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Guaranteed quasi-error reduction of adaptive Galerkin FEM for
parametric PDEs with lognormal coefficients

Martin Eigel, Nando Hegemann

Abstract

Solving high-dimensional random parametric PDEs poses a challenging computational prob-
lem. It is well-known that numerical methods can greatly benefit from adaptive refinement algo-
rithms, in particular when functional approximations in polynomials are computed as in stochastic
Galerkin and stochastic collocations methods. This work investigates a residual based adaptive
algorithm used to approximate the solution of the stationary diffusion equation with lognormal
coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence
of the scheme for this class of unbounded coefficients remains a challenging open question. This
paper advances the theoretical results by providing a quasi-error reduction results for the adap-
tive solution of the lognormal stationary diffusion problem. A computational example supports the
theoretical statement.

1 Introduction

In the natural sciences and engineering most modern simulation methods rely on partial differential
equations (PDEs). In these applications, the simulation typically requires knowledge about many, only
indirectly observable parameters such as material properties or experimental inaccuracies. Incorpo-
rating uncertainties or variations of the unknown parameters into the physical model often leads to an
extremely challenging discretization complexity, also known as the “curse of dimensionality”. To miti-
gate the numerical obstacles and obtain a better understanding of the problems underlying structure,
model order reduction techniques have been an essential area of research activity in the last decade.

One of the core ideas in this field concerns constructing a solution iteratively, increasing the complex-
ity locally only where it is necessary. The main contribution of this work is to investigate and prove a
guaranteed reduction of the quasi-error, consisting of error and error estimator, of such an adaptive
algorithm, driven by a residual based error estimator, when applied to a certain class of elliptic para-
metric PDEs with unbounded coefficients. As a model problem, we consider the parameter dependent
stationary diffusion equation

´ divx
`

apx, yq∇x upx, yq
˘

“ fpxq in D,

upx, yq “ 0 on BD,
(1.1)

on a domain D Ă R2. Here y “ py1, . . . , yM̂q Ă RM̂ is a high or even infinite dimensional param-
eter vector determining the diffusion coefficient field a and hence the solution u of (1.1). In particular,
we consider the coefficient to be the exponential of an affine random field γ of Gaussian variables,
i.e., apx, yq “ exp γpx, yq, which is generally referred to as a lognormal coefficient. Several different
adaptive schemes for both bounded (affine) and unbounded diffusion coefficients have been investi-
gated in the literature [1–8]. So far establishing convergence of the adaptive algorithms has only been
accomplished for bounded affine diffusion coefficients [9–12].
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M. Eigel, N. Hegemann 2

The main result of this work, Theorem 5.2, establishes that the adaptive Algorithm 1, which is based
on the one described in [8], reduces the quasi-error err2ℓ “ }∇pu ´ uℓq}2 ` ωℓη

2
det,ℓ ` ωℓτη

2
sto,ℓ,

ωℓ, τ ą 0, in each iteration ℓ P N, i.e.,

err2ℓ`1 ď δℓ err
2
ℓ , 0 ă δℓ ă 1, (1.2)

even for an unbounded lognormal coefficient a. In our case the residual error estimator is composed of
two contributions, namely ηdet and ηsto, and satisfies the reliability estimate }u´ uℓ}

2 À ηdetpuℓq
2 `

ηstopuℓq
2 [1, 7]. We follow the proof in [9], which extends the basic strategies for deterministic finite

element methods [13–17] to the parametric setting. Here the major difference to the bounded affine
case manifests in the adapted solution spaces necessary to guarantee well-posedness of (1.1). As
a consequence, establishing basic properties, such as Lipschitz continuity of ηdet and ηsto or the
additivity of ηsto with respect to the stochastic index set, becomes non-trivial.

ηdet prop. ηsto prop. general prop.

coercivity B
(Equation (2.9))

reliability η
(Theorem 3.2)

definition η
(Equation (3.9))

Lp embeddings
(Lemma 4.1)

Lipschitz ηdet
(Theorem 4.3)

continuity ηdet
(Theorem 4.5)

Lipschitz ηsto
(Theorem 4.7)

additivity ηsto
(Theorem 4.10)

level ℓ ` 1 Ñ ℓ
(Lemma 5.1)

quasi-error reduction
(Theorem 5.2)

Figure 1: Schematic overview of the ingredients required for the quasi-error reduction proof and how
they are employed.

Figure 1 visualizes schematically how the newly established properties are employed to prove that
Algorithm 1 reduces the quasi-error (1.2) in each iteration. We first utilize the Lipschitz continuity of ηdet
and ηsto as well as the continuity of ηdet with respect to the index set to prove Lemma 5.1, which yields
an upper bound of the estimator contributions depending only on quantities of the previous iteration
step. Similarly, the embedding of weighted Gaussian Lp-spaces, the coercivity of the bilinear form (2.9)
and the reliability of the estimator lead to a bound of the error }u´uℓ`1} by quantities depending only
on level ℓ. Refining either the spatial mesh or the stochastic space using a Dörfler marking strategy
allows us to derive a quasi error reduction for the two different refinement scenarios. Here quasi
additivity of ηsto in the index set is required to show the reduction in case ηsto is the dominating
contribution. Finally, the involved free constants have to be chosen appropriately to ensure (1.2) holds
simultaneously for both spatial and stochastic refinement for some 0 ă δ ă 1.

We point out that while convergence with affine coefficients can be shown [6, 9, 10], the same strong
statement cannot be achieved in our setting, despite the derived quasi-error reduction in each re-
finement step. The crucial estimate on our analysis os commented on in Remark 5.3. Nevertheless,
numerical results indicate the practical convergence of the adaptive algorithm.

The remainder of this work is structured as follows. Section 2 introduces the model problem setting,
its variational formulation as well as the spatial and stochastic discretization. In Section 3, we define
the residual based error estimator and introduce the algorithm that steers the adaptive refinement of
the spatial mesh and the stochastic index set. Thereafter, we show some basic properties of the error
estimator contributions in Section 4, which are essential to prove the main result in Section 5. Finally,
we show numerical evidence to confirm the theoretical results in Section 6.
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Lognormal ASGFEM error reduction 3

2 Parametric model problem

This section introduces the required notation for the parametric model problem (1.1). We give a short
overview of the analytical setting and describe the results necessary to overcome most of the technical
challenges caused by the unbounded lognormal coefficient.

2.1 Stationary diffusion with lognormal coefficient

Let D Ă R2 be a polygonal bounded Lipschitz domain representing the spatial computational area.
Note that the restriction to a two dimensional spatial domain is for simplification of the problem only.
All results also hold true for D Ă Rd for d “ 1, 2, 3, see e.g. [7] for details. For M̂ P N Y t8u and

almost all y P RM̂ , let

γpx, yq “

M̂
ÿ

m“1

γmpxqym for any x P D. (2.1)

As we define the diffusion coefficient a in (1.1) as the exponential of γ, it is important to note that
the affine structure of γ is common in applications. In a typical setting, where the randomness of the
parametric problem is given through a random field with known covariance kernel, the Karhunen-Loève
expansion [18] is a popular tool to decorrelate the random field into an affine sum similar to (2.1). The
unbounded diffusion coefficient is now given by

apx, yq “ exppγpx, yqq. (2.2)

Without loss of generality we restrict this work to a deterministic source term f P L2pDq and homo-
geneous Dirichlet boundary conditions.

The unboundedness of coefficient a yields an ill-posed problem and adapted function spaces have to
be introduced, cf. [19–23]. In the following, we give a summary of the necessary concepts and refer
to [7, 24] for a concise description of the underlying analysis. Let X :“ H1

0 pDq be equipped with the
norm }w}X “ }∇w}L2pDq, }w}D “ }w}L2pDq and let F :“ tµ P N8

0 : | suppµ| ă 8u be the set
of finitely supported multi-indices, where suppµ denotes the set of all indices of µ different from zero.
The set of admissible parameters y P RM̂ is then given by

Γ :“ ty P RM̂ :
M̂
ÿ

m“1

}γm}L8pDq|ym| ă 8u, (2.3)

which excludes only a set of measure zero fromRM̂ [24]. For any ρ ě 0, we set σmpρq “ exppρ}γm}L8pDqq ě

1 and define

ζρpyq :“
M̂

ź

m“1

ζρ,mpymq for ζρ,mpymq :“
1

σmpρq
exp

´

`1

2
´

1

2σmpρq2

˘

y2m

¯

. (2.4)

Since ζρ,m is the Radon-Nikodym derivative of N p0, σmpρq2q with respect to the standard Gaussian
measure, we can define the probability density function of N p0, σmpρq2q via

πρ,mpymq “ ζρ,mpymq
1

?
2π

expp´
1

2
y2mq. (2.5)
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M. Eigel, N. Hegemann 4

Note that π0,m is the density of the standard Gaussian measure itself, since ζ0,m ” 1. With this,

we define the weighted product measure πρpyq :“
śM̂

m“1 πρ,mpymq. Since we assume ym „

N p0, σmpρq2q for some ρ ą 0, we refer to a as a lognormal coefficient field.

For any ϑ P r0, 1s and ρ ą 0, define the bilinear form for all w, v P L2pΓ, πϑρ;X q by

Bpw, vq :“ Bϑρpw, vq :“

ż

Γ

ż

D

apx, yq∇wpx, yq ¨ ∇ vpx, yq dx dπϑρpyq (2.6)

and denote by }w}B “ Bpw,wq1{2 the energy norm induced by B. Additionally, let }w}πϑρ,D “

}w}L2pΓ,πϑρ;L2pDqq. The variational form of (1.1) then reads: Find u P V such that

Bpu, vq “ F pvq for all v P V , (2.7)

where F pvq “
ş

Γ

ş

D
fpxqvpx, yq dx dπϑρpyq and

V :“ tw : Γ Ñ X measurable with Bϑρpw,wq ă 8u.

Remark 2.1. With this problem adapted function space, it follows by [24, Proposition 2.43] that

L2
pΓ, πρ;X q Ă V Ă L2

pΓ, π0;X q

are continuous embeddings for any 0 ă ϑ ă 1. Thus, the bilinear form Bϑρ is V–elliptic and bounded
in the sense that

|Bϑρpw, vq| ď ĉϑρ }∇w}πρ,D }∇ v}πρ,D for all w, v P L2
pΓ, πρ;X q, (2.8)

Bϑρpw,wq ě čϑρ}∇w}
2
π0,D

for all w P L2
pΓ, π0;X q, (2.9)

for some ĉϑρ, čϑρ ą 0, which implies the well-posedness of (2.7).

2.2 Discretization

Since the spatial domain D has a polygonal boudary, we assume a shape regular triangulation T that
represents D exactly. We denote by E the set of edges of T and let BT “ tE P E : E X T̄ ‰ Hu for
any triangle T P T . For any E P E denote by hE “ |E| the length of E and let hT “ maxEPBT hE

denote the diameter of any T P T .

For the spatial discretization, consider the conforming Lagrange finite element space of order p

XppT q “ PppT q X CpT̄ q “ spantφju
J
j“1, (2.10)

where PppT q denotes the space of element-wise polynomials of order p. Here, J P N denotes the
dimension of the finite element space. Define the normal jump of a function ξ P H1pD;R2q over the
edge E “ T̄ X T̄ 1 by JξKE “ pξ|T ´ ξ|T 1q ¨ nE for the edge normal vector nE “ nT “ ´nT 1 of E.
Since the direction of the normal nE depends on the enumeration of the neighbouring triangles, we
assume an arbitrary but fixed choice of the sign of nE for each E P E .

By tPm
k u8

k“0 we denote a set of orthogonal and normalized polynomials in L2pΓ, πϑρ,mq. This defines

a tensorized orthonormal product basis tPµuµPF of L2pΓ, πϑρq by Pµpyq :“
śM̂

m“1 P
m
µm

pymq “
ś

mPsuppµ P
m
µm

pymq. Due to the weighted L2 spaces of our functional setting, the basis tPµu consists
of scaled Hermite polynomials, see [8, 24]. Note that the use of global polynomials is justified by the
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Lognormal ASGFEM error reduction 5

high (holomorphic) regularity of the solution of (1.1) with respect to the stochastic variables [20, 25,
26]. For any α, β, µ P NM̂

0 we define the triple product

ταβµ :“
M̂

ź

m“1

τmαmβmµm
for τmαmβmµm

:“

ż

Γ

Pm
αm

Pm
βm

Pm
µm

dπϑρ,mpyq (2.11)

and note that τmijk “ 0 if i ` j ` k is odd or if maxti, j, ku ą pi ` j ` kq{2. For more analytical
properties of the scaled Hermite polynomials we refer to [7, 8].

For any j P N0 and k P N, let rj : ks :“ tj, . . . , k ´ 1u, where rj : ks :“ t0u if j ě k and

rks :“ r0 : k ´ 1s. Define the full tensor index set Λd for any d P NM̂ by

Λd :“ rd1s ˆ . . . rdM̂ s ˆ r1s ˆ ¨ ¨ ¨ Ă F . (2.12)

Given two full tensor sets Λd,Λd̂ with d, d̂ P NM̂ , we define the sum of the two sets by Λd ` Λd̂ “

Λd`d̂´1 and refer to BΛd “ Bd̂Λd “ Λd`d̂´1zΛd as the boundary of Λd with respect to Λd̂. Note that

we will implicitly assume d “ pd1, . . . , dM , 1, . . . , 1q P NM̂ for any d P NM with M ă M̂ to ensure
compatibility of dimensions.

Given these sets, we define the fully discrete approximation space by

VN :“ VNpΛd; T , pq :“
!

wNpx, yq “

J
ÿ

j“1

ÿ

µPΛd

wN rj, µsφjpxqPµpyq with wN P RJˆd
)

Ă V .

(2.13)
We refer to wN as the coefficient tensor of wN with respect to the bases tφju and tPµu. With this
the Galerkin projection uN P VN of the solution u of (2.7) is determined uniquely by

BpuN , vNq “ F pvNq for all vN P VN . (2.14)

3 Error estimator and adaptive algorithm

In this section a reliable residual based error estimator for the Galerkin solution uN P VN is introduced.
Moreover, an algorithm for the adaptive refinement of the spatial and stochastic approximation spaces
is described. The estimator we define is based on the one presented in [7] and we refer to [1, 7, 9] for
details on the underlying analysis.

3.1 A posteriori error estimator

In the following, let p P N be some fixed FE polynomial degree, d P NM and d̂ P NM̂ for M ď M̂ P

N. Furthermore, assume that we have access to an approximation aN P VNpΛd̂; T , pq of (2.2) of the
form

apx, yq « aNpx, yq “

J
ÿ

j“1

ÿ

µ̂PΛd̂

aN rj, µ̂sφjpxqPµ̂pyq (3.1)

for any triangulation T . In order to avoid an obfuscation of the analysis, we assume the approximation
error to be negligible with respect to the overall error we would like to achieve. Then, for any w P V ,
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M. Eigel, N. Hegemann 6

consider the residual Rpwq P V˚ “ L2pΓ, πϑρ;X ˚q of (2.7) for aN instead of a, given implicitly for
all v P V by

xRpwq, vyV ˚,V “

ż

Γ

ż

D

fpxqvpx, yq ´ aNpx, yq∇wpx, yq ¨ ∇ vpx, yq dx dπϑρpyq. (3.2)

Similarily, we consider the bilinear form (2.6) with aN instead of a in the following.

Remark 3.1. The residual associated to (2.7) can be split into a term containing Rpwq and a term
describing the approximation error of the diffusion coefficient

xf ` divpa∇wq, vyV˚,V “ xRpwq, vyV˚,V `

ż

Γ

ż

D

pa ´ aNq∇w ¨ ∇ v dx dπϑρpyq, (3.3)

which implies that the task of finding aN to approximate (2.2) can be considered separately. Since
there exist several approaches to compute such an approximation [7, 27–29] and [29] even provides
a computable a posteriori bound of the approximation error for any aN P VNpΛd̂; T , pq, we assume
that the second term of (3.3) is negligible and restrict ourselves to (3.2). We also need to assume
that (2.8)– (2.9) still hold when using aN instead of a, possibly with different constants ĉϑρ and čϑρ.
Note that the solution error incurred by approximating u by uN is bounded by the Strang lemma, see
e.g. [30, Chap. 3-§1].

For any wN P VN we define rpwNq :“ aN ∇wN and note that by [7, Lemma 3.1]

rpwNq “
ÿ

µPΛd`d̂´1

rµpwNqPµ for rµpwNq “

J
ÿ

j,k“1

ÿ

αPΛd

ÿ

α̂PΛd̂

aN rk, α̂swN rj, αsταα̂µφk ∇φj

(3.4)
has support on Λd`d̂´1 due to the properties of the triple product ταα̂µ. With this we introduce the
deterministic estimator contribution

ηdetpwN , T ,Λdq
2 :“

ÿ

TPT

´

ηdet,T pwN ,Λdq
2

` ηdet,BT pwN ,Λdq
2
¯

(3.5)

for volume and jump contributions given by

ηdet,T pwN ,Λdq :“ hT }
ÿ

µPΛd

`

fδµ0 ´ div rµpwNq
˘

Pµ ζϑρ}π0,T , (3.6)

ηdet,BT pwN ,Λdq :“ h
1{2
T }

ÿ

µPΛd

JrµpwNqKBTPµ ζϑρ}π0,BT , (3.7)

where δµµ̂ denotes the (multiindex) Kronecker delta. In a similar fashion we define the stochastic
estimator contribution by

ηstopwN ,∆q :“ }
ÿ

µP∆

rµpwNqPµζϑρ}π0,D for any ∆ Ď BΛd. (3.8)

Let the overall error estimator for any wN P VN and (heuristically chosen) equilibration constant
cref ą 0 be given by

ηpwNq
2

“ ηdetpwN , T ,Λdq
2

` c2refηstopwN , BΛdq
2. (3.9)

Then [7] yields the following reliability bound.
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Lognormal ASGFEM error reduction 7

Theorem 3.2 (reliability). Let u be the solution of (2.7) and let uN P VN be the Galerkin solution
of (2.14). There exists a constant crel ą 0 depending only on the constant in (2.9) and the shape
regularity of T such that

}u ´ uN}B ď crel ηpuNq.

Remark 3.3. The estimator considered in [7] is not the same as (3.9) for two reasons. First, (3.7) has a
different ordering, which implies that (3.5) is equivalent to the deterministic estimator contribution in [7]
with a constant depending only on the shape regularity of T . Second, we neglect error contributions
introduced by the low-rank compression and the inexact iterative solver of the Galerkin solution uN

of (2.14). This is motivated by promising experimental results in recent works [31–33], where it is
shown numerically that these errors can in principle be controlled. Hence, we assume that the Galerkin
solution uN is computable and focus on showing the reduction of the quasi-error through the adaptive
algorithm in our setting.

3.2 Adaptive algorithm

Given a fixed FE polynomial degree p P N0, an initial triangulation T and initial stochastic dimensions
d P NM , Algorithm 1 relies on a classical loop of Solve, Estimate, Mark and Refine to generate
approximative solutions uℓ of (1.1). According to Remark 3.1, we assume d̂ P NM̂ sufficiently large
such that the approximation error of the discretized diffusion coefficient (3.1) is negligible in each
iteration of Algorithm 1. As d̂ remains unchanged during the algorithm, we abbreviate BΛd “ Bd̂Λd in
the following.

Algorithm 1: Adaptive refinement scheme
Input: mesh T ; FE polynomial degree p; stochastic dimensions d; Dörfler thresholds

0 ă θdet, θsto ď 1; maximum number of iterations L; look ahead q P NM̂

1 set T1 “ T , Λd1 “ Λd;
2 for ℓ “ 1, 2, . . . do
3 Solve
4 compute solution uℓ P VNpΛdℓ ; Tℓ, pq of (2.14);

5 Estimate
6 compute ηdet,ℓpuℓ, Tℓ,Λdℓq as in (3.5);
7 compute ηsto,ℓpuℓ, BΛdℓq as in (3.8);

8 if ℓ ě L: break
9 Mark

10 if ηdet,ℓpuℓ, Tℓ,Λdℓq ě cref ηsto,ℓpuℓ, BΛdℓq then
11 set ∆ℓ “ H and choose minimal set Mℓ Ď Tℓ such that

ηdet,ℓpuℓ,Mℓ,Λdℓq ě θdet ηdet,ℓpuℓ, Tℓ,Λdℓq;
12 else
13 choose minimal set M Ď t1, . . . , M̂u such that

ř

mPM ηsto,ℓpuℓ,∆ℓ,m,qmq ě θsto ηsto,ℓpuℓ, BΛdℓq;
14 set Mℓ “ H and ∆ℓ “

Ť

mPM ∆ℓ,m,qm ;

15 Refine
16 Tℓ`1 Ð bisectpTℓ,Mℓq;
17 Λdl`1

Ð Λdℓ Y ∆ℓ;

DOI 10.20347/WIAS.PREPRINT.3036 Berlin 2023



M. Eigel, N. Hegemann 8

In each iteration ℓ of the loop, we compute the Galerkin solution uℓ of (2.14) (Solve) and the esti-
mator contributions (3.5) and (3.8) (Estimate). During the Mark step, we employ a conditional Dörfler
marking strategy based on the dominating estimator contribution to determine how to refine Tℓ and
Λdℓ . If ηdet,ℓpuℓ, Tℓ,Λdℓq dominates we set the marked stochastic set ∆ℓ “ H and employ a Dör-
fler marking strategy to the mesh Tℓ, where we use the Dörfler threshold θdet. For the refinement of
the spatial mesh Tℓ we use newest vertex bisection [17] on all marked elements T P Mℓ, which
is denoted by bisectpTℓ,Mℓq in Algorithm 1. If, on the other hand, cref ηsto,ℓpuℓ, BΛdℓq dominates,
where cref is the equilibration constant in (3.9), we set the marked triangles to Mℓ “ H and employ
the Dörfler marking with threshold θsto to {∆ℓ,m,qmuM̂m“1. The index sets ∆ℓ,m,qm are given for each
m “ 1, . . . , M̂ by

∆ℓ,m,qm “

m´1
â

j“1

rdjs b rdm : dm ` qms b

M̂
â

j“m`1

rdjs for qm P r1 : d̂m ´ 1s. (3.10)

Algorithm 1 iterates through the Solve, Estimate, Mark and Refine routines until the maximal number
of loops is reached. Note that specifying the maximum number of iterations a priori in Algorithm 1
is impractical for most applications and done here only for simplification. More reasonable stopping
criteria such as specifying a target threshold for the total error estimator or limiting the maximum of
allowed degrees of freedom could be applied as well.

4 Estimator Properties

In this section we establishes some fundamental properties of the estimator contributions, which are
required to prove the quasi-error reduction of Algorithm 1 for the unbounded lognormal diffusion coef-
ficient (2.2). The proof follows [9] and is based on the continuity of the estimators. As a preparation,
we first establish how ζαρ π0 behaves for different exponents α ě 0.

Lemma 4.1 (embedding of weighted Lp-spaces). Let α ě 0 and

0 ď ρ ď ρα “

#

1 if α ď 1,

min
!

1, lnpαpα´1q´1q

2γ̂

)

if α ą 1,

where γ̂ is an upper bound for (2.1), i.e., }γm}L8pDq ď γ̂ for all m “ 0, . . . , M̂ . Then there exists a
constant cα ą 0 such that πρ,α “ cαζ

α
ρ π0 is the probability density function of a centered Gaussian

distribution. Moreover, for any 0 ď α ď β and ρ ď ρβ , it holds

Lp
pΓ, πρ,βq Ă Lp

pΓ, πρ,αq for any p P r1,8q.

Proof. Note that for any α ą 0 and σα,mpρq “ σmpρq
`

α ` p1 ´ αqσmpρq2
˘´1{2

it holds

ζρ,mpymq
απ0,mpymq “

1
?
2πσmpρqα

exp
´

´
y2m

2σα,mpρq2

¯

.

Defining the normalization constant

cα,mpρq :“ σmpρq
α´1

a

α ` p1 ´ αqσmpρq2 “ σmpρq
ασα,mpρq

´1
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then yields that πρ,α,m “ cα,mpρqζαρ,mπ0,m is the probability density function of a univariate centered
Gaussian distribution with variance σα,mpρq2. Since σmpρq “ exppρ}γm}L8pDqq, we need

0 ă ρ ă

#

1 if α ď 1,

min
!

1, lnpαpα´1q´1q

2}γm}L8pDq

)

if α ą 1,

to ensure that πρ,α,m is integrable with respect to the standard Lebesgue measure. As a consequence

and by the definition of γ̂, ρ ď ρα ensures integrability of πρ,α “
śM̂

m“1 πρ,α,m. It is easy to see that
for any 0 ă α ă β P R and w P LppΓ, πρ,βq,

}w}LppΓ,πρ,αq ď c }ζα´β
ρ }L8pΓq}w}LppΓ,πρ,βq with c “

M̂
ź

m“1

cα,mpρq

cβ,mpρq
.

Moreover, |ζα´β
ρ,m | ď σmpρqβ´α ă 8, which implies

}ζα´β
ρ }L8pΓq “

M̂
ź

m“1

σmpρq
β´α

ă 8.

Consequently, LppΓ, πρ,βq Ă LppΓ, πρ,αq for all 1 ď p P R.

To prove the Lipschitz continuity of ηdet and ηsto later in this section, we also require the following
observation.

Corollary 4.2. Let w be a polynomial, α ě 0 and ρ ď ρα as in Lemma 4.1. Then it holds

}wζαρ }LppΓ,π0q ă 8.

Proof. By Lemma 4.1 there exists a constant c ą 0 such that }wζαρ }
p
LppΓ,π0q

“ c}w}
p
LppΓ,πρ,pαq

. Since

w is a polynomial and πρ,pα decays exponentially, }w}LppΓ,πρ,pαq ă 8.

4.1 Deterministic estimator contribution

In the following, we show that the deterministic estimator contribution (3.5) satisfies some continuity
conditions.

Theorem 4.3 (Lipschitz continuity of ηdet,T in the first component). For any vN , wN P VN “ VNpΛd; T , pq

and T P T there exists a constant cdet ą 0 depending only on the active set Λd, such that

|ηdet,T pvN ,Λdq ´ ηdet,T pwN ,Λdq| ď cdet}∇pvN ´ wNq}πϑρ,T .

Proof. For any µ P Λd consider the expansion Pµζϑρ “
ř

νPNM̂
0
zµ,νHν where tHνu

νPNM̂
0

is an

orthonormal basis in L2pΓ, π0q. Additionally, define the estimator components

ηdet,T,νpvN ,Λdq :“ hT

›

›

›

ÿ

µPΛd

`

fδµ0 ` div rµpvNq
˘

zµ,ν

›

›

›

T
, (4.1)

ηdet,BT,νpvN ,Λdq :“ h
1{2
T

›

›

›

ÿ

µPΛd

JrµpvNqKBT zµ,ν

›

›

›

BTXD
. (4.2)
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With the inverse estimate } div ξN}T ď cinvh
´1
T }ξN}T for any ξN P ∇VN “ t∇ vN : vN P VNu it

holds

|ηdet,T,νpvN ,Λdq ´ ηdet,T,νpwN ,Λdq|

ď hT } div
`

ÿ

µPΛd

rµpvN ´ wNqzµ,ν
˘

}T

ď cinv}
ÿ

µPΛd

rµpvN ´ wNqzµ,ν}T

“ cinv}
ÿ

µPΛd

ÿ

αPΛd̂

ÿ

βPΛd

aα∇pvN ´ wNqβταβµzµ,ν}T

ď
ÿ

µPΛd

ÿ

αPΛd`d̃´1

ÿ

βPΛd

cinv}aα}L8pDq}∇pvN ´ wNqβ}T |ταβµzµ,ν |,

where d̃ is the component wise minimum of d and d̂ and aα “
řJ

k“1 aN rk, αsφk P XppT q. By the

same argument and the inverse estimate }∇ ξN ¨ nT }BTXD ď cinvh
´1{2
T }∇ ξN}T for any ξN P VN ,

with the outer unit normal vector nT of T , we derive the bound

|ηdet,BT,νpvN ,Λdq ´ ηdet,BT,νpwN ,Λdq|

ď
ÿ

µPΛd

ÿ

αPΛd`d̃´1

ÿ

βPΛd

2cinv}aα}L8pDq}∇pvN ´ wNqβ}T |ταβµzµ,ν |.

Let sT,ν :“ ηdet,T,νpvN ,Λdq `ηdet,T,νpwN ,Λdq and sBT,ν “ ηdet,BT,νpvN ,Λdq `ηdet,BT,νpwN ,Λdq.
The previous two estimates and the third binomial formula then yield

|ηdet,T pvN ,Λdq
2

´ ηdet,T pwN ,Λdq
2
|

ď
ÿ

νPNM̂
0

|ηdet,T,νpvN ,Λdq ´ ηdet,T,νpwN ,Λdq| sT,ν

`
ÿ

νPNM̂
0

|ηdet,BT,νpvN ,Λdq ´ ηdet,BT,νpwN ,Λdq| sBT,ν

ď
ÿ

βPΛd

}∇pvN ´ wNqβ}T Sβ

for

Sβ :“
ÿ

αPΛd`d̃´1

ÿ

µPΛd

ÿ

νPNM̂
0

cinv}aα}L8pDqpsT,ν ` 2sBT,νq|ταβµzµ,ν |.

We now define the constant

cpΛdq
2 :“

ÿ

βPΛd

ÿ

νPNM̂
0

´

ÿ

µPΛd

?
5cinv|zµ,ν |

ÿ

αPΛd`d̃´1

}aα}L8pDqταβµ

¯2

(4.3)

and obtain
ř

βPΛd
S2
β ď cpΛdq2

ř

νPNM̂
0

`

s2T,ν `s2BT,ν
˘

. By the definition of sT,ν , sBT,ν and the triangle
inequality, it follows directly that

´

ÿ

νPNM̂
0

`

s2T,ν ` s2BT,ν
˘

¯1{2

ď
?
2
`

ηdet,T pvN ,Λdq ` ηdet,T pvN ,Λdq
˘

.
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Combining the obtained bounds results in

|ηdet,T pvN ,Λdq ´ ηdet,T pwN ,Λdq|

´

ηdet,T pvN ,Λdq ` ηdet,T pwN ,Λdq

¯

“ |ηdet,T pvN ,Λdq
2

´ ηdet,T pwN ,Λdq
2
|

ď
ÿ

βPΛd

}∇pvN ´ wNqβ}T Sβ

ď
?
2cpΛdq }∇pvN ´ wNq}πϑρ,T

´

ηdet,T pvN ,Λdq ` ηdet,T pwN ,Λdq

¯

.

Since }Pµζϑρ}π0 ă 8 for all µ P Λd by Corollary 4.2, the proof is concluded by

cpΛdq
2

ď 5c2inv
ÿ

βPΛd

ÿ

νPNM̂
0

´

ÿ

µPΛd

z2µ,ν

¯´

ÿ

µPΛd

`

ÿ

αPΛd`d̃´1

}aα}L8pDq|ταβµ|
˘2

¯

“ 5c2inv

´

ÿ

µPΛd

}Pµζϑρ}
2
π0

¯´

ÿ

βPΛd

ÿ

µPΛd

`

ÿ

αPΛd`d̃´1

}aα}L8pDq|ταβµ|
˘2

¯

ă 8.

Remark 4.4. The finiteness of the sums in the last estimate of the proof is caused by the polynomial
basis tPµu. For the orthonormal polynomials, the triple product satisfies τijk “ 0 for any k ą i ` j.
Hence, every coefficient rµpwNq only consists of finitely many expansion terms aα with α P Λ2d´1

independent of d̂.

Theorem 4.5 (continuity of ηdet in the third component). Let 0 P Λd Ă Λ̂ Ă NM̂
0 be arbitrary sets,

∆ “ Λ̂ X BΛd and wN P VN “ VNpΛd; T , pq. Then there exists a constant c̃det ą 0 such that

ηdetpvN , T , Λ̂zΛdq ď c̃det ηstopvN ,∆q.

Proof. We consider the expansion Pµζϑρ “
ř

νPNM̂
0
zµ,νHν for any µ P Λd where tHνu

νPNM̂
0

is

an orthonormal basis in L2pΓ, π0q. Let ηdet,T,νpvN ,Λdq and ηdet,BT,νpvN ,Λdq be defined as in (4.1)
and (4.2), respectively. Since rµpwNq “ 0 for any µ P Λ̂zpΛd Y BΛdq, we get

ηdetpwN , T , Λ̂zΛdq
2

“ ηdetpwN , T ,∆q
2

“
ÿ

TPT

`

ηdet,T pwN ,∆q
2

` ηdet,BT pwN ,∆q
2
˘

“
ÿ

TPT

ÿ

νPNM̂
0

`

ηdet,T,νpwN ,∆q
2

` ηdet,BT,νpwN ,∆q
2
˘

.

By utilizing the same inverse inequalities as in the proof of Theorem 4.3, i.e.,

} div ξN}T ď cinvh
´1
T }ξN}T and }ξN ¨ nT }BTXD ď cinvh

´1{2
T }ξN}T ,

we obtain the estimates
ÿ

TPT
ηdet,T,νpwN ,∆q

2
“

ÿ

TPT
h2
T } div

`

ÿ

µP∆

rµpwNqzµ,ν
˘

}
2
T ď c2inv}

`

ÿ

µP∆

rµpwNqzµ,ν
˘

}
2
D,

and
ÿ

TPT
ηdet,BT,νpwN ,∆q

2
“

ÿ

TPT
hT }

ÿ

µP∆

JrµpwNqKBT zµ,ν}
2
BTXD ď 2c2inv}

ÿ

µP∆

rµpwNqzµ,ν}
2
D.
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These two estimates and Parseval’s inequality yield

ηdetpwN , T , Λ̂zΛdq
2

ď 3c2inv
ÿ

νPNM̂
0

}
ÿ

µP∆

rµpwNqzµ,ν}
2
D “ 3c2invηstopwN ,∆q

2,

which concludes the proof.

Remark 4.6. For the special case Λ̂ Ď Λd YBΛd, we have ∆ “ Λ̂XBΛd “ Λ̂zΛd and the inequality
in Theorem 4.5 simplifies to

ηdetpvN , T ,∆q ď c̃det ηstopvN ,∆q.

4.2 Stochastic estimator contribution

In this section we establish that the stochastic estimator contribution is Lipschitz continuous in the first
component. We also introduce the quasi additivity of ηsto in the stochastic index set, which visualizes
one of the key differences between a lognormal and a bounded affine diffusion coefficient.

Theorem 4.7 (Lipschitz continuity of ηsto in the first component). For any vN , wN P VN “ VNpΛd; T , pq

there exists a constant csto ą 0 depending only on the boundary of the active set BΛd such that

|ηstopvN , BΛdq ´ ηstopwN , BΛdq| ď csto}∇pvN ´ wNq}πϑρ,D.

Proof. For any µ P BΛd we consider the expansion Pµζϑρ “
ř

νPNM̂
0
zµ,νHν into an orthonormal

basis tHνu
νPNM̂

0
of L2pΓ, π0q and define

ηsto,νpvN , BΛdq “ }
ÿ

µPBΛd

rµpvNqzµ,ν}D.

With this, the triangle and the inverse triangle inequality we follow

|ηsto,νpvN , BΛdq ´ ηsto,νpwN , BΛdq| ď }
ÿ

µPBΛd

rµpvN ´ wNqzµ,ν}D

ď
ÿ

µPBΛd

ÿ

αPΛd̂

ÿ

βPΛd

}aα ∇pvN ´ wNqβ}D |ταβµzµ,ν |

ď
ÿ

µPBΛd

ÿ

αPΛd̂

ÿ

βPΛd

}aα}L8pDq}∇pvN ´ wNqβ}D |ταβµzµ,ν |.

Let ssto,ν :“ ηsto,νpvN , BΛdq ` ηsto,νpwN , BΛdq. Then the third binomial formula and the previous
estimate imply

|ηstopvN , BΛdq
2

´ ηstopwN , BΛdq
2
|

ď
ÿ

νPNM̂
0

|ηsto,νpvN , BΛdq
2

´ ηsto,νpwN , BΛdq
2
|

ď
ÿ

νPNM̂
0

|ηsto,νpvN , BΛdq ´ ηsto,νpwN , BΛdq|ssto,ν

ď
ÿ

νPNM̂
0

ÿ

µPBΛd

ÿ

αPΛd̂

ÿ

βPΛd

}aα}L8pDq}∇pvN ´ wNqβ}D |ταβµzµ,ν |ssto,ν

“
ÿ

βPΛd

}∇pvN ´ wNqβ}D Sβ,
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where we define

Sβ :“
ÿ

αPΛd̂

ÿ

µPBΛd

ÿ

νPNM̂
0

}aα}L8pDq |ταβµzµ,ν | ssto,ν .

With the Cauchy-Schwarz inequality, Sβ can be bounded by

Sβ “
ÿ

νPNM̂
0

ssto,ν
ÿ

µPBΛd

|zµ,ν |
ÿ

αPΛd̂

}aα}L8pDq|ταβµ|

ď

´

ÿ

νPNM̂
0

s2sto,ν

¯1{2´ ÿ

νPNM̂
0

`

ÿ

µPBΛd

|zµ,ν |
ÿ

αPΛd̂

}aα}L8pDq|ταβµ|
˘2

¯1{2

,

for which we note that

p
ÿ

νPNM̂
0

s2sto,νq
1{2

ď ηstopvN , BΛdq ` ηstopwN , BΛdq

is independent of β. With this, the triangle inequality and

cpBΛdq
2 :“

ÿ

βPΛd

ÿ

νPNM̂
0

`

ÿ

µPBΛd

|zµ,ν |
ÿ

αPΛd̂

}aα}L8pDq |ταβµ|
˘2
, (4.4)

it follows
´

ÿ

βPΛd

S2
β

¯1{2

ď cpBΛdq

´

ηstopvN , BΛdq ` ηstopwN , BΛdq

¯

. (4.5)

Using the third binomial formula once more in combination with the Cauchy-Schwarz inequality, (4.5)
and

|ηstopvN , BΛdq
2

´ ηstopwN , BΛdq
2
| ď

ÿ

βPΛd

}∇pvN ´ wNqβ}D Sβ

yields

|ηstopvN , BΛdq ´ ηstopwN , BΛdq|

´

ηstopvN , BΛdq ` ηstopwN , BΛdq

¯

“ |ηstopvN , BΛdq
2

´ ηstopwN , BΛdq
2
|

ď
ÿ

βPΛd

}∇pvN ´ wNqβ}D Sβ

ď cpBΛdq }∇pvN ´ wNq}πϑρ,D

´

ηstopvN , BΛdq ` ηstopwN , BΛdq

¯

.

It remains to show that cpBΛdq ă 8. A direct calculation yields

cpBΛdq ď

´

ÿ

µPBΛd

ÿ

νPNM̂
0

z2µ,ν

¯´

ÿ

βPΛd

ÿ

µPBΛd

`

ÿ

αPΛd̂

}aα}L8pDq |ταβµ|
˘2

¯

“

´

ÿ

µPBΛd

}Pµζϑρ}
2
π0

¯´

ÿ

βPΛd

ÿ

µPBΛd

`

ÿ

αPΛd̂

}aα}L8pDq |ταβµ|
˘2

¯

.

Since we assume Λd̂ to be a finite set, BΛd “ Λd`d̂´1zΛd is finite as well. Thus, all the sums above
are finite and }Pµζϑρ}π0 ă 8 for all µ P BΛd by Corollary 4.2, which concludes the proof.
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Remark 4.8. If we consider an extension of [9] and require a bound on the operator norm of the
multiplication by a, we need to ensure that there exists a constant c ą 0 independent of β such that

Kβ “
ÿ

µPF

ÿ

αPF
}aα}L8pDq |ταβµ| ď c for all β P Λd. (4.6)

Requiring (4.6) instead of a finite expansion of a indeed yields that the second term in the last inequal-
ity of the proof above can be bounded, i.e.,

ÿ

βPΛd

ÿ

µPBΛd

`

ÿ

αPF
}aα}L8pDq |ταβµ|

˘2
ď c2|Λd| ă 8.

However, the infinite sum
ř

µPBΛd
}Pµζϑρ}2π0

becomes unbounded in that case as we cannot guaran-
tee }Pµζϑρ}π0 “ 0 for all except finitely many µ P BΛd.

If the diffusion coefficient a is uniformly bounded, well-posedness of (1.1) is given without the need for
adapted function spaces [1]. Consequently, it is possible to simplify the Lipschitz constant derived in
Theorem 4.7 as follows.

Corollary 4.9. If there exists constants č, ĉ ą 0 such that č ď apx, yq ď ĉ uniformly for all x P D
and almost all y P Γ, then

|ηstopvN , BΛdq ´ ηstopwN , BΛdq| ď ĉ }∇pvN ´ wNq}π0,D for all vN , wN P VN .

Proof. By the boundedness of a, the third binomial formula and the orthonormality of tPµu, it holds
that

|ηstopvN , BΛdq
2

´ ηstopwN , BΛdq
2
|

“

ˇ

ˇ

ˇ

ż

Γ

ż

D

a∇pvN ´ wNq
`

ÿ

µPBΛd

rµpvN ` wNqPµ

˘

dx dπϑρpyq

ˇ

ˇ

ˇ

ď ĉ }∇pvN ´ wNq}πϑρ,D }
ÿ

µPBΛd

rµpvN ` wNqPµ}πϑρ,D

ď ĉ }∇pvN ´ wNq}πϑρ,D

´

ηstopvN , BΛdq ` ηstopwN , BΛdq

¯

.

The boundedness of a implies boundedness and ellipticity of the bilinear form (2.6), which implies
ζϑρ ” 1 and thus πϑρ “ π0. The rest follows the same arguments as in the proof of Theorem 4.7.

We note that the Lipschitz continuity of ηsto for the affine field γ was established in [9, Lemma 4.5],
which holds with the same Lipschitz constant. Since γ is a special case of a bounded positive diffusion
field, Corollary 4.9 can be seen as a generalization of [9].

As the regularization parameter ϑ P p0, 1q influences the deviation of πϑρ from π0, it is possible to
show that ηsto is almost additive in the second argument if ϑ is chosen small enough.

Theorem 4.10 (quasi additivity of ηsto in the second component). For any ε ą 0, there exists ϑε P

p0, 1q such that for any ϑ ď ϑε and any ∆ Ď BΛd

ηstopwN , BΛdz∆q
2

ď ηstopwN , BΛdq
2

´ ηstopwN ,∆q
2

` ε.
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Proof. Let g∆pwNq and gBΛdz∆pwNq be given respectively by

g∆pwNq “
ÿ

µP∆

rµpwNqPµ and gBΛdz∆pwNq “
ÿ

µPBΛdz∆

rµpwNqPµ.

Since g∆pwNq Kπϑρ,D gBΛdz∆pwNq, the binomial formula and the Cauchy-Schwarz inequality yield

ηstopwN , BΛq
2

“ ηstopwN , BΛdz∆q
2

` ηstopwN ,∆q
2

` 2 xg∆pwNqgBΛdz∆pwNq, ζ2ϑρ ´ ζϑρyπ0,D

ě ηstopwN , BΛdz∆q
2

` ηstopwN ,∆q
2

´ 2 }g∆pwNqgBΛdz∆pwNq}π0,D}ζ2ϑρ ´ ζϑρ}π0 .

By Lemma 4.1, ζαϑρπ0 is proportional to a Gaussian probability density for any α ą 0 as long as
ϑρ ď ρα. In particular, the normalization constant reads

cαpϑρq “

M̂
ź

m“1

cα,mpϑρq with cα,mpϑρq “ σmpϑρq
α´1

a

α ` p1 ´ αqσmpϑρq2.

Since σmpϑρqα “ exppαϑρ}γm}L8pDqq Ñ 1 as ϑ Ñ 0 for any α P R, we get cαpϑρq Ñ 1. This
implies

0 ď }ζ2ϑρ ´ ζϑρ}
2
π0

“

ż

Γ

ζ4ϑρ dπ0 `

ż

Γ

ζ2ϑρ dπ0 ´ 2

ż

Γ

ζ3ϑρ dπ0
ϑÑ0
ÝÝÑ 0.

Since }g∆pwNqgBΛdz∆pwNq}π0,D is independent of ϑ, Lemma 4.1 yields that there exists 0 ă ϑε ď

mintρα | α “ 2, 3, 4u such that

}ζ2ϑρ ´ ζϑρ}π0 ď
1

2
ε}g∆pwNqgBΛdz∆pwNq}

´1
π0,D

,

for any ϑ ă ϑε, which proves the claim.

5 Quasi-Error Reduction by the Adaptive Algorithm

With the properties established in the previous section, this section proves the reduction of the quasi-
error (1.2) in each iteration of the adaptive Algorithm 1 as the main result of this work. As depicted in
Figure 1, it is first required to establish an estimate that relates the estimator contributions on one level
to similar quantities of the previous level.

Lemma 5.1. For any non-empty sets 0 P Λd Ă Λ̂ Ă NM̂
0 and triangulations T , T̂ , where T̂ is a

one-level refinement of T , let M “ T zpT̂ X T q be the set of triangles marked for refinement and
∆ “ BΛd X Λ̂ the set of added stochastic indices. Then it holds for any wN P VN “ VNpΛd; T , pq,
ŵN P V̂N “ V̂NpΛ̂; T̂ , pq and εdet, εsto ą 0, τ ě 0 that

ηdetpŵN , T̂ , Λ̂q
2

` τηstopŵN , BΛ̂q
2

ď p1 ` εdetq
´

ηdetpwN , T ,Λdq
2

´ λ ηdetpwN ,M,Λdq
2
¯

` p1 ` εstoqτ ηstopwN , BΛdz∆q
2

` 3p1 ` εdetqc
2
inv ηstopwN ,∆q

2

`

´

p1 ` ε´1
detqc

2
det ` p1 ` ε´1

stoqc2stoτ
¯

}∇pwN ´ ŵNqq}
2
πρ,D,

with λ “ 1 ´ 2´1{2 and csto, cdet from Theorem 4.3 and Theorem 4.7, respectively.
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Proof. By Theorem 4.3 we have

ηdetpŵN , T̂ , Λ̂q
2

ď
ÿ

T̂PT̂

´

ηdet,T̂ pwN , Λ̂q ` |ηdet,T̂ pŵN , Λ̂q ´ ηdet,T̂ pwN , Λ̂q|

¯2

ď
ÿ

T̂PT̂

´

ηdet,T̂ pwN , Λ̂q ` cdet}∇pwN ´ ŵNq}πϑρ,T̂

¯2

.

Using Young’s inequality for the mixed terms of the last estimate yields for any εdet ą 0

2cdetηdet,T̂ pwN , Λ̂q}∇pwN ´ ŵNq}πϑρ,T̂

ď εdetηdet,T̂ pwN , Λ̂q
2

` ε´1
detc

2
det}∇pwN ´ ŵNq}

2
πϑρ,T̂

,

which implies

ηdetpŵN , T̂ , Λ̂q
2

ď p1 ` εdetqηdetpwN , T̂ , Λ̂q
2

` p1 ` ε´1
detqc

2
det}∇pwN ´ ŵNq}

2
πϑρ,D

.

Applying Theorem 4.5 then gives

ηdetpwN , T̂ , Λ̂q
2

ď ηdetpwN , T̂ ,Λdq
2

` ηdetpwN , T̂ , Λ̂zΛdq
2

ď ηdetpwN , T̂ ,Λdq
2

` 3c2invηstopwN , BΛd X Λ̂q
2.

Let T P M Ă T be a triangle marked for refinement and denote by T̂ pT q “ tT̂ P T̂ : T̂ Ă T u the
set of all children of T in T̂ . Since wN is smooth on all edges Ê P intpT q it follows that JrµpwNqKÊ “

0 for all µ P Λd. Since we assume D Ă R2 and T̂ to be a one-level refinement of T obtained via
newest-vertex bisection, there holds

hT̂ “ |T̂ |
1{2

ď

´1

2
|T |

¯1{2

“ 2´1{2hT

for any T̂ P T̂ pT q. We note that technically hT « |T |1{2 with equivalence constants induced by the
shape regularity of T , which we will ignore here to keep the notation as concise as possible. With
λ “ 1 ´ 2´1{2 we get

ηdetpwN , T̂ ,Λdq
2

“ ηdetpwN , T̂ zT̂ pMq,Λq
2

` ηdetpwN , T̂ pMq,Λq
2

ď ηdetpwN , T zM,Λdq
2

` 2´1{2 ηdetpwN ,M,Λdq
2

“ ηdetpwN , T ,Λdq
2

´ λ ηdetpwN ,M,Λdq
2.

Combining the above estimates yields

ηdetpŵN , T̂ , Λ̂q
2

ď p1 ` εdetq
´

ηdetpwN , T ,Λdq
2

´ λ ηdetpwN ,M,Λdq
2
¯

` 3p1 ` εdetqc
2
inv ηstopwN ,∆q

2
` p1 ` ε´1

detqc
2
det }∇pwN ´ ŵNq}

2
πϑρ,D

.

Similarly, Theorem 4.7 and Young’s inequality for any εsto ą 0 leads to the estimate

ηstopŵN , BΛ̂q
2

ď

´

ηstopwN , BΛ̂q ` |ηstopŵN , BΛ̂q ´ ηstpwN , BΛ̂q|

¯2

ď

´

ηstopwN , BΛ̂q ` csto }∇pwN ´ ŵNq}πϑρ,D

¯2

ď p1 ` εstoq ηstopwN , BΛ̂q
2

` p1 ` ε´1
stoqc2sto }∇pwN ´ ŵNq}

2
πϑρ,D

.
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Note that Λd Ă Λ̂ implies BΛd Ă Λ̂ Y BΛ̂ and thus ∆ “ BΛd X Λ̂ “ BΛdzBΛ̂. Since rµpwNq “ 0

for µ R Λd Y BΛd, we get that ηstopwN , BΛ̂zBΛdq2 “ 0, which yields

ηstopŵN , BΛ̂q
2

“ ηstopŵN , BΛd X BΛ̂q
2

“ ηstopŵN , BΛdzpBΛd X Λ̂qq
2

“ ηstopŵN , BΛdz∆q
2.

Combining all the results above and estimating the norm by Lemma 4.1 concludes the proof.

With Lemma 5.1, Lemma 4.1 and Theorem 4.10 we can now prove reduction of the quasi error (1.2)
on each level.

Theorem 5.2 (quasi-error reduction). Let cref ą 0, 0 ă θdet, θsto ă 1 and let uℓ, Tℓ, Mℓ, Λℓ, ∆ℓ,
ηdet,ℓ and ηsto,ℓ denote a sequence of approximate solutions, triangulations, marked cells, stochastic
indices, marked indices and error indicators, respectively, generated by the adaptive Algorithm 1. Then
there exist 0 ă δℓ ă 1, ωℓ ą 0, τ ą 0 and a regularization threshold 0 ă ϑ˚ ă 1, such that for any
ϑ ď ϑ˚ it holds

}u ´ uℓ`1}
2
B ` ωℓ η

2
det,ℓ`1 ` ωℓτ η

2
sto,ℓ`1 ď δℓ

´

}u ´ uℓ}
2
B ` ωℓ η

2
det,ℓ ` ωℓτ η

2
sto,ℓ

¯

.

Proof. Let eℓ :“ }u ´ uℓ}B , dℓ :“ }uℓ ´ uℓ`1}B and d̃ℓ :“ }∇puℓ ´ uℓ`1q}πρ,D. With Galerkin
orthogonality e2ℓ`1 “ e2ℓ ´ d2ℓ and Lemma 5.1 it follows

e2ℓ`1 ` ω η2det,ℓ`1 ` ωτ η2sto,ℓ`1

ď e2ℓ ` ω
´

p1 ` ε´1
detqc

2
det ` p1 ` ε´1

stoqc2stoτ
¯

d̃2ℓ ´ d2ℓ

` ωp1 ` εdetq η
2
det,ℓ ´ ωp1 ` εdetqλ ηdet,ℓpuℓ,Mℓ,Λℓq

2

` ωp1 ` εstoqτ ηsto,ℓpuℓ, BΛℓz∆ℓq
2

` 3ωp1 ` εdetqc
2
inv ηsto,ℓpuℓ,∆ℓq

2.

Let ω˚
ℓ :“ ĉ´1

ϑρ

`

p1 ` ε´1
detqc

2
det ` p1 ` ε´1

stoqc2stoτ
˘´1

, where ĉϑρ is the boundedness constant in (2.8),

and let ωℓ “ ω˚
ℓ d

2
ℓ d̃

´2
ℓ such that the terms containing dℓ and d̃ℓ cancel each other. Note that ωℓ can

always be chosen this way since dℓ ą 0 implies 0 ă ωℓ ď ω˚
ℓ ă 8. Next, we introduce the convex

combination

e2ℓ “ p1 ´ αqe2ℓ ` αe2ℓ ď p1 ´ αqe2ℓ ` αc2relη
2
det,ℓ ` αc2relc

2
refη

2
sto,ℓ

for any α P p0, 1q, where crel is the reliability constant from Theorem 3.2 and cref is the equilibration
constant from (3.9). With this it follows

e2ℓ`1 ` ωℓ η
2
det,ℓ`1 ` ωℓτ η

2
sto,ℓ`1

ď p1 ´ αqe2ℓ `

´

αc2rel ` ωℓp1 ` εdetq
¯

η2det,ℓ

´ ωℓp1 ` εdetqλ ηdet,ℓpuℓ,Mℓ,Λℓq
2

` αc2relc
2
ref η

2
sto,ℓ

` ωℓp1 ` εstoqτ ηsto,ℓpuℓ, BΛℓz∆ℓq
2

` 3ωℓp1 ` εdetqc
2
inv ηsto,ℓpuℓ,∆ℓq

2.

Next we need to distinguish between the different marking scenarios of Algorithm 1. We first consider
refinement of the spatial domain, i.e., ηdet,ℓ ě crefηsto,ℓ, which implies ∆ℓ “ H and

αc2relc
2
ref η

2
sto,ℓ ` ωℓp1 ` εstoqτ ηsto,ℓpuℓ, BΛℓz∆ℓq

2
` 3ωℓp1 ` εdetqc

2
inv ηsto,ℓpuℓ,∆ℓq

2

“ ωℓτ
´

αc2relc
2
refω

´1
ℓ τ´1

` p1 ` εstoq

¯

η2sto,ℓ

“ ωℓτεstop1 ` β1q η
2
sto,ℓ ` ωℓτc2 η

2
sto,ℓ,
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for any β1 ą 0 and

c2 “ c2pα, εsto, τ, β1q “ αc2relc
2
refω

´1
ℓ τ´1

` p1 ´ εstoβ1q.

Moreover, by the Dörfler criterion we have ηdet,ℓpuℓ,Mℓ,Λℓq ě θdetηdet,ℓ and since ηsto,ℓ ď c´1
refηdet,ℓ

we obtain
´

αc2rel ` ωℓp1 ` εdetq
¯

η2det,ℓ ´ ωℓp1 ` εdetqλ ηdet,ℓpuℓ,Mℓ,Λℓq
2

` ωℓτεstop1 ` β1q η2sto,ℓ

ď ωℓc1 η
2
det,ℓ,

for

c1 “ c1pα, εdet, εsto, τ, β1q “ αc2relω
´1
ℓ ` p1 ` εdetqp1 ´ λθ2detq ` τεstop1 ` β1qc´2

ref .

We thus have

e2ℓ`1 ` ωℓ η
2
det,ℓ`1 ` ωℓτ η

2
sto,ℓ`1 ď p1 ´ αqe2ℓ ` ωℓc1 η

2
det,ℓ ` ωℓτc2 η

2
sto,ℓ. (5.1)

In the second case, when Algorithm 1 refines the stochastic space, we have ηdet,ℓ ă crefηsto,ℓ, which
implies Mℓ “ H and

´

αc2rel ` ωℓp1 ` εdetq
¯

η2det,ℓ ´ ωℓp1 ` εdetqλ ηdet,ℓpuℓ,Mℓ,Λℓq
2

“ ωℓ

´

αc2relω
´1
ℓ ` p1 ` εdetq

¯

η2det,ℓ

“ ωℓc3 η
2
det,ℓ ` ωℓεdetp1 ` β2q η2det,ℓ

for any β2 ą 0 and
c3 “ c3pα, εdet, β2q “ αc2relω

´1
ℓ ` p1 ´ εdetβ2q.

Again, by the Dörfler criterion, it holds ηsto,ℓpuℓ,∆ℓq ě θstoηsto,ℓ and in combination with ηdet,ℓ ď

crefηsto,ℓ and Theorem 4.10 we estimate

αc2relc
2
ref η

2
sto,ℓ ` ωℓεdetp1 ` β2q η

2
det,ℓ

` ωℓp1 ` εstoqτ ηsto,ℓpuℓ, BΛℓz∆ℓq
2

` 3ωℓp1 ` εdetqc
2
inv ηsto,ℓpuℓ,∆ℓq

2

ď ωℓτc4 η
2
sto,ℓ,

where we set

c4 “ c4pα, εdet, εsto, τ, β2, ϑq

“ ατ´1č´1
ϑρ c

2
relc

2
ref ` τ´1εdetc

2
refp1 ` β2q ` p1 ` εstoqp1 ` εϑq

´ θ2sto

´

1 ` εsto ´ 3p1 ` εdetqc
2
invτ

´1
¯

.

Here, we set 0 ă εϑ ď ε˚
ϑη

´2
sto,ℓ, where ε˚

ϑ is the maximal ε such that Theorem 4.10 holds for ϑ.
Similar to (5.1), this now yields the estimate

e2ℓ`1 ` ωℓ η
2
det,ℓ`1 ` ωℓτ η

2
sto,ℓ`1 ď p1 ´ αqe2ℓ ` ωℓc3 η

2
det,ℓ ` ωℓτc4 η

2
sto,ℓ. (5.2)

What remains is to choose the parameters α, εdet, εsto, τ , β1 β2 and ϑ such that simultaneously
0 ă c1, . . . , c4 ă 1. First we note that c1 ą 0 is trivially satisfied since λ ă 1 and thus 1´λθ2det ą 0
independent of the choice of θdet P p0, 1q. With

εdet ă
λθ2det

3p1 ´ λθ2detq
, εsto ă

λθ2detc
2
ref

3τp1 ` β1q
and α ă

λθ2detωℓ

3c2rel
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we ensure that c1 ă 1. If additionally

1

2εsto
ă β1 ă

1

εsto
and α ă

ωℓτ

2c2relc
2
ref

,

we guarantee that 0 ă αc2relc
2
refω

´1
ℓ τ´1 ă c2 ă 1. To ensure that 0 ă c4 ă 1, we set τ ą

3p1` εdetqc
2
inv such that 1´ 3p1` εdetqc

2
invτ

´1 ą 0. By Theorem 4.10 there exist ϑ˚ P p0, 1q such
that

0 ă εϑ ă
θ2stop1 ´ 3c2invτ

´1q

p2 ` 3
2c2refp1`β2q

θ2stoc
2
invq

for all ϑ ă ϑ˚.

Now we choose

εdet ă
εϑτ

2c2refp1 ` β2q
, εsto ă

θ2stop1 ´ 3c2invτ
´1q ´ p2 ` 3

2c2refp1`β2q
θ2stoc

2
invqεϑ

1 ` εϑ ´ θ2sto

and α ă 1
2
εϑωℓτc

´2
rel c

´2
ref , which leads to

c4 ă
1

2
εϑ `

1

2
εϑ ` 1 ` εϑ ´ 2εϑ “ 1.

Note that the upper bound of εϑ implies that the upper bound of εsto is positive. Moreover, since
p1 ` εϑ ´ θ2stoq ą 0 and 1 ´ 3p1 ` εdetqc

2
invτ

´1 ă 1 for any τ ą 0, it follows

0 ă p1 ` εstoqp1 ` εϑq ´ θ2sto
`

1 ` εsto ´ 3p1 ` εdetqc
2
invτ

´1
˘

and thus 0 ă c4. Finally,

1

2εdet
ă β2 ă

1

εdet
and α ă

ωℓ

2c2rel

lead to 0 ă c3 ă 1. Choosing α, εdet and εsto smaller than the minimum of the respective bounds
above yields 0 ă c1, . . . , c4 ă 1 and thus concludes the proof with δℓ :“ maxt1´α, c1, . . . , c4u ă

1.

Remark 5.3 (error reduction and convergence). Theorem 5.2 proves reduction of the quasi-error in
each iteration. However, as it is possible that δℓ grows faster then expp´ℓ´kq for k ą 1 as ℓ Ñ 8,
this might not imply convergence of the quasi-error to zero. Furthermore, it is impossible to bound
δℓ independently of ℓ for the lognormal diffusion coefficient (2.2) since function spaces with adapted
Gaussian measures have to be used (from a theoretical perspective at least). As a consequence, (2.8)
and (2.9) hold with respect to differently weighted norms. This causes a dependence of the Lipschitz
constants in Themorem 4.3 and Theorem 4.7 on the size of the active set Λℓ and yields no positive
lower bound for } ‚ }B{}∇ ‚}πρ,D.

When neglecting these theoretical aspects that are usually irrelevant in practice, convergence could
even be shown in the standard Gaussian space with unbounded coefficient.

Remark 5.3 also implies that δℓ can be bounded independently of ℓ if a is bounded uniformly from
above and below. Hence, as a byproduct of Theorem 5.2 we obtain a generalization of the convergence
result in [9, Theorem 7.2] from affine to arbitrary uniformly bounded and positive diffusion coefficients.

Corollary 5.4 (convergence for bounded coefficients). Consider the setting of Theorem 5.2 and ad-
ditionally assume that the coefficient aN is uniformly positive and bounded, i.e., there exist 0 ă ǎ ă

â ă 8 such that ǎ ď aNpx, yq ď â for all x P D and almost all y P Γ. Then there exist 0 ă δ ă 1,
ω ą 0 independent of ℓ and τ ą 0, such that

}u ´ uℓ`1}
2
B ` ω η2det,ℓ`1 ` ωτ η2sto,ℓ`1 ď δ

´

}u ´ uℓ}
2
B ` ω η2det,ℓ ` ωτ η2sto,ℓ

¯

.
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Proof. Due to the boundedness of aN the problem is well posed in L2pΓ, π0;X q and no adapted
function spaces are required. As a consequence } ‚ }B « }∇ ‚}π0,D proves the claim.

6 Numerical experiments

In this section we show that the quasi-error reduction of Algorithm 1 can also be observed in numerical
experiments. For that we rely on typical benchmark problems as used in for example [7, 8, 28]. As
spatial domain we consider the L-shape D “ p0, 1q2zr0.5, 1s2. The derived total error estimator η
is used to steer the adaptive refinement of the triangulation T and the space Λd as described in
Algorithm 1.

To validate the reliability of the estimator and its contributions in the adaptive scheme, we compute an
empirical approximation of the true L2pΓ, π;X q-error using NMC samples, i.e.

}∇pu ´ uℓq}
2
π0,D

« Epuℓq
2

“
1

NMC

NMC
ÿ

i“1

}∇ ûpypiq
q ´ ∇uℓpy

piq
q}

2
π0,D

. (6.1)

Here, ûpypiqq is the deterministic sampled solution upypiqq projected onto a uniform refinement T̂ of
the finest FE mesh TL obtained in the adaptive refinement loop. Since all triangulations generated
by Algorithm 1 as well as T̂ are nested, we employ simple nodal interpolation of each uℓ onto T̂ to
guarantee uℓ P VNpΛd; T̂ , pq. The choice of NMC “ 250 proved to be sufficient to obtain consistent
estimates of the error in our experiments as well as in other works (cf. [7, 8]).

As benchmark problem we consider the stationary diffusion problem (1.1) with constant right-hand
side fpx, yq “ 1. We assume the coefficients of the affine diffusion field (2.1) to enumerate planar
Fourier modes in increasing total order, i.e.,

γmpxq “
9

10ζpσq
m´σ cos

`

2πβ1pmqx1

˘

cos
`

2πβ2pmqx2

˘

, m “ 1, . . . , M̂ ,

where ζ is the Riemann zeta function and, for kpmq “ t´1
2
`

b

1
4

` 2mu, β1pmq “ m´kpmqpkpmq`

1q{2 and β2pmq “ kpmq´β1pmq. For our experiments we consider an expansion length of M̂ “ 20,
decay σ “ 2, choose ρ “ 1 and ϑ “ 0.1 similar to [7] and discretize (2.2) in the same finite element
space as the solution, i.e., conforming Lagrange elements of order p “ 1 or p “ 3. All finite element
computations are conducted with the FEniCS package [34]. For the stochastic discretization we rely
on a low-rank tensor decomposition, i.e., the Tensor Train format [35], to approximate all stochastic
quantities. In particular we build on the same framework as [8], which uses the open source software
package xerus [36].

The constant right-hand side has an exact representation in the Tensor Train format, see e.g. [8] for
the construction. To assure that the approximation aN of the lognormal diffusion coefficient (2.2) is
sufficient, we employ the approach described in [29]. In particular we enforce that the relative approx-
imation error }a ´ aN}L2pΓ,π0;L8pDqq is at least one order of magnitude smaller then the empirical
error (6.1).

Algorithm 1 is instantiated with a single mode M “ 1 discretized with an affine polynomial, i.e.,
dimension d1 “ 2 P N1. The initial spatial mesh consists of |T1| “ 143 triangles for affine and
|T1| “ 64 for cubic ansatz functions. The marking parameters are set to θdet “ 0.3 and θsto “ 0.5,
respectively. To achieve equilibration of the two estimator contributions we choose cref “ 5. We
terminate Algorithm 1 after L “ 12 iteration steps.
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Figure 2: Reduction of estimator and error on the L-shaped domain for affine (left) and cubic (right)
Lagrange finite elements with respect to the Tensor Train degrees of freedom of the Galerkin projection
uN .

Figure 2 depict the sampled root mean squared H1
0 pDq error Epuℓq, the overall error estimator ηpuℓq

and the two estimator contributions ηdetpuℓq and ηstopuℓq for affine and cubic Lagrange finite ele-
ments, respectively. The plots depict error and estimator against the degrees of freedom (dofs) of the
coefficient tensor of the Galerkin projection uN compressed by the Tensor Train format, i.e.

tt-dofspuNq “ Jr1 ´ r21 `

M´1
ÿ

m“1

prmdmrm`1 ´ r2m`1q ` rMdM ,

where r “ pr1, . . . , rMq P NM are the Tensor Train ranks, see e.g. [37] for details.

The estimator mirrors the behaviour of the error with a consistent overestimation by a factor crel « 10,
which is in line with Theorem 3.2. Additionally, the deterministic estimator contribution ηdet captures
the singularity of the L-shaped domain and prioritizes to refine the mesh at the reentrant corner as
known from deterministic adaptive FE methods, which is in line with previous results [1, 3, 5, 7, 10].
We also observe that Algorithm 1 focusses on refinement of the finite element mesh for p “ 1 and
tends to enlarge the stochastic space in the case p “ 3. Again, this is in line with the expectations, as
the higher regularity of cubic finite elements allows for coarser spatial resolution.

Finally we note that the experiments are in line with the results of Theorem 5.2 as we observe a
reduction of both error and estimator in each iteration. Interestingly, we even see that the algorithm
reduces both error and estimator with an overall constant rate, which is consistent with the results of
e.g. [7, 8]. This is a stronger behaviour than predicted by Theorem 5.2. An explanation of this could be
that the diffusion coefficient is “effectively” bounded and positive by any experimental setup since only
finitely many point evaluations can be used to generate the numerical representation of (2.2). This
implies that a is effectively only considered on a bounded domain, which yields boundedness from
above and below as assumed in Corollary 5.4.
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