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Kernel mirror prox and RKHS gradient flow for mixed functional
Nash equilibrium

Pavel Dvurechensky, Jia-Jie Zhu

Abstract

The theoretical analysis of machine learning algorithms, such as deep generative modeling,
motivates multiple recent works on the Mixed Nash Equilibrium (MNE) problem. Different from
MNE, this paper formulates the Mixed Functional Nash Equilibrium (MFNE), which replaces
one of the measure optimization problems with optimization over a class of dual functions, e.g.,
the reproducing kernel Hilbert space (RKHS) in the case of Mixed Kernel Nash Equilibrium
(MKNE). We show that our MFNE and MKNE framework form the backbones that govern several
existing machine learning algorithms, such as implicit generative models, distributionally robust
optimization (DRO), and Wasserstein barycenters. To model the infinite-dimensional continuous-
limit optimization dynamics, we propose the Interacting Wasserstein-Kernel Gradient Flow, which
includes the RKHS flow that is much less common than the Wasserstein gradient flow but enjoys a
much simpler convexity structure. Time-discretizing this gradient flow, we propose a primal-dual
kernel mirror prox algorithm, which alternates between a dual step in the RKHS, and a primal step
in the space of probability measures. We then provide the first unified convergence analysis of our
algorithm for this class of MKNE problems, which establishes a convergence rate of O(1/N) in the
deterministic case and O(1/

√
N) in the stochastic case. As a case study, we apply our analysis

to DRO, providing the first primal-dual convergence analysis for DRO with probability-metric
constraints.

1 Introduction

Training state-of-the-art large-scale machine learning models typically requires stochastic optimization
with non-convex objective functions, which has achieved great empirical success. However, its reliability
and computational complexity must also be theoretically analyzed and understood. For example, the
potential of deep generative models is remarkable in numerous machine learning applications such as
image generation [21], reinforcement learning [24], and molecular dynamics [39]. However, training
generative models effectively has been a challenging topic for machine learning research that attracts
both empirical and theoretical research interests.

State-of-the-art theoretical analysis of generative models formulates the training process as finding
a mixed Nash Equilibrium (MNE) in a two-player zero-sum game [25, 15, 52, 51]. The MNE problem
seeks the solution, i.e., MNE of the saddle-point optimization problem

inf
µ∈M

sup
ν∈M

F (µ, ν), (1)

where F (µ, ν) is a bi-variate objective function(al) of the probability measures µ, ν.

In machine learning, there exists a commonly-used alternative paradigm to directly optimizing the
measures, such as in the MNE (1). This paradigm exploits the duality between probability measure
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space M and a dual functional space F , i.e., instead of optimizing w.r.t. a measure, we solve the
functional optimization problem

inf
f∈F

E(f). (2)

Such methods often leverage scalable learning models such as reproducing kernel Hilbert spaces
and deep neural networks for parameterizing and manipulating the dual functions, instead of directly
searching in the space of probability distributions as in (1). Such dual functional approaches have
witnessed success in many domains of machine learning research, e.g., generative modeling [40,
5, 23, 28] computing optimal transport [20], distributionally robust optimization [54], Wasserstein
barycenters [31, 50, 29]. However, optimization over those functional spaces, e.g., RKHSs or DNNs, is
inherently an infinite dimensional problem, whose convergence analysis does not directly follow from
the finite-dimensional setting.

As an concrete application of our functional optimization framework, we formulate the Mixed Functional
Nash Equilibrium (MFNE), whose inner optimization is an optimization problem over a set F of functions

inf
f∈F

sup
µ∈M

F (µ, f), (3)

which, like the MNE, is a special case of the infinite-dimensional pure NE problem. MFNE (3) has
appeared in several cutting-edge algorithms in ML research, which we discuss in detail in Section 2.1. In
such cases of saddle-point optimization problems, a unified convergence analysis for those applications
to the primal-dual setting is still missing. To fill this gap, this paper provides the convergence analysis
for optimization problems that move in a functional space.

Centered around the MFNE (3), this paper makes the following technical contributions:

1 We model the infinite-dimensional continuous-time optimization dynamics of the general func-
tional optimization problem (2) as RKHS gradient flows. Despite its simple structure, the RKHS
gradient flow is less explored in machine learning but enjoys simpler structures and straight-
forward convexity instead of (generalized) geodesic convexity needed for optimization in the
Wasserstein space.

2 As a non-trivial application, we model the MFNE (3) as an Interacting Wasserstein-Kernel
Gradient Flow (19)-(14), , which couples the now-well-known Wasserstein gradient flow and an
RKHS gradient flow. We show that the time-discretization of this interacting gradient flow results
in a discrete-time primal-dual kernel mirror prox algorithm for solving MFNE (3).

3 The techniques of optimizing dual (to probability measures) functions using modern learning
models, such as RKHSs and DNNs, have been applied in many recent works. However, a unified
convergence analysis is still missing. This paper provides a unified convergence analysis for
functional optimization problems in the context of MFNE (3), with a convergence rate O( 1

N
) via a

primal-dual kernel mirror prox algorithm. To the best of our knowledge, it is the first analysis with
the kernel mirror prox steps in the dual functional space, which differs from the typical mean-field
analysis of measure optimization.

4 As a case study, we apply our analysis to distributionally robust optimization (DRO) to establish
a convergence rate via primal-dual stochastic kernel mirror prox in the case of maximum mean
discrepancy ambiguity sets. To the best of our knowledge, this is the first primal-dual continuous
optimization guarantee for DRO.

5 Last but not least, the unification perspective of a few learning tasks, provided by MFNE and
MKNE, highlights our Kernel Mirror Prox as a general-purpose functional optimization algo-
rithm for optimizing over probability measures in the dual space, with theoretical convergence
guarantee. This is similar to general-purpose algorithms such as Langevin Monte-Carlo, Stein
variational gradient descent.
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2 Preliminaries

Notation We use M = Prob(Ω̄) to denote the space of probability measures defined on the closure
of a closed bounded convex domain Ω ⊂ Rd. We say that (3) is convex-concave if the inner problem
is concave maximization and the outer problem is convex minimization. The convexity notion, if not
otherwise specified, refers to the regular convexity notion (defined in (13)). For PDE gradient flows,
the states are functions of both time and space, for example, u(t, x). When there is no ambiguity, we
write u(t) := u(t, ·) to denote the function at evolutionary time t. If not otherwise specified, proofs are
deferred to the appendix.

2.1 Duality of metrics on probability measures

One reason behind the ubiquity of the functional optimization problem (2) and MFNE (3) in machine
learning problems is that common probability metrics admit a dual characterization. For example, the
optimal transport distance [45, 2], e.g., p-Wasserstein metric Wp, can be characterized in the dual
space via the dual Kantorovich problem

OT(µ, ν) = sup
ψ1,ψ2

∫
ψ1 dµ+

∫
ψ2 dν (4)

s.t. ψ1(x) + ψ2(y) ≤ c(x, y), ∀x, y, a.e. (5)

which is an infinite-dimensional optimization problem with an infinite constraint. Bounded continuous
functions ψi are referred to as the Kantorovich potential functions. c(x, y) is the transport cost function
associated with the transport. In the machine learning literature, researchers have explored this dual
formulation by directly parameterizing the Kantorovich potential, e.g., using RKHS functions [20] or
ICNNs [31, 28].

Another commonly used metric is the integral probability metric (IPM), which is defined via the weak
norm formulation

IPM(µ, ν) = sup
f∈F

∫
fd(µ− ν).

One particular choice of the test function family is the RKHS-norm-ball F = {f : ∥f∥H ≤ 1}, which
yields the kernel maximum mean discrepancy (MMD) [22]. F = {f : Lip (f) ≤ 1} recovers the
type-1 (Kantorovich) Wasserstein metric.

Those basic duality results characterize the relationship of the underlying geometry of the learning
problem and the variational problem that optimizes w.r.t. functions, such as the IPM test functions and
the Kantorovich potentials in OT. This has been exploited in several fields in machine learning, which
we detail below.

Implicit generative models (IGM) We consider the following IGM formulation, such as generative
moment matching networks [32, 17] and generative adversarial networks (GAN) [21],

inf
Gθ

EZD(P,Gθ(Z)), (6)

where D can be chosen as a discrepancy measure such as the f -divergence family, optimal transport
distance, or kernel maximum mean discrepancy (MMD). In IGM, P is often taken to be the training data
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distribution. Recent theoretical analysis of the optimization for training (6) lifts the non-convex optimiza-
tion problem to the space of probability measures, which is an instantiation of a mixed Nash equilibrium
(MNE) problem (1). The problem can then be cast into this paper’s general MFNE formulation (3), for
example, by choosing the function D as the integral probability metric (IPM) family

inf
µ∈M

sup
f∈F

{∫
f(x)dP (x)− Eθ∼µ

∫
f(gθ(z))dQ(z)

}
, (7)

where gθ(z) is the generator density. If the function class F is chosen to be the class of 1-Lipschitz
functions, then the formulation is the Wasserstein GAN [5, 23]. On the other hand, if F is the RKHS,
this is the MMD GAN [30, 8]. Note that this lifted problem is now convex-concave in the optimization
variables.

Distributionally robust optimization (DRO) We now consider a special case: the metric-ball-
constrained DRO problem [14]

inf
θ

sup
µ:D(µ,P̂n)≤ϵ

Eµ[l(θ;x)] (8)

Below, we consider DRO with the probability metric D to be the p-Wasserstein DRO (p ≥ 1) [18]
as well as the Kernel(-MMD) DRO [54]. Different from common DRO reformulation using conic linear
duality, we propose a primal-dual reformulation of DRO.

Lemma 2.1 (Primal-dual reformulation of Wasserstein and kernel DRO). Suppose the probability metric
is chosen to the MMD, then the DRO problem (8) admits the reformulation

inf
θ∈Rd,f∈H

sup
µ∈M

Eµ(l − f) +
1

N

N∑
i=1

f(xi) + ϵ∥f∥H. (9)

Furthermore, it is equivalent to the smoothed optimization problem

inf
θ∈Rd,f∈H

sup
µ∈M,h∈H:∥h∥H≤1

(
1

N

N∑
i=1

f(xi) + ϵ⟨h, f⟩ + Eµ(l(θ;x)− f(x))

)
. (10)

Suppose the probability metric is chosen to the optimal transport metric, e.g., p-Wasserstein distance.
Then, the DRO problem (8) admits the reformulation

inf
γ>0,θ∈Rd,f∈Ψc

sup
µ∈M

Eµ(l − γ · f)− γ

N

N∑
i=1

f c(xi) + γ · ϵ. (11)

Ψc is the set of c-concave [45] functions and f c(y) := infx c(x, y)− f(x) denotes the c-transform.

Lemma 2.1 shows that those primal-dual DRO formulations have the convex-concave structure in µ, f
as in the MFKE, and are convex in the learning model θ when the loss l is. (10) is concave in the
smoothing variable h. (11) is trivially convex in the dual variable γ.
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Wasserstein barycenter The Wasserstein barycenter problem [1, 31, 50, 29] can be formulated as a
saddle-point optimization problem.

min
µ∈M

n∑
i=1

αi [W(µ, νi)] = min
µ∈M

n∑
i=1

αi sup
fi∈Ψc

{∫
f ci dµ+

∫
fidνi

}
, (12)

where µi ∈ M are given probability measures, fi ∈ Ψc are the Kantorovich potentials associated
with the Wasserstein distance. f ci again denote the c-transform.

Note that in the aforementioned settings of p-Wasserstein (p ̸= 1) metric, one may parameterize
Kantorovich potential functions using tools such as the random Fourier features [44] and input convex
neural networks [3], such as done in [20, 35, 28]. In our theoretical analysis, we focus on the RKHS
functions (and hence the kernel MMD) setting in the rest of the paper due to the difficulty in theoretically
characterizing the approximation error of deep models such as ICNNs.

2.2 Gradient Flow in the Wasserstein and Hilbert Spaces

Recent theoretical analysis of generative models via MNE, e.g., [25, 15, 52, 51], adopted the mean-
field limit point of view closely related to the mathematical topic on PDE gradient flow of probability
measures [2, 41, 26, 42]. Notably, works such as [25] modeled training dynamics of GAN as sampling
using Langevin SDE, which is also equivalent to solving the Fokker-Planck PDE.

Intuitively, a gradient flow describes a dynamical system that is driven towards the dissipation of certain
energies. This system is called a gradient system. For example, the dynamical system described by
an ordinary differential equation in the Euclidean space that follows the negative gradient direction,
ẋ(t) = −∇f(x(t)), x(t) ∈ Rd, is a simple gradient system. One milestone of the gradient system
research is the works of Otto and colleagues in deriving the Wasserstein gradient flow [41, 26, 42].
Rigorous characterizations of general metric gradient systems have been carried out in PDE literature,
for which we refer to [2, 45] for complete treatments and [43, 36] for a first principles’ introduction,
whose perspective we adopt in this paper.

Recent machine learning literature has explored the Wasserstein gradient system, which generates the
Wasserstein gradient flow (WGF). It describes the evolution of probability measures in the Wasserstein
metric space (M,Wp), driven by some energy functionals. In the case of 2-Wasserstein metric, the
metric space (M,W2) has particularly nice properties, namely, it is a so-called geodesic metric
space [2]. The gradient flow equation of Boltzmann entropy associated with this Wasserstein gradient
system is precisely the diffusion equation, which coincide with the heat equation from the PDE
perspective. From the optimization perspective, those foundational works allow us to view complex
dynamical systems as optimization algorithms of probability measures, which minimizes or maximizes
objective function(al)s (e.g., energy) in particular geometries (e.g., Wasserstein space). This is vividly
described by a quote from Felix Otto:

The merit of the right gradient flow formulation of a dissipative evolution equation is
that it separates energetics and kinetics: The energetics endow the state space with a
functional, the kinetics endow the state space with a (Riemannian) geometry via the
metric tensor.

While WGF has sparked significant interest within the machine learning community recently, performing
optimization with WGF requires extra care since its convergence cannot be characterized using the
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regular notion of convexity. Recall that a functional E defined on a Hilbert space H is λ-convex if
∀s ∈ [0, 1],∀u0, u1 ∈ H,

E((1 − s)u0 + su1) ≤ (1 − s)E(u0) + sE(u1) − λ

2
s(1 − s)∥u0 − u1∥2H. (13)

If λ > 0, E is strongly convex. This notion of convexity does not make sense in the Wasserstein space
and one must summon the generalized geodesic convexity [2]. In contrast, gradient flows in the Hilbert
space geometry enjoy a much simpler structure and stronger characterization results. We show below
that the dual functional optimization problems can be characterized by a simpler gradient flow in the
reproducing kernel Hilbert space, where the regular convexity notion (13) is sufficient.

3 RKHS Gradient Flow

Our starting point is to model the infinite-dimensional continuous-time optimization dynamics of the
functional optimization problem (2) using the RKHS gradient flows.

∂tf + E ′
f (f) = 0, f(0, x) = f 0(x) ∈ H. (14)

In principle, other function spaces in the literature can also be considered in practice, such as the
random Fourier features functions, single hidden-layer neural networks [6], and ICNNs. Although we
focus the theoretical analysis in the rest of the paper on the RKHS setting.

Equation (14) is a gradient flow equation in a reproducing kernel Hilbert space, which is much less
explored in the machine learning community than the WGF above. For example, in [4], the squared
RKHS norm was used as the driving energy functional for the Wasserstein gradient flow, rather than
the dissipation geometry for the flow as in our formulation. A few other works such as [12, 9, 16, 34, 27]
studied the kernelized Wasserstein gradient flow in the context of Stein geometry. Those particular
cases do not exploit the simplicity of gradient flow structure in the Hilbert space. Below, we derive
standard results for RKHSGF in the context of this paper for completeness. For readers unfamiliar
with PDE gradient flows in the Hilbert space, we refer to [2] for complete treatment and [46, 36] for
accessible introductions.

We first establish the main results for RKHSGF, namely, existence, uniqueness, and a powerful result
known as the evolutionary variational inequalities (EVI)λ.

Lemma 3.1 (Characterizations of RKHS gradient flow). Suppose the energy functional E is proper,
upper semicontinuous, λ-convex for some λ ∈ R (i.e., either convex or concave), and has compact
sublevel sets. Then for any initial condition in the RKHS f(0, x) ∈ H, there exists a unique solution at
time t, f(t) ∈ H.

Furthermore, the gradient flow solution f(t, x) satisfies (EVI)λ, for t ∈ [0, T ].

1

2
∥f(t)− ν∥2H ≤ 1

2
e−λ(t−s)∥f(s)− ν∥2H

+Mλ(t− s)(E(ν)− E(f(t))),

Mλ(τ) =

∫ τ

0

e−λ(τ−s)ds, ∀ν ∈ dom(F) ⊂ H.
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Using (EVI)λ, we can effortlessly extract convergence results. Suppose a minimizer of the energy exists
f ∗ ∈ inff∈H E(f), we set ν = f ∗, s = 0 in (EVI)λ

∥f(t)− f ∗∥2H ≤ e−λt∥f(0)− f ∗∥2H

+ 2Mλ(t− s)

(
inf
f∈H

E(f)− E(f(t))
)
≤ e−λt∥f(0)− f ∗∥2H, (15)

yielding an exponential convergence in time if the energy is convex (in the usual sense) w.r.t. the
f variable, i.e., λ > 0. Note that the convexity condition can be further weakened using functional
inequalities such as the logarithmic Sobolev inequality.

One important distinction between the functional optimization dynamics in RKHSGF and the measure
optimization in MNE optimization dynamics is that we do not need advanced structures such as
generalized geodesic convexity from the WGF setting — linearity or regular convexity is sufficient for
RKHSGF. This can be seen in the following example.

Example 3.1. [Difference in convexity] In a 2-Wasserstein space (M,W2), linear energy functional
E0(µ) =

∫
V0dµ for µ ∈ (M,W2), is non-convex geodesically if and only if the function V0(x) is

non-convex [2].

On the other hand, in an RKHS H, linear energy functional E1(f) = ⟨V1, f⟩H for f ∈ H is always
convex, regardless of the non-convexity of V1.

Hence, while the MNE problem "lifts"the non-convex optimization problems to the measure spaces, the
resulting objective functions as in WGF are not geodesically convex. Hence, the resulting WGF does
not necessarily converge globally even in the linear case above. In other words, there is still no free
lunch despite the lifting to the linear structure. In contrast, the RKHSGF in our formulation converges
under the usual convexity in the Hilbert space. This distinction of convexity has also been exploited in
the context of distributionally robust optimization with nonlinear or nonconvex (in the uncertain variable)
DRO objective functions using kernel methods [54]. The same does not hold true for the Wasserstein
DRO, which requires Lagrangian relaxation under nonconvex objectives [48].

The standard proof of Lemma 3.1 is via time-discretization using the following minimizing movement
scheme (MMS), also known as the time-incremental minimization scheme

f̂k+1 ∈ arg inf
f∈H

{
E(f) + 1

2τ
∥f − f̂k∥2H

}
, (16)

f̂ 0(x) = f(0, x) ∈ H, (17)

where τ > 0 is the step size for time-discretization. Defining the piecewise constant function f̄τ (t, x) :=
f̂k(x) for t ∈ [kτ, kτ + τ ], standard PDE proofs (see, e.g., [2]) guarantee that f̄τ converges to the
continuous-time RKHSGF solution, i.e., f̄τ → f(t) as τ → 0.

Therefore, a natural bi-product of the existence results for RKHSGF is the MMS step (16). This is a
fully-implicit Euler discretization of the RKHSGF, which is difficult to implement in practice. In the next
section, we will use the explicit step, coupled with measure-update step, to derive the primal-dual kernel
mirror prox algorithm, which is the discrete-time counterpart to the IWKGF (19)-(14).

Example: Interacting Wasserstein-Kernel Gradient Flow Previously, the authors of [15] proposed
the Interacting Wasserstein Gradient Flow as the infinite-dimensional continuous-time optimization
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dynamics for solving the MNE problem (1). We now propose a new coupled gradient system which
alternatives between a WGF and an RKHS gradient flow (RKHSGF). We term the mean-field dynamics
Interacting Wasserstein-Kernel Gradient Flow (IWKGF). Our perspective is to choose the (dual)
functional space in MFNE (3) as a reproducing kernel Hilbert space (RKHS) [53, 49, 7, 47]. That is to
say, let F = H in MFNE (3), we solve a specific variation of MFNE, which is the Mixed Kernel Nash
Equilibrium (MKNE)

inf
f∈H

sup
µ∈M

F (µ, f). (18)

The gradient flow equations govern the IWKGF system are

∂tµ−∇ · (µ · F ′
µ(µ, f)) = 0, µ(0, x) = µ0(x) ∈ M, (19)

∂tf + F ′
f (µ, f) = 0, f(0, x) = f 0(x) ∈ H. (20)

where H is an RKHS. The derivatives F ′
µ, F

′
f are taken in the sense of the Fréchet differential. We will

calculate the concrete forms in the next sections.

When viewed standalone, The properties of the RKHS gradient flow (20) has already been discussed
above. The Fokker-Planck equation (19) can be viewed either as a Wasserstein gradient flow of the
energy functional E0(µ) := F (µ, f) from the PDE perspective, or as a Langevin SDE, and is already
well understood in the machine learning community. We refer to [46, 2] for its properties and recent
works such as [38, 11, 10] for recent machine learning applications.

4 A Primal-Dual Kernel Mirror Prox Algorithm

To construct our mirror prox algorithm, we consider generic variable x ∈ Rp with domain X and make
some mild regularity assumptions. Namely, we restrict M to the set of probability measures on X
that admit densities w.r.t. the Lebesgue measure and have a density that is continuous and positive
almost everywhere on X . We also assume that there is a Hilbert space H and a convex and closed
set H ∈ H. For the sake of generality, we consider a slight variation of MKNE (18) as the following
general infinite-dimensional saddle-point problem on the spaces of measures and functions

inf
f∈H⊆H

sup
µ∈M

F (f, µ). (21)

For shortness, we denote the set of all variables by u = (f, µ). We consider here the setting of two
variables only for simplicity. An extension for a more general problem formulation covering the DRO
problem (10) is easy to derive. Moreover, in the next section, we consider DRO problem (10) as a
particular case study and provide technical details to check that the main assumptions of this section
hold for that problem. Our first main assumption in this section is as follows.

Assumption 4.1. The functional F (f, µ) is convex in f for fixed µ and concave in µ for fixed f .

4.1 Preliminaries

To construct the mirror prox algorithm for problem (21) we need, first, to introduce proximal setup, which
consists of norms, their dual, and Bregman divergences on each space of the variables.
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Kernel mirror prox and RKHS gradient flow 9

For the space of the variable f , we use the self-dual norm of the Hilbert space ∥ · ∥H, distance
generating function df (f) = 1

2
∥f∥2H, which gives Bregman divergence BH(f, f̆) = 1

2
∥f − f̆∥2H.

This leads to the mirror step, which is an explicit version of the MMS step (16),

f+ = Mirrf,Hη (f, ξf ) = argmin
f̃∈H

{⟨f̃ , ηξf⟩+
1

2
∥f̃ − f∥2H}. (22)

For the space of the variable µ, we follow [25] and, first, introduce the Total Variation norm for the
elements of M∥µ∥TV = sup∥ξ∥L∞≤1

∫
ξdµ = sup∥ξ∥L∞≤1⟨ξ, µ⟩, where ∥ξ∥L∞ is the L∞-norm of

functions. To define the mirror step, we use (negative) Shannon entropy and its Fenchel dual defined
respectively as

Φ(µ) =

∫
dµ ln

dµ

dx
, Φ∗(ξ) = ln

∫
eξdx (23)

defined for ξ from the space F of all bounded integrable functions on X . The corresponding Bregman
divergence is the relative entropy given by

DΦ(µ, µ̆) =

∫
dµ ln

dµ

dµ̆
. (24)

This leads to the mirror step [25] [Theorem 1]

µ+ = Mirrµη(µ, ξµ) = dΦ∗(dΦ(µ) − ηξµ) ≡ dµ+ =
e−ηξµdµ∫
e−ηξµdµ

. (25)

Our second main assumption is as follows.

Assumption 4.2. The functional F (f, µ) is Fréchet differentiable w.r.t. each variable and the derivatives
are Lipschitz continuous in the following sense

∥F ′
f (u)− F ′

f (ũ)∥H ≤ Lff∥f − f̃∥H + Lfµ∥µ− µ̃∥TV , (26)

∥F ′
µ(u)− F ′

µ(ũ)∥L∞ ≤ Lµf∥f − f̃∥H + Lµµ∥µ− µ̃∥TV . (27)

We also denote
L = max

κ1,κ2∈{f,µ}
{Lκ1κ2}. (28)

4.2 Kernel Mirror Prox Algorithm and Its Analysis

The updates of the ideal general infinite-dimensional mirror prox algorithm for problem (21) are given in
Algorithm 1. For the analysis of the mirror prox algorithm we need the following auxuliary results. The
first one is used for the mirror steps applied to the variable f .

Lemma 4.3. Let H be (possibly finite-dimensoinal) Hilbert space and let H ⊂ H be convex and
closed. Let h̃ ∈ H and ξ, ξ̃ ∈ H∗ = H, and

h = argmin
ĥ∈H

{
⟨ĥ, ηξ⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ), (29)

h̃+ = argmin
ĥ∈H

{
⟨ĥ, ηξ̃⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ̃). (30)

Then, for any ĥ ∈ H

⟨h − ĥ, ηξ̃⟩ ≤ 1

2
∥ĥ − h̃∥2H − 1

2
∥ĥ − h̃+∥2H +

η2

2
∥ξ̃ − ξ∥2H − 1

2
∥h − h̃∥2H.
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Algorithm 1 Ideal General Mirror-Prox

Require: Initial guess (f̃0, µ̃0), step-sizes ηf , ηµ > 0.
1: for k = 0, 1, . . . , N − 1 do
2: Compute

fk = Mirrf,Hηf (F ′
f (ũk)),

µk = Mirrµηµ(µk,−F
′
µ(ũk)).

3: Compute

f̃k+1 = Mirrf,Hηf (F ′
f (uk)),

µ̃k+1 = Mirrµηµ(µk,−F
′
µ(uk)).

4: end for
5: Compute ūN = 1

N

∑N−1
k=0 uk.

The second result characterizes the mirror step with respect to the measure µ.

Lemma 4.4 ([25] [Lemma 5]). Let µ̃ ∈ M and ξ, ξ̃ ∈ F , and

µ = Mirrµη(µ̃, ξ), µ̃+ = Mirrµη(µ̃, ξ̃). (31)

Then, for any µ̂ ∈ M

⟨µ − µ̂, ηξ̃⟩ ≤ DΦ(µ̂, µ̃) − DΦ(µ̂, µ̃+) +
η2

8
∥ξ̃ − ξ∥2L∞ − 2∥µ − µ̃∥2TV . (32)

The following result gives the convergence rate of Algorithm 1.

Theorem 4.5. Let Assumptions 4.1, 4.2 hold. Let also the stepsizes in Algorithm 1 satisfy ηf = ηµ =
1

16L
, where L is defined in (28). Then, for any compact set U = Uf × Uµ ⊆ H ×M, the sequence

(f̄N , µ̄N) generated by Allgorithm 1 satisfies

max
µ∈Uµ

F (f̄N , µ) − min
f∈Uf

F (f, µ̄N) ≤ 8L

N
max
u∈U

(
∥f − f̃0∥2H + 2DΦ(µ, µ̃0)

)
.

4.3 Analysis of Stochastic Kernel Mirror Prox

To account for potential inexactness in the first-order information, we assume that instead of exact
derivatives, the algorithm uses their inexact counterparts F̃ ′

f (u), F̃
′
µ(u) that may be random and are

assumed to satisfy the following assumption.

Assumption 4.6.

F ′
f (u) = EF̃ ′

f (u), F ′
µ(u) = EF̃ ′

µ(u), (33)

E∥F ′
f (u)− F̃ ′

f (u)∥2H ≤ σ2
f , E∥F ′

µ(u)− F̃ ′
µ(u)∥2L∞ ≤ σ2

µ. (34)
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Theorem 4.7. Let Assumptions 4.1–4.6 hold. Let also in Algorithm 1 the stochastic derivatives be used
instead of the deterministic and the stepsizes satisfy ηf = ηµ = 1

16L
, where L is defined in (28). Then,

for any compact set U = H × Uµ ⊆ H ×M, the sequence (f̄N , µ̄N) generated by Algorithm 1
satisfies

E
{
max
µ∈Uµ

F (f̄N , µ)− min
f∈Uf

F (f, µ̄N)

}
≤ 8L

N
max
u∈U

(
∥f − f̃0∥2H + 2DΦ(µ, µ̃0)

)
+

3(σ2
f + σ2

µ)

16L
.

Let us denote σ2 = σ2
f + σ2

µ. As we see, Theorem 4.7 guarantees the same convergence rate as in
the exact case, but up to some vicinity which is governed by the level of noise. In most cases, the σ2/L
term can be made of the same order 1/N by using the mini-batching technique. Indeed, a mini-batch
of size N allows us to reduce the variance from σ2 to σ2/N , see, e.g. [19]. Yet, we note that in this
case, N iterations will require the number of samples O(N2).

An alternative would be to use the information about the diameter of the set U . Indeed, assume that

max
u∈U

(
∥f − f̃0∥2H + 2DΦ(µ, µ̃0)

)
≤ Ω2

U .

Fixing the number of steps N and choosing ηf = ηµ = min
{

1
16L

, ΩUσ√
6N

}
, we obtain the following

result

E
{
max
µ∈Uµ

F (f̄N , µ)− min
f∈Uf

F (f, µ̄N)

}
≤ max

{
8LΩ2

U

N
,

√
3σ2Ω2

U

2N

}
. (35)

5 Case Study: Distributionally Robust Optimization

In this subsection we particularize the elements of Algorithm 1 for the specific DRO problem (8), (10).
In contrast with the large number of reformulation techniques using the dual formulation, we propose
the first principled primal-dual convergence analysis for DRO using our MFNE and MKNE framework.

Compared to problem (21) it has two additional variables θ ∈ Rd and h ∈ H ⊂ H. For these
variables, the proximal setup is introduced in the same way as for the variable f . We choose H to be a
reproducing kernel Hilbert space with kernel k.

Our main assumptions for problem (10) are

1 l is convex w.r.t. θ for all x.
2 L0 = supx,θ ∥∇θl(θ;x)∥2 < +∞.
3 ∇θl(θ;x) is L(x)-Lipschitz w.r.t. θ and L1 = supµ Ex∼µL(x)2 < +∞.
4 C = supx k(x, x) < +∞.

We note that the convexity assumption w.r.t. θ is used to obtain global convergence guarantee w.r.t. θ.
When it does not hold in practice, we can still execute our primal-dual kernel mirror prox for DRO. This
is not possible with other existing Wasserstein or kernel DRO algorithms. Clearly, then the objective F
is convex in (θ, f) for fixed (µ, h) and concave in (µ, h) for fixed (θ, f). The Frechet derivatives of F
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with respect to the variables (θ, f, µ, h) are given by

F ′
θ = Ex∼µ∇θl(θ;x) (36)

F ′
f =

∫
k(x, x′)dµ̂(x′) + ϵh(x)−

∫
k(x, x′)dµ(x′) (37)

= Ex∼µ̂k(·, x) + ϵh(·)− Ex∼µk(·, x) (38)

−F ′
µ = f(·)− l(θ; ·) (39)

−F ′
h = −ϵf(·). (40)

Since the derivative w.r.t. θ and f have the form of expectation, we can use the following stochastic
counterparts. We can take a sample of Xi’s from µ to construct an unbiased stochastic derivative

F̃ ′
θ =

1

Nθ

Nθ∑
i=1

∇θl(θ;Xi). (41)

Similarly, we can take a sample of Xi’s from µ and X̂i from µ̂ to construct an unbiased stochastic
derivative

F̃ ′
f = ϵh(·) + 1

Nf

Nf∑
i=1

(k(·, X̂i) + k(·, Xi)). (42)

We summarize the result of applying our theoretical analysis to the primal-dual DRO.

Corollary 5.1. Assumptions 4.2, 4.6 hold for the smoothed DRO problem (10). Consequently, the
results of Theorems 4.5 and 4.7 hold for the DRO problem (10).

Therefore, we obtain O(1/N) convergence rate in the deterministic case and O(1/
√
N) convergence

rate in the stochastic case for solving DRO with kernel mirror prox.

6 Discussion

In conclusion, this paper studies the functional optimization dynamics using the continuous-time RKHS
gradient flow. As a specific application, we introduce the Mixed Functional Nash Equilibrium framework
that governs several learning algorithms. We model the optimization dynamics as the Interacting
Wasserstein-Kernel Gradient Flow and analyze its corresponding discrete-time primal-dual kernel mirror
prox algorithm. We provide the first unified convergence analysis for the MKNE problem class and the
primal-dual reformulation of DRO with probability-metric constraints.

As this paper focuses on theoretical analysis, code implementation is left for future work. We also did
not include the now-standard mean-field analysis using the Wasserstein gradient flow and Langevin
SDE, for which we refer to recent works such as [15, 10, 38].
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A Further Technical Background

A.1 Proof of Lemma 2.1

We now prove Lemma 2.1, of which a more detailed version is stated below.

Lemma A.1 (Primal-dual reformulation of Wasserstein and kernel DRO). Suppose the probability
metric is chosen to the MMD, then the DRO problem (8) admits the following equivalent primla-dual
reformulations

inf
θ∈Rd,f∈H,τ>0

sup
µ∈M

Eµ(l(θ;x)− f(x)) +
1

N

N∑
i=1

f(xi) +
τ

2
∥f∥2H +

ϵ2

2τ
, (43)

inf
θ∈Rd,f∈H

sup
µ∈M

Eµ(l(θ;x)− f(x)) +
1

N

N∑
i=1

f(xi) + ϵ∥f∥H. (44)

Furthermore, it is equivalent to the smoothed optimization problem

inf
θ∈Rd,f∈H

sup
µ∈M,h∈H:∥h∥H≤1

{
1

N

N∑
i=1

f(xi) + ϵ⟨h, f⟩+ Eµ(l(θ;x)− f(x))

}
. (45)

Suppose the probability metric is chosen to the optimal transport metric, e.g., p-Wasserstein distance.
Then, the DRO problem (8) admits the following equivalent reformulations

inf
γ>0,θ∈Rd,f∈Ψγ·c

sup
µ∈M

Eµ(l(θ;x)− f(x))− 1

N

N∑
i=1

fγ·c(xi) + γ · ϵ, (46)

inf
γ>0,θ∈Rd,f∈Ψc

sup
µ∈M

Eµ(l(θ;x)− γ · f(x))− 1

N

N∑
i=1

γ · f c(xi) + γ · ϵ. (47)

Ψc denotes the set of c-concave [45] functions and f c(y) := infx c(x, y) − f(x) denotes the
c-transform.

Proof. For this proof, it suffices to consider the case where θ is fixed, since only the inner maximization
is reformulated. We first prove the result for the MMD setting.

MMD setting. We consider the kernel mean embedding map as a linear constraint∫
ϕ(x)dµ = h, (48)

where h is a function in H. By straightforward Lagrange duality and associating the linear constraint
with the multiplier in the dual space, f ∈ H,

inf
τ>0,f∈H

sup
µ

{
⟨l, µ⟩ − 1

2τ
∥h− ĥ∥2H +

ϵ2

2τ
− ⟨f, h⟩H +

∫
⟨f, ϕ(x)⟩Hdµ

}
(49)

where ĥ is the kernel mean embedding of the empirical measure P̂N = 1
N

∑N
i=1 δxi . Carrying out the

quadratic optimization problem in closed form w.r.t. h and rearranging the terms, we obtain the result
in (43). An optimal choice of the dual variable τ yields the equivalent reformulation (44). Smoothing via
the definition of the dual norm in the Hilbert spaces, we obtain (45).
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Wasserstein setting. The reformulation is a direct consequence of combining the dual Kantorovich
representation of OT (4) and Lagrange duality.

A.2 Lemma (3.1)

Since an RKHS is a Hilbert space, Lemma (3.1) is simply the (EVI)λ in a Hilbert space, whose proof is
standard [2, 45, 36].

A.3 Technial details on geodesic convexity in the Wasserstein space

Recent machine learning literature has explored Wasserstein gradient flow (WGF). The 2-Wasserstein
space (M,W2) is geodesically convex, as defined below.

In a metric space (M,D) a curve γ : [0, 1] →M is a (constant speed) geodesic if

∀r, s ∈ [0, 1] : D(γ(r), γ(s)) = |s− r|D(γ(0), γ(1)).

We refer to that as the geodesic γ connects the points γ(0) and γ(1) and write Geod (γ(0), γ(1)) for
the set of all such geodesics.

Definition A.2 (Geodesic metric spaces). The metric space (M,D) is a geodesic space, if for all
u0, u1 ∈ M there exists a geodesic connecting u0 and u1.

Definition A.3 (Geodesic convexity). A functional F : M → R∞ is geodesically λ-convex if ∀u0, u1 ∈
M∃γ ∈ Geod (u0, u1) ,

E(γ(s)) ≤ (1− s)E(γ(0)) + sE(γ(1))− λ

2
s(1− s)D(γ(0), γ(1))2, ∀s ∈ [0, 1].

As we have seen in the main text, e.g., discussions around Example 3.1, this complication of convexity
structure makes optimization in the Wasserstein more difficult than general Hilbert spaces, which
motivates our approach to work in the RKHS.

A.4 Practical Consideration about Infinite-dimensional Mirror Steps

Algorithm 1 requires two infinite-dimensional mirror steps in the functional variables µ, f . The f -update,
optimization w.r.t. RKHS functions, is standard in the machine learning literature, e.g., [13, 20, 50, 54].
We now discuss the µ-update. In addition to existing works using Bregman-mirror steps, such as [25],
which employ Langevin Monte-Carlo, we show a fully variational approach using Wasserstein gradient
flows. While the PDE and SDE can describe the same drift-diffusion process, the resulting optimization
algorithms are different. Notably, it is possible to perform deterministic optimization steps, purely relying
on the Wasserstein geomtry and bypassing the discretization of Langevin SDE. The goal of the mirror
step (25) is to solve the following optimization problem

µk+1 ∈ arg inf
µ∈M

∫
F ′
µ(µ

k, fk)dµ+
1

2τ
D(µ, µk). (50)

The optimization objective is the energy of the Fokker-Planck equation, of which we can take the
time-discretization in the Wasserstein space. This results in the standard JKO steps for Wasserstein
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gradient flow [41, 26, 42]. Let ξ0 = µk, for the sub-step count l = 0, ..., T , step size s > 0, we solve
the variational problem

ξl+1 ∈ arg inf
ξ∈M

∫
F ′
µ(µ

k, fk)dξ +
1

2τ
D(ξ, µk) +

1

2s
W 2

2 (ξ, ξ
l). (51)

Each step can be realized, e.g., via Stein variational gradient descent [33].

B Theoretical Analysis of Primal-Dual Kernel Mirror Descent in
Section 4

For the sake of generality, in particular, to cover the DRO problem (10), we consider a more general
saddle-point problem. Theorems 4.5 and 4.7 are obtained as corollaries of the results obtained in
this section. To make this section self-contained and for the reader’s convenience we repeat some
definitions and results given in the main text.

We consider generic variable x ∈ Rp with domain X . We denote by M the set of all probability
measures on X that admit densities w.r.t. the Lebesgue measure and the density is continuous
and positive almost everywhere on X . We also assume that there are two Hilbert spaces Hf ,Hh

and convex set Θ ⊆ Rd and convex compact H ∈ Hh. We consider the following general infinite-
dimensional saddle-point problem

inf
θ∈Θ⊆Rd,f(x)∈Hf

sup
µ∈M,h(x)∈H⊆Hh

F (θ, f, µ, h). (52)

For shortness, we denote the set of all variables by u = (θ, f, µ, h).

Our first main assumption is as follows.

Assumption B.1. The functional F (θ, f, µ, h) is convex in (θ, f) for fixed (µ, h) and concave in
(µ, h) for fixed (θ, f).

B.1 Preliminaries

To construct the mirror prox algorithm for problem (52) we need to first introduce proximal setup, which
consists of norms, their dual, and Bregman divergences on each space of the variables.

For the space of the variable θ, we introduce the standard proximal setup with the self-dual Euclidean
norm ∥·∥2, distance-generating function dθ(θ) =

1
2
∥θ∥22, which gives Bregman divergenceBθ(θ, θ̆) =

1
2
∥θ − θ̆∥22. This leads to the mirror step defined as

θ+ = Mirrθ,Θη (θ, ξθ) = argmin
θ̃∈Θ

{⟨θ̃, ηξθ⟩+
1

2
∥θ̃ − θ∥22}. (53)

We note that our choice of the Euclidean proximal setup is made for simplicity and that other standard
proximal setups are possible [37].

For the space of the variable f , we use the self-dual norm of the Hilbert space ∥ · ∥Hf
, distance

generating function df (f) =
1
2
∥f∥2Hf

, which gives Bregman divergence BHf
(f, f̆) = 1

2
∥f − f̆∥2Hf

.
This leads to the mirror step

f+ = Mirr
f,Hf
η (f, ξf ) = argmin

f̃
{⟨f̃ , ηξf⟩+

1

2
∥f̃ − f∥2Hf

} = f − ηξf . (54)
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For the space of the variable µ, we follow [25] and, first, introduce the Total Variation norm for the
elements of M

∥µ∥TV = sup
∥ξ∥L∞≤1

∫
ξdµ = sup

∥ξ∥L∞≤1

⟨ξ, µ⟩,

where ∥ξ∥L∞ is the L∞-norm of functions. To define the mirror step, we use (negative) Shannon
entropy

Φ(µ) =

∫
dµ ln

dµ

dx
(55)

and its Fenchel dual

Φ∗(ξ) = ln

∫
eξdx (56)

defined for ξ from the space F of all bounded integrable functions on X . The corresponding Bregman
divergence is the relative entropy given by

DΦ(µ, µ̆) =

∫
dµ ln

dµ

dµ̆
. (57)

This leads to the mirror step [25] [Theorem 1]

µ+ = Mirrµη(µ, ξµ) = dΦ∗(dΦ(µ)− ηξµ) ≡ dµ+ =
e−ηξµdµ∫
e−ηξµdµ

. (58)

Finally, for the space of the variable h, we do the same as for the variable f . Namely, we use the distance
generating function dh(h) =

1
2
∥h∥2Hh

, which gives Bregman divergence BHh
(h, h̆) = 1

2
∥h− h̆∥2Hh

.
This leads to the mirror step

h+ = Mirrh,Hη (h, ξh) = argmin
h̃∈H

{⟨h̃, ηξh⟩+
1

2
∥h̃− h∥2Hh

}. (59)

Our second main assumption is as follows

Assumption B.2. The functional F (θ, f, µ, h) is Fréchet differentiable w.r.t. each variable and the
derivatives are Lipschitz continuous in the following sense

∥F ′
θ(u)− F ′

θ(ũ)∥2 ≤ Lθθ∥θ − θ̃∥2 + Lθf∥f − f̃∥Hf
+ Lθµ∥µ− µ̃∥TV + Lθh∥h− h̃∥Hh

, (60)

∥F ′
f (u)− F ′

f (ũ)∥Hf
≤ Lfθ∥θ − θ̃∥2 + Lff∥f − f̃∥Hf

+ Lfµ∥µ− µ̃∥TV + Lfh∥h− h̃∥Hh
,

(61)

∥F ′
µ(u)− F ′

µ(ũ)∥L∞ ≤ Lµθ∥θ − θ̃∥2 + Lµf∥f − f̃∥Hf
+ Lµµ∥µ− µ̃∥TV + Lµh∥h− h̃∥Hh

,

(62)

∥F ′
h(u)− F ′

h(ũ)∥Hh
≤ Lhθ∥θ − θ̃∥2 + Lhf∥f − f̃∥Hf

+ Lhµ∥µ− µ̃∥TV + Lhh∥h− h̃∥Hh
.

(63)

We also denote

L = max
κ1,κ2∈{θ,f,µ,h}

{Lκ1κ2}. (64)
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Algorithm 2 Ideal General Mirror-Prox

Require: Initial guess (θ̃0, f̃0, µ̃0, h̃0), step-sizes ηθ, ηf , ηµ, ηh > 0.
1: for k = 0, 1, . . . , N − 1 do
2: Compute

θk = Mirrθ,Θηθ (θ̃k, F
′
θ(ũk)), fk = Mirr

f,Hf
ηf (F ′

f (ũk)),

µk = Mirrµηµ(µk,−F
′
µ(ũk)), hk = Mirrh,Hηh (hk,−F ′

h(ũk)).

3: Compute

θ̃k+1 = Mirrθ,Θηθ (θ̃k, F
′
θ(uk)), f̃k+1 = Mirr

f,Hf
ηf (F ′

f (uk)),

µ̃k+1 = Mirrµηµ(µk,−F
′
µ(uk)), h̃k+1 = Mirrh,Hηh (hk,−F ′

h(uk)).

4: end for
5: Compute ūN = 1

N

∑N−1
k=0 uk.

B.2 Mirror Prox Algorithm and Its Analysis

The updates of the general ideal infinite-dimensional Mirror Prox algorithm for problem (52) are given in
Algorithm 2.

For the analysis of the mirror prox algorithm, we need the following auxiliary results. The first one is
used for the mirror steps applied to the variables θ, f, h.

Lemma B.3. Let H be (possibly finite-dimensoinal) Hilbert space and let H ⊂ H be convex and
closed. Let h̃ ∈ H and ξ, ξ̃ ∈ H∗ = H, and

h = argmin
ĥ∈H

{
⟨ĥ, ηξ⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ), (65)

h̃+ = argmin
ĥ∈H

{
⟨ĥ, ηξ̃⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ̃). (66)

Then, for any ĥ ∈ H

⟨h− ĥ, ηξ̃⟩ ≤ 1

2
∥ĥ− h̃∥2H − 1

2
∥ĥ− h̃+∥2H +

η2

2
∥ξ̃ − ξ∥2H − 1

2
∥h− h̃∥2H. (67)

Proof. By the optimality condition in (66), we have for all ĥ ∈ H

⟨ηξ̃ − (h̃− h̃+), ĥ− h̃+⟩ ≥ 0. (68)

Rearranging, we obtain

⟨h̃+ − ĥ, ηξ̃⟩ ≤ ⟨h̃+ − ĥ, h̃− h̃+⟩ = −1

2
∥h̃+ − h̃∥2H − 1

2
∥ĥ− h̃+∥2H +

1

2
∥ĥ− h̃∥2H. (69)

In the same way, by the optimality condition in (65), we have for all ĥ ∈ H , and, in particular for h̃+

⟨ηξ − (h̃− h), h̃+ − h⟩ ≥ 0. (70)
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Rearranging, we obtain

⟨h− h̃+, ηξ⟩ ≤ ⟨h− h̃+, h̃− h⟩ = −1

2
∥h− h̃∥2H − 1

2
∥h̃+ − h∥2H +

1

2
∥h̃+ − h̃∥2H. (71)

Combining the last inequality with (69) and using the Fenchel inequality, we obtain

⟨h− ĥ, ηξ̃⟩ =⟨h̃+ − ĥ, ηξ̃⟩+ ⟨h− h̃+, ηξ⟩+ ⟨h− h̃+, η(ξ̃ − ξ)⟩ (72)

− 1

2
∥h̃+ − h̃∥2H − 1

2
∥ĥ− h̃+∥2H +

1

2
∥ĥ− h̃∥2H (73)

− 1

2
∥h− h̃∥2H − 1

2
∥h̃+ − h∥2H +

1

2
∥h̃+ − h̃∥2H (74)

+
η2

2
∥ξ̃ − ξ∥2H − 1

2
∥h− h̃∥2H, (75)

which gives the result of the Lemma.

The second result characterizes the mirror step with respect to the measure µ.

Lemma B.4 ([25] [Lemma 5]). Let µ̃ ∈ M and ξ, ξ̃ ∈ F , and

µ = Mirrµη(µ̃, ξ), (76)

µ̃+ = Mirrµη(µ̃, ξ̃). (77)

Then, for any µ̂ ∈ M

⟨µ− µ̂, ηξ̃⟩ ≤ DΦ(µ̂, µ̃)−DΦ(µ̂, µ̃+) +
η2

8
∥ξ̃ − ξ∥2L∞ − 2∥µ− µ̃∥2TV . (78)

The following result gives the convergence rate of Algorithm 2.

Theorem B.5. Let Assumptions B.1, B.2 hold. Let also the stepsizes in Algorithm 2 satisfy ηθ = ηf =
ηµ = ηh =

1
16L

, where L is defined in (64). Then, for any compact set U = Uθ × Uf × Uµ × Uh ⊆
Θ×Hf ×M×H , the sequence (θ̄N , f̄N , µ̄N , h̄N) generated by Allgorithm 2 satisfies 1

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N)

≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
.

Proof. Applying Lemma B.3 to the step in θ, we obtain for any θ ∈ Θ and for k = 0, ..., N − 1

⟨θk − θ, ηθF
′
θ(uk)⟩ ≤

1

2
∥θ − θ̃k∥22 −

1

2
∥θ − θ̃k+1∥22 −

1

2
∥θk − θ̃k∥22 +

η2θ
2
∥F ′

θ(uk)− F ′
θ(ũk)∥22.

(79)

Summing these inequalities for k = 0, ..., N − 1, we obtain

N−1∑
k=0

⟨θk − θ, F ′
θ(uk)⟩ ≤

1

2ηθ
∥θ − θ̃0∥22 +

Rθ

2ηθ
,

Rθ =
N−1∑
k=0

(
−∥θk − θ̃k∥22 + η2θ∥F ′

θ(uk)− F ′
θ(ũk)∥22

)
.

1There was an obvious typo in the primal-dual gap expression in the original theorem statement in the main text. We
have fixed this in the following result.
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In the same way, we obtain for all f ∈ Hf

N−1∑
k=0

⟨fk − f, F ′
f (uk)⟩ ≤

1

2ηf
∥f − f̃0∥2Hf

+
Rf

2ηf
,

Rf =
N−1∑
k=0

(
−∥fk − f̃k∥2Hf

+ η2f∥F ′
f (uk)− F ′

f (ũk)∥2Hf

)
and for all h ∈ H

N−1∑
k=0

⟨hk − h,−F ′
h(uk)⟩ ≤

1

2ηh
∥h− h̃0∥2Hh

+
Rh

2ηh
,

Rh =
N−1∑
k=0

(
−∥hk − h̃k∥2Hh

+ η2h∥F ′
h(uk)− F ′

h(ũk)∥2Hh

)
.

Finally, applying Lemma B.4 to the step in µ, we obtain for any µ ∈ M
N−1∑
k=0

⟨µk − µ,−F ′
µ(uk)⟩ ≤

1

ηµ
DΦ(µ, µ̃0) +

Rµ

2ηµ
,

Rµ =
N−1∑
k=0

(
−∥µk − µ̃k∥2TV + η2µ∥F ′

µ(uk)− F ′
µ(ũk)∥2L∞

)
.

By convexity of F in (θ, f) and concavity of F in (µ, h), we have, for all (θ, f) ∈ Θ×Hf

1

N

N−1∑
k=0

F (uk)− F (θ, f, µ̄N , h̄N) ≤
1

N

N−1∑
k=0

(F (uk)− F (θ, f, µk, hk))

≤ 1

N

N−1∑
k=0

(⟨θk − θ, F ′
θ(uk)⟩+ ⟨fk − f, F ′

f (uk)⟩)

≤ 1

2Nηθ
∥θ − θ̃0∥22 +

Rθ

2Nηθ
+

1

2Nηf
∥f − f̃0∥2Hf

+
Rf

2Nηf
.

In the same way, we obtain that, for all (µ, h) ∈ M×H

− 1

N

N−1∑
k=0

F (uk) + F (θ̄N , f̄N , µ, h) ≤
1

N

N−1∑
k=0

(−F (uk) + F (θk, fk, µ, h))

≤ 1

N

N−1∑
k=0

(⟨µk − µ,−F ′
µ(uk)⟩+ ⟨hk − h,−F ′

h(uk)⟩)

≤ 1

Nηµ
DΦ(µ, µ̃0) +

Rµ

2Nηµ
+

1

2Nηh
∥h− h̃0∥2Hh

+
Rh

2Nηh
.

Combining the last two bounds, we obtain that for all θ ∈ Θ, f ∈ Hf , µ ∈ M, h ∈ H it holds that

F (θ̄N , f̄N , µ, h)− F (θ, f, µ̄N , h̄N)

≤ 1

2Nηθ
∥θ − θ̃0∥22 +

1

2Nηf
∥f − f̃0∥2Hf

+
1

Nηµ
DΦ(µ, µ̃0) +

1

2Nηh
∥h− h̃0∥2Hh

+
1

2N

(
Rθ

ηθ
+
Rf

ηf
+
Rµ

ηµ
+
Rh

ηh

)
.
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Our next goal is to show that
Rθ

ηθ
+
Rf

ηf
+
Rµ

ηµ
+
Rh

ηh
≤ 0.

Using the Lipschitz condition in Assumption B.2, we obtain

Rθ =
N−1∑
k=0

(
−∥θk − θ̃k∥22 + η2θ∥F ′

θ(uk)− F ′
θ(ũk)∥22

)
≤

N−1∑
k=0

(
−∥θk − θ̃k∥22 + 4η2θ(L

2
θθ∥θk − θ̃k∥22 + L2

θf∥fk − f̃k∥2Hf
+ L2

θµ∥µk − µ̃k∥2TV + L2
θh∥hk − h̃k∥2Hh

)
)
.

Combining this with the similar estimates for Rf , Rµ, Rh and rearranging the terms, we obtain

Rθ

ηθ
+
Rf

ηf
+
Rµ

ηµ
+
Rh

ηh
≤

N−1∑
k=0

(
∥θk − θ̃k∥22(−1/ηθ + 4(L2

θθηθ + L2
fθηf + L2

µθηµ + L2
hθηh))

+ ∥fk − f̃k∥2Hf
(−1/ηf + 4(L2

θfηθ + L2
ffηf + L2

µfηµ + L2
hfηh))

+ ∥µk − µ̃k∥2TV (−1/ηµ + 4(L2
θµηθ + L2

fµηf + L2
µµηµ + L2

hµηh))

+ ∥hk − h̃k∥2Hh
(−1/ηh + 4(L2

θhηθ + L2
fhηf + L2

µhηµ + L2
hhηh))

)
≤ 0,

where we used that ηθ, ηf , ηµ, ηh ≤ 1
16L

for L defined in (64).

Thus, we finally obtain that for any compact U = Uθ × Uf × Uµ × Uh ⊂ Θ×Hf ×M×H

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N)

≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
.

B.3 Analysis in the stochastic case

To account for potential inexactness in the first-order information, we assume that instead of exact
derivatives, the algorithm uses their inexact counterparts F̃ ′

θ(u), F̃
′
f (u), F̃

′
µ(u), F̃

′
h(u), that may be

random and are assumed to satisfy the following assumption.

Assumption B.6.

F ′
θ(u) = EF̃ ′

θ(u), (80)

F ′
f (u) = EF̃ ′

f (u), (81)

F ′
µ(u) = EF̃ ′

µ(u), (82)

F ′
h(u) = EF̃ ′

h(u), (83)

E∥F ′
θ(u)− F̃ ′

θ(u)∥22 ≤ σ2
θ , (84)

E∥F ′
f (u)− F̃ ′

f (u)∥2Hf
≤ σ2

f , (85)

E∥F ′
µ(u)− F̃ ′

µ(u)∥2L∞ ≤ σ2
µ, (86)

E∥F ′
h(u)− F̃ ′

h(u)∥2Hh
≤ σ2

h. (87)
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Theorem B.7. Let Assumptions B.1–B.6 hold. Let also in Algorithm 2 the stochastic derivatives be
used instead of the deterministic and the stepsizes satisfy ηθ = ηf = ηµ = ηh = 1

16L
, where L is

defined in (64). Then, for any compact set U = Uθ × Uf × Uµ × Uh ⊆ Θ × Hf ×M× H , the
sequence (θ̄N , f̄N , µ̄N , h̄N) generated by Allgorithm 2 satisfies

E
{

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N)

}
≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
+

3

16L
(σ2

θ + σ2
f + σ2

µ + σ2
h).

Proof. We proceed as in the proof of Theorem B.5 changing in Algorithm 2 the exact first-order
information to its inexact counterpart. In this way, we obtain the following counterpart of (79)

⟨θk − θ, ηθF̃
′
θ(uk)⟩ ≤

1

2
∥θ − θ̃k∥22 −

1

2
∥θ − θ̃k+1∥22 −

1

2
∥θk − θ̃k∥22 +

η2θ
2
∥F̃ ′

θ(uk)− F̃ ′
θ(ũk)∥22.

(88)

Using the inequality

E∥F̃ ′
θ(uk)− F̃ ′

θ(ũk)∥22 ≤ 3E
(
∥F̃ ′

θ(uk)− F ′
θ(uk)∥22 + ∥F̃ ′

θ(ũk)− F ′
θ(ũk)∥22 + ∥F ′

θ(uk)− F ′
θ(ũk)∥22

)
(89)

Assumpt.B.6
≤ 6σ2

θ + 3E∥F ′
θ(uk)− F ′

θ(ũk)∥22 (90)

and taking the expectation in the previous inequality, we obtain the following counterpart of (79)

⟨θk − θ, ηθF
′
θ(uk)⟩ ≤

1

2
E∥θ − θ̃k∥22 −

1

2
E∥θ − θ̃k+1∥22 −

1

2
E∥θk − θ̃k∥22 (91)

+
3η2θ
2

E∥F ′
θ(uk)− F ′

θ(ũk)∥22 + 3η2θσ
2
θ . (92)

Repeating the same steps as in the proof of Theorem B.5, we obtain that for any compact U =
Uθ × Uf × Uµ × Uh ⊂ Θ×Hf ×M×H

E
{

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N)

}
≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
+

3

16L
(σ2

θ + σ2
f + σ2

µ + σ2
h).

(93)

Let us denote σ2 = σ2
θ + σ2

f + σ2
µ + σ2

h. As we see, Theorem B.7 guarantees the same convergence
rate as in the exact case, but up to some vicinity which is governed by the level of noise. In most
cases, the σ2/L term can be made of the same order 1/N by using mini-batching technique. Indeed,
a mini-batch of size N allows to change the variance from σ2 to σ2/N . Yet, we note that in this case,
N iterations will require the number of samples O(N2).

An alternative would be to use the information about the diameter of the set U . Indeed, assume that

max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
≤ Ω2

U .
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Then, we obtain the following counterpart of the r.h.s. of (93) substituting ηθ = ηf = ηµ = ηh = η

Ω2
U

2Nη
+ 3σ2η.

Fixing the number of steps N and choosing

ηθ = ηf = ηµ = ηh = η = min

{
1

16L
,
ΩUσ√
6N

}
,

we obtain the following result

E
{

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N)

}
≤ max

{
8LΩ2

U

N
,

√
3σ2Ω2

U

2N

}
. (94)

B.4 Case Study: Distributionally Robust Optimization

In this subsection we particularize the elements of Algorithm 2 for the specific DRO problem (10). We
choose Hf = Hh = H to be a reproducing kernel Hilbert space with kernel k.

Our main assumptions for this problem are

■ l is convex w.r.t. θ.

■ L0 = supx,θ ∥∇θl(θ;x)∥2 < +∞.

■ ∇θl(θ;x) is L(x)-Lipschitz w.r.t. θ and L1 = supµ Ex∼µL(x)2 < +∞.

■ C = supx k(x, x) < +∞.

Clearly, then the objective F is convex in (θ, f) for fixed (µ, h) and concave in (µ, h) for fixed (θ, f).

The Frechet derivatives of F with respect to the variables (θ, f, µ, h) are given by

F ′
θ = Ex∼µ∇θl(θ;x) (95)

F ′
f =

∫
k(x, x′)dµ̂(x′) + ϵh(x)−

∫
k(x, x′)dµ(x′) = Ex∼µ̂k(·, x) + ϵh(·)− Ex∼µk(·, x)

(96)

−F ′
µ = f(·)− l(θ; ·) (97)

−F ′
h = −ϵf(·). (98)

Since the derivative w.r.t. θ and f have the form of expectation, we can use the following stochastic
counterparts. We can take a sample of Xi’s from µ to construct an unbiased stochastic derivative

F̃ ′
θ =

1

Nθ

Nθ∑
i=1

∇θl(θ;Xi). (99)
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Similarly, we can take a sample of Xi’s from µ and X̂i from µ̂ to construct an unbiased stochastic
derivative

F̃ ′
f = ϵh(·) + 1

Nf

Nf∑
i=1

(k(·, X̂i) + k(·, Xi)). (100)

The Lipschitz constants of the derivatives are estimated in the following way. The derivative F ′
θ depends

only on µ and θ. Thus, Lθf = Lθh = 0. Further, we have

∥Ex∼µ∇θl(θ1;x)− Ex∼µ∇θl(θ2;x)∥2 ≤ Ex∼µL(x)∥θ1 − θ2∥2 (101)

and Lθθ = L1.

∥Ex∼µ1∇θl(θ;x)− Ex∼µ2∇θl(θ;x)∥2 ≤ L0∥µ1 − µ2∥TV (102)

and Lθµ = L0.

The derivative F ′
f depends only on µ and h. Thus, Lff = Lfθ = 0. Further, we have

∥Ex∼µ̂k(·, x) + ϵh1(·) + Ex∼µ1k(·, x)− (Ex∼µ̂k(·, x) + ϵh2(·) + Ex∼µ2k(·, x))∥H (103)

≤ ϵ∥h1 − h2∥H + ∥Ex∼µ1k(·, x)− Ex∼µ2k(·, x)∥H ≤ ϵ∥h1 − h2∥H +
√
C∥µ1 − µ2∥TV ,

(104)

i.e., Lfµ =
√
C,Lfh = ϵ. Here we used that

∥Ex∼µ1k(·, x)− Ex∼µ2k(·, x)∥H ≤
√
C∥µ1 − µ2∥TV .

The derivative F ′
µ depends only on f and θ. Thus, Lµµ = Lµh = 0. Further, we have

∥−f1(·) + l(θ1; ·)− (−f2(·) + l(θ2; ·))∥L∞ (105)

≤
√
C∥f1 − f2∥H + L0∥θ1 − θ2∥H, (106)

i.e., Lfµ =
√
C,Lfθ = L0. Here we used that

∥f2(·)− f1(·)∥L∞ = sup
x

|f2(x)− f1(x)| = sup
x
⟨f2 − f1, ϕ(x)⟩H

≤ ∥f2 − f1∥H · sup
x

∥ϕ(x)∥H ≤
√
C · ∥f2 − f1∥H. (107)

Finally, the derivative F ′
h depends only on f . Thus, Lhθ = Lhµ = Lhh = 0. Further, we have

∥−ϵf1(·)− (−ϵf2(·))∥H ≤ ϵ∥f1 − f2∥H. (108)

Thus, Lhf = ϵ.

As we see, or main assumptions in Theorem B.5 hold for the DRO problem (10). Moreover, stochastic
derivatives in (99) and (100) satisfy Assumption B.6. Indeed, we have

EX∼µ ∥Ex∼µ∇θl(θ;x)−∇θl(θ;X)∥22 ≤ EX∼µ ∥∇θl(θ;X)∥22 ≤ L2
0, (109)

EX̂∼µ̂,X∼µ

∥∥∥ϵh(·) + k(·, X̂) + k(·, X)− (Ex∼µ̂k(·, x) + ϵh(·)− Ex∼µk(·, x))
∥∥∥2
H

(110)

≤ 2EX∼µ ∥k(·, X)∥2H + 2EX̂∼µ̂

∥∥∥k(·, X̂)
∥∥∥2
H
≤ 4C. (111)

This allows us to apply also Theorem B.7 to the DRO problem (10). This proves Corollary 5.1.
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