WeierstraB-Institut
fir Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Guaranteed quasi-error reduction of adaptive Galerkin FEM for
parametric PDEs with lognormal coefficients

Martin Eigel}, Nando Hegemanrf]

submitted: August 1, 2023

' Weierstrass Institute 2 Physikalisch-Technische Bundesanstalt
Mohrenstr. 39 Abbestr. 2-12
10117 Berlin 10587 Berlin
Germany Germany
E-Mail: martin.eigel@wias-berlin.de E-Mail: nando.hegemann@ptb.de
No. 3036
Berlin 2023

U\

A

-

2020 Mathematics Subject Classification. 65N12, 65N15, 65N50, 65Y20, 68Q25.

Key words and phrases. Uncertainty quantification, adaptivity, convergence, parametric PDEs, residual error estimator,
lognormal diffusion.

M. Eigel acknowledges the partial support of the DFG SPP 1886 “Polymorphic Uncertainty Modelling for the Numerical
Design of Structures” and the EMPIR project 22IND04-ATMOC. This project (20IND04 ATMOC) has received funding from
the EMPIR programme cofinanced by the Participating States and from the European Union’s Horizon 2020 research
and innovation programme. N. Hegemann has received funding from the Federal Ministry for Economic Affairs and Cli-
mate Action (BMWK) in the frame of the "QIl-Digitalinitiative programme “Metrology for Artificial Intelligence in Medicine”
(M4AIM).



Edited by

Weierstra3-Institut fir Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.

MohrenstraBBe 39

10117 Berlin

Germany

Fax: +493020372-303

E-Mail: preprint@wias—-berlin.de

World Wide Web: http://www.wias—-berlin.de/


preprint@wias-berlin.de
http://www.wias-berlin.de/

Guaranteed quasi-error reduction of adaptive Galerkin FEM for
parametric PDEs with lognormal coefficients

Martin Eigel, Nando Hegemann

Abstract

Solving high-dimensional random parametric PDEs poses a challenging computational prob-
lem. It is well-known that numerical methods can greatly benefit from adaptive refinement algo-
rithms, in particular when functional approximations in polynomials are computed as in stochastic
Galerkin and stochastic collocations methods. This work investigates a residual based adaptive
algorithm used to approximate the solution of the stationary diffusion equation with lognormal
coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence
of the scheme for this class of unbounded coefficients remains a challenging open question. This
paper advances the theoretical results by providing a quasi-error reduction results for the adap-
tive solution of the lognormal stationary diffusion problem. A computational example supports the
theoretical statement.

1 Introduction

In the natural sciences and engineering most modern simulation methods rely on partial differential
equations (PDEs). In these applications, the simulation typically requires knowledge about many, only
indirectly observable parameters such as material properties or experimental inaccuracies. Incorpo-
rating uncertainties or variations of the unknown parameters into the physical model often leads to an
extremely challenging discretization complexity, also known as the “curse of dimensionality”. To miti-
gate the numerical obstacles and obtain a better understanding of the problems underlying structure,
model order reduction techniques have been an essential area of research activity in the last decade.

One of the core ideas in this field concerns constructing a solution iteratively, increasing the complex-
ity locally only where it is necessary. The main contribution of this work is to investigate and prove a
guaranteed reduction of the quasi-error, consisting of error and error estimator, of such an adaptive
algorithm, driven by a residual based error estimator, when applied to a certain class of elliptic para-
metric PDEs with unbounded coefficients. As a model problem, we consider the parameter dependent
stationary diffusion equation

—div,, (a(x, y) Ve u(z, y)) = f(z) inD, (11

u(z,y) =0 ondD, 1)
onadomain D < R%. Herey = (y1,...,yy) RM js a high or even infinite dimensional param-
eter vector determining the diffusion coefficient field @ and hence the solution u of (1.1). In particular,
we consider the coefficient to be the exponential of an affine random field v of Gaussian variables,
i.e., a(z,y) = expy(z,y), which is generally referred to as a lognormal coefficient. Several different
adaptive schemes for both bounded (affine) and unbounded diffusion coefficients have been investi-
gated in the literature [1-8]. So far establishing convergence of the adaptive algorithms has only been
accomplished for bounded affine diffusion coefficients [9H12].
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M. Eigel, N. Hegemann 2

The main result of this work, Theorem establishes that the adaptive Algorithm [1] which is based
on the one described in [8], reduces the quasi-error erry = | V(u — wug)[* + wimie, o + WeTn0 00
we, T > 0, in each iteration £ € N, i.e.,

erry,, < dgerry, 0<dp <1, (1.2)

even for an unbounded lognormal coefficient a. In our case the residual error estimator is composed of
two contributions, namely 7)4.; and 70, and satisfies the reliability estimate ||t — w||> < 1ot (we)? +
nsto(uz)Q [1,17]. We follow the proof in [9], which extends the basic strategies for deterministic finite
element methods [13-17] to the parametric setting. Here the major difference to the bounded affine
case manifests in the adapted solution spaces necessary to guarantee well-posedness of (1.1). As
a consequence, establishing basic properties, such as Lipschitz continuity of 14.; and 7, or the
additivity of 75, With respect to the stochastic index set, becomes non-trivial.

T)det PrOP. Tsto PrOp. general prop.
Lipschitz 1qet Lipschitz st reliability n coercivity B
(Theorem[4.3) (Theorem[&.7) (Theorem[3.2) (Equation [2:9))
continuity 7qes additivity 7sto LP embeddings definition n
(Theorem@ (Theoremm (LemmaE (Equation @)

level{ +1—¢ quasi-error reduction
(Lemma[5T} (Theorem[B:2)

Figure 1: Schematic overview of the ingredients required for the quasi-error reduction proof and how
they are employed.

Figure [1] visualizes schematically how the newly established properties are employed to prove that
Algorithm[f]reduces the quasi-error (1.2) in each iteration. We first utilize the Lipschitz continuity of 7qet
and 74, as well as the continuity of 74¢; With respect to the index set to prove Lemma5.1] which yields
an upper bound of the estimator contributions depending only on quantities of the previous iteration
step. Similarly, the embedding of weighted Gaussian LP-spaces, the coercivity of the bilinear form (2.9)
and the reliability of the estimator lead to a bound of the error |u — w41 | by quantities depending only
on level /. Refining either the spatial mesh or the stochastic space using a Dorfler marking strategy
allows us to derive a quasi error reduction for the two different refinement scenarios. Here quasi
additivity of 7)., in the index set is required to show the reduction in case 7). is the dominating
contribution. Finally, the involved free constants have to be chosen appropriately to ensure holds
simultaneously for both spatial and stochastic refinement for some 0 < 6 < 1.

We point out that while convergence with affine coefficients can be shown [6, 9, 10], the same strong
statement cannot be achieved in our setting, despite the derived quasi-error reduction in each re-
finement step. The crucial estimate on our analysis os commented on in Remark [5.3] Nevertheless,
numerical results indicate the practical convergence of the adaptive algorithm.

The remainder of this work is structured as follows. Section [2|introduces the model problem setting,
its variational formulation as well as the spatial and stochastic discretization. In Section (3} we define
the residual based error estimator and introduce the algorithm that steers the adaptive refinement of
the spatial mesh and the stochastic index set. Thereafter, we show some basic properties of the error
estimator contributions in Section 4, which are essential to prove the main result in Section |5| Finally,
we show numerical evidence to confirm the theoretical results in Section [6l
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Lognormal ASGFEM error reduction 3

2 Parametric model problem

This section introduces the required notation for the parametric model problem (1.1). We give a short
overview of the analytical setting and describe the results necessary to overcome most of the technical
challenges caused by the unbounded lognormal coefficient.

2.1 Stationary diffusion with lognormal coefficient

Let D < IR? be a polygonal bounded Lipschitz domain representing the spatial computational area.
Note that the restriction to a two dimensional spatial domain is for simplification of the problem only.
All results also hold true for D < R for d = 1,2, 3, see e.g. [7] for details. For M € N U {o0} and
almost all y € RM, let

v(z,y) = Yo () Y, forany z € D. (2.1)

M=

1

3
I

As we define the diffusion coefficient a in (1.1) as the exponential of +, it is important to note that
the affine structure of v is common in applications. In a typical setting, where the randomness of the
parametric problem is given through a random field with known covariance kernel, the Karhunen-Loéve
expansion [18] is a popular tool to decorrelate the random field into an affine sum similar to (2.1). The
unbounded diffusion coefficient is now given by

a(r,y) = exp(y(z,y)). (2.2)

Without loss of generality we restrict this work to a deterministic source term f € L?(D) and homo-
geneous Dirichlet boundary conditions.

The unboundedness of coefficient a yields an ill-posed problem and adapted function spaces have to
be introduced, cf. [19-23]. In the following, we give a summary of the necessary concepts and refer
to [7}24] for a concise description of the underlying analysis. Let X := H} (D) be equipped with the
norm |w|x = | V w2y, |w|p = |wl|r2p) and let F := {p € N§: |supp p| < o0} be the set
of finitely supported multi-indices, where supp p denotes the set of all indices of 1. different from zero.
The set of admissible parameters y € RM is then given by

M
[':= {y € RM: Z H’VmHLOO(D)|ym| < 00}7 (2.3)

m=1

which excludes only a set of measure zero from R [24]. Forany p > 0, we set o, (p) = exp(p|Vml = (D)) =
1 and define

2 1 1 1,
Coly) = rln__[1 Com (Ym)  Tor  Cpom(Ym) = () eXP<(§ - W)%) (2.4)

Since (, . is the Radon-Nikodym derivative of A'(0, 0,,(p)?) with respect to the standard Gaussian
measure, we can define the probability density function of N'(0, 7,,,(p)?) via

1

1
71—p,m(ym) = Cp,m(ym)\/_27 eXp(_§yv2n)' (2-5)
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M. Eigel, N. Hegemann 4

Note that 7 ,, is the density of the standard Gaussian measure itself, since (y,, = 1. With this,

we define the weighted product measure 7,(y) := Hi\le Tpm(Ym). Since we assume y,, ~
N (0, 0,,(p)?) for some p > 0, we refer to a as a lognormal coefficient field.

Forany ¥ € [0, 1] and p > 0, define the bilinear form for all w, v € L*(T, my,; X) by
B(w,v) := By,(w,v) := f f a(z,y) Vw(z,y) - Vu(z,y) dedryg,(y) (2.6)
rJo

and denote by |w|p = B(w,w)"? the energy norm induced by B. Additionally, let |w] ., b
|w] 2 (1 vy ,;22(D))- The variational form of then reads: Find u € V such that

B(u,v) = F(v) forallveV, (2.7)
where F(v) = {..§,, f(z)v(x,y) dz dmg,(y) and
V= {w: ' - X measurable with By,(w,w) < o}.
Remark 2.1. With this problem adapted function space, it follows by [24, Proposition 2.43] that
L*(D, 7, X) <V < L*(T,mp; X)

are continuous embeddings for any 0 < 1 < 1. Thus, the bilinear form By, is V—elliptic and bounded
in the sense that

|Bl9p<w7 U)

| < éop | Vlr, 0| VVlr,0 forallw,v € L*(T, m,; X), (2.8)
Bﬁp(w7w) =

Cop| Vwl, p forallw e L*(T', mo; X),

for some ¢y, Cy, > 0, which implies the well-posedness of (2.7).

2.2 Discretization

Since the spatial domain D has a polygonal boudary, we assume a shape regular triangulation 7~ that
represents D exactly. We denote by £ the set of edges of T andlet 0T = {E € £: EnT # &} for
any triangle T € T. For any E € £ denote by hp = |E| the length of E and let hy = maxgesr hi
denote the diameter of any 7" € 7.

For the spatial discretization, consider the conforming Lagrange finite element space of order p
X,(T)=P,(T)nC(T) = span{goj}jzl, (2.10)

where Pp(T) denotes the space of element-wise polynomials of order p. Here, J € N denotes the
dimension of the finite element space. Define the normal jump of a function £ € H'(D;R?) over the
edge E =T nT' by [€]g = (£|7 — &|7) - ng for the edge normal vector ng = ny = —ng of E.
Since the direction of the normal n g depends on the enumeration of the neighbouring triangles, we
assume an arbitrary but fixed choice of the sign of ng for each £/ € £.

By { P["}2_, we denote a set of orthogonal and normalized polynomials in L*(T", 7y, ). This defines

a tensorized orthonormal product basis {P,},er of L*(T',my,) by P,(y) := Hn]\le PP (Ym) =
[ Tncsupp e Fit (4m)- Due to the weighted L spaces of our functional setting, the basis { P, } consists
of scaled Hermite polynomials, see [8, 24]. Note that the use of global polynomials is justified by the
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Lognormal ASGFEM error reduction 5

high (holomorphic) regularity of the solution of (1.1) with respect to the stochastic variables [20, 25,
26]. Forany «, 5, i € Né‘/[ we define the triple product

Taﬁﬂ n m Bmbm for Tg}nﬁmﬂm : J Pm Pﬁmpm dﬂ-ﬁp,m<y) (211)

and note that 77, = 0if i + j + k is odd or if max{i, j, k} > (i + j + k)/2. For more analytical
properties of the scaled Hermite polynomials we refer to |7, |8].

Forany j € Npand k € N, let [j:k] := {j,...,k — 1}, where [j: k] := {0} if j = k and
[k] := [0: k — 1]. Define the full tensor index set A4 for any d € N™ by

Ag = [di] x ... [dy] x[1] x--- < F. (2.12)

Given two full tensor sets Ay, A ; with d, d € NM | we define the sum of the two sets by Ag + A, =
A, i, andreferto 0Ny = d;Ag = Ay ; \Ag as the boundary of A, with respect to AEZ- Note that
we will implicitly assume d = (dy, ..., dy, 1,...,1) € NM for any d € N™ with M < M to ensure
compatibility of dimensions.

Given these sets, we define the fully discrete approximation space by

J
Vy = VN(AdyT p) = {U)N T y Z Z wN[j, u]goj(a:)PM(y) with wpn € RJXd} c V.
j=1 pueAy
(2.13)

We refer to wy as the coefficient tensor of wy with respect to the bases {¢;} and {£,}. With this
the Galerkin projection ux € Vy of the solution u of (2.7) is determined uniquely by

B(UN,UN) = F(UN) for all UN € VN. (2.14)

3 Error estimator and adaptive algorithm

In this section a reliable residual based error estimator for the Galerkin solution u € Vy is introduced.
Moreover, an algorithm for the adaptive refinement of the spatial and stochastic approximation spaces
is described. The estimator we define is based on the one presented in [7] and we refer to 1,7, (9] for
details on the underlying analysis.

3.1 A posteriori error estimator
In the following, let p € N be some fixed FE polynomial degree, d € N and d € N™ for M < M ¢

N. Furthermore, assume that we have access to an approximation ay € VN(AJ; T, p) of (2:2) of the
form

o)~ en(o9) = 3 3% anli il ()0 @)

for any triangulation 7. In order to avoid an obfuscation of the analysis, we assume the approximation
error to be negligible with respect to the overall error we would like to achieve. Then, for any w € V),

DOI 10.20347/WIAS.PREPRINT.3036 Berlin 2023



M. Eigel, N. Hegemann 6

consider the residual R(w) € V* = L*(T', my,; X'*) of 2.7) for ay instead of a, given implicitly for
allv eV by

(R(w), v)ysy = J J f@)v(z,y) —an(z,y) Vw(z,y) - Vo(z,y)dedry,(y).  (3.2)

Similarily, we consider the bilinear form (2.6) with a instead of a in the following.

Remark 3.1. The residual associated to (2.7) can be split into a term containing R (w) and a term
describing the approximation error of the diffusion coefficient

(f+div(a Vw),vps y = (R(w), v)ps v + LJD(Q —ay)Vw-Vodedr,(y), (3.3)

which implies that the task of finding ay to approximate can be considered separately. Since
there exist several approaches to compute such an approximation [7,|27-29] and [29] even provides
a computable a posteriori bound of the approximation error for any an € V(A T, p), we assume
that the second term of is negligible and restrict ourselves to (3.2). We also need to assume
that (2.8)— still hold when using a instead of a, possibly with different constants cy, and Cy,,.
Note that the solution error incurred by approximating u by uy is bounded by the Strang lemma, see
e.g. [30, Chap. 3-§1].

For any wy € Vy we define r(wy) := ax V wy and note that by [7, Lemma 3.1]

r(wy) = Z ru(wy)P, for r,(wy) 2 Z Z an|k, &|lwn[7, &|Taaupr V @;

,uEAder;1 Jik=1aehg GeA

(3.4)
has support on Ad+d—1 due to the properties of the triple product 7,4,. With this we introduce the
deterministic estimator contribution

Naet(wn, T, Aa)* = ) <77det r(wn, M) + Naeror (W, Aa) > (3.5)
TeT

for volume and jump contributions given by

Naet, 7(WN, Ag) 1= hrl Z (f%o —div ru(wN))Pu Copllwo,Ts (3.6)
HeENg
Naeror (W, Aa) == il Z [7u(wn)or Py Copllmo,ors (3.7)
pEAq

where J,,; denotes the (multiindex) Kronecker delta. In a similar fashion we define the stochastic
estimator contribution by

Nsto (W, A) = | Z ru(wn)PuCopllzg,p  forany A < 0A,. (3.8)
REA

Let the overall error estimator for any wy € Vy and (heuristically chosen) equilibration constant
cref > 0 be given by

n(wy)? = Naet (W, T, Aa)? + optsto (Wi, OAG)?. (3.9)

Then [7] yields the following reliability bound.
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1

2
3
4

5

10
1

12

13

14

15
16
17

Lognormal ASGFEM error reduction 7

Theorem 3.2 (reliability). Let u be the solution of and let uy € Vy be the Galerkin solution
of (2.14). There exists a constant c,.i > 0 depending only on the constant in and the shape
regularity of T such that

lu—un|B < cranlun).

Remark 3.3. The estimator considered in [7]] is not the same as for two reasons. First, has a
different ordering, which implies that is equivalent to the deterministic estimator contribution in [7]]
with a constant depending only on the shape regularity of T . Second, we neglect error contributions
introduced by the low-rank compression and the inexact iterative solver of the Galerkin solution uy
of (2.14). This is motivated by promising experimental results in recent works [31H33], where it is
shown numerically that these errors can in principle be controlled. Hence, we assume that the Galerkin
solution uy is computable and focus on showing the reduction of the quasi-error through the adaptive
algorithm in our setting.

3.2 Adaptive algorithm

Given a fixed FE polynomial degree p € Ny, an initial triangulation 7~ and initial stochastic dimensions
d € NM Algorithm [1| relies on a classical loop of Solve, Estimate, Mark and Refine to generate
approximative solutions u, of (1.1). According to Remark , we assume d € NM sufficiently large
such that the approximation error of the discretized diffusion coefficient is negligible in each
iteration of Algorithm |1} As d remains unchanged during the algorithm, we abbreviate 0A; = J;A4 in
the following.

Algorithm 1: Adaptive refinement scheme

Input: mesh 7'; FE polynomial degree p; stochastic dimensions d; Dorfler thresholds
0 < Oget, Osto < 1; maximum number of iterations L; look ahead ¢ € NV

setTh =T, Ay, = Ay

for/{=1,2,... do

Solve
| compute solution uy € Vi (Ag,; Te, p) of @14);
Estimate

compute Naet,¢ (ue, Te, Ag,) as in (B5);
compute 7o ¢ (e, 0Ag,) as in (3:8);

if { > L: break
Mark
if Naet, (e, Tos Na,) = Cret Msto,e(Ue, ONg,) then
set A, = ¢ and choose minimal set M, < 7, such that
Nact.e(te, Me, Ng,) = Oaet Naese (e, Te, N, )
else
choose minimal set M < {1,..., M} such that
Zme/\/l nsto7€(u€7 AZ,m,qm) = gsto Tlsto,¢ (Uf, aAdg);
| set M, = Jand Ay = A Vs

Refine
Tov1 < bisect(T;, My);
| Ay = Aa, U A

DOI 10.20347/WIAS.PREPRINT.3036 Berlin 2023



M. Eigel, N. Hegemann 8

In each iteration ¢ of the loop, we compute the Galerkin solution u, of (Solve) and the esti-
mator contributions and (Estimate). During the Mark step, we employ a conditional Dérfler
marking strategy based on the dominating estimator contribution to determine how to refine 7, and
A, 1 Naet o(ue, Te, Ag,) dominates we set the marked stochastic set A, = (& and employ a Dér-
fler marking strategy to the mesh 7,, where we use the Dorfler threshold 64.;. For the refinement of
the spatial mesh 7, we use newest vertex bisection [17] on all marked elements T° € M, which
is denoted by bisect(7;, M,) in Algorithm [1} If, on the other hand, ¢yef Msto.¢ (e, 0A\g,) dominates,
where c,¢f is the equilibration constant in (3.9), we set the marked triangles to M, = & and employ
the Dorfler marking with threshold 6, to {Ag’m’qm}%:l. The index sets Ay, 4, are given for each
m=1,..., M by

m—1 M
Apmgn = Xdi] @ [d i di + gn] @ X) [dj]  for qu € [1:dy, — 1] (3.10)
j=1 j=m+1

Algorithm [1]iterates through the Solve, Estimate, Mark and Refine routines until the maximal number
of loops is reached. Note that specifying the maximum number of iterations a priori in Algorithm
is impractical for most applications and done here only for simplification. More reasonable stopping
criteria such as specifying a target threshold for the total error estimator or limiting the maximum of
allowed degrees of freedom could be applied as well.

4 Estimator Properties

In this section we establishes some fundamental properties of the estimator contributions, which are
required to prove the quasi-error reduction of Algorithm [1]for the unbounded lognormal diffusion coef-
ficient (2.2). The proof follows [9] and is based on the continuity of the estimators. As a preparation,
we first establish how C,‘j‘ﬂo behaves for different exponents o = 0.

Lemma 4.1 (embedding of weighted LP-spaces). Let« = 0 and

0 1 ifa <1,
< < a = . n(a(a—1)" .
psp mm{l,%} ifao > 1,

where ¥ is an upper bound for (2.1), i.e., ||Vm| Lepy <y forallm =0,..., M. Then there exists a
constant c, > 0 such that m,, = ca( /‘fﬁo is the probability density function of a centered Gaussian
distribution. Moreover, for any 0 < o < 3 and p < pg, it holds

LP(T,m,p) < LP(I',7,0)  foranyp e [1,00).

Proof. Note that for any o > 0 and 04,m(p) = o (p) (o + (1 — (Jz)am(p)Q)fl/2 it holds
B 1 Y >
m m 7T m m = T eX a7/ N9 M
C/L (y ) 07 (y ) /27T0'm<p)a p< 20_a7m(p)2

Defining the normalization constant

-1

Cam(p) = 0m(p)* Ve + (1= a)0m(p)? = 0m(p) Cam(p)

DOI 10.20347/WIAS.PREPRINT.3036 Berlin 2023



Lognormal ASGFEM error reduction 9

then yields that 7, o ,, = cmm(p)(’a To,m IS the probability density function of a univariate centered

p,m
Gaussian distribution with variance o, (p)?. Since 0,,(p) = exp(p||Vm| 1=(p)), we need

0 1 ifa <1,
< p < _
P min{l M} ifa > 1,

’ 2HW’m”LOO(D)

to ensure that 7, ., ,,, is integrable with respect to the standard Lebesgue measure. As a consequence

and by the definition of ¥, p < p, ensures integrability of 7, , = Hi\,{:l Tp,a,m- It s easy to see that

forany0 < a < feRandw e LP(I', 7, 3),

M
_ . Ca m(/O)
lw] om0y < 16| ol om, 5y with ¢ = ——.
(Tymp,a) p I (Is7p,8) nll Cﬁ,m(ﬂ)
Moreover, |57 < om(p)?~* < o0, which implies
M
157 ooy = H om(p)’ ™ < .
m=1
Consequently, LP(I', w, 3) < LP(I',7,,) forall1 < p e R. O

To prove the Lipschitz continuity of 74e¢ and 7, later in this section, we also require the following
observation.

Corollary 4.2. Letw be a polynomial, o = 0 and p < p, as in Lemmal[4.1] Then it holds

|lwC | Lo (r,mg) < 0.

Proof. By Lemmathere exists a constant ¢ > 0 such that |[w( |7, 0y = clw]Tor 1 pa)- SINCE
w is a polynomial and 7, ,,, decays exponentially, wHLP(Fﬂpypa) < 0. O

4.1 Deterministic estimator contribution

In the following, we show that the deterministic estimator contribution (3.5) satisfies some continuity
conditions.

Theorem 4.3 (Lipschitz continuity of 7)4¢¢, T in the first component). Forany vy, wy € Vy = VN(Ad; T, p)
andl’ € T there exists a constant cqe; > 0 depending only on the active set A4, such that

[Ndet, 7 (VN Na) — Naet. 7 (Wi, Ag)| < caet| V(o — wN)ngp,T-

Proof. For any ;1 € A4 consider the expansion P,(g, = > enit ZuHy, where {H,} o is an
0 0
orthonormal basis in L?(T", 7). Additionally, define the estimator components

Naet. T (UN, Ag) 1= hTH Z (f5u0 + div TM(UN))ZM,V , (4.1)
HEA T

oo (N, Ng) 1= hl/QH , . 4.2

Ndet,oT,» (VN Aa) T #;:d[[ru(UN)]]aTzu, . (4.2)

DOI 10.20347/WIAS.PREPRINT.3036 Berlin 2023



M. Eigel, N. Hegemann 10

With the inverse estimate || div &x |7 < ciyhp ! [En |7 forany €y € V VN = {Voy: vy € Yyl it
holds

‘ndet,T,z/ (’UN, Ad) — Ndet,T,v (’U)N, Ad)|

< bl div( D] rulon — wn)z) |

HEAg

< e Y mulon — W)z,
peAqg

= Cian Z Z Z Qg V(UN — wN)BTaBuZuWHT

,uEAd (XEACZ BeENy

<D D D) anvlaalie ) Vo — wn)slr|Tasuzunl;

/J,GAd aEAd+d"71 ﬁEAd

T

where d is the component wise minimum of d and d and a, = 3;_, an[k, a]ex € X,(T). By the

same argument and the inverse estimate | V &y - nr|orap < cinvh;I/QH Vén|r forany Ey € Vy,
with the outer unit normal vector nt of T', we derive the bound

|7]det,(')T,1/<UN7 Ad) - ndet,aT,u(wNa Ad)\
< Z Z Z 2¢inv|[aa] Loy V(onw = wn)slr|Tapuzus

uely O‘EAd+¢i—1 BeNy

Let STy = ndet,T,V(UNa Ad) + Tldet,T,v (wNa Ad) and SoT,v = ndet,é‘T,l/(UNa Ad) + Ndet,oT v (UJN, Ad)
The previous two estimates and the third binomial formula then yield
|77det,T(UN> Ad)2 - ndet,T('wNa Ad)2|
< Z Ndet, 7.0 (VN Ad) — Naet, 70 (WN, Aa)| s7,0
VeNéq
+ 7 naeora (v, Aa) = Naet.orw (W, Ad)| sors
z/eNéW

< ) [ V(vw — wn)slr Ss
BeAq

for
Sp = Z Z Z CirIVHGOAHLw(D)<ST,V + 238T,V)‘Taﬁuzu,l/"

€Ay, g nEAg VGN(I)Q
We now define the constant

A= Y 3 (2 Vacwlad Y] ||%|LOQ(D)WM)2 “3)

BeAy VeNé\‘f ueNg ozeAder;1

and obtain >, S5 < ¢(Ag)? 2 e (s, + s37,,)- By the definition of s7,,,, s57,, and the triangle
inequality, it follows directly that

1/2
( Z (S%’,V + S(%T,V)) < \/i(ndet,T<,UN7 Ad) + ndet,T(UNa Ad)) .

M
veNg
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Lognormal ASGFEM error reduction 11

Combining the obtained bounds results in

’ﬁdet,T(UM Ad) - Udet,T(wN7 Ad)’ (Udet,T(UN, Ad) + ndet,T(wNa Ad))

= |77det,T(UNa Ad)2 - ndet,T(wN7 Ad)Q\

< ), IV(oy = wn)slr S
BeAq

< V2e(Aa) | V(0 = )y, 1 (e (0, Aa) + M (10w, Aa) ).

Since | P,Cgpllx, < o0 forall e Ay by Corollary[4.2] the proof is concluded by

2 <5, Z Z <Z ZZ:/)(Z ( Z HaaHLOC(D)’TaﬂuD?)

BeNg VeN[J)»‘f uelg nelhy oaeAOHd;l
2
=5 (D 1RGl2) (X D Y laale=olras)’)
HeAy BeNg neAg ()cEAd+J_1

< 0.

O

Remark 4.4. The finiteness of the sums in the last estimate of the proof is caused by the polynomial
basis { P,,}. For the orthonormal polynomials, the triple product satisfies 7;;, = 0 forany k > i + j.
Hence, every coefficient ru(w ~) only consists of finitely many expansion terms a,, with & € Nog 1

independent of d.

Theorem 4.5 (continuity of 7)4¢ in the third component). Let0 € Ay A c NSZ be arbitrary sets,
A =AndN;andwy € Vy = Vy(Ag; T, p). Then there exists a constant ¢qe; > 0 such that

Ndet (UNa T A\Ad) Cdet Nsto (UN7 A)

Proof. We consider the expansion P,(y, = >, venyt Zuo Iy for any i € A4 where {H,} eNM
an orthonormal basis in L*(T", 7). Let get, 7. (U, Ad) and Nget, o1, (UN, Ag) be defined as in
and (4-2), respectively. Since r,,(wy) = 0 forany p € A\(Aq U 0Ay), we get
Ndet(Wn, T, A\Ad)Q = Naet (W, T, A)?
= Z (Naet,r(Wns A)? + Naes,or (W, A)?)

TeT

= Z 2 (ndet,T,y(wNp A)2 + ndet,ﬁT,y<wN7 A)2) .

TGTVENgI
By utilizing the same inverse inequalities as in the proof of Theorem[4.3] i.e.,
| diveén|r < cmhit|én]r  and  éx - nroran < cahiylEx T,

we obtain the estimates

2 e (wn, A)? = 3 hp | div (Y m(wn)z) 7 < il (D muwn)zu) 5,

TeT TeT peA HEA

and

| 2
D:

Z ndet,aT,V(wN7 Z hTH Z [[TM WN ]]aTZM V”@TmD 1nv|| Z TM wN Ry

TeT TeT peEA HEA
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M. Eigel, N. Hegemann 12

These two estimates and Parseval’s inequality yield

77det<wN? 7-7 A\Ad)Q < 3012nv Z H Z T#(wN)Z/hV

M eA
veNjt H

2 2 2
D~ 3CinvnSt0(wN7 A) )

which concludes the proof. O

Remark 4.6. For the special case Ac ANgu Ay, we have A = An 0Ny = f\\Ad and the inequality
in Theorem[4.5 simplifies to
Naet (VN T3 A) < Caet Nsto(Vn, A).

4.2 Stochastic estimator contribution

In this section we establish that the stochastic estimator contribution is Lipschitz continuous in the first
component. We also introduce the quasi additivity of 7, in the stochastic index set, which visualizes
one of the key differences between a lognormal and a bounded affine diffusion coefficient.

Theorem 4.7 (Lipschitz continuity of 7). in the first component). Foranyvy,wy € Vy = VN(Ad; T, p)
there exists a constant cy, > 0 depending only on the boundary of the active set 0\ such that

[0 (Vn; Oa) = Tsto (W, OAa)| < Csto] V(on = wn)llxy,.0-

Proof. For any i1 € 0A4 we consider the expansion P,(y, = ZVGNM 2, H, into an orthonormal
0
basis {H,}, i of L*(T', 7o) and define
0

nsto,u(UNaaAd) = H Z TM(UN)ZMW”D‘

}LGaAd

With this, the triangle and the inverse triangle inequality we follow

D

|nsto,u(UNa aAd) - nsto,u(wN; aAd)| < H Z TM(UN - wN)Zu,V

,LLE(‘)‘Ad

< YN D laa Vioy — wn)slp [aguzi]

puedAg ael ; feAg

< ) 20 D laalew)| Vow = wn)slp [Tasuul-

ueaAd OéEAd* BeNy

Let Sstor = Msto (VN, ONg) + Nstor (W, OAg). Then the third binomial formula and the previous
estimate imply

|nsto<UN7 aAd)Q - nsto<wN7 0Ad)2‘
< D Mstow (U, 0A4)* = Neton (W, INg)?|

VEN(])\;[
< Z ‘nsto,u (UN7 aA/Xd) - nsto71/(wN7 aAd) |Sst0,u
VGN(])CI
<D0 D0 D0 D el Vow — wa)sllp 1Tapuzus [Sston

VENéQI uEaAd OcGAJ BeNy

DIV (on —wn)slp Ss,
BeAq
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Lognormal ASGFEM error reduction 13

where we define

Spi= D >0 D laalieo) Iapuzun! Sston-

OéEAd ,ue&Ad Z/EN(])\AJ

With the Cauchy-Schwarz inequality, S can be bounded by

S5 =D Ssow Y |2uwl D) laalLe(n)|7asl

I/GNgI pEOAG ael;
2 1/2
(3 ssto,y) (Z 3 el 2 laaloe oy lrsd)’)
veNM veNM HEOAq ach;

for which we note that

( Z Szto,y)l/z < 775t0(”N, aAd) + nsto(wN, 6Ad)

M
veNy

is independent of /3. With this, the triangle inequality and

(@ =Y (S Lzl 3 laalve) rasl)” (@.4)

BeAg VENIM nedNy agl;

it follows

(Z Sﬂ) 2 c(0Aq) <77sto<UNaaAd) + nsto(wN7aAd)>- (4.5)

BeAq

Using the third binomial formula once more in combination with the Cauchy-Schwarz inequality, (4.5)
and

[Nsto (U, OAa)® = Nsto (Wi, OAg)? 2 | V(vy —wn)slp Ss
BeAq

yields

‘nsto (UN7 aAd) — Tsto (wNa a/\d)| (nsto (UN7 8/\d) + Nsto (wNa a/Xd)>

= |nsto(UN7 aAd)Q - nsto(wNa aAAd)2|

< ), I V(on —wn)slp Sp
BeAqg

(O0a) |V (0 = w3y (o3, O0a) + o0, M) )

It remains to show that ¢(0A,) < co. A direct calculation yields

A< (X Y 2D T (D laaliew rasd)’)

ueohy VGNM BeAg pedAy ael;
= (X 1R (22 (X laalim rasul)).
}LeaAd BeNy uEﬁAd OéEA

Since we assume A ; to be a finite set, 0A; = Adﬂiq\/\d is finite as well. Thus, all the sums above
are finite and | P, (g, < o0 for all 1 € dA4 by Corollary [4.2] which concludes the proof. O
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M. Eigel, N. Hegemann 14

Remark 4.8. If we consider an extension of [9] and require a bound on the operator norm of the
multiplication by a, we need to ensure that there exists a constant ¢ > 0 independent of 3 such that

Ky =3, 3 laalueq) gl < ¢ forallfe As (4.
HeF aeF

Requiring (4.6) instead of a finite expansion of a indeed yields that the second term in the last inequal-
ity of the proof above can be bounded, i.e.,

SN (O aal po (o) rapul)” < A[Ad] < 0.

BeNy uEﬁAd aeF

However, the infinite sum 3. ;x| PuCo, |2, becomes unbounded in that case as we cannot guaran-
tee | P,Copllx, = O for all except finitely many jn € 0.

If the diffusion coefficient a is uniformly bounded, well-posedness of (1.1) is given without the need for
adapted function spaces [1]. Consequently, it is possible to simplify the Lipschitz constant derived in
Theorem[4.7] as follows.

Corollary 4.9. If there exists constants ¢, ¢ > 0 such that ¢ < a(x,y) < ¢ uniformly for all z € D
and almost ally € T', then

1Nsto (VN ONg) — Nsto (Wi, ONg)| < €| V(oy — wn)|ro.0 for all vy, wyn € Vy.

Proof. By the boundedness of a, the third binomial formula and the orthonormality of { P, }, it holds
that

’nsto (UN7 aAd — Tlsto (U}N, a*Ad) |

- U J aV(vy —wy)( Z ru(oy +wn)P,) dxdﬂﬂp(y)‘

,U,EaAd

<& V(ox —wn)lryn | D Tulon + wn)Pulwy,.0
[LEE)Ad

< V(ox = wn)llng, 0 (o0, 8a) + o1, 2Aa) )

The boundedness of a implies boundedness and ellipticity of the bilinear form (2.6), which implies
Qgp = 1 and thus 7y, = . The rest follows the same arguments as in the proof of Theorem O

We note that the Lipschitz continuity of 7, for the affine field v was established in [9, Lemma 4.5],
which holds with the same Lipschitz constant. Since +y is a special case of a bounded positive diffusion
field, Corollary [4.9|can be seen as a generalization of [9].

As the regularization parameter ¥} € (0, 1) influences the deviation of 7y, from 7, it is possible to
show that 7, is almost additive in the second argument if 1) is chosen small enough.

Theorem 4.10 (quasi additivity of 7, in the second component). For any € > 0, there exists 1), €
(0, 1) such that for any ¥ < ¥, and any A < 0\,

77sto<wN7 5Ad\A)2 < nsto(wNa aAd)z - ﬁsto(wN, A)2 +e.
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Lognormal ASGFEM error reduction 15

Proof. Let ga(wy) and goa,\a(wy) be given respectively by

ga(wy) = Z r.(wN) P, and Jonga(wn) = Z ru(wn) Py
N pEOA\A

Since ga(wy) Lry,0 goa\a(wny), the binomial formula and the Cauchy-Schwarz inequality yield

Nsto (Wi, ON)? = Tt (Wi, ONG\A)? + Nisto (W, A)? + 2{ga(wn)gonpa(wn), €5, = Cop)mon
> Tsto(Wn, OAN\A)? + Nso (W, A)? = 2] ga(wn)gonpa (W) |70.01C5, = Copllmo-

By Lemma Cg‘pwo is proportional to a Gaussian probability density for any o > 0 as long as
¥p < pa- In particular, the normalization constant reads

co(Up) = H Cam(Op)  With  Cam(9p) = o (0p) N a + (1 — @)o,(9p)2.

m=1
Since 0, (Vp)* = exp(a¥p|Ym|re(p)) — 1as ¥ — 0forany a € R, we get co(Jp) — 1. This

implies
¥—0

0< 2, — Copll?, = f ¢t dmy + f cspdm—2j ¢ dmy 225 0.
T T T

Since [|ga(wn)gara(wn)llx,p is independent of ¥, Lemma [4.1]yields that there exists 0 < 7. <
min{p, | @ = 2, 3,4} such that

1 .
165 = Gopllmo < Sellgalwn)gannalwn)lz b,
2

for any ¥ < 1., which proves the claim. O

5 Quasi-Error Reduction by the Adaptive Algorithm

With the properties established in the previous section, this section proves the reduction of the quasi-
error in each iteration of the adaptive Algorithm [1jas the main result of this work. As depicted in
Figure[d] it is first required to establish an estimate that relates the estimator contributions on one level
to similar quantities of the previous level.

Lemma 5.1. For any non-empty sets 0 € Ay < A c Né‘Z and triangulations T, T, where T is a
one-level refinement of T, let M = T\(T N T') be the set of triangles marked for refinement and
A = 0MNg; N A the set of added stochastic indices. Then it holds for anywy € Vy = Vn(Ag; T, p),
Wy € Vy = VN(A; T, P) and qet, Esto > 0, 7 = 0 that

Mdet (wN7 727 A)2 + Tnst0<wN7 a]\)2
< (1t 2ae) (e (w0, T Ad)? = e (w0, M. Ao)?)
+ (1 + st0)T Nsto (W, ONGNA)? + 3(1 + £get) 2y Msto (Wi, A)?

+ ((1 +el)cd, + (1+ gs—tg))cng) | V(wy —in))|2, b,

with A = 1 — 272 and ¢yo, Caer from Theorem[4.3 and Theorem|4.7, respectively.
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M. Eigel, N. Hegemann 16

Proof. By Theorem we have
R R . N2
T)det (uA]Na T? A)2 < Z (ndet,f(w]\“ A) + |ndet,T(wN7 A) - ndet,T(U}Na A) |>
TeT

~ 2
< ) (M (w0, A) + caall Fwy = i), )

TeT
Using Young’s inequality for the mixed terms of the last estimate yields for any e4e; > 0

2 et Nger, 7 (W A) | V(wn = dow)| -,

< detllaer,7 (0N, A)? + gl Vwn — w2, 4

which implies
N (0, T3 A)? < (1 + eaet) e (wn, T, A)? + (1 + ) cee| Viwn — a3, -
Applying Theorem[4.5/then gives

det (wNa 7-7 Ad)2 + Tldet (wNa 7A-7 ]\\Ad)2
det (’LUN, 7Ad, Ad)2 + 3Ci2nv775t0(w]v, 8Ad M /A\)z

Tldet (U)N, 7-7 ]\)2 < 7
<7

Let T'e M < T be a triangle marked for refinement and denote by T(T)={TeT:TcT)the
set of all children of 7in 7. Since w is smooth on all edges E € int(T) it follows that [, (wy)] 5 =
0 for all 4 € Ay4. Since we assume D < R? and T to be a one-level refinement of T obtained via
newest-vertex bisection, there holds

. 1 1/2
_ ‘T|1/2 < (§|T|) _ 271/2hT

for any Te 7’( ). We note that technically hy ~ |T|1/2 with equivalence constants induced by the
shape regularity of 7, which we will ignore here to keep the notation as concise as possible. With
A =1-—2"12we get

Naet(Wn, Ty Aa)? = Naes (Wi, TNT (M), A)? + Dges (wne, T(M), A)?
< Naer(wn, TNM, Ag)? + 272 ey (wy, M, Ag)?
= Tdet (’U)N, 7-7 Ad)2 - A ndet(wNv Ma Ad)z-

Combining the above estimates yields

Maet (Wn, T, A)? < (1 + ger) <77det(wNa T.Aa)? = Aaet(wn, M, Ad)2>
+ 3(L + edet) iy Moto (Wi, A)7 + (1 + e )eler | V(wn —on) |7, -
Similarly, Theorem [4.7]and Young’s inequality for any €4, > 0 leads to the estimate
N 2
Tsto (’UJN, aA) (nsto(w]\/a aA) + |775to (’UJN, aA) Nst (UJN, aA) |>

N 2
< <775t0(wNa aA) + Csto H V('lUN - wN)Hﬂ-ﬂp7D>

< (1 + €St0) nStO(w]\“ aA) (1 + gsto) Csto H (wN - UA)N)”?rgP,D'
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Lognormal ASGFEM error reduction 17

Note that Ay — A implies Ay = A U 0A and thus A = dA; N A = dA,\@A. Since ru(wy) =0
for u ¢ Ag U dNg, we get that 75, (Wi, OA\OA4)? = 0, which yields

77sto<UA]Na aA)Z = nsto(w]\ﬂ aAd N aA)Z = nsto<wN7 aAd\(aAd N A>)2 = 77st0(UA}N7 aAd\A)2

Combining all the results above and estimating the norm by Lemma [4.1] concludes the proof. O

With Lemma 5.1} Lemma [4.1]and Theorem [4.10] we can now prove reduction of the quasi error (1.2)
on each level.

Theorem 5.2 (quasi-error reduction). Let c,ef > 0, 0 < Oget, Osto < 1 and let up, Ty, My, Mo, Ay,
Ndet,e @nd 7)o ¢ denote a sequence of approximate solutions, triangulations, marked cells, stochastic
indices, marked indices and error indicators, respectively, generated by the adaptive Algorithm[il Then
there exist 0 < 6, < 1,wy, > 0, 7 > 0 and a regularization threshold 0 < ¥* < 1, such that for any
¥ < ¥* it holds

lu — wer1|B + We Mot e41 + WeT Noops1 < O (HU — Ug|[B + we e e + weT ns2to,€>'

Proof. Let ey := |[u — ug|p, dp := |Jug — ugsr| s and dy == | V(ug — Ups1)| x,,p- With Galerkin
orthogonality €7, , = ef — d} and Lemma 5.1]it follows

B?H tw niet,é+1 +wT 77s2to,e+1
<} +w((1+ 3 + (L + b)) df —
+ w(1 + eget) nﬁet’z — W(1 + Edot) A Naet,e (e, My, Ag)?
+ W(1 + Ext0) T Msto e (e, ONNAY)? + 3w (1 + €det)012nv Nsto,e (e, Ay)2

Letwy = ¢y, ((1+ »sdet)cdet (1+e3h) StOT)_ where ¢y, is the boundedness constant in 2.8),

and let w, = wj dgd such that the terms containing d, and dg cancel each other. Note that w, can
always be chosen this way since d, > 0 implies 0 < wy < w; < 0. Next, we introduce the convex
combination

2 _ 2
€y = (1 - a)eé + aef (1 - a)eﬁ + acrelndetﬁ + acrelcrefnstoé

for any o € (0, 1), where ¢, is the reliability constant from Theorem and Cref IS the equilibration
constant from (3.9). With this it follows

2 P 2
€rr1 T WeNget o1 T WT N0 041
< (1 - O‘)ez + ( Crel T U.)g(l + Edet))nget,f

- (,Ug(l + 5det>)\ Tldet,¢ (Ug, Mf? Af)2 + Oéc?elcfef 773‘50,@
+ W1 + Est0)T Nsto,e (e, ONNAL)? + 3wie(1 + Eqet ) oy Nistoe (e, D).

Next we need to distinguish between the different marking scenarios of Algorithm[1] We first consider
refinement of the spatial domain, i.e., 7)get.¢ = Crefsto,¢, Which implies Ay = J and

O'/Cfelcfef T/S%:o,[ + (Ug(l + 55130)7— nsto,f(ufu aAg\Ag>2 + 3(.{)4(1 + 8det)ci2nv Tlsto, e (U’f’ A4>2
= wyT (acfelcfefwglrfl + (1 + 8sto)>7752to,e

2 2
= wZTgsto(l + ﬁl) Tsto,e + weTC2 Tsto, 5
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for any 5, > 0 and

Co = 02(0575st077—7 Bl) = acfelcfefwg_lT_l + (1 - 5stoﬁl)~

Moreover, by the Dérfler criterion we have nget ¢ (e, Mo, Ay) = Ogetndet 0 @and since st ¢ < c;e}ndet,g
we obtain

(acfel + we(1 + 5det)>n<21et,£ — w1 + aet) A Maet,e (e, M, Ag)* + wieresio(1+ Br) 10
2

< Wiy ndet,b

for
c1 = c1(, Edets Esto, Ty P1) = acfelwg_l + (14 €qet) (1 — )\Qflet) + Testo(1 + Bl)cr_e?.

We thus have

2 2 2 2 2 2

€ip1 T WeNderor1 T DT Msorr1 < (1 — )€y + Wet Naer ¢ + WeTC2 M- (5.1)
In the second case, when Algorithm (1| refines the stochastic space, we have 7)qet ¢ < CrefTsto,¢, Which
implies M, = (J and

(Oszel +we(1 + Edet)>n§et,g — we(1 + Edet) A Maet, ¢ (e, Mo, Ag)®

= wy (acfelwgl +(1+ 5det))n§et,€
= WyC3 n(Qiet,Z + ngdet(l + 52) 77(21et,€
for any 5, > 0 and
C3 = Cg(Oé,€det752) = Oéc?elwé_l + <]' - 5det52)‘

Again, by the Dorfler criterion, it holds 7so.¢ (e, A¢) = OstoMsto,e @nd in combination with 7gep e <
Crefsto,c @nd Theorem we estimate

2 2 2 2
QCre1Crof TNsto, v + wfgdet(]' + 52) Mdet, e

+ wWo(1 + Est0)T Nsto,e (e, ONNAL)? + 3wp(1 + Edet) Gy Nstore (e, Ar)?
< WeTCs Mg s
where we set
Cq = C4<Oé, Edet) Estor T 527 19)
O”—ilé';;}c?elc?ef + Tﬁlgdetc?ef(l + 52) + (1 + €St0)<1 + 619)

— 9§t0<1 + esto — 3(1 + gdet)ciznVTfl).

Here, we set 0 < ey < ein.;2,, where % is the maximal ¢ such that Theorem holds for .
Similar to (5.1), this now yields the estimate

2 2 2 2 2 2
€ip1 T WeNderor1 T DT Msrorrr < (1 — )€y + wWeC3 Nger ¢ + WeTC Mo - (5.2)

What remains is to choose the parameters o, £qet, €sto, 7> 51 P2 and 9 such that simultaneously

0 <cy,...,cq < 1.Firstwe note that ¢; > 0 is trivially satisfied since A < 1 and thus 1 — \03,, > 0
independent of the choice of f4c; € (0, 1). With
2 2
)\eglet )\eg.etcref and o < )‘edetwf

2
3Cre1

et < ) sto < N
TS BI N2 N T 31+ By
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Lognormal ASGFEM error reduction 19

we ensure that ¢; < 1. If additionally
WyeT

< pi < and o<

2€ sto Esto 2Crel Cref

we guarantee that 0 < ac ciw, ' 771 < 02 < l.Toensurethat 0 < ¢4 < 1, wesetT >

3(1 + €det )2,y such that 1 — 3(1 + £qer)c2,, 7~ > 0. By Theorem|4.10|there exist ¥* € (0, 1) such
that

02 (1 — 3c?
0<ey < o m"2 ) for all ¥ < ¥*.
2+ Westo Cihe)
Now we choose
E9T es2to(1 - ScmvT 1) (2 + Wesgto an) €y
Edet < 5 77 5 Esto <
2 (14 By) o 1 +e9— 03,

and a < egwTcr e, which leads to

1 1

Ccq < §5§+§€19+1+519—2519= 1.

Note that the upper bound of €y implies that the upper bound of £, is positive. Moreover, since
(1+e9—0%)>0and 1 —3(1 + eqet)c, 7! < 1forany 7 > 0, it follows

mv

0 < (1+eso)(l+e9) — 0% (14 sto — (1 + Edet) oy T )

mv

and thus 0 < c¢4. Finally,

1 1 Wy
< ﬁQ < and Q< -5~
diet Edet 201«51
lead to 0 < c3 < 1. Choosing a, £4¢; and 4, smaller than the minimum of the respective bounds
above yields 0 < ¢y, ..., cq < 1 and thus concludes the proof with 0, := max{l —a, ¢y, ...,cq4} <
1. O

Remark 5.3 (error reduction and convergence). Theorem proves reduction of the quasi-error in
each iteration. However, as it is possible that 5, grows faster then exp(—(~*) fork > 1 as { — o,
this might not imply convergence of the quasi-error to zero. Furthermore, it is impossible to bound
0 independently of ¢ for the lognormal diffusion coefficient since function spaces with adapted
Gaussian measures have to be used (from a theoretical perspective at least). As a consequence,
and hold with respect to differently weighted norms. This causes a dependence of the Lipschitz
constants in Themorem and Theorem on the size of the active set A, and yields no positive
lower bound for || e || 5/ V

*|x,.0-
Tp,D

When neglecting these theoretical aspects that are usually irrelevant in practice, convergence could
even be shown in the standard Gaussian space with unbounded coefficient.

Remark [5.3] also implies that d; can be bounded independently of ¢ if a is bounded uniformly from
above and below. Hence, as a byproduct of Theorem|[5.2we obtain a generalization of the convergence
result in [9, Theorem 7.2] from affine to arbitrary uniformly bounded and positive diffusion coefficients.

Corollary 5.4 (convergence for bounded coefficients). Consider the setting of Theorem[5.2 and ad-
ditionally assume that the coefficient ap is uniformly positive and bounded, i.e., there exist) < @ <
a < oo suchthata < ay(z,y) < a forallx € D and almost all y € I'. Then there exist() < § < 1,
w > 0 independent of ¢ and T > 0, such that

HU - UZ-HHB tw ndet A+1 +wT nsto A+1 < <Hu - UEHB tw ndeté +wT 77sto Z)
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Proof. Due to the boundedness of ay the problem is well posed in L?(T", my; X') and no adapted
function spaces are required. As a consequence | o |z ~ | V o]/, p proves the claim. O

6 Numerical experiments

In this section we show that the quasi-error reduction of Algorithm[f]can also be observed in numerical
experiments. For that we rely on typical benchmark problems as used in for example [7, [8, 28]. As
spatial domain we consider the L-shape D = (0, 1)?\[0.5, 1]. The derived total error estimator 7
is used to steer the adaptive refinement of the triangulation 7 and the space A, as described in
Algorithm (]

To validate the reliability of the estimator and its contributions in the adaptive scheme, we compute an
empirical approximation of the true L?(T, 7r; X')-error using Ny samples, i.e.

Nuce

DIV ®) = Vuy®)|2, o (6.1)

i=1

B 2 2 _
IV (u— )z, p ~ E(we) Nore

Here, ii(y®) is the deterministic sampled solution () projected onto a uniform refinement 7~ of
the finest FE mesh 7}, obtained in the adaptive refinement loop. Since all triangulations generated
by Algorithm |1| as well as T are nested, we employ simple nodal interpolation of each u, onto T to
guarantee u; € Vi (Ag; T, p). The choice of Ny = 250 proved to be sufficient to obtain consistent
estimates of the error in our experiments as well as in other works (cf. 7 8]).

As benchmark problem we consider the stationary diffusion problem (1.1) with constant right-hand
side f(x,y) = 1. We assume the coefficients of the affine diffusion field (2.1) to enumerate planar
Fourier modes in increasing total order, i.e.,

9
Vm(T) = W

where ( is the Riemann zeta function and, for k(m) = |—3+4/3 + 2m)], B1(m) = m—k(m)(k(m)+

1)/2and Bo(m) = k(m)— B (m). For our experiments we consider an expansion length of M/ = 20,
decay 0 = 2, choose p = 1 and ¢ = 0.1 similar to [7] and discretize in the same finite element
space as the solution, i.e., conforming Lagrange elements of order p = 1 or p = 3. All finite element
computations are conducted with the FEniCS package [34]. For the stochastic discretization we rely
on a low-rank tensor decomposition, i.e., the Tensor Train format [35], to approximate all stochastic
quantities. In particular we build on the same framework as [8], which uses the open source software
package xerus [36].

m~° cos(QWﬁl(m)xl) cos (27rﬁ2(m)x2), m=1,..., M,

The constant right-hand side has an exact representation in the Tensor Train format, see e.g. [8] for
the construction. To assure that the approximation a of the lognormal diffusion coefficient is
sufficient, we employ the approach described in [29]. In particular we enforce that the relative approx-
imation error |a — an| z2(r x;z (D)) is at least one order of magnitude smaller then the empirical
error (6.1).

Algorithm [1| is instantiated with a single mode M = 1 discretized with an affine polynomial, i.e.,
dimension d; = 2 € N!. The initial spatial mesh consists of |7;| = 143 triangles for affine and
|71| = 64 for cubic ansatz functions. The marking parameters are set to 64, = 0.3 and 0, = 0.5,
respectively. To achieve equilibration of the two estimator contributions we choose ¢, = 5. We
terminate Algorithm[1]after L = 12 iteration steps.
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Figure 2: Reduction of estimator and error on the L-shaped domain for affine (left) and cubic (right)
Lagrange finite elements with respect to the Tensor Train degrees of freedom of the Galerkin projection

UnN-

Figure [2|depict the sampled root mean squared H¢ (D) error € (uy), the overall error estimator 7(w;)
and the two estimator contributions 7ge;(tt¢) and 7, (1¢) for affine and cubic Lagrange finite ele-
ments, respectively. The plots depict error and estimator against the degrees of freedom (dofs) of the
coefficient tensor of the Galerkin projection u compressed by the Tensor Train format, i.e.

M-—1
tt-dofs(uy) = Jry —ri + Z (PmdmTms1 — Tfnﬂ) + ryvd,
m=1
where r = (ry,...,75) € NM are the Tensor Train ranks, see e.g. [37] for details.

The estimator mirrors the behaviour of the error with a consistent overestimation by a factor 1 ~ 10,
which is in line with Theorem [3.2] Additionally, the deterministic estimator contribution 14; captures
the singularity of the L-shaped domain and prioritizes to refine the mesh at the reentrant corner as
known from deterministic adaptive FE methods, which is in line with previous results [1}, (3} |5, |7, {10].
We also observe that Algorithm [1] focusses on refinement of the finite element mesh for p = 1 and
tends to enlarge the stochastic space in the case p = 3. Again, this is in line with the expectations, as
the higher regularity of cubic finite elements allows for coarser spatial resolution.

Finally we note that the experiments are in line with the results of Theorem as we observe a
reduction of both error and estimator in each iteration. Interestingly, we even see that the algorithm
reduces both error and estimator with an overall constant rate, which is consistent with the results of
e.g. [7,8]. This is a stronger behaviour than predicted by Theorem An explanation of this could be
that the diffusion coefficient is “effectively” bounded and positive by any experimental setup since only
finitely many point evaluations can be used to generate the numerical representation of (2.2). This
implies that a is effectively only considered on a bounded domain, which yields boundedness from
above and below as assumed in Corollary 5.4
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