(bary(ûi)− x) (W |∆i
· n) ds


(20a)
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Optimization of piecewise smooth shapes under uncertainty 13

where λi denotes the Lagrange multipliers related to the contraints ĥi(ûi). Lastly, the shape
derivative diL̂8(û,λ, z;µ) [W |∆i

] is

diL̂8(û,λ, z;µ) [W |∆i
] = di

(
‖λ‖2

2
2µ

)
[W |∆i

] = 0. (20b)

In order to obtain the shape derivative of L̂A in direction W ∈ W(Dû) we we now combine
the partial shape derivatives diL̂χ(û,λ, z;µ)[W |∆i

], χ = 1, . . . , 8 and i = 1, . . . , s, according
to (18). Moreover, we note that ∂∆ describes a null set as a one-dimensional subspace of R2

and therefore ∑s
i=1

∫
∆i
. . . dx =

∫
Dû
. . . dx. In summary, we get

dûL̂A(û,λ, z;µ)[W ]

=
∫
Dû

ν∇v̇z : ∇vz + ν∇v̇z : ∇ϕz + ((v̇z · ∇)vz) ·ϕz + ((vz · ∇)v̇z) ·ϕz
+ ψz div (v̇z)− ṗz div (ϕz) dx

+
∫
Dû

ν∇vz : ∇ϕ̇z + ((vz · ∇)vz) · ϕ̇z − pz div (ϕ̇z)− f · ϕ̇z + ψ̇z div (vz) dx

+
∫
Dû

−ν (∇vz∇W ) : ∇vz − ν (∇vz∇W ) : ∇ϕz − ν∇vz : (∇ϕz∇W )

− ((∇Wvz · ∇)vz) ·ϕz + pz∇ϕz> : ∇W − (∇fW ) ·ϕz
− ψz∇vz> : ∇W dx

+
∫
Dû

div (W )
(
ν

2∇vz : ∇vz + ν∇vz : ∇ϕz + ((vz · ∇)vz) ·ϕz − pz div (ϕz)

− f ·ϕz + ψz div (vz)
)

dx

+ µ

((
ĥ(û) + λ

µ

)
−max

(
0, ĥ(û) + λ

µ

))

·


[∫
ûi
W · n ds

]
i∈{1,...,s}[

1
vol(ûi)

∫
ûi

(x− bary(ûi)) (W · n) ds
]
i∈{1,...,s}[

1
vol(ûi)

∫
ûi

(bary(ûi)− x) (W · n) ds
]
i∈{1,...,s}

 .

Reordering terms reveals the weak forms of the state and adjoint equation ((12) and (14),
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respectively) for test functions v̇, ϕ̇ ∈ V (Dû) and ṗ, ψ̇ ∈ L2(Dû), which leads to

dûL̂A(û,λ, z;µ) [W ]

=
∫
Dû

−ν (∇vz∇W ) : (∇vz +∇ϕz)− ν (∇ϕz∇W ) : ∇vz

− ((∇Wvz · ∇)vz) ·ϕz +
(
pz∇ϕz> − ψz∇vz>

)
: ∇W − (∇fW ) ·ϕz

+ div (W )
(
ν∇vz :

(1
2 ∇vz +∇ϕz

)
+ ((vz · ∇)vz) ·ϕz

− pz div (ϕz)− f ·ϕz + ψz div (vz)
)

dx

+ µ

((
ĥ(û) + λ

µ

)
−max

(
0, ĥ(û) + λ

µ

))

·


[∫
ûi
W · n ds

]
i∈{1,...,s}[

1
vol(ûi)

∫
ûi

(x− bary(ûi)) (W · n) ds
]
i∈{1,...,s}[

1
vol(ûi)

∫
ûi

(bary(ûi)− x) (W · n) ds
]
i∈{1,...,s}

 .

(21)

4 Numerical investigations

In Section 4.1, we first formulate the stochastic augmented Lagrangian method proposed in
[26] for problems on manifolds and briefly review its theoretical properties. Then, we provide
algorithmic details for the numerical application in Section 4.2. Section 4.3 is dedicated to
presenting numerical results.

4.1 The stochastic augmented Lagrangian method on manifolds

4.1.1 Formulation of the method

In this section, we describe the stochastic augmented Lagrangian method for solving prob-
lems of the form (1). We collect the constraints in a vector h : M → Rn, u 7→ h(u) =
(h1(u), . . . , hn(u))>. As in [26], we define the parametrized Lagrangian and augmented La-
grangian by

L(u,λ, z) = J(u, z) + λ>h(u),

LA(u,λ, z;µ) := J(u, z) + µ

2

∥∥∥∥max
(

0,h(u) + λ

µ

)∥∥∥∥2

2
− ‖λ‖

2
2

2µ ,

respectively. Additionally, we define a feasibility measure and its induced sequence by

H(u,λ;µ) :=
∥∥∥∥∥h(u)−max

(
0,h(u) + λ

µ

)∥∥∥∥∥
2
, Hk := H(uk,wk−1;µk−1).

In order to formulate a gradient-based optimization procedure on a Riemannian (product)
manifold (M,G), we need to represent gradients with respect to the Riemannian metric G
under consideration to define descent directions as well as the multi-exponential map to define
the next (shape) iterate (cf., e.g., [25]). A brief introduction in these objects can be found,
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for example, in [26, section 2.1] or [25]. In the following, ∇uLA denotes the gradient of the
parametrized augmented Lagrangian with respect to G. In addition, the exponential map at a
point u ∈ M is a mapping expu from the tangent space TuM to the manifoldM. We now
have the components needed to formulate the proposed method, Algorithm 1, to solve (1).

Algorithm 1 Stochastic augmented Lagrangian method for shape optimization
1: Input: Initial shape vector u1, parameters γ > 1, τ ∈ (0, 1), bounded set B ⊂ Rn

2: Initialization: µ1 > 0, λ1 ∈ Rn, k := 1
3: while uk, λk not converged do
4: Choose wk ∈ B, step size tk, iteration limit Nk, and batch size mk

5: uk,1 := uk

6: for j = 1, . . . , Nk do
7: Generate i.i.d. samples {ξk,j,1, . . . , ξk,j,mk} independent from prior samples
8: uk,j+1 := expuk,j (− tk

mk

∑mk
l=1∇uLA(uk,j,wk, ξk,j,l;µk))

9: uk+1 := uk,j+1

10: λk+1 := µk
(
h(uk+1) + wk

µk
−max

(
0,h(uk+1) + wk

µk

))
11: if Hk+1 ≤ τHk or k = 1 satisfied then set µk+1 = µk else set µk+1 := γµk
12: k := k + 1

Algorithm 1 is based on the augmented Lagrangian method from [35, 56] and the stochas-
tic gradient method from [25, Algorithm 3], combined with a minibatch stochastic gradient
method. The sequence wk is taken from a bounded set B; one choice would be wk = πB(λk),
with πB denoting the projection onto the box constraint set B. The algorithm’s performance
and complexity are highly dependent on the choices of step sizes tk, iteration limits Nk, and
batch sizes mk.

4.1.2 Choice of method parameters

Here, we will make some formal arguments and refer to [26] for further details. Let fk(u) =
E[LA(u,wk, ξ;µk)] and j̃(u) = E[J(u, ξ)] and suppose the random sequence of iterates {uk}
generated by Algorithm 1 almost surely (a.s.) remain in a bounded set B̂. Let P1,0 : Tγ(1)UN →
Tγ(0)UN denote the parallel transport along the (unique) geodesic such that γ(0) = u and
γ(1) = ũ and set gi(u) := hi(u)+ wk

i

µk
−max(0, hi(u)+ wk

i

µk
). Let ∇j̃ and ∇h and be Lipschitz

continuous; then, it is possible to obtain Lk-Lipschitz continuity of ∇fk by splitting terms and
observing

‖P1,0∇fk(ũ)−∇fk(u)‖GN

≤ ‖P1,0∇j̃(ũ)−∇j̃(u)‖GN + µk

∥∥∥∥ n∑
i=1

P1,0∇hi(ũ)gi(ũ)−∇hi(u)gi(u)
∥∥∥∥
GN

≤ (Lj̃ + µkLh)d(ũ,u),

where Lk := Lj̃+µkLh with Lj̃ and Lh being constants coming from j̃ and h, respectively. By
assuming that iterates are contained in B̂, the Lipschitz continuity of fk only varies through
the parameter µk. In [26, Theorem 2.1], under various technical assumptions, asymptotic
convergence of Algorithm 1 was established using an adaptation of the randomly stopped
method from [28, 29]. We showed that if the step size is chosen such that tk = αk/Lk,
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αk ∈ (0, 2), we have

1
Nk

Nk∑
`=1

E[‖∇fk(uk,`)‖2
G] ≤

2Lk(fk(uk)− f ∗k )
(2αk − α2

k)Nk

+ αkM
2

(2− αk)mk

∀k, (22)

where f ∗k := infu∈B̂ fk(u), and M is a constant satisfying E[‖∇uJ(u, ξ)−∇j(u)‖2
G] ≤ M2

for all u ∈ M. Additionally, if L = supk Lk < ∞ and Nk, αk, as well as mk are chosen to
satisfy

∞∑
k=1

1
(2αk − α2

k)Nk

+ αk
(2− αk)mk

<∞, (23)

then we have ‖∇fk(uk+1)‖G → 0 a.s. The choice of Nk and mk depend on the desired
convergence rate for { 1

Nk

∑Nk
j=1 E[‖∇fk(uk,j)‖2

G]}. For instance, from (22), it is clear that a
choice of mk ∝ Nk ∝ kγ (∝ meaning up to a constant) yields a.s. sublinear convergence for
γ > 1; the choice mk ∝ Nk ∝ 2k ensures a.s. linear convergence; and taking mk ∝ Nk ∝ k!
results in a.s. superlinear convergence.

4.2 Algorithmic details regarding the inner loop

The shapes according to Algorithm 1 are updated by the exponential map. This computation
is prohibitively expensive in most applications because a calculus of variations problem must be
solved or the Christoffel symbols need be known. In the following, we considerM = Ms(UN)
and remember that any element of Ms(UN) can be understood as an element of UN . An
approximation using a (multi)-retraction

RN
uk,j : Tuk,jUN → UN , v = (v1, . . . , vN) 7→ (Ruk,j

1
v1, . . . ,Ruk,j

N
vN)

is often used to update the shape vector uk,j = (uk,j1 , . . . , uk,jN ). If we consider UN =
Be([0, 1],R2)N , for each shape uk,ji , we can define the retraction in [49, (3.14), page 265]
also on Be([0, 1],R2) and use it in our computations. In addition to updating a shape, we also
need to update the computational mesh in each iteration. In order to compute a deformation
field that can be applied to Dû that corresponds to the considered retraction, it has been de-
scribed in [25, Eq. (34)] that the shape derivative can be used in an ‘all-at-once’-approach as
the right-hand side of a variational problem, which is based on the Steklov–Poincaré metric2:
Find V ∈ W(Dû) s.t.

aû(V ,W ) = dûL̂A(û,λ, z;µ)[W ] ∀W ∈ W(Dû), (24)

where aû is a coercive and symmetric bilinear form defined onW(Dû)×W(Dû). The computed
deformation field V from solving (24) is then applied to Dû as in (4).
For the bilinear form in (24), we use

aµ̂û(V ,W ) =
∫
Dû

2µ̂ε(V ) : ε(W ) dx, (25)

in our simulations, where ε(W ) := 1
2(∇W +∇W>) and µ̂ is determined by solving

∆µ̂ = 0 in Dû, µ̂ = µmax on û, µ̂ = µmin on Γ, (26)

with the choices µmax = 33 and µmin = 10.
2In this paper, we focus on the Steklov–Poincaré metric due to its advantages for the quality of the

discretization of Dû (cf. [52, 53]).
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4.3 Numerical results

All numerical simulations were performed either on a workstation equipped with 32 physical
cores, or the HPC cluster HSUper3. In both cases Python 3.10.10 together with the FEniCS
toolbox [3], version 2019.1.0, were used. The hold-all domain D was chosen to be (−10, 20)×
(−10, 10) and the initial configuration and numbering of s = 5 shapes can be seen in Figure 2a.
The two-dimensional computational mesh was generated using Gmsh 4.11.1 [27]. The resulting
mesh contains 341 edges discretizing the boundaries, and 6611 triangle elements discretizing
Dû. The mesh was newly generated without requiring user interaction in case the mesh quality
deteriorated.4 If the shape space definition is based on the number of nodes belonging to the
discretization of the shapes (see Remark 1) then the remeshing requires the definition of a new
shape space if the number of nodes that discretize the shape is increased. To ensure inf-sup
stability, stable P2-P1 Taylor-Hood elements were used for the discretization, see, e.g., [7, 59].
Systems of equations were solved using the default sparse LU decomposition in combination
with a Newton solver, as implemented in FEniCS. Random values were generated with numpy
1.22.4 using numpy.random with the seed 863860, and parallelization of multiple stochastic
realizations was performed using the mpi4py module, version 4.1.3 on the cluster and 4.1.4
on the workstation.
For all experiments, the parameters from Algorithm 1 were chosen to be γ = 2 and τ = 0.9 and
penalty terms/multipliers were initialized to µ1 = 1, and λ1 = 0. Additionally, we projected
the Lagrange multipliers λk onto B = (−100, 100)25 to obtain wk. The fluid viscosity was set
to be ν = 0.2 and volumetric forces were neglected (f = 0). The volume of each shape was
constrained to be at or above 100% initial volume, i.e. V i = vol(û1

i ) for every i. The barycenter
locations were allowed to vary in the box [−0.2, 0.5] × [−0.3, 0.4] centered at the respective
initial positions B1

1 = (−0.5, 5.5)>, B1
2 = (4.5, 0.5)>, B1

3 = (−5.5, 0.5)>, B1
4 = (−4.5,−5)>,

and B1
5 = (2.5,−7)>.

4.3.1 The stochastic model

For the velocity distribution g on the boundary û, we chose a no-slip condition g|û = 0.
On ΓD, we defined a random field as in [6] by

g(x, ξ(ω)) =


κ(x, ξ(ω))

0

 , x ∈ {−10} × (−10, 10),

0 else
(27)

with
κ(x, ξ(ω)) = 1

100(10 + x2)(10− x2) +
20∑
`=1

`−η−1/2 sin
(
π`x2

10

)
ξ`(ω), (28)

where ξ` ∼ U [−1, 1] (U [a, b] being the uniform distribution on the interval [a, b]) and η is a
constant related to the smoothness of the (truncated) random field. The expected value of this
random field is represented by the first term in (28), which describes a parabola-shaped inflow
profile with a value of 1 at the middle of the boundary and 0 at the corners. The smoothness

3Further information about the technical specifications can be found at https://www.hsu-hh.de/hpc/
en/hsuper/.

4We call the mesh quality deteriorated if the FEniCS function MeshQuality.radius_ratio_min_max
yields a value below 40%.
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Table 1: Minimal accepted step sizes for different penalty factors.

µ 1 2 4 8 16 32 64
minj t1,j 4.7239 2.2594 1.0807 0.57432 0.30522 0.16220 0.086202

constant was chosen to be η = 2.5. The 20 × mk matrix of random values was generated
row by row; each column of this matrix, which represented a sample of the random field, was
distributed to the mk processes.

4.3.2 Estimating the Lipschitz constant Lk

A crucial component in Algorithm 1 is the step size tk, which depends on the Lipschitz
constant Lk. Since these Lk (which depend on the gradients of the expectation f̂k(û) :=
E[L̂A(û,wk, ξ;µk)]) are not available to us, we used an offline numerical procedure to estimate
their values. We used a fixed number of samples m = 32 corresponding to the number of
cores available for parallel processing on the workstation. Given an outer iterate k and an
inner iterate j, we drew m samples {ξk,j,l}ml=1 and computed an averaged deformation field
V̄

k,j := 1
m

∑m
l=1 V

k,j,l, where V k,j,l solves

aûk,j (V ,W ) = dûL̂A(ûk,j,wk, ξk,j,l;µk)[W ] ∀W ∈ W(Dûk,j ) (29)

and Dûk,j is Dû corresponding to the shape vector ûk,j at the jth iteration in the kth outer
loop; see Algorithm 1. Then, Armijo backtracking was performed with respect to the aver-
age deformation field, i.e., we found the step size tk,j = t0β

j′ (t0 > 0) with the smallest
nonnegative integer j′ satisfying

1
m

m∑
l=1

L̂A(ûk,j′
,wk, ξk,j,l;µk)

≤ 1
m

m∑
l=1

L̂A(ûk,j,wk, ξk,j,l;µk)− σtk,j
′‖V̄ k,j‖2

H1(D
ûk,j ,R2),

(30)

where ûk,j ∈ M c
s is the starting shape and ûk,j′ = ûk,j − t0βj′

V̄
k,j|ûk,j is a shape that has

been perturbed by t0βj
′
V̄

k,j. For the test, we used σ = 10−4, β = 0.9 and t0 = 8. It is known
(see [9, Section 1.2.2]) that for a function with a Lipschitz gradient Lk, the backtracking
procedure defined by (30) will converge for all step sizes tk = αk/Lk with αk ∈ [0, 2(1− σ)].
We use this property to obtain an estimate for Lk by taking the minimum accepted step size
over all inner iterations j, i.e., Lk = 2(1−σ)

minj tk,j . Since Lk = Lj̃ + µkLh (see Section 4.1), we
estimated Lj̃ and Lh by choosing different µk. A least squares fit using the values in Table 1
yielded an estimate of Lj̃ = 0.42215 and Lh = 0.36036 with an R2 value of 0.99858. Using
this information, the step size in Algorithm 1 was set to tk = L−1

k = (0.42215 + 0.36036µk)−1

for the following stochastic numerical experiments, i.e., αk = 1 for all k.

4.3.3 Stochastic solutions

For the following experiment, we chose the step sizes using the estimated Lipschitz constants,
the batch sizes mk = 2k−1, and the iteration numbers Nk = 2k+2. We approximated the
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objective functional using j̄(ûk,Nk) = 1
mk

∑mk
l=1 Ĵ(ûk,Nk , ξk,Nk,l) and the stationarity measure

on the left-hand side of (22) using

Sk := 1
Nk

Nk∑
j=1
‖V̄ k,j‖2

H1(D
ûk,j ,R2) = 1

Nk

Nk∑
j=1

∥∥∥∥ 1
mk

mk∑
l=1
V k,j,l

∥∥∥∥2

H1(D
ûk,j ,R2)

,

where V k,j,l solves (29). In Table 2, these values are displayed for each k for a numerical exper-
iment with a total of 11 outer iterations. The results confirm the expected linear convergence
rate of the algorithm with mk and Nk.

Table 2: Numerical results for the number of inner iterations Nk, batch size mk, objective
function estimate j̄(ûk,Nk), and the stationarity measure Sk, over outer iterations k.

k Nk mk j̄(ûk,Nk) Sk

1 8 1 11.7279 4.7836 · 10−2

2 16 2 9.01430 1.2340 · 10−2

3 32 4 8.79418 5.2774 · 10−3

4 64 8 9.20942 1.8561 · 10−3

5 128 16 8.62501 1.4991 · 10−3

6 256 32 8.75685 7.6928 · 10−4

7 512 64 8.41575 1.7457 · 10−4

8 1024 128 8.52603 9.7468 · 10−5

9 2048 256 8.50631 3.4349 · 10−5

10 4096 512 8.58534 1.5611 · 10−5

11 8192 1024 8.43387 8.3566 · 10−6

The shapes at the start and end of the stochastic optimization are shown in Figure 2a and
Figure 3a. All five shapes go from an initially triangular shape to a more streamlined shape.
The initial kinks in the shape are removed by the optimization, and new kinks are formed
towards the left and right of some shapes.
The barycenter position of each shape over the course of the optimization can be seen in
Figure 2b. One can see that all shapes move within the hold-all domain, and at some point of
the optimization either the lower or upper bound is active for all shapes.
Further, the fluid velocity magnitude for the shapes in Figure 3a and an evaluation of the
objective functional for an inflow condition (27)–(28) using ξ` = −1 ∀`, ξ` = 0 ∀` and ξ` = 1
∀` is shown in Figure 4, which indicates the strong influence of the randomness on the flow
profile.

4.3.4 Comparison to deterministic solutions

In this experiment, we demonstrate that neglecting stochastic information leads to suboptimal
shapes. We modified the velocity distribution defined in (27) so that ξ` = 0 ∀` is chosen in
(28). For this, we used Armijo backtracking, which means replacing lines 6–8 in Algorithm 1
with the step size control in [25, Algorithm 2]. On Dû, at outer iteration k and inner iteration
j, this procedure translates to determining tk,j = tj0β

j′ (t0 > 0) with the smallest nonnegative
integer j′ satisfying (30) with ξk,j,l = 0 and m = 1, where the deterministic deformation
vector field V̄ k,j is the solution to (29) with ξk,j,l = 0. The parameters here were chosen to
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û2û3
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(a) Shapes before optimization. The s = 5 shapes
are numbered as: blue (1), red (2), green (3),
orange (4) and pink (5).
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(b) Position of the barycenter of each shape dur-
ing stochastic optimization. The feasible barycen-
ter positions are denoted by rectangles.

Figure 2: Shapes after stochastic optimization (left) and barycenter positions over the course
of the optimization (right).
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(a) Shapes after stochastic optimization.
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(b) Shapes after the deterministic optimization
for ξ` = 0 ∀`.

Figure 3: Shapes u1 (blue), u2 (red), u3 (green), u4 (orange) and u5 (pink) after the stochastic
and deterministic optimization.
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(b) Ĵ(ûk,0) = 6.8452

−10 0 10 20
x1
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Figure 4: Fluid velocity magnitude with different inflow profiles (27)–(28) with the shapes
from stochastic optimization (Figure 3a). An estimate of the objective functional and the
deformation field after optimization using random samples from seed 124764 with a sample
size of 10016 yields j̄(ûk) = 8.4968 and S = ‖ 1

10016
∑10016
l=1 V l‖2

H1(D
ûk ,R2) = 3.2730 · 10−6,

where V l solves (29).

be σ = 10−4, β = 1
2 , and t

j
0 = 8 (for j ≤ 10). To reduce the number of rejected Armijo steps,

we chose tj0 = minι=1,...,10 t
ι
0 for j > 10. For the inner loop termination condition, with the

Lagrangian L̂(û,λ, z) := Ĵ(û, z)+λ>ĥ(û), we used the optimality measure r̂k := r̂(ûk,λk),
where r̂(û,λ) = ‖∇ûL̂(û,λ,0)‖H1(Dû,R2) + ‖ĥ(û) + max(0, ĥ(û) + λ)‖2. The inner loop
was terminated if r̂k+1

r̂k
≤ 1

k2+2 , a rule motivated by [56, Theorem 2.3].
The shapes û1, . . . , û5 before optimization are the same as in the previous experiment, and the
shapes after 12 outer (augmented Lagrange) iterations are shown in Figure 3b. It can be seen
that the obtained barycenters varied significantly between the stochastic and deterministic
optimization. This deterministic optimization also yielded a kink for shape û3 and û4 towards
the left, while this area is more rounded after the stochastic optimization.
Additionally, we show the fluid velocity magnitude after 12 outer (augmented Lagrange) it-
erations in Figure 5. Here, an inflow profile with ξ` = −1 ∀`, ξ` = 0 ∀` and ξ` = 1 ∀` was
applied. The velocity profile looks qualitatively similar to the profiles from stochastic opti-
mization (Figure 4); however, higher objective functional values can be observed for values
of ξ` further away from zero. An estimate of the objective functional j̄(ûk) with a sample
size of 10016 yields a reduction by 1.2% when using a stochastic approach. The stationarity
measure of the optimization is estimated to be strongly superior in the stochastic case by a
factor of 100, which indicates that the deterministic solution is not an optimal solution for the
stochastic optimization.

5 Conclusions

In this paper, we connected the differential-geometric structure of the space of piecewise
smooth shapes to shape calculus. We defined the multi-material derivative and the (stochastic)
multi-shape derivative in relation to the new shape space. An application to a multi-shape
optimization problem was considered, where the expected viscous energy dissipation should
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Figure 5: Fluid velocity magnitude with different inflow profiles (27)–(28) with the shapes
from deterministic optimization (Figure 3b). An evaluation of the objective functional and
the deformation field with the same samples as in Figure 4 yields j̄(ûk) = 8.5962 and S =
7.1740 · 10−4.

be minimized and the physical system is governed by the Navier–Stokes equations under
uncertainty with additional geometrical inequality constraints. Using our proposed framework,
we calculate the stochastic multi-shape derivative for our example.
In the numerical experiments, we confirmed the convergence rate of the stochastic augmented
Lagrangian method previously introduced in [26]. We discussed various aspects of the method,
including the choice of parameters. For our tests, we estimated the sequence of Lipschitz
constants for the penalized stochastic optimization problems numerically. These constants
were used in a step size control for a computationally more expensive stochastic experiment.
We showed the optimized shapes from the stochastic model and compared them to those
obtained using deterministic models, where the deterministic optimization with respect to
ξ` = 0 for all ` yielded worse results than a stochastic approach.
It is likely that the step size rule could be further optimized, for instance using an online (as
opposed to offline) approach to estimate Lipschitz constants. Furthermore, a less conservative
estimate of the Lipschitz constant could enable faster progress of the optimization. Our method
shows promise for other applications, including three-dimensional and/or transient problems
as well as related problems with other geometric constraints.
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