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Trotter-type formula for operator semigroups on product spaces
Artur Stephan

Abstract

We consider a Trotter-type-product formula for approximating the solution of a linear abstract
Cauchy problem (given by a strongly continuous semigroup), where the underlying Banach space
is a product of two spaces. In contrast to the classical Trotter-product formula, the approximation
is given by freezing subsequently the components of each subspace. After deriving necessary
stability estimates for the approximation, which immediately provide convergence in the natural
strong topology, we investigate convergence in the operator norm. The main result shows that
an almost optimal convergence rate can be established if the dominant operator generates a
holomorphic semigroup and the off-diagonal coupling operators are bounded.

1 Introduction

The classical and rich theory of strongly continuous semigroups {T(t)} t≥0 provides a tool for solving
linear abstract Cauchy problems u̇(t) = −Cu(t) for t ≥ 0, u(0) = x in a Banach space X
[Paz83, Kat95, EnN00]: the linear operator −C : dom(C) ⊂ X → X is a generator of a strongly
continuous semigroup (denoted by e−tC) if and only if for every x ∈ dom(C) there exists a unique
solution u(·, x) ∈ dom(C) of the abstract Cauchy problem, which is given by e−tCx = u(t, x)
(we recall basics from semigroup theory in Section 2.1). Often the operator C is given by a sum
C = A+B. If−A is a generator, classical perturbation results (see e.g. [EnN00, Chapter III]) provide
information when −C is again a generator. Moreover, assuming that −A and −B are generators of
semigroups e−tA and e−tB, respectively, then the solution operator e−tC can be approximated by the
so-called Trotter-product formula

lim
n→∞

(
e−

t
n
Ae−

t
n
B

)n
→ e−tC,

provided a stability condition holds for the product (see e.g. [EnN00, Corollary III.5.8]). The conver-
gence is an immediate consequence of the more general Chernoff-product formula [Che74] and is
meant in the natural topology in the theory of semigroups, the strong topology. Apart from its theoret-
ical value, the Trotter-product formula is important in applications as it provides a way to approximate
the (in general) complicated solution e−tC by subsequently applying the simpler parts e−t/nA and
e−t/nB together n-times, and thus defining a numerical split-step method.

In that paper, we are interested in the case where the underlying Banach space X is given by a
product X = X1 ×X2. The operator of interest consists of two parts and is given in matrix form

−C = −A+ B =

(
−A1 B1

B2 −A2

)
, A =

(
A1 ·
· A2

)
, B =

(
· B1

B2 ·

)
,

where −Aj : dom(Aj) ⊂ Xj → Xj are generators of a semigroup, and B1 : X2 → X1, B2 :
X1 → X2 are linear operators that describe the coupling. These matrix operators occur frequently
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A. Stephan 2

in physical problems: e.g. in continuum mechanics, where X1 contains the states in a bulk and X2

contains the states in a reservoir, the operators Aj describe their dynamics and Bj the coupling; or in
quantum mechanics, where X is the state space of two combined quantum systems, each individual
time-dependent system is described by Aj , the interaction by B1 and B2.

We assume that both coupling operators Bj are bounded (although we discuss the unbounded case
in Section 5). The operator −A : dom(A) = dom(A1) × dom(A2) → X is a generator of
a semigroup on X , and its semigroup is given by the diagonal matrix of the individual semigroups
e−tAj . Moreover, B is a bounded perturbation, and hence, −C : dom(C) = dom(A) → X is a
generator, too. Its semigroup e−tC defines the solution u = u(t) = (u1(t), u2(t))

T of the abstract
Cauchy problem u̇(t) = −Cu(t), u(0) = (x, y)T on X . As an immediate consequence one can
show that (under reasonable assumptions) the solution operator of the combined system e−tC can be

approximated by the Trotter-product formula

(
e−

t
n
Ae

t
n
B
)n

. However, from the practical standpoint

the Trotter-product formula is often not useful because the semigroup of etB cannot be expressed
explicitly by the individual operators Bj . Moreover, in each step an expensive evolution on the whole
space X = X1 ×X2 has to be calculated.

This problem can be solved by replacing e−
t
n
Ae

t
n
B by an split-step approximation that respects the

underlying product structure. The idea is to define a family of bounded operators T = T (t) on X ,
consisting of two parts T (t) = T2(t)T1(t) , where each bounded operator trajectory Tj = Tj(t) de-
fines the solution of the abstract Cauchy problem u̇(t) = −Cu(t), u(0) = (x, y)T, with one freezed
(constant in time) component. These subsequent abstract Cauchy problems become inhomogeneous
and can be solved explicitly (see Section 2.2). The split-step approximation operator is then given by

T (t) =
(

e−tA1
∫ t
0
e−sA1B1ds∫ t

0
e−sA2B2ds e

−tA1
∫ t
0
e−sA1B1ds

∫ t
0
e−sA2B2ds+ e−tA2

)
, (AO)

which is the main object of investigation in the paper, see Section 3 for more details. Operator-matrix
semigroups have attracted a lot of attention in the last decades: in spectral analysis [Arl02, Tre08]; in
modeling and solving various types of evolution equations, see e.g. [Eng95, BaP05, LHC20, AgH21];
and in the context of split-step methods [CsN08, BC∗12, BC∗14]. For a recent split-step convergence
analysis in the context of nonlinear gradient-flow PDEs we refer to [MRS23].

Here, under the assumption that the coupling operators Bj are bounded, a straight-forward computa-
tion shows that T is stable, i.e. for all n ≥ 0 and t ≥ 0, T (t/n)n can be bounded. Stability provides
that T (t/n)n is a well-defined approximation, and, in particular, we have the strong-convergence re-
sult T (t/n)nx → e−tCx for all x ∈ X as n → ∞, see Proposition 3.2. The main result (Theorem
4.4) is that, assuming that the semigroups of −A1 and −A2 are holomorphic, the convergence of
the approximation can be improved to operator-norm convergence, and moreover, can be estimated
by O(log(n)/n), which is almost the optimal convergence rate of O(1/n). Operator-norm conver-
gence for approximations of Trotter-product form have been derived first in [Rog93] for semigroups of
self-adjoint operators in Hilbert spaces, and later generalized by [CaZ01] to holomorphic semigroups
on Banach spaces. Here, we also assume that the semigroups are holomorphic. However, the result
here shows operator-norm convergence for the approximation operators T where its components are
not given by semigroups (although Bj are bounded they are not generators as they even act between
different spaces). The crucial idea is to estimate T (t) − e−tC for small t ≥ 0 by evaluating their
derivatives, and to show that this O(t2) behavior propagates to the whole approximation. Technical
difficulties arise by the additional non-commutative feature of matrix multiplication.

The practical component of operator-norm convergence, in contrast to convergence in the strong topol-
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Trotter on product spaces 3

ogy, is evident: The solution can be approximated regardless the initial condition (and its generic
uncertainty); moreover, a convergence-rate estimate provides a universal bound how good the ap-
proximation actually is. Moreover, the convergence proof is flexible to provide also convergence for
different (but similar) approximation (see Section 4.4).

The crucial assumption for estimating the convergence rate is the holomorphicity of the dominat-
ing semigroups. In [NSZ18b], a counterexample has been constructed showing that operator-norm
convergence does not hold if the semigroup of the main operator is not holomorphic. There, the con-
struction is done by a time-dependent perturbation. Affirmative convergence result for time-dependent
perturbations can be found in [NSZ17, NSZ18a, NSZ19, NSZ20]. In principle, time-dependent cou-
plings t 7→ Bj(t) can also be considered for approximations (AO). The corresponding operator-norm
convergence result however is left for future work.

2 Preliminaries

In this section, (X, ‖ · ‖) is a general Banach space; moreover, all operators in the paper are lin-
ear. We first recall well-known important facts from semigroup theory and (inhomogeneous) abstract
Cauchy problems, see e.g. [EnN00]

2.1 Recap of semigroup theory

A family {T(t)}t≥0 of bounded linear operators on the Banach space X is called a strongly continu-
ous semigroup (in the following only semigroup) if it satisfies the functional equation

T (0) = I, T(t+ s) = T(t)T(s), for t, s ≥ 0,

and, moreover, the orbit maps [0,∞[3 t 7→ T(t)x are continuous for all x ∈ X . In the following,
the identity map is denoted by I : X → X . For a given semigroup its generator is a linear operator
defined by the limit

−Ax := lim
t→0

1

t
(T(t)x− x)

on the domain dom(A) =
{
x ∈ X : limt→0

1
t
(T(t)x− x) exists

}
.

It is well-known that the generator −A of a strongly continuous semigroup is a closed and densely
defined linear operator, which uniquely determines its semigroup, which in the following will be denote
by
{
T(t) = e−tA

}
t≥0. Recall that for a semigroup

{
T(t) = e−tA

}
t≥0, there are constants M,β

such that ‖T(t)‖ ≤ Meβt for all t ≥ 0. The operator norm for a bounded operator B : X → Y is
defined as usual by ‖B‖ := sup {‖Bx‖Y : ‖x‖X ≤ 1}, which is a norm in the space of bounded
linear operators. If β ≤ 0 then the semigroup is called bounded ; if ‖T(t)‖ ≤ 1, the semigroup is
called a contraction semigroup.

The semigroup
{
T(t) = e−tA

}
t≥0 is called a bounded holomorphic semigroup if its generator −A

satisfies T(t)x ∈ dom(A) for all x ∈ X and t > 0, and if there is a constant MA > 0 such that
supt>0 ‖tAT(t)‖ ≤ MA. Recall that in this case the bounded semigroup {T(t)}t≥0 has a unique
analytic continuation into the open sector {z ∈ C \ {0} : |arg(z)| < δ(A) ≤ π/2} ⊂ C of an angle
δ(A) > 0.

In the following, we are interested in sums of operators given by a generator −A with semigroup
‖e−tA‖ ≤ Meβt and a bounded operator B. It is well-known that −C := −A + B, dom(C) =
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A. Stephan 4

dom(A) is a generator of a semigroup
{
e−tC

}
t≥0 that satisfies ‖e−tC‖ ≤Me(β+M‖B‖)t for all t ≥

0 (see [EnN00, Theorem III.1.3]). Moreover, if the semigroup
{
e−tA

}
t≥0 is a holomorphic semigroup,

then so is
{
e−tC

}
t≥0 (see Proposition III.1.12).

We recall the following facts, which will be important for further estimates.

Lemma 2.1 (Engel-Nagel, Lemma II.1.3). Let−A be a generator of a bounded semigroup
{
e−tA

}
t≥0.

Define for x ∈ X and t ≥ 0 the operator

Ftx :=

∫ t

0

e−sAxds.

Then, we have

1 Ft : X → X is bounded with ‖Ft‖ ≤ tM , and for all x ∈ X we have 1
t
Ftx→ x as t→ 0.

2 For all t ≥ 0 and x ∈ X , we have Ftx ∈ dom(A), and e−tAx− x = −AFtx. In particular,
we have ‖AFt‖ ≤M + 1.

3 If, in addition,A : dom(A) ⊂ X → X is boundedly invertible, thenFtx = A−1
(
I− e−tA

)
x.

2.2 Inhomogeneous abstract Cauchy problems

The following split-step method is based by solving inhomogeneous abstract Cauchy problems, which
are in general of the form

u̇(t) = −Au(t) + f(t) , u(0) = u0 ∈ X, (iaCP)

where −A : dom(A)→ X is a generator of a strongly continuous semigroup, and f : [0,∞[→ X
is an inhomogeneity. The formal solution is then given by the variation of constants formula and has
the form

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(s)ds.

At least formally, one easily sees that

u̇(t) = −Ae−tAu0 −A

∫ t

0

e−(t−s)Af(s)ds+ f(t) = −Au(t) + f(t) .

There are well-known criteria on how temporal as well as spatial regularity of f determine regularity
of the solution u of the inhomogeneous Abstract Cauchy problem (iaCP), see e.g. [EnN00, Chapter
VI.7].

However, in our situation the formula simplifies as the inhomogeneity f will be constant in time. Indeed
for f(t) = x, we get, with a reparametrization of the integral

u(t) = e−tAu0 +

∫ t

0

e−sAxds = e−tAu0 + Ftx. (?)

If moreover, the generator A is boundedly invertible then the integral can be solved using Lemma 2.1,
and we have

u(t) = e−tAu0 −A−1
(
e−tA − I

)
x

The following lemma collects and summarizes these important facts, and is an immediate conse-
quence of Lemma 2.1 and the classical well-posedness theory for linear (inhomogeneous) abstract
Cauchy problems (see e.g. Engel-Nagel Corollary VI.7.8)
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Trotter on product spaces 5

Lemma 2.2. Let x ∈ X and u0 ∈ dom(A) be arbitrary. Define, for t ∈ [0,∞[ the trajectory u by
(?). Then u is continuously differentiable, u(t) ∈ X for all t ≥ 0 and is the unique classical solution
of the inhomogeneous abstract Cauchy problem u̇(t) = −Au(t) + x.

3 Split-step method on the product space

After presenting the product-space setting, we define the split-step approximation operators. Then,
we show stability (i.e. boundedness) of the time-discretized trajectories and, finally, discuss the first
convergence results.

3.1 Product-space setting

For two given Banach spaces
(
Xj, ‖ · ‖Xj

)
, we consider the Banach spaceX = X1×X2 equipped

with the canonical norm, i.e.

‖(x, y)‖2X1×X2
:= ‖x‖2X1

+ ‖y‖2X2
.

The identity operator on the spacesXj is denoted by I : Xj → Xj , the identity operator on the whole

space X is denoted by I :=

(
I ·
· I

)
: X → X . For a bounded operator B =

(
B1 B12

B21 B2

)
:

X → X , where Bj : Xj → Xj and Bij : Xj → Xi are bounded operators, an easy calculation
shows

‖B
(
x
y

)
‖2 = ‖B1x+B12y‖2X1

+ ‖B21x+B2y‖2X2
≤

≤ 2
(
‖B1‖2 + ‖B21‖2

)
‖x‖2X1

+
(
‖B12‖2 + ‖B2‖2

)
‖y‖2X1

≤ 2max
{
‖B1‖2 + ‖B21‖2, ‖B12‖2 + ‖B2‖2

} (
‖x‖2X1

+ ‖y‖2X1

)
,

which implies the crude estimate ‖B‖ ≤
√
2max

{
(‖B1‖2 + ‖B21‖2)1/2 , (‖B12‖2 + ‖B2‖2)1/2

}
.

3.2 Split-step by inhomogeneous abstract Cauchy problem

Now, we describe in detail the split-step method for approximating the solution on a product space.
We consider on the space X = X1 ×X2 the operator

−C := −A+ B, A =

(
A1 ·
· A2

)
, B =

(
· B1

B2 ·

)
, −C

(
u
v

)
=

(
−A1u+B1v
B2u−A2v

)
,

where each −Aj : dom(Aj) ⊂ Xj → Xj are generators of a contraction semigroup and the
coupling operators B1 : X2 → X1 and B2 : X1 → X2 are bounded. (We comment on unbounded
operators in Section 5.)

Clearly, also −A : dom(A) = dom(A1) × dom(A2) ⊂ X1 × X2 → X is a generator of a

semigroup e−tA =

(
e−tA1 ·
· e−tA2

)
, which is also a contraction semigroup. Since B is bounded, we

have that −C : dom (C) = dom (A) ⊂ X → X is also a generator of a semigroup.

DOI 10.20347/WIAS.PREPRINT.3030 Berlin 2023



A. Stephan 6

Here, we will not approximate the solution operator e−tC by the Trotter-product formula
(
e−t/nAet/nB

)n
.

Instead, we are interested in an approximation that exploits the Block structure of the underlying state
space. As for the Trotter product formula, the time-discretized iteration operator T (τ) depends on the
small time-step of length τ = t/n and consists of two parts, i.e T = T2T1. Each operator Tj is
defined by evolving only the component of Xj and leaving the other component constant. The first
operator T1 is given by solving the inhomogeneous abstract Cauchy problem:{

u̇ = −A1u+B1v

v̇ = 0
, for t ∈ [0,∞[, u(0) = u0, v(0) = v0,

and maps T1(τ) :

(
u0
v0

)
7→
(
u(τ)
v(τ)

)
. The explicit solution of the evolution equation is given by

Lemma 2.2, and we have(
u
v

)
(t = τ) = T1(τ)

(
u0
v0

)
=

(
e−τA1

∫ τ
0
e−σA1dσB1

· I

)(
u0
v0

)
.

The second operator T2 is given by solving the inhomogeneous abstract Cauchy problem:{
u̇ = 0

v̇ = B2u−A2v
, for t ∈ [0,∞[, u(0) = u0, v(0) = v0,

and maps T2(τ) :
(
u0
v0

)
7→
(
u(τ)
v(τ)

)
. Hence, we have

(
u
v

)
(t = τ) = T2(τ)

(
u0
v0

)
=

(
I ·∫ τ

0
e−σA2dσB2 e−τA2

)(
u0
v0

)
.

Hence, we conclude that the total solution operator at time t = τ is given by

T (τ) = T2(τ)T1(τ) =
(

I ·∫ τ
0
e−σA2dσB2 e−τA2

)(
e−τA1

∫ τ
0
e−σA1dσB1

· I

)
=

(
e−τA1

∫ τ
0
e−σA1dσB1∫ τ

0
e−σA2dσB2e

−τA1
∫ τ
0
e−σA2dσB2 ·

∫ τ
0
e−σA1dσB1 + e−τA2

)
=:

(
E1(τ) X1(τ)

X2(τ)E1(τ) X2(τ)X1(τ) + E2(τ)

)
, (AO)

where we have introduced the notation for the solution operator Ej on the diagonal and the cross
terms Xj

Ej(τ) = e−τAj , Xj(τ) =

∫ τ

0

e−σAjdσBj.

Some easy facts regarding these operators are summarized in the next lemma, which is an trivial
consequence of Lemma 2.1.

Lemma 3.1. Let −Aj : dom(Aj) ⊂ Xj → Xj be generators of contraction semigroups, and
let B1 : X2 → X1, B2 : X1 → X2 be bounded. Define the split-step approximation operators
{T (τ)}τ≥0 by (AO). Then

1 For all τ ≥ 0, the operators T (τ) : X → X are strongly continuous bounded operators and
T (0) = I ,

DOI 10.20347/WIAS.PREPRINT.3030 Berlin 2023



Trotter on product spaces 7

2 For all τ ≥ 0, we have ‖Xi(τ)‖ ≤ τ‖Bi‖, and there is a constant such that for all τ ≥ 0, we
have ‖AiXi(τ)‖ ≤ 2‖Bi‖.

3 For all xj ∈ dom(Aj), we have E′j(τ)xj = −Aje
−τAjxj ; For all x ∈ Xj we have X′j(τ)x =

Ej(τ)Bj .

Iterating the operators T (τ) n-times, we get a trajectory till time t ∈ [0,∞[. The main question, which
is addressed in that paper, is to show convergence

T (t/n)n → e−tC.

3.3 Stability analysis and convergence in the strong topology

To have a useful approximation, the stability of the iterated operator T (t/n)n for t ∈ [0,∞[ has to be
established.

Proposition 3.2. Let−Aj : dom(Aj) ⊂ Xj → Xj be generators of strongly continuous contraction
semigroups, and let B1 : X2 → X1, B2 : X1 → X2 be bounded. Then for all t ∈ [0,∞[ and n ∈ N
we have

‖T (t/n)n‖ ≤ et(‖B1‖+‖B2‖).

Moreover, for all t ∈ [0,∞[, (T (t/n)n)n∈N converges to the semigroup e−tC in the strong topology,
i.e. for all x ∈ X , we have

lim
n→∞

T (t/n)nx = e−tCx,

which is uniformly in time on bounded intervals.

Proof. Using that −Aj generates a contraction semigroup, we have

‖T1(τ)
(
x
y

)
‖2 = ‖E1(τ)x+X1(τ)y‖2X1

+ ‖y‖2X2
≤ (‖E1(τ)x‖X1 + ‖X1(τ)y‖X1)

2 + ‖y‖2X2

≤ ‖x‖2X1
+ 2τ‖B1‖ · ‖x‖X1 · ‖y‖X2 +

(
1 + τ 2‖B1‖2

)
‖y‖2X2

≤
(
1 + 2τ‖B1‖+ τ 2‖B1‖2

)(
‖x‖2X1

+ ‖y‖2X2

)
= (1 + τ‖B1‖)2

(
‖x‖2X1

+ ‖y‖2X2

)
.

Hence, we get that ‖T1(τ)‖ ≤ 1 + τ‖B1‖ for all τ ≥ 0. Similarly, we obtain ‖T2(τ)‖ ≤ 1 + τ‖B2‖
for all τ ≥ 0. Hence, we get

‖T (t/n)n‖ ≤ ‖T2(t/n)‖n · ‖T1(t/n)‖n ≤
(
1 +

t

n
‖B2‖

)n(
1 +

t

n
‖B1‖

)n
≤ et(‖B1‖+‖B2‖) .

To prove convergence in the strong topology, we rely on the famous result of Chernoff, see e.g. [EnN00,
Corollary III.5.3]. Since the stability has been already shown, it suffices to show that the derivative of
T (t) at t ≥ 0 is given by −C (which, as we already know, is a generator). For this let

(
u, v
)T ∈

dom (C) = dom (A). By Lemma 3.1, we obtain

1

t
(T (t)− I)

(
u
v

)
=

1

t

(
E1(t)− I X1(t)
X2(t)E1(t) X2(t)X1(t) + E2(t)− I

)(
u
v

)
→
(
−A1u+B1v
B2u−A1v

)
= −C

(
u
v

)
,

as t→ 0. This implies limn→∞ T (t/n)nx = e−tCx as desired.
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The main result of the paper is to show that the convergence of the approximation T (t/n)n → e−tC

can be improved to convergence in the operator norm, and that the convergence can be estimated. To
show the ideas, we shortly discuss the situation, when −Aj are bounded operators.

3.4 Convergence for bounded operators

Assuming that −Aj are bounded operators, the semigroups are given by the exponential of the gen-
erators, and we have

e−τAj = I− τAj +O(τ 2), as τ → 0 .

As we will see, estimating T (t/n)n → e−tC is similar to the unbounded case and relies on the
telescopic representation of the product:

T n − Sn =
n−1∑
k=0

T n−1−k(T − S)Sk.

The crucial idea is to get a good convergence rate for T − S , and to ensure that the remainders
T n−1−k and Sk can be bounded.

Indeed, in the situation of bounded operators we have, for τ → 0,

T (τ)− e−τC =

(
E1(τ) X1(τ)

X2(τ)E1(τ) X2(τ)X1(τ) + E2(τ)

)
− {I − τC}+O(τ 2)

=

(
E1(τ) X1(τ)

X2(τ)E1(τ) X2(τ)X1(τ) + E2(τ)

)
−
(
I− τA1 τB1

τB2 I− τA2

)
+O(τ 2)

= O(τ 2),

where we have used that

Ej(τ) = I− τAj +O(τ 2), Xj(τ) = τBj +O(τ 2).

Hence, we get

‖T (τ)n − e−tC‖ = ‖T (τ)n −
(
e−τC

)n ‖
= ‖

n−1∑
k=0

T (τ)n−1−k(T (τ)− e−τC)e−τkC‖

≤
n−1∑
k=0

‖T (τ)n−1−k‖ · ‖T (τ)− e−τC‖ · ‖e−τkC‖ . n · τ 2 . t2

n
.

Hence, the split-step method converges with order O(n−1), which is summarized in the next proposi-
tion.

Proposition 3.3. Let Ai : Xi → Xi, B1 : X2 → X1 and B2 : X1 → X2 be bounded. Define
the split-step approximation operator family T by (AO). Then there is a constant C = C(‖A‖, ‖B‖)
such that for all t ≥ 0 and n ∈ N we have ‖T (τ)n − e−tC‖ ≤ C

n
t2.

We note that, in general no better convergence than of order O(n−1) can be expected. Moreover,

the above calculation suggest that TB(τ) :=

(
E1(τ) τB1

τB2 E2(τ)

)
, where the integrand e−σAj in the
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coupling term Xj(τ) is replaced by the constant identity I, can be used as another approximation.
Indeed, following the lines of the proof of Proposition 3.2 the approximation based on TB converges
on the strong topology as well. However, for proving convergence in operator norm the regularization
e−σAj is needed (see also Section 4.4, where other different approximations are discussed).

4 Operator-norm convergence rate analysis

In this section, we show the convergence T (t/n)n → e−tC in the operator norm as n → ∞, and
that the convergence rate can be estimated. The overall assumptions is that the operators −Aj :
dom (Aj)→ Xj are generators of holomorphic contraction semigroups and that the linear operators
B1 : X2 → X1 and B2 : X1 → X2 are bounded. In particular, there is a constant MA > 0 such
that for all t > 0

‖tAie
−tAi‖ ≤MA , (1)

which we will use frequently. Since A is diagonal, we easily see that −A : dom(A) ⊂ X → X
is a generator of a contraction semigroup. In addition, we have the same estimate ‖tAe−tA‖ ≤
MA, which shows that the semigroup e−tA is holomorphic as well. Since the coupling operator B is
bounded, also −C is a generator of a semigroup with ‖e−tC‖ ≤ et‖B‖ which is also holomorphic, i.e.
there is a constant MC > 0 such that for all t > 0 we have ‖tCe−tC‖ ≤MC .

Moreover, we will use the following relations between the operator norms of Bj and B:

‖B‖ = max {‖B1‖, ‖B2‖} ≤ ‖B1‖+ ‖B2‖ ≤ 2‖B‖ .

4.1 Auxiliary lemmas

We first collect important auxiliary lemmas which are used to show that main result. We frequently use
the matrix multiplication rule for operators (wherever they are defined):

CD =

(
C1 C2

C3 C4

)(
D1 D2

D3 D4

)
=

(
C1D1 +C2D3 C1D2 +C2D4

C3D1 +C4D3 C3D2 +C4D4

)
.

Lemma 4.1. Let −Aj : dom (Aj) ⊂ Xj → Xj be generators of holomorphic contraction semi-
groups, and let B1 : X2 → X1, B2 : X1 → X2 be bounded. Then, there is a constant C1 =
C1(‖B1‖, ‖B2‖) > 0 such that for all k ∈ {1, . . . , n} and τ = t

n
> 0 we have

‖AT (τ)k‖ ≤ C1e
t(‖B1‖+‖B2‖) (1 + log k) +

MA

kτ
.

Proof. Using the decomposition

AT (τ)k = A
(
T (τ)k − e−τkA

)
+Ae−τkA,

we see that the second term is bounded by ‖Ae−τkA‖ ≤ 1
τk
MA. For the first term, we use the

telescopic representation of the product Sk − T k =
∑k−1

j=0 Sk−1−j(S − T )T j, and get

A
(
e−τkA − T (τ)k

)
=

k−1∑
j=0

e−τ(k−1−j)AA
(
e−τA − T (τ)

)
T (τ)j =

=
k−2∑
j=0

e−τ(k−1−j)AA
(
e−τA − T (τ)

)
T (τ)j +A

(
e−τA − T (τ)

)
T (τ)k−1 .
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Since

T (τ)− e−τA =

(
· X1(τ)

X2E1(τ) X2X1(τ)

)
,

we get that there is a constant C = C(‖B1‖, ‖B2‖) > 0 such that ‖T (τ) − e−τA‖ ≤ Cτ .
Moreover, we see that

A
(
e−τA − T (τ)

)
=

(
· A1X1(τ)

A2X2E1(τ) A2X2X1(τ)

)
,

which is (by Lemma 3.1) a bounded operator for τ > 0 with ‖A
(
T (τ)− e−τA

)
‖ ≤ Cτ , C =

C(‖B1‖, ‖B2‖) > 0. Hence, we have that

‖A
(
e−τkA − T (τ)k

)
‖

≤
k−2∑
j=0

‖e−τ(k−1−j)AA‖ · ‖e−τA − T (τ)‖ · ‖T (τ)j‖+ ‖A
(
e−τA − T (τ)

)
‖ · ‖T (τ)k−1‖

≤ Cet(‖B1‖+‖B2‖)

(
k−2∑
j=0

1

(k − 1− j) τ
τ + 1

)
≤ Cet(‖B1‖+‖B2‖) (log k + 1) ,

where we have used
∑k−1

j=1
1
j
≤ log k. This proves the claim.

For the next two lemmas, we do not assume that the semigroups e−tAj are holomorphic. We recall
that if A and C are boundedly invertible, then the operators A−1C, CA−1 and their inverses are all
bounded.

Lemma 4.2. Let−Aj : dom (Aj) ⊂ Xj → Xj be generators of contraction semigroups, and let
B1 : X2 → X1, B2 : X1 → X2 be bounded. Moreover let A and C be boundedly invertible. Then,
there is a constant C2 = C2(‖A−1‖, ‖A−1B‖) > 0 such that for all τ > 0 we have

‖A−1
(
T (τ)− e−τC

)
‖ ≤ C2

(
1 + eτ‖B‖

)
τ.

Proof. We have

T (τ)− e−τC = T2(τ)T1(τ)− e−τC = (T2(τ)− I) T1(τ) + T1(τ)− I + I − e−τC,

and

A−1 (T2(τ)− I) T1(τ) =
(

· ·
A−12 X2(τ)E1(τ) A−12 X2(τ)X1(τ) +A−12 (E2(τ)− I)

)
A−1 (T1(τ)− I) =

(
A−11 (E1(τ)− I) A−11 X1(τ)

· ·

)
A−1

(
I − e−τC

)
= A−1CC−1

(
I − e−τC

)
.

Since ‖A−1j (Ej(τ)− I) ‖ ≤ τ (see Lemma 2.1), we get that ‖A−1 (T2(τ)− I) T1(τ)‖ ≤ Cτ and
‖A−1 (T1(τ)− I) ‖ ≤ Cτ , where C = C(‖A−1‖). Moreover, we have

‖A−1
(
I − e−τC

)
‖ ≤ ‖A−1 (A− B) ‖ · eτ‖B‖τ ≤

(
1 + ‖A−1B‖

)
· eτ‖B‖τ.
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Lemma 4.3. Let −Aj : dom (Aj) ⊂ Xj → Xj be generators of contraction semigroups, and let
B1 : X2 → X1, B2 : X1 → X2 be bounded. Moreover let A and C be boundedly invertible. Then,
there is a constant C3 = C3(‖B2‖, ‖B1‖, ‖A−11 ‖, ‖A−12 ‖) > 0 such that for all τ > 0 we have

‖
(
T (τ)− e−τC

)
A−1‖ ≤ C3τ

2eτ‖B‖ .

Proof. For better readability we neglect the τ -dependance for a moment. We have the decomposition

T2T1 − e−τC = (I − T2) (I − T1) + T1 + T2 − I − e−τC.

The first term has the form

(I − T2) (I − T1) =
(
· ·
X2 I− E2

)(
I− E1 X1

· ·

)
=

(
· ·

X2 (I− E1) X2X1

)
,

which is already of order O(τ). Moreover, we have

(I − T2) (I − T1)A−1 =
(

· ·
X2 (I− E1)A

−1
1 X2X1A

−1
2

)
,

which shows that there is a constant C = C(‖B2‖, ‖B1‖, ‖A−12 ‖) such that the estimate

‖ (I − T2(τ)) (I − T1(τ))A−1‖ ≤ Cτ 2

holds.

It suffices to estimate the remaining part. We have

T1(τ) + T2(τ)− I =

(
E1(τ) X1(τ)
X2(τ) E2(τ)

)
=: T̂ (τ) ,

where we have introduced the symmetric version T̂ of T2T1. To estimate the difference T̂ (τ)− e−τC ,
we rely on the following form(

T̂ (τ)− e−τC
)
=

∫ τ

0

d

dσ

{
T̂ (σ)e−(τ−σ)C

}
dσ =

=

∫ τ

0

{
T̂ ′(σ)e−(τ−σ)C + T̂ (σ)Ce−(τ−σ)C

}
dσ =

=

∫ τ

0

{
T̂ ′(σ) + T̂ (σ)C

}
e−(τ−σ)Cdσ,

which holds on dom(A).
We compute (see Lemma 3.1)

d

dσ
T̂ (σ) = d

dσ

(
E1(σ) X1(σ)
X2(σ) E2(σ)

)
=

(
−A1E1(σ) E1(σ)B1

E2(σ)B2 −A2E2(σ)

)
,

which provides the explicit simple form

T̂ ′(σ) + T̂ (σ)C =
(
−A1E1(σ) E1(σ)B1

E2(σ)B2 −A2E2(σ)

)
+

(
E1(σ) X1(σ)
X2(σ) E2(σ)

)(
A1 −B1

−B2 A2

)
=

(
−X1(σ)B2 X1(σ)A2

X2(σ)A1 −X2(σ)B1

)
=

(
X1(σ) ·
· X2(σ)

)(
−B2 A2

A1 −B1

)
.
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In particular, we have(
T̂ ′(σ) + T̂ (σ)C

)
A−1 =

(
X1(σ) ·
· X2(σ)

)(
−B2A−11 I

I −B1A−12

)
.

Hence, we get that there is a constant C = C(‖B1‖, ‖B2‖, ‖A−1‖) such that

‖
(
T̂ (τ)− e−τC

)
A−1‖ = ‖

∫ τ

0

{
T̂ ′(σ) + T̂ (σ)C

}
e−(τ−σ)CA−1dσ‖

= ‖
∫ τ

0

{
T̂ ′(σ) + T̂ (σ)C

}
A−1AC−1e−(τ−σ)CCA−1dσ‖

≤
∫ τ

0

‖
{
T̂ ′(σ) + T̂ (σ)C

}
A−1‖ · ‖AC−1‖ · ‖e−(τ−σ)C‖ · ‖CA−1‖dσ

≤ C

∫ τ

0

σe(τ−σ)‖B‖dσ ≤ C

2
τ 2eτ‖B‖, (2)

which proves the claim.

4.2 Convergence result for holomorphic semigroups

We are now able to state and prove the main theorem, which show convergence in operator norm with
convergence rate estimate of O( logn

n
).

Theorem 4.4. Let −Aj : dom (Aj) ⊂ Xj → Xj be generators of holomorphic contraction semi-
groups, and let B1 : X2 → X1, B2 : X1 → X2 be bounded. Then, there are constants C, η > 0
such that for all t ≥ 0 and n ∈ N, we have

‖T (t/n)n − e−tC‖ ≤ C

n
etηe4t(‖B1‖+‖B2‖)

(
log n+ t2

)
.

Proof. It is clear that nothing has to be shown for t = 0 or n = 1. So let t > 0 and n ≥ 2,
and let us introduce τ = t/n. If −A and −C are not boundedly invertible then, by introducing a
shift η > 0 they can be made invertible and the previous estimates remain unchanged. Indeed,
defining Ãj = Aj + η and C̃ = C + η for η > 0 such that Ãj, C̃ are invertible, we observe that

Ẽj(τ) := e−τÃj = e−τηEj(τ). Clearly,−C̃ is a generator of a holomorphic semigroup and we have

‖tC̃e−tC̃‖ = ‖t (C + η) e−tCe−tη‖ ≤MC + tηe−tη‖e−tC‖ ≤MC +
1

2
et(‖B1‖+‖B2‖), (3)

where we have used that xe−x ≤ 1
2

for all x ≥ 0.

Moreover, we define X̃1(τ) := e−τηX1(τ). Then, we have for all τ ≥ 0 that

eτηT̃ (τ) := eτη

(
Ẽ1(τ) X̃1(τ)

X2(τ)Ẽ1(τ) X2(τ)X̃1(τ) + Ẽ2(τ)

)
= T (τ).

Then, for all τ ≥ 0 we have that ‖X̃1(τ)‖ ≤ τ‖B1‖ and

‖Ã1X̃1(τ)‖ ≤ ‖A1X1(τ)‖+ η‖X1(τ)‖, ‖Ã2X2(τ)‖ ≤ ‖A2X2(τ)‖+ η‖X2(τ)‖.
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In particular, Lemma 4.1 and Lemma 4.2 can now be adapted to the shifted situation. Moreover, we
have X̃′1(τ)−X′1(τ) = −ηe−τηX1(τ), which shows that the estimate (2) holds, so Lemma 4.3 can
also be adapted to the shifted situation. We have

e−tC̃ − T̃ (t/n)n =
(
e−τ C̃

)n
− T̃ (τ)n

=
n−1∑
k=0

e−τ(n−1−k)C̃
(
e−τ C̃ − T̃ (τ)

)
T̃ (τ)k

= e−τ(n−1)C̃C̃C̃−1ÃÃ−1
(
e−τ C̃ − T̃ (τ)

)
+
(
e−τ C̃ − T̃ (τ)

)
Ã−1ÃT̃ (τ)n−1

+
n−2∑
k=1

e−τ(n−1−k)C̃
(
e−τ C̃ − T̃ (τ)

)
Ã−1ÃT̃ (τ)k,

where we have used the product Sk − T k =
∑k−1

j=0 Sk−1−j(S − T )T j . Then, by Lemma 4.1, 4.2
and 4.3 , we get

‖e−tC̃ − T̃ (t/n)n‖

≤ ‖e−τ(n−1)C̃C̃‖ · ‖C̃−1Ã‖ · ‖Ã−1
(
e−τ C̃ − T̃ (τ)

)
‖+ ‖

(
e−τ C̃ − T̃ (τ)

)
Ã−1‖ · ‖ÃT̃ (τ)n−1‖

+
n−2∑
k=1

‖e−τ(n−1−k)C̃‖ · ‖
(
e−τ C̃ − T̃ (τ)

)
Ã−1‖ · ‖ÃT̃ (τ)k‖

≤ 1

τ(n− 1)

(
MC +

1

2
eτ(n−1)‖B‖

)
‖C̃−1Ã‖ · C2

(
1 + eτ‖B‖

)
τ+

+ C3τ
2

{
C1e

t‖B‖(1 + log(n− 1)) +
MA

(n− 1)τ

}
+

+
n−2∑
k=1

eτ(n−1−k)‖B‖e−tηC3τ
2

{
C1e

t‖B‖(1 + log k) +
MA

kτ

}
≤ 1

(n− 1)

(
M1 +M2e

t(‖B1‖+‖B2‖)
)
+ C3

t

n

{
C1te

t‖B‖ +
MA

(n− 1)

}
+

+ et‖B‖e−tηC3
t

n

{
C1e

t‖B‖n(1 + log n)
t

n
+MA log n

}
≤ C

n
e2t‖B‖

(
log n+ t2

)
,

for a constant C > 0, where we have used that

(1 + log(n− 1))
1

n
≤ 1,

n−2∑
k=1

1

k
≤ log n,

n−2∑
k=1

log k ≤ n log n.

For the operators without the shift this means

‖T (t/n)n − e−tC‖ = ‖
(
et/nηT̃ ( t

n
)

)n
− etηe−tC̃‖ = etη‖e−tC̃ − T̃ (t/n)n‖

≤ C

n
etηe2t‖B‖

(
log n+ t2

)
,

which shows the claimed estimate.
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4.3 Operator-norm convergence in weaker norm

Interestingly, we get on the subspace dom (A) ⊂ X a similar convergence result as Theorem4.4
without assuming that the semigroups e−tAj are holomorphic. For this we assume that Aj are bound-
edly invertible (as we have seen in the proof of Theorem 4.4 we could otherwise introduce a shift). We
define a new operator norm for bounded operators B : X → X ,

‖B‖A := sup
f∈dom(A):‖Af‖≤1

‖Bf‖ = sup
g∈X:‖g‖≤1

‖BA−1g‖ = ‖BA−1‖.

If−Aj is unbounded, a bound on ‖B‖A does not provide a bound on ‖B‖ in general. The crucial
observation is Lemma 4.3, which provides an bound ‖T (τ) − e−τC‖A = O(τ 2). Note that Lemma
4.3 here is a better estimate than the analogous results in [NSZ17, NSZ18a, NSZ18b, NSZ19, NSZ20]
because the spatial regularization is only needed once to obtain an estimate of order O(τ). We refer
also to [JaL00, HaO09] for comparable results related to the Trotter-product formula.

Theorem 4.5. Let −Aj : dom (Aj) ⊂ Xj → Xj be generators of contraction semigroups, and let
B1 : X2 → X1, B2 : X1 → X2 be bounded. Moreover let A and C be boundedly invertible. Then,
there is a constant C = C(‖B2‖, ‖B1‖, ‖A−11 ‖, ‖A−12 ‖) > 0 such that for all t > 0 and n ≥ 1,we
have

‖T (t/n)n − e−tC‖A ≤
C

n
t2e2t(‖B1‖+‖B2‖) .

Proof. There is nothing to show for t = 0 and n = 1. So let t > 0 and n ≥ 2. Introducing, τ = t
n

and using the product Sk − T k =
∑k−1

j=0 Sk−1−j(S − T )T j , we have(
T (τ)n − e−tC

)
A−1 =

(
T (τ)n −

(
e−τC

)n)A−1
=

n−1∑
k=0

T (τ)n−k−1
(
T (τ)− e−τC

)
e−τkCA−1

= T (τ)n−1
(
T (τ)− e−τC

)
A−1 +

(
T (τ)− e−τC

)
A−1AC−1e−τ(n−1)CCA−1

+
n−2∑
k=1

T (τ)n−k−1
(
T (τ)− e−τC

)
A−1AC−1e−τkCCA−1.

By Lemma 4.3, the first and the second term can be estimated by Cet(‖B1‖+‖B2‖)τ 2. For the sum in
the last term, we have the bound Cnet(‖B1‖+‖B2‖)τ 2. Hence, we conclude

‖
(
T (τ)n − e−tC

)
A−1‖ ≤ C

n
t2et(‖B1‖+‖B2‖) .

4.4 Other similar approximations

Analogue convergence results as 4.4 and 4.5 can also be shown for other approximations.

4.4.1 Transposed approximation

Instead on applying first T1 and then T2, one could also consider the transposed approximation
TT(τ) := T1(τ)T2(τ). Since, we have
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TT − T = T1T2 − T2T1 =
(

X1X2 X1(E2 − I)
X2(I− E1) X2X1

)
,

we immediately obtain that (TT(τ)− T (τ))A−1 = O(τ 2), which provides an analogue of Lemma
4.2. Hence, we get for TT(t/n)n − e−tC the same operator-norm convergence result as in Theorem
4.4.

4.4.2 Symmetrized approximation

In the proof of Lemma 4.2, we had already used the symmetric approximation T̂ , which has the simple
form

T̂ (t) =
(
E1(t) X1(t)
X2(t) E2(t)

)
= e−tA +

(
·

∫ t
0
e−sA1ds∫ t

0
e−sA2ds ·

)
◦ B .

In Lemma 4.2 it is shown that we have an analogue result of the form
(
T̂ (τ)− e−tC

)
A−1 = O(τ 2)

holds. Hence, we get for T̂ (t/n)n− e−tC the same operator-norm convergence result as in Theorem
4.4.

4.4.3 Naive solution of the integral

In the convergence result in the strong topology Proposition (3.2), we have already discussed the
approximation, where the integral in the coupling term is naively solved and Xj(τ) is replaced by

τBj , which leads to TB =

(
E1 τB1

τB2 E2

)
. However, an analogue convergence result for the term(

TB(τ)− e−τC
)
A−1 is not clear.

5 Remarks on unbounded coupling B

In this section, we briefly comment on the situation where the coupling between the spaces X1 and

X2 is given by an unbounded linear operator B =

(
· B1

B2 ·

)
, B1 : dom(B1) ⊂ X2 → X1 and

B2 : dom(B2) ⊂ X1 → X2. Throughout the section, we assume that−Aj are boundedly invertible
generators of holomorphic contraction semigroups.

5.1 Existence of solution operators for the perturbed system and the inhomo-
geneous abstract Cauchy problem

For generators of holomorphic semigroups −Aj it is possible to define fractional powers Aα
j , α ∈

[0, 1] interpolating between Aj and I. In previous similar works (see e.g. [CaZ01, NSZ20]), it is as-
sumed that there is an α ∈ [0, 1[ such that dom(Aα) ⊂ dom(B) and that BA−α : X → X is
bounded, or equivalently that B1A

−α
2 : X2 → X1 and that B2A

−α
1 : X1 → X2 are bounded. Then,

B isA-bounded with relative bound zero, and hence, the sum−A+B is a generator of a holomorphic
semigroup, by classical perturbation results [EnN00, Theorem III.2.10].
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Moreover, we are going to assume that there is a β ∈ [0, 1[ such that A−βi Bi is bounded, or
equivalently, that A−βB is bounded. Then for all τ ≥ 0 the split-step approximation operators
Ti(τ) : X → X defined by (AO) are bounded. Indeed, we have for all y ∈ X2 that

‖
∫ τ

0

dσe−σA1B1y‖ = ‖
∫ τ

0

dσe−σA1Aβ
1A
−β
1 B1y‖ ≤

∫ τ

0

‖e−σA1Aβ
1‖dσ · ‖A

−β
1 B1y‖

≤ Cβ

∫ τ

0

σ−βdσ · ‖A−β1 B1‖ · ‖y‖ ≤ Cβτ
1−β‖A−β1 B1‖ · ‖y‖,

where we have used, that for generators−A of bounded holomorphic semigroups, there is a constant
Cβ > 0 such that for all t > 0 we have the estimate

‖Aβe−tA‖ ≤ Cβ
tβ
.

Hence, we get that T1(τ) : X → X is bounded. Similarly we get that also T2(τ) : X → X
is bounded, and thus defining a bounded time-discretization T (τ) = T2(τ)T1(τ), which satisfies
T (0) = I .

5.2 Stability of the approximation family

To ensure that {T (τ)}τ≥0 is a reasonable approximation family, we have to show that T is stable, i.e.
the family T (t/n)n is uniformly bounded. We shortly discussed why stability is delicate and in general
cannot expected under the assumptions here.

We have seen that the coupling terms in Tj are bounded byO(τ 1−β). So we get (neglecting bounded
operators)

T (τ) = T2(τ)T1(τ) =
(

I ·∫ τ
0
dσe−σA2B2 e−τA2

)(
e−τA1

∫ τ
0
dσe−σA1B1

· I

)
≈
(

I ·
τ 1−βI I

)(
I τ 1−βI
· I

)
=

(
I τ 1−β

τ 1−β
(
τ 2−2β + 1

)
I

)
.

If β = 0, then we have

(
1 τ
τ 1 + τ 2

)
=

(
1 ·
· 1

)
+ τ

(
· 1
1 τ

)
,which has bounded powers ex-

pressed by the matrix exponential.

However, we have that on R2 that the matrix powers of

(
1 τ 1−β

τ 1−β 1 + τ 2−2β

)
=: P(τ 1−β) for β ∈

]0, 1] are unbounded. Indeed, fixing x = τ 1−β we have that v(x) =
(
1
2
(−x+

√
4 + x2), 1

)T
is

an eigenvector of P(x), with P(x)v(x) =
(
1 + x

2

(
x+
√
4 + x2

))
v(x), and v(x) is uniformly

bounded for x = τ 1−β as τ → 0, with v(x)→ (1, 1)T. Hence,

‖T (t/n)n‖ ≥ 1

‖v(x)‖
‖
(
1 x
x 1 + x2

)n
v(x)‖ = 1

‖v(x)‖
‖
(
1 +

x

2

(
x+
√
4 + x2

))n
v(x)‖.

≥
(
1 +

x

2

(
x+
√
4 + x2

))n
≥ 1 + n

x

2

(
x+
√
4 + x2

)
= nx = nβt1−β,

which tends to infinity as n → ∞. This means, stability of T (τ) is in general not clear, and, hence,
convergence of T (τ)n to e−tC (even in the strong topology) cannot be expected.
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