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Coexistence, enhancements and short loops in random walk
loop soups

Nicolas Forien, Matteo Quattropani, Alexandra Quitmann, Lorenzo Taggi

Abstract

We consider a general random walk loop soup which includes, or is related to, several models
of interest, such as the Spin O(N) model, the double dimer model and the Bose gas. The analysis
of this model is challenging because of the presence of spatial interactions between the loops.
For this model it is known from [30] that macroscopic loops occur in dimension three and higher
when the inverse temperature is large enough. Our first result is that, on the d dimensional lattice,
the presence of repulsive interactions is responsible for a shift of the critical inverse temperature,
which is strictly greater than 1

2d , the critical value in the non interacting case. Our second result
is that a positive density of microscopic loops exists for all values of the inverse temperature. This
implies that, in the regime in which macroscopic loops are present, microscopic and macroscopic
loops coexist. Moreover, we show that, even though the increase of the inverse temperature leads
to an increase of the total loop length, the density of microscopic loops is uniformly bounded from
above in the inverse temperature. Our last result is confined to the special case in which the
random walk loop soup is the one associated to the Spin O(N) model with arbitrary integer values
of N ≥ 2 and states that, on Z2, the probability that two vertices are connected by a loop decays
at least polynomially fast with their distance.

1 Introduction and main results

Random walk loop soups (RWLS) are intriguing mathematical objects which appear in various contexts
in probability theory and mathematical physics. Our paper considers random walk loop soups on
graphs in the presence of spatial interactions. These are not only mathematically interesting, but also
physically relevant. Indeed, they are a description of important statistical mechanics models, such as
the Spin O(N) model and the Bose gas.

The non interacting case has been studied first by Lawler and Werner in [22] in the context of two
dimensional Brownian motion and actively researched both in continuous and discrete space partly
due to its connections to the Gaussian free field and to the Schramm-Loewner Evolution (see e.g.
[33, 21, 35]), and as a percolation model (see e.g. [2, 11]).

The presence of spatial interactions between the loops affects significantly the phenomenology and
makes the rigorous analysis of such model even more challenging.

The model depends on a parameter, the inverse temperature, β ∈ [0,∞). Higher values of the inverse
temperature favour the total loop length. The most important questions involve the understanding of
the distribution of the loop length as one varies the inverse temperature parameter. The purpose of
the present paper is to make progress in answering such questions. As mentioned above, this is not
only interesting per se, but also allows us to introduce new methods for the analysis of the physical
models that such a random walk loop soup describes.
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Our first result, Theorem 1.1 below, compares the critical threshold of the interacting case on Zd, with
the critical threshold of the non interacting one, that is 1

2d
. We show that the former is strictly greater

than the latter. This is a consequence of the repulsive nature of the interactions: while in the non
interacting case each random loop is ‘free to explore’ the whole space, in the interacting case it is
only allowed to visit regions which are ‘not too much filled’ by the other loops (the repulsion would be
too strong otherwise). The simple proof of our first theorem consists in showing that the reduction of
the amount of available space for each loop leads to a entropy loss and thus to a shift of the critical
threshold.

While it is easy to show (using classical methods, such as the cluster expansion) that the loops are
‘localized’ when the inverse temperature is small enough, understanding the regime of large values of
β is much harder. For large values of the inverse temperature one expects the occurrence of macro-
scopic loops (i.e., loops whose length grows proportionally to the volume of the system) in dimension
three and higher. This fact has been proved in [30] using the reflection positivity method [17, 24, 32].
Providing more information on the distribution of the loop length is of great interest.

Our second result, Theorem 1.2 below, goes in this direction and provides additional information on the
length distribution of microscopic loops, i.e., those loops whose length does not depend on the size
of the system. Firstly, our theorem states that, for each value of the inverse temperature, uniformly
in the volume, there exists a positive density of microscopic loops of any given length. Our theorem
thus implies that, in the regime in which macroscopic loops are known to occur (corresponding to
large values of the inverse temperature) macroscopic and microscopic loops coexist. Secondly, our
theorem states that, uniformly in the volume, the density of microscopic loops of any given length
is uniformly bounded from above in the inverse temperature. In other words, even though arbitrarily
large values of the inverse temperature lead to arbitrarily large number of visits at each vertex, the
density of microscopic loops of any given length does not grow to infinity with the inverse temperature.
This suggests that only the longer loops are affected by the increase of the inverse temperature. We
consider this result and the analysis which we develop for its proof the most interesting part of our
paper (see also the discussion right after Theorem 1.3 for further comments).

While the previous results are valid for (or can easily be adapted to) a quite general choice of the
interaction, our last result, Theorem 1.3 below, is specific for the random walk loop soup describing
the Spin O(N) model. It is a well known consequence of the Mermin-Wagner theorem that, on Z2, the
two-point function in the Spin O(N) model decays at least polynomially fast with the distance between
the vertices, for any integer value of N ≥ 2 and for each value of the inverse temperature. We show
that, under the same conditions, also the probability that two vertices are connected by a loop decays
at least polynomially fast with the distance between the vertices. This implies that, for any value of the
inverse temperature, macroscopic loops do not occur in two dimensions.

1.1 Definitions

Let G = (V,E) be a finite undirected graph. For each pair of vertices x, y ∈ V , we let L(x, y) be
the set of walks from x to y, i.e., finite ordered sequences of vertices in V , ` =

(
`(0), `(1), . . . `(k)

)
,

such that `(i) is a nearest-neighbour of `(i − 1) for each i ∈ {1, . . . , k}, `(k) = y, `(0) = x and
k ≥ 1. For any such sequence ` =

(
`(0), `(1), . . . , `(k)

)
, we denote by |`| := k the length of the

walk `. We define L := ∪x∈VL(x, x) and we call rooted oriented loop any element ` ∈ L. We let
Ω := ∪∞n=1Ln ∪ {0} be the configuration space of the random walk loop soup, whose elements are
ordered collections of rooted oriented loops, and 0 ∈ Ω is the configuration with no loop. Given any
configuration ω ∈ Ω, we denote by |ω| the number of loops in ω, i.e., |ω| is defined as the integer n
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such that ω ∈ Ln for n > 0 and |0| = 0. For any ω = (`1, . . . , `|ω|) ∈ Ω, we define by

nx(ω) :=

|ω|∑
n=1

|`n|−1∑
j=0

1{`n(j)=x}

the local time at x ∈ V . Moreover, we consider a weight function, U : N0 → R+
0 , which weighs

the local time at sites and may, for example, suppress configurations with local time above a certain
threshold. We also introduce two parameters β,N ∈ R+

0 and define a probability measure in Ω. Our
measure assigns to any realisation ω ∈ Ω, ω =

(
`1, `2, . . . `|ω|

)
∈ Ω, the weight

PG,U,N,β(ω) :=
1

ZG,U,N,β
1

|ω|!

(
N

2

)|ω| |ω|∏
i=1

β|`i|

|`i|
∏
x∈V

U
(
nx(ω)

)
, (1.1)

where

ZG,U,N,β = 1 +
∞∑
n=1

1

n!

(
N

2

)n ∑
`1...,`n∈Ln

n∏
i=1

β|`i|

|`i|
∏
x∈V

U
(
nx(ω)

)
(1.2)

is the so-called partition function. If there exists someM ∈ N such that the weight function U : N0 →
[0,∞) satisfies

U(n) ≤ M

n
U(n− 1) ∀n ∈ N , (1.3)

we say that U isM -good, and we say that it is good if it isM -good for someM ∈ N. Under condition
(1.3), we can ensure that (1.2) is finite and thus that the measure (1.1) is well defined for each β ≥ 0,
see [30, Lemma 2.2]. We denote by EG,U,N,β the expectation under the measure (1.1).

1.1.1 Special cases

We now discuss special cases and connections to other statistical mechanics models.

The non interacting case. When U(n) = 1 for each n ∈ N0, our model reduces to the random walk
loop soup which has been considered in [2, 33, 11, 21, 35], in which no spatial interaction between the
loops is present. This model is also referred to as Poisson loop ensemble in [11, 23]. To make the cor-
respondence more clear, we recall the definition of the Poisson loop ensemble, following [11, 23]. Two
rooted oriented loops are said to be cp-equivalent if they coincide after a cyclic permutation. Equiva-
lence classes of rooted oriented loops are called unrooted loops. We weigh each rooted oriented loop
` = (x0, x1, . . . , xk) ∈ L through the measure,

µ̂(`) =
1

k

(
1

1 + κ

)k
,

where κ > −1. The push-forward of µ̂ on the space of unrooted loops is denoted by µκ. For α ≥ 0
the Poisson loop ensemble of intensity αµκ, denoted by Lα,κ, is a random countable collection of
unrooted loops such that the point measure

∑
`∈Lα,κ δ` is a Poisson random measure of intensity

αµk (here, δ` is the Dirac mass at the unrooted loop `). This model corresponds to the random walk
loop soup (1.1) in the special case U(n) = 1 for each n ∈ N0, when N

2
= α and β = 1

1+κ
. The

random walk loop soup considered in [21] corresponds to the special (critical) case β = 1
1+κ

= 1
2d

.
The equivalence of the definitions can be deduced from [30, Section 3], where also a third equivalent
formulation (which is recalled later also in the present paper) is presented.
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The Spin O(N) model. The Spin O(N) model is one of the most important statistical mechanics
models. Special cases of the SpinO(N) model are the Ising model, the XY model, and the Heisenberg
model corresponding toN = 1, 2 and 3, respectively. It is a spin system with spins taking values in the
N − 1 dimensional unit sphere, SN−1. The configuration space is the product space Ω = (SN−1)V ,
and the model is defined through the following expectation operator

〈f〉G,N,β =
1

Zs
N,β

∫
Ω

dSf(S) exp
(
− β

∑
{x,y}∈E

Sx · Sy
)
,

where f : Ω 7→ R is any measurable function, dS =
∏

x∈V dSx is the product of uniform measures
in SN−1, and Zs

N,β is a constant such that 〈1〉G,N,β = 1. We use the notation Sx = (S1
x, . . . , S

N
x ).

Our loop model is related to the Spin O(N) model if N ∈ N and U = U s
N , where for each n ∈ N0,

U s
N(n) :=

Γ(N
2

)

2n Γ(n+ N
2

)
. (1.4)

The main connection between the Spin O(N) model and the random walk loop soup is given by the
following equivalence

∀x, y ∈ V 〈S1
xS

1
y〉 =

ZG,UsN ,N,β(x, y)

ZG,UsN ,N,β
, (1.5)

which relates the two-point function, a central object in the analysis of the Spin O(N) model, to the
partition function of a random walk loop soup with an ‘open loop’ connecting x and y,

ZG,U,N,β(x, y) :=
∑

γ∈L(x,y)

β|γ|
∑

ω=(`1,...,`|ω|)∈Ω

(
N

2

)|ω| |ω|∏
i=1

β|`i|

|`i|
∏
x∈V

U
(
nx(ω) + nx(γ)

)
, (1.6)

where U = U s
N , and nx(γ) =

∑|γ|
i=0 1{γ(i)=x} is the local time of the walk γ at x. The identity (1.5)

for U = U s
N was proved in [9] (see also the Appendix of [10] for the correction of a mistake in the

definition of the model in [9]).

The Bose gas. The Bose gas is another important statistical mechanics model. The model is defined
in the functional analytic framework of quantum mechanics (we refer to [26] for its definition and an
overview) and can be reformulated as a random walk loop soup in discrete or continuous space using
the Feynman-Kac formula [18]. One of the most important (unsolved) mathematical problems involving
the Bose gas is the proof of the occurrence of a phase transition, known as Bose-Einstein condensa-
tion, which can be related to the occurrence of macroscopic loops in the corresponding random walk
loop soup [15]. For this reason in recent years significant effort has been made to understand basic
properties of interacting random walk loop soups, see e.g. [4, 6, 7, 8, 12, 13], none of these papers
however considers random loops in the presence of spatial interactions like in the Bose gas or in the
present paper. The model we consider is a simplification of the Bose gas in the grand canonical en-
semble with (short range) interaction potential v = α δ0, with α > 0, if the weight function satisfies
U(n) = exp(−α

(
n
2

)
), with the parameter β playing the role of the fugacity (see [30, Appendix A1] for

a discussion on the connection between our model and the Bose gas). The methods we develop can
be applied in wider generality and adapted directly to the random loop representation of the Bose gas
in discrete space, even in the presence of long range interactions (for clarity and conciseness reasons,
we go for a simpler setting, which is also more general).

Other models. Other relevant models which belong or are related to the general framework of our
random walk loop soup are the double dimer model [29], corresponding to the case U(n) = 1n=1,
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and the loop O(N) model (see [28] and references therein for an overview), which is related to the case
U(n) = 1n≤1. We refer to [30] for a discussion on these connections. Unfortunately not all our results
(but only some of them) can be applied to the study of such cases, since for conciseness reasons it
is practical for us to make the assumption that U(n) > 0 for any n ∈ N0, in order to avoid hard-core
constraints.

1.2 Main results

We now let G = (V,E) be a infinite locally finite connected graph and for each finite subset K ⊂ V
we define the graph GK = (K,EK), where EK is defined as the subset of E whose elements
have both end-points in K . Given any two vertices x, y ∈ V , we denote by {x ↔ y} the event
that there exists a loop visiting both x and y. We say that the random walk loop soup admits expo-
nential decay of the connection probability at (β,N) (in short: it admits exponential decay ) if there
exists c ∈ (0,∞) such that, for each finite subset K ⊂ V , for each x, y ∈ K , we have that,
PGK ,U,N,β(x↔ y) ≤ e−c d(x,y), where d(·, ·) denotes the graph distance in G. We define for each
N > 0 the critical inverse temperature as,

βc(U,N) := sup{β ≥ 0 : exponential decay at (β,N)} , (1.7)

which might be infinite. It is not hard to show that the critical value of the random walk loop soup in the
non-interacting case is 1

2d
. Indeed, in this case the model admits exponential decay if β < 1

2d
, while it

does not admit exponential decay for β = 1
2d

(and it is not well defined for β > 1
2d

, since the partition
function is infinite). Our theorem shows that introducing any form of repulsion (through a ‘good’ weight
function) satisfying quite general conditions increases the critical threshold strictly.

We say that the weight function U is nice if it is good, if U(n) ≤ U(0) for every n ∈ N, and if it
is submultiplicative, i.e., U(n + n′) ≤ U(n)U(n′) for every n, n′ ∈ N (see Section 2 for some
examples of nice weight function, including the Bose gas and the Spin O(N) model).

Theorem 1.1. Let N > 0, suppose that U is nice, and consider the random walk loop soup in Zd.
Then,

βc(U,N) >
1

2d
. (1.8)

Similar enhancement theorems have been proved also for the lattice permutation model [4, 5], and for
the loop O(N) model [31, 19], using methods which are specific for these models.

Fixed a finite bipartite graphG = (V,E), a good functionU : N0 → R+ and parametersN, β ∈ R+,
to state our next main theorem we introduce the density of loops of length k ∈ N,

ρG,U,N,β(k) :=
1

|V |
EG,U,N,β

( |ω|∑
i=1

1{|`i|=k}

)
.

Our next theorem states that the density of loops of any given length k ∈ 2N is strictly positive and
uniformly bounded from above in β, regardless of |V |. Moreover, for every choice of β > 0 we also
deduce a lower bound for the same quantity, which does not depend on |V |.

Theorem 1.2. Let β,N > 0 and let U be a good weight function such that U(n) > 0 for all n ∈ N0.
For any k ∈ 2N there exist c1 = c1(k,∆, N) < ∞ and c2 = c2(k,∆, β,N, U) > 0 such that, for
every finite connected bipartite graph G = (V,E) with maximal degree ∆, we have that,

c2 ≤ ρG,U,N,β(k) ≤ c1 . (1.9)
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Our theorem has two main implications. The lower bound implies that, even in the regime of large
values of β, in which macroscopic loops occur [30] (i.e., loops whose length is proportional to |V |),
there remains a density (depending on β) of microscopic loops (i.e., loops whose length is independent
from |V |) of any length. In other words, microscopic and macroscopic loops coexist. On the other
hand, the main interest of our upper bound is in the fact that it holds uniformly in β. It implies that,
even though increasing β to infinity has the effect of increasing to infinity the local time at each site
uniformly in the size of the system (this follows from [30, Lemma 5.6]), the density of microscopic
loops whose length is less than any finite k is bounded from above uniformly in β and in the size of
the system. In other words, the increase of the local time as β gets larger is only due to an increase
in the number of the longer loops.

Discussion. The techniques that we use to prove our Theorem 1.2 can be applied in wider generality.
For example, they can be adapted to the random walk loop soup representing the Bose gas, even in the
presence of long range interactions (we consider a simpler setting since it is more general and also
for clarity reasons). It is of great interest introducing new methods for the analysis of such models.
Indeed, no proof of occurrence of a phase transition in the Bose gas in dimension d > 2 is known.
Also for the random walk loop soup (1.1) and for its special case, the Spin O(N) model with N > 2,
the only known proof of occurrence of a phase transition when d > 2 uses reflection positivity, which
is a quite limited method. For example it only works on the torus of Zd with even side length and
for certain classes of interactions. It is of great interest providing a more general proof of occurrence
of a phase transition. The derivation of the (uniform in β) upper bound (1.9) can be considered a
progress towards this direction. For concreteness, let GL = (ΛL, EL) be the graph with vertex set
ΛL :=

{
(x1, . . . , xd) ∈ Zd : xi ∈ (−L

2
, L

2
] ∀i ∈ [d]

}
and edges connecting nearest-neighbour

vertices and assume that d > 2. For any good U : N0 → R+ and N, β ∈ R+ consider the average
local time of the microscopic loops

TU,N(β) :=
∞∑
k=2

k lim sup
L→∞

ρG2L,U,N,β(k) . (1.10)

This quantity corresponds to the average number of times sites are visited by some microscopic loop
(note that the limit is taken after the sum, this ensures that only the contribution of the microscopic
loops is taken into account). One expects the local time of the microscopic loops to increase with β
up to reaching the critical threshold βc. Any further increase of β beyond such a threshold is expected
to lead to an increase of the local time of the macroscopic loops but not of the microscopic loops.
Since we know from [30] that the total (i.e., of the microscopic and non-macroscopic loops) local time
increases to infinity with β, providing an upper bound for (1.10) which is finite and uniform in β would
imply the existence of non-microscopic loops, and, thus, the occurrence of a phase transition.

Our Theorem 1.2 provides an upper bound which is uniform in β for each term in the sum in (1.10),
and we consider this an interesting progress. Unfortunately there is still an important gap to fill to show
that the whole sum (and not only any single term which appears in the sum) is bounded from above by
a finite constant uniformly in β, thus obtaining a new general proof of occurrence of a phase transition.

We now present our third and last main result. It is well known from the Mermin-Wagner theorem
that the spin-spin correlation in the Spin O(N) model, 〈S1

xS
1
y〉, decays at least polynomially fast with

|y − x| on Z2, for each integer N ≥ 2. However, (1.5) does not allow us to deduce from this result
that also the probability that x is connected to y by some loop in the random walk loop soup exhibits
the same decay. Our last theorem fills this gap and, in turn, it implies that no macroscopic loop exists
in dimension two.
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Coexistence, enhancements and short loops in random walk loop soups 7

Theorem 1.3. Let d = 2 and recall the definition of GL. Then, for any β ≥ 0 and integer N ≥ 2
there exists c(β,N) ∈ (0,∞) such that for any x, y ∈ Z2, for any L large enough,

PGL,UsN ,N,β(x↔ y) ≤ d(x, y)−c .

It may well be that the same result can be deduced from the loop representations of the Spin O(N)
model which have recently been used in [1, 34], and results on the absence of macroscopic loops in
two dimensions for an analogous loop representation of the Spin O(N) model have also appeared in
[3]. The techniques and results of these papers, however, are limited to the case N = 2.

Notation

N, N0 strictly positive and non-negative integers respectively
R+, R+

0 strictly positive and non-negative real numbers respectively
[n] set of integers {1, 2, . . . , n}
G = (V,E) an undirected, simple, finite graph (sometimes assumed to be bipartite)
U : N0 → R+

0 weight function
L = ∪x∈VL(x, x) set of rooted oriented loops
Ω = ∪n≥0Ln configuration space of the RWLS
PG,U,N,β probability distribution of the RWLS on Ω, defined in (1.1)
ZG,U,N,β partition function related to the distribution PG,U,N,β , given by (1.2)
EG,U,N,β expectation relative to the distribution PG,U,N,β
m = (me)e∈E link configuration, with me ∈ N0 corresponding number of links on the edge e
M = (N0)E set of link configurations on the graph G
π = (πx)x∈V pairings, with πx pairing the links touching x or leaving them unpaired
Px(m) set of pairing configurations for m ∈M at one vertex x
P(m) =

∏
x∈V Px(m) set of pairing configurations for m ∈M

W set of configurations w = (m,π) of the RPM on G
W̃ set of configurations of the RPM with no unpaired links
α(w) number of paths in a RPM configuration w ∈ W
PG,U,N,β probability distribution of the RPM on W̃ , defined by (3.3)
ZG,U,N,β partition function related to the distribution PG,U,N,β
EG,U,N,β expectation under the RPM measure PG,U,N,β
γ(`) equivalence class of a rooted oriented loop ` ∈ L
Σ(L) set of equivalence classes of rooted oriented loops
kγ(ω) multiplicity number of the equivalence class γ ∈ Σ(L) in ω ∈ Ω
ke(ω) multiplicity number of the equivalence class of loops of length two on the edge e in ω ∈ Ω

k̃γ(w) multiplicity number of the equivalence class γ ∈ Σ(L) in a RPM configuration w ∈ W̃
k̃e(w) multiplicity number of the equivalence class of loops of length two on the edge e in w ∈ W̃
Rm set of rooted oriented linked loops relative to a link configuration m ∈M
χ(L) equivalence class of a rooted oriented linked loop L ∈ Rm

Σ(Rm) set of equivalence classes of rooted oriented linked loops
J(`) multiplicity of a rooted oriented loop ` ∈ L
δ(`) stretch factor of a rooted oriented loop ` ∈ L

DOI 10.20347/WIAS.PREPRINT.3029 Berlin 2023
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2 Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. More precisely, we prove a more general result,
Theorem 2.2 below, from which Theorem 1.1 follows as a special case. Recall the definition of nice
weight function U right before Theorem 1.1. Notice also that, if U(0) = a > 1, we can consider
an equivalent model by considering the weight function Ū(·) = Ū(·)/a, which is again nice and
moreover satisfies Ū(0) = 1. Therefore, in what follows, without loss of generality we will assume
that a nice weight function satisfies U(0) = 1.

Example 2.1. We now give further examples of nice weight functions.

� The weight function U s
N of the Spin O(N) model, defined in (1.4), for every integer N ≥ 2.

� The factorial weight function, defined as

UF(n) =
1

n!
. (2.1)

� The pairwise weight function of intensity α ∈ [0,∞), Uα : N0 → (0, 1], defined as

Uα(n) = e−α(
n
2) , n ∈ N0 , (2.2)

for some α > 0.

The next theorem states that the critical inverse temperature of the random walk loop soup with weight
function U is (weakly) bounded from below by the inverse connectivity constant of the weakly self-
avoiding walk with the same weight function.

Theorem 2.2. Let d ≥ 1 and G = (V,E) be Zd. Fix N > 0 and suppose that U is nice. Then,

βc(U,N) ≥ β̃c(U) := sup

{
β ≥ 0 s.t. lim sup

k→∞

1

k
logχU(k) < − log(2dβ)

}
, (2.3)

where, for k ∈ N,

χU(k) := Eo

[∏
x∈V

U(n(k)
x (X))

]
, (2.4)

and Eo denotes the expectation with respect to the law of a simple symmetric random walk (Xt)t≥0

in Zd starting at the origin, and n(k)
x (X) is the number of visits of the walk X at site x before time k,

not counting the initial step, that is to say,

n(k)
x (X) :=

∣∣{j ∈ [k] : Xj = x
}∣∣ .

We will later show how Theorem 1.1 follows from Theorem 2.2.

Proof of Theorem 2.2. Let K ⊂ Zd be finite and let GK = (K,EK) be the subgraph of Zd with
edges having both end-points in K , let o, y ∈ K and set r := d(o, y). Using the symmetry among
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the labels of the loops we have that, for any β ∈ R+,

PGK ,U,N,β(o↔ y) ≤
∑
n≥1

n PGK ,U,N,β
(
|ω| = n, o ∈ `1, |`1| ≥ r

)
=

1

ZGK ,U,N,β

∑
n≥1

1

(n− 1)!

(
N

2

)n ∑
x1,...,xn∈K

∑
`i∈L(xi,xi)
i=1,...,n

n∏
i=1

β|`i|

|`i|
∏
x∈K

U(nx(`1, . . . , `n))1o∈`11|`1|≥r

=
N

2

∑
z∈K

∑
`∈L(z,z)

β|`|

|`|
1o∈`1|`|≥r

× 1

ZGK ,U,N,β

∑
n≥1

1

(n− 1)!

(
N

2

)n−1 ∑
x2,...,xn∈K

∑
`i∈L(xi,xi)
i=2,...,n

n∏
i=2

β|`i|

|`i|
∏
x∈K

U(nx(`, `2, . . . , `n))

≤ N

2

∑
z∈K

∑
`∈L(z,z)

β|`|

|`|
1o∈`1|`|≥r

∏
x∈K

U(nx(`)) (2.5)

≤ N

2

∑
`∈L(o,o)

β|`|1|`|≥r
∏
x∈K

U(nx(`)) (2.6)

≤ N

2

∑
k≥r

(2dβ)kEo

[∏
x∈V

U(n(k)
x (X))1Xk=o

]
(2.7)

≤ N

2

∑
k≥r

(2dβ)kχU(k) ,

where in (2.5) we used that U is sub-multiplicative and in (2.6) we used symmetry with respect to root
of `. Let now β < β̃c(U). The definition of β̃c(U) implies that there exists c1, c2 ∈ (0,∞) such that

(2dβ)kχU(k) ≤ c2 e
−c1k, ∀k ∈ N .

Therefore, for some c3 > 0 it holds

PGK ,U,N,β(o↔ y) ≤ c3 N e−c1d(o, y) , o, y ∈ V . (2.8)

Hence, βc(U,N) > β. Since β < β̃c(U) was chosen arbitrarily, this concludes the proof of the
theorem.

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let G, N , U as in the statement of Theorem 2.2. By Theorem 2.2 it suffices to
show that β̃c(U) > 1

2d
. From the definitions of β̃c(U) and of χU in (2.3) and (2.4), it follows that this

is equivalent to showing that

lim sup
k→∞

1

k
logEo

[∏
x∈V

U(n(k)
x (X))

]
< 0 . (2.9)

By the fact that U is good, it follows that there exists some n̄ ∈ N such that

U(n) ≤ e−1 , ∀n ≥ n̄ .
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Moreover, by the fact that U is sub-multiplicative, splitting the walk (X1, . . . , Xk) into smaller walks
of length 2n̄ (assuming that k is a multiple of 2n̄), we conclude that, a.s.,

∏
x∈V

U(n(k)
x (X)) =

∏
x∈V

U

k/(2n̄)∑
i=1

n(2n̄)
x (X(i))

 ≤∏
x∈V

k/(2n̄)∏
i=1

U(n(2n̄)
x (X(i))) . (2.10)

Therefore, it suffices to notice that the events

Ai = {∃x ∈ V s.t. n(2n̄)
x (X(i)) = n̄} (2.11)

are such that the family of Bernoulli random variables (1Ai)i is i.i.d. of parameter Po(A1). Moreover,

Po(A1)≥ Po

(
n(2n̄)
o (X(1))) = n̄

)
= (2d)−n̄ , (2.12)

indeed, the walk has 2n̄ steps available and has to visit o exactly n̄ times, and this can only be done
by coming back to o at every even step. Therefore, by a Chernoff bound, calling

Rk =

∣∣∣∣{i ≤ k

2n̄
: 1Ai = 1

}∣∣∣∣ , (2.13)

for any d ≥ 1 there exist ε, C1, C2 > 0 (possibly depending on d and n̄) such that the simple random
walk in Zd satisfies

Po (Rk ≤ εk) < C1e
−C2k , ∀k ∈ N . (2.14)

Moreover, using (2.10) and the fact that U is nice we also have, a.s.,

∏
x∈V

U(n(k)
x (X)) ≤

∏
x∈V

k/(2n̄)∏
i=1

U(n(2n̄)
x (X(i))) ≤

k/(2n̄)∏
i=1

∏
x∈V

n
(2n̄)
x (X(i))=n̄

U(n(2n̄)
x (X(i))) . (2.15)

By (2.14) and (2.15) we conclude

Eo

[∏
x∈V

U(n(k)
x (X))

]
≤ C1e

−C2k + e−
ε
2
k , (2.16)

from which (2.9) follows.

3 Random path model

In this section we introduce the Random Path Model (RPM), which is a random loop model that differs
from the Random Walk Loop Soup (RWLS) defined in the introduction. The RPM plays an important
role in the proof of Theorem 1.2. In [30] it was shown that the RPM and RWLS are equivalent. We will
first define the RPM and then recall the equivalence relation between the two models.
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3.1 Definition of the RPM

In this section we define the Random Path Model (RPM). LetG = (V,E) be a finite undirected graph,
and let N > 0. A realisation of the random path model can be viewed as a collection of unoriented
paths which might be closed or open. To define a realisation we need to introduce links and pairings.
We represent a link configuration by m ∈M := (N0)E . More specifically

m =
(
me

)
e∈E ,

where me ∈ N0 represents the number of links on the edge e. Intuitively, a link represents a ‘visit’ at
the edge by a path. The links are ordered by receiving a label between 1 andme. We denote by (e, p)
the p-th link at e ∈ E with p ∈ [me]. If a link is on the edge e = {x, y}, then we say that it touches x
and y.

Given a link configuration m ∈ M, a pairing πx for m at x ∈ V pairs links touching x in such a way
that any link touching x can be paired to at most one other link touching x, and it is not necessarily the
case that all links touching x are paired to another link at x. More formally, πx is a partition of the links
touching x into sets of at most two links. If a link touching x is paired at x to no other link touching x,
then we say that the link is unpaired at x. We denote by Px(m) the set of all such pairings for m at x
and by P(m) we denote the set of vectors π = (πx)x∈V such that πx ∈ Px(m) for all x ∈ V .

A configuration of the random path model is an element w = (m,π) such that m ∈ M, and
π ∈ P(m). We letW be the set of such configurations. Any configuration w ∈ W can be seen as
a collection of (open or closed) paths (also called cycles), which are unrooted and unoriented. For a
formal definition of a path see Section 3.2. We let α(w) denote the number of paths in a configuration
w ∈ W .

With slight abuse of notation, we will also view, m,π, πx : W → N0 as functions such that for any
w′ = (m′, π′) ∈ W ,m(w′) = m′, π(w′) = π′ and πx(w′) = π′x. For any x ∈ V , let ux :W → N0

be the function corresponding to the number of links touching x which are not paired to any other link
touching x. Let further nx :W → N0 be the function corresponding to the number of pairings at x.

We let
W̃ := {w ∈ W : ux = 0 ∀x ∈ V } (3.1)

be the set of configurations in which there exist no unpaired links.

We now introduce a (non-normalised) measure onW and a probability measure on W̃ .

Definition 3.1. Let N, β ∈ R+, U : N0 → R+
0 be given. We introduce the (non-normalised) non-

negative measure µG,U,N,β onW ,

∀w = (m,π) ∈ W µG,U,N,β(w) := Nα(w)

(∏
e∈E

βme(w)

me(w)!

)(∏
x∈V

U(nx(w))

)
. (3.2)

Given a function f :W → C, we represent its average by µG,U,N,β
(
f
)

:=
∑
w∈W

µG,U,N,β(w)f(w).

We define the measure µ`G,U,N,β as the restriction of the measure µG,U,N,β to the set of configurations
W̃ and define a probability measure on W̃ by

∀w = (m,π) ∈ W̃ PG,U,N,β(w) :=
µ`G,U,N,β(w)

Z`G,U,N,β
, (3.3)

where Z`G,U,N,β := µG,U,N,β(W̃) is the partition function. We denote by EG,U,N,β the expectation
under the measure PG,U,N,β . Sometimes, for a lighter notation, we will omit the sub-scripts.
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3.2 Equivalence

In [30, Section 3] it is shown that the RWLS and the RPM are equivalent if one considers the expec-
tation of functions which do not depend on certain features of the configurations. In [30] the RPM was
introduced slightly differently, namely, each path in a configuration has a colour from 1 to N , and the
factor N# loops does not appear in the definition of the measure. The equivalence between the RPM
and RWLS was thus shown for any N ∈ N only, but with the definition of the RPM in Section 3.1, the
result of [30, Section 3] can easily be extended to any N > 0.

In this section we will present a special case of [30, Theorem 3.14] that we will apply in the proof of
Theorem 1.2 and that further reflects the similarity between the two models. Informally said, we will
show that the expected number of loops of any given shape is identical in both models. We will first
introduce an equivalence relation on L and then define so-called multiplicity numbers.

Throughout this section, we fix an arbitrary undirected, finite graph G = (V,E), parameters N, β ∈
R+ and a good weight function U : N0 → R+

0 .

Equivalence classes of rooted oriented loops in the RWLS. We now introduce an equivalence
relation on L. We call two r-o-loops `, `′ ∈ L equivalent if one sequence can be obtained as a
time-reversion, a cyclic permutation or a combined time-reversion and cyclic permutation of the other
sequence, see [30, Section 3] for a precise definition. We denote the equivalence class of ` ∈ L by
γ(`) and by Σ(L) we denote the set of equivalence classes of r-o-loops.

Multiplicity numbers in the RWLS. For any γ ∈ Σ(L) we introduce the multiplicity number kγ :
Ω → N0, which for any ω = (`1, . . . , `|ω|) ∈ Ω counts the number of r-o-loops in ω that are an
element of γ, i.e.,

kγ(ω) :=
∣∣∣{i ∈ {1, . . . , |ω|

}
: `i ∈ γ

}∣∣∣ . (3.4)

For e = {x, y} ∈ E and γ = γ((x, y, x)) ∈ Σ(L), we also write ke = kγ for the number of loops
of length two on the edge e.

Multiplicity numbers in the RPM. Givenm ∈M, a rooted oriented linked loop (in short: r-o-l-loop)
for m is an ordered sequence of nearest-neighbour vertices and pairwise distinct links,

L = (x0, ({x0, x1}, p1), x1, ({x1, x2}, p2), . . . , ({xk−1, xk}, pk), xk
)
,

where pj ∈ {1, . . . ,m{xj−1,xj}} for each j ∈ [k] and such that x0 = xk for some k ≥ 2. The vertex
x0 is called the root of L, the link ({x0, x1}, p1) is called the starting link of L and the length of L
is defined by |L| := k. We let Rm be the set of all r-o-l-loops for m. Two r-o-l-loops are said to be
equivalent if one sequence can be obtained from the other sequence as a time-inversion, or as a cyclic
permutation, or a combination of the two; see again [30, Section 3]. We denote by χ(L) ⊂ Rm the
equivalence class of L ∈ Rm and we denote by Σ(Rm) the set of equivalence classes of r-o-l-loops.
The equivalence class of a r-o-l-loop will simply be referred to as cycle, which can be thought of as an
unoriented loop with no root.

A set of cycles for m, A ⊂ Σ(Rm) is called an ensemble of cycles for m if every link is contained in
precisely one cycle of the set, i.e., if for every (e, p) with e ∈ E and p ∈ [me], there exists precisely
one χ ∈ A such that (e, p) ∈ χ. We denote by Em the set of ensembles of cycles for m.
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For any w = (m,π) ∈ W̃ , we can uniquely construct an ensemble of cycles

ζ(w) := {χ1(w), . . . , χk(w)(w)} ∈ Em (3.5)

as follows: We take any link ({x, y}, p{x,y}) and choose a point z0 ∈ {x, y}. Step by step, we
construct a r-o-l-loop L1 for m with root z0 and with starting link ({x, y}, p{x,y}) by choosing z1 ∈
{x, y} \ {z0} as the next vertex and by choosing the link which is paired at z1 to ({x, y}, p{x,y}) as
the next link in the sequence. We continue until we are back at the link ({x, y}, p{x,y}). We define the
cycle χ1(w) ∈ Σ(Rm) as the equivalence class of L1. For the next cycle, we choose a link that has
not been selected yet and proceed as before. We continue until all links have been selected.

For m ∈M, we introduce the map
ϑ : Rm → L , (3.6)

which acts by projecting a r-o-l-loop L = (x0, ({x0, x1}, p1), x1, . . . , ({xk−1, xk}, pk), xk
)
∈ Rm

onto the corresponding r-o-loop ϑ(L) := (x0, x1, . . . , xk) ∈ L by ‘forgetting’ about the links in the
sequence. It is important to note that any two r-o-l-loops L,L′ ∈ Rm are equivalent if and only if the
r-o-loops ϑ(L), ϑ(L′) ∈ L are equivalent. By slight abuse of notation, we thus also use the function
ϑ to map an equivalence class χ ∈ Σ(Rm) to its corresponding equivalence class ϑ(χ) ∈ Σ(L).

For any γ ∈ Σ(L) we introduce the multiplicity number k̃γ : W̃ → N0, which for any w ∈ W̃ counts
the number of times a cycle χ ∈ ζ(w) projects onto γ, i.e.,

k̃γ(w) :=
∣∣∣{χ ∈ ζ(w) : ϑ(χ) = γ

}∣∣∣ . (3.7)

For e = {x, y} ∈ E and γ = γ((x, y, x)) ∈ Σ(L), we also write k̃e = k̃γ .

A special case of [30, Theorem 3.14] is the following lemma, which states that the expected multiplicity
numbers are identical in the RWLS and RPM.

Lemma 3.2. For any A ⊂ E and any functions fe : N0 → R, e ∈ A, it holds that

EG,U,N,β
(∏
e∈A

fe(ke)

)
= EG,U,N,β

(∏
e∈A

fe(k̃e)

)
. (3.8)

Further, for any γ ∈ Σ(L), it holds that

EG,U,N,β(kγ) = EG,U,N,β(k̃γ) . (3.9)

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We present the proofs of the upper and lower bounds separately
in Sections 4.1 and 4.2, respectively.

4.1 Uniform upper bound on the density of any fixed microscopic loop

Throughout this section, we fix an arbitrary finite undirected bipartite graph G = (V,E) with V =
V1 t V2 and each edge in E connects a point of V1 with a point of V2. Further, we fix parameters
N, β ∈ R+ and a good weight function U : N0 → R+

0 . The proof of the upper bound in Theorem 1.2

DOI 10.20347/WIAS.PREPRINT.3029 Berlin 2023



N. Forien, M. Quattropani, A. Quitmann, L. Taggi 14

will follow from Proposition 4.1 below. Before stating the proposition, we need to introduce some
functions acting on Σ(L), where we recall from Section 3.2 that Σ(L) denotes the set of equivalence
classes of L.

Given two r-o-loops `, `′ ∈ L such that `(0) = `′(0), we define their concatenation as ` ⊕ `′ :=(
`(0), . . . , `(|`|), `′(1), . . . , `′(|`′|)

)
. We define the multiplicity of `, J(`), as the maximal integer

n ∈ N such that ` can be written as the n-fold concatenation of some r-o-loop, ˜̀, with itself. We call
a r-o-loop ` stretched if there exists a cyclic permutation of ` that is identical to r(`). Otherwise the
r-o-loop is called unstretched, see also [30, Figure 3]. For any ` ∈ L, we define the stretch-factor δ(`)
by

δ(`) :=

{
1 if ` is stretched,

2 if ` is unstretched.

For any x ∈ V and ` ∈ L, we denote by nx(`) the number of visits at x by `, namely,

nx(`) :=

|`|−1∑
i=0

1{`(i)=x} .

We define the support of ` by

supp (`) :=
{
x ∈ V : nx(`) > 0

}
. (4.1)

Note that, for any pair of equivalent r-o-loops `, `′ ∈ L, it holds that J(`) = J(`′), δ(`) = δ(`′),
nx(`) = nx(`

′) and supp (`) = supp (`′). Thus, by slight abuse of notation, we also use the
notations J(γ), δ(γ), nx(γ) and supp(γ) for equivalence classes γ ∈ Σ(L). Further, we denote by
α(γ) the length of any r-o-loop in γ and by |γ| we denote the cardinality of the class γ.

For any a ∈ N and γ ∈ Σ(L), we further define

µa(γ) := EG,U,N,β
[
kγ(kγ − 1) . . . (kγ − a+ 1)

]
, (4.2)

where we recall from (3.4) that kγ(ω) counts the number of loops in ω ∈ Ω that are an element of the
equivalence class γ. We now have all ingredients to state Proposition 4.1.

Proposition 4.1. For any a ∈ N and γ ∈ Σ(L), it holds that,

µa(γ) ≤ λ(γ)a, (4.3)

where

λ(γ) :=
δ(γ)

J(γ)
× N

2
×max

{
e
N
2 ,

2e

N

}α(γ)
2

.

We remark that (4.3) implies that kγ has Poisson-like tails. More precisely, applying Markov’s inequality,
we deduce from (4.3) that for any a ∈ N with a ≥ λ(γ), it holds that,

PG,U,N,β
(
kγ ≥ a

)
= PG,U,N,β

(
kγ(kγ − 1) · · · (kγ − a+ 1) ≥ a!

)
≤ µa(γ)

a!
≤ λ(γ)a

a!
.

We now explain how the upper bound of Theorem 1.2 follows from Proposition 4.1.
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Proof of the upper bound in Theorem 1.2. Let k ∈ N and ∆ denote the maximal degree of G. Apply-
ing Proposition 4.1 with a = 1 and bounding δ ≤ 2 and J ≥ 1, we deduce that,

ρ(2k) =
1

|V |
∑

γ∈Σ(L):
α(γ)=2k

EG,U,N,β
[
kγ
]
≤ N

[
∆2 max

{
e
N
2 ,

2e

N

}]k
, (4.4)

where we used that |{γ ∈ Σ(L) : α(γ) = 2k}| ≤ |V |∆2k for any k ∈ N. Since (4.4) holds
uniformly with respect to β and |V |, this finishes the proof of the upper bound in Theorem 1.2.

The remainder of the current section is devoted to the proof of Proposition 4.1. The proof consists of
two main steps. In Section 4.1.1 we first derive a formula for µa(γ) in terms of loops of length two,
which reduces the problem to the study of the distribution of such short loops. The formula is written
in Lemma 4.2 below. In Section 4.1.2 we then derive a control on the distribution of double links, i.e.,
loops of length two, in the RPM. As a preliminary step, in Lemma 4.4, we show a conditional inde-
pendence property of the RPM which provides a connection with Ewens Permutations. The stochastic
upper bound on the density of double links is then presented in Lemma 4.5 and follows from an ele-
mentary uniform upper bound on the number of fixed points in a large random permutation. In Section
4.1.3, we apply Lemma 4.2 and Lemma 4.5, as well as the equivalence between the RPM and RWLS
(see Lemma 3.2) to conclude the proof of Proposition 4.1.

4.1.1 Decomposition of loops into loops of length two

In this section we will decompose any loop ` ∈ L into loops of length two. For this purpose we
introduce the function qe(`), ` ∈ L, e ∈ E, which counts the number of even steps of the loop ` on
the edge e, namely,

qe(`) :=
∣∣{j ∈ {0, . . . , |`| − 1} : {`(2j), `(2j + 1)} = e

}∣∣ .
For any γ ∈ Σ(L), we choose an arbitrary loop ` ∈ γ and we define qe(γ) = qe(`) for any e ∈ E
(the result depends on the choice of the loop, which amounts to choosing which steps are odd and
which steps are even in γ).

Lemma 4.2. For any k ∈ N, any γ ∈ Σ(L) of length α(γ) = 2k and for any a ∈ N, we have that,

µa(γ) = ψ(γ)a×EG,U,N,β

∏
e∈E

∏
0≤ i< a×qe(γ)

(ke − i)

 , where ψ(γ) =
δ(γ)

J(γ)

(
2

N

)k−1

,

(4.5)
with the natural convention that the second product is 1 when qe(γ) = 0.

Proof. Let k ∈ N and γ ∈ Σ(L) with α(γ) = 2k and let a ∈ N. If k = 1, then (4.5) is trivial since
δ(γ) = J(γ) = 1. Assume now that k ≥ 2, i.e., that γ is not a loop of length two. Let us consider the
event

Ωγ,a =
{
ω ∈ Ω : kγ(ω) ≥ a

}
,

which is the set of configurations in which at least a occurrences of loops belonging to the equivalence
class γ are present.

On this set we introduce the map φ : Ωγ,a → Ω, which for any ω ∈ Ωγ,a acts by removing the first a
loops which belong to the equivalence class γ, by reindexing the remaining loops without changing
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`1

`1(0)

`2

`3

(a)

`′3

`′4

`′5

`′6
`′1

`′2

(b)

Figure 1: (a) A configuration ω = (`1, `2, `3) ∈ Ωγ,1, where γ := γ(`1) ∈ Σ(L). The roots
of the rooted oriented loops in ω are represented by the larger filled circles. (b) The configuration
φ(ω) = (`′1, `

′
2, `
′
3, `
′
4, `
′
5, `
′
6) ∈ Ω, where we set qe(γ) = qe(`1) for any e ∈ E.

their order, and by adding a× qe(γ) loops of length two on each edge e ∈ E (choosing arbitrarily the
root of each loop), appending these loops at the end of the sequence that is obtained from ω after the
removal of the a loops, with an arbitrary deterministic order on E, see also Figure 1.

Let us now define an equivalence relation for RWLS configurations, which is taken from [30]. We
call two configurations ω, ω′ ∈ Ω equivalent if there exists n ∈ N such that ω = (`1, . . . , `n)
and ω′ = (`′1, . . . , `

′
n) and if there exists a permutation π ∈ Sn such that `π(i) ∈ γ(`′i) for all i ∈ [n].

We denote by Σ(Ω) the set of equivalence classes of Ω, and by Σ(Ωγ,a) the set of equivalence
classes of configurations in Ωγ,a.

Note that, the functions kγ′ for γ′ ∈ Σ(L), as well as the local time, are constant on equivalence
classes, which allows us to define kγ′(ρ), ke(ρ) and nx(ρ) for an equivalence class ρ ∈ Σ(Ω). For
any ρ ∈ Σ(Ω), we set

ν(ρ) =
∑
ω∈ρ

PG,U,N,β(ω) .

By [30, Eq. (3.19)] we have that,

ν(ρ) =
1

ZG,U,N,β

∏
γ′∈Σ(L)

1

kγ′(ρ)!

(
Nβα(γ′)δ(γ′)

2J(γ′)

)kγ′ (ρ) ∏
x∈V

U
(
nx(ρ)

)
, (4.6)

where the product is in fact finite.

For all configurations ω, ω′ ∈ Ωγ,a, we have that ω and ω′ are equivalent if and only if φ(ω)
and φ(ω′) are equivalent. Therefore, we may define a lifted map Φ : Σ(Ωγ,a) → Σ(Ω) which is
such that Φ(ρ(ω)) = ρ(φ(ω)) for every configuration ω ∈ Ωγ,a, and which is injective. We then have

Φ
(
Σ(Ωγ,a)

)
=
{
ρ ∈ Σ(Ω) : ∀e ∈ E, ke(ρ) ≥ a× qe(γ)

}
. (4.7)

We now wish to compare ν(ρ) with ν(Φ(ρ)). On the one hand, note that our map φ, and hence
also Φ, does not change the local time at any vertex of the graph. On the other hand, recalling our
assumption that γ is not the class of a loop of length two, we have that, for any ρ ∈ Σ(Ωγ,a) and any
γ′ ∈ Σ(L) with α(γ′) > 2,

kγ′
(
Φ(ρ)

)
=

{
kγ(ρ)− a if γ′ = γ ,

kγ′(ρ) if γ′ 6= γ ,
(4.8)
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while, for any e ∈ E, it holds

ke
(
Φ(ρ)

)
= ke(ρ) + a× qe(γ) . (4.9)

From (4.6), (4.8), (4.9) and using that δ(γ′) = J(γ′) = 1 when γ′ is the equivalence class of a loop
of length two, we obtain that, for every ρ ∈ Σ(Ωγ,a),

ν
(
Φ(ρ)

)
= ν(ρ)

∏
γ′∈Σ(L)

kγ′(ρ)!

kγ′
(
Φ(ρ)

)
!

(
Nβα(γ′)δ(γ′)

2J(γ′)

)kγ′ (Φ(ρ))−kγ′ (ρ)

= ν(ρ)

(
kγ(ρ)

)
!(

kγ(ρ)− a
)
!

(
2J(γ)

Nβ2kδ(γ)

)a∏
e∈E

ke(ρ)!(
ke(ρ) + a× qe(γ)

)
!

(
Nβ2

2

)a×qe(γ)

= ν(ρ)

(
kγ(ρ)

)
!(

kγ(ρ)− a
)
!
ψ(γ)−a

∏
e∈E

ke(ρ)!(
ke(ρ) + a× qe(γ)

)
!
, (4.10)

where, in the last equality, we used the relation∑
e∈E

qe(γ) =
α(γ)

2
= k .

Using (4.10), (4.9) and recalling that Φ is injective, we obtain

µa(γ) =
∑

ρ∈Σ(Ωγ,a)

ν(ρ)

(
kγ(ρ)

)
!(

kγ(ρ)− a
)
!

=
∑

ρ∈Σ(Ωγ,a)

ν
(
Φ(ρ)

)
ψ(γ)a

∏
e∈E

(
ke(ρ) + a× qe(γ)

)
!

ke(ρ)!

= ψ(γ)a
∑

ρ′∈Φ(Σ(Ωγ,a))

ν(ρ′)
∏
e∈E

ke(ρ
′)!(

ke(ρ′)− a× qe(γ)
)
!

= ψ(γ)a
∑

ρ′∈Σ(Ω)

ν(ρ′)
∏
e∈E

∏
0≤ i< a×qe(γ)

(
ke(ρ

′)− i
)
,

where, in the last step, we used the fact that the product is zero when ρ′ ∈ Σ(Ω) \ Φ
(
Σ(Ωγ,a)

)
,

which follows from (4.7). This concludes the proof of Lemma 4.2.

Decomposition of an open path to study correlation functions

As a side remark, let us point out that the above technique may also be applied to study the correlation
functions, by replacing one open path with loops of length two. More precisely, we have the following
result, where we recall from the beginning of this section that we fix a bipartite graph G = (V,E) and
denote by V1, V2 ⊂ V the disjoint subsets such that V = V1 t V2.

Lemma 4.3. For every x ∈ V1 and y ∈ V2, the two-point function defined in (1.5) may be expressed
as

ZG,U,N,β(x, y)

ZG,U,N,β
=

1

β

∑
`∈L(x, y)

(
2

N

) |γ|+1
2

EG,U,N,β

∏
e∈E

∏
0≤ i< qe(γ)

(ke − i)

 ,

where, for every path γ ∈ Cx,y and every edge e ∈ E, qe(γ) is the number of odd steps of the path γ
on the edge e.
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The assumption that G is bipartite is intended to guarantee that all the open paths from x ∈ V1

to y ∈ V2 have odd length, which has the convenient consequence that the path may be replaced with
loops of length two without changing the local time anywhere.

The other difference with Lemma 4.2 is that there is no multiplicity factor δ(γ)/J(γ) due to the number
of possibilities to obtain the loop, because an open path from x to y already has a well defined starting
point and orientation.

We omit the detailed proof because, apart from these two details, it is very similar to the proof of
Lemma 4.2 and in any case we do not use this result in what follows.

4.1.2 Ewens Permutations and conditional independence on the RPM

Let us denote by Sn the set of permutations of the set [n] = {1, . . . , n}. For every σ ∈ Sn, we
denote by c(σ) the number of cycles in the decomposition of σ into disjoint cycles, counting also the
cycles of length one as cycles, so that for example c(Id) = n. The Ewens distribution on the set Sn
is the probability distribution defined by,

P Ewens
θ, n (σ) =

θc(σ)

Z(θ, n)
, (4.11)

where θ > 0 is a parameter and Z(θ, n) is the normalizing constant. Following [14], we have that

Z(θ, n) = θ(θ + 1) . . . (θ + n− 1) . (4.12)

We write FP(σ) = {i ∈ [n] : σ(i) = i} for the set of the fixed points of the permutation σ.

In the next lemma, we study the occurrences of loops of length two in configurations of the RPM, which
was defined in Section 3.

For any e ∈ E and any w ∈ W̃ , we recall from (3.7) that k̃e(w) denotes the number of double links
on e, where a double link is defined as a pair of links on e that are paired together at both its endpoints.

For any {x, y} ∈ E, m ∈ M and πy ∈ Py(m), we call a pair of links ({x, y}, p), ({x, y}, p′)
with p, p′ ∈ [m{x,y}] a vertical pairing on y towards x if they are paired together at y, i.e., if{

({x, y}, p), ({x, y}, p′)
}
∈ πy. We let vy,x = vy,x(m,πy) denote the number of vertical pairings

on y towards x.

In the following, with a slight abuse of notation, we will write nx = nx(m) = 1
2

∑
y∼xm{x,y} for any

m ∈M and x ∈ V .

Lemma 4.4. For any (ae)e∈E ∈ (N0)E , m ∈ M and (πy)y∈V2 with πy ∈ Py(m) for any y ∈ V2, it
holds that,

PG,U,N,β
(
∀e ∈ E, k̃e = ae

∣∣∣m, (πy)y∈V2

)
=
∏
x∈V1

p
(
N/2, nx, (vy,x)y∼x,

(
a{x,y}

)
y∼x

)
,

(4.13)
where we defined

p(θ, n, v1, . . . , vr, a1, . . . , ar) := PEwens
θ, n

(
∀j ≤ r, |FP(σ) ∩ Aj| = aj

)
, (4.14)

where r is the degree of the vertex x in the graph G and the sets Aj are arbitrarily chosen pairwise
disjoint subsets of [n] with |Aj| = vj for every j ≤ r.
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Proof. Let (ae)e∈E ∈ (N0)E and m ∈M. The proof of the lemma proceeds in two steps. In the first
step, we fix a single vertex x ∈ V and study the joint distribution of double links on the edges adjacent
to x, conditioned on m and on the pairings at all vertices z ∈ V with z 6= x. More precisely, we will
show that for any (πz)z∈V \{x} with πz ∈ Pz(m) for all z ∈ V \ {x}, it holds that,

P
(
k̃{x,y} = a{x,y} ∀y ∼ x

∣∣∣m, (πz)z∈V \{x}) = p
(
N/2, nx, (vy,x)y∼x,

(
a{x,y}

)
y∼x

)
. (4.15)

In the second step we will then provide an argument based on induction to deduce (4.13) from (4.15).

Let us begin with the proof of (4.15) and let (πz)z∈V \{x} with πz ∈ Pz(m) for all z ∈ V \ {x}. Given
m and (πz)z∈V \{x} we obtain a collection of closed loops, which do not visit x and of ‘half-loops’,
namely open paths starting and ending at x and not visiting x in between. The number of such half-
loops is given by nx. From the definition of the RPM it follows that, conditioned onm and (πz)z∈V \{x},
the probability of any pairing πx ∈ Px(m) at x is proportional to N to the power of the number of
loops in the resulting configuration. More precisely, if for any πx ∈ Px(m) we denote by c(πx) the
number of loops touching x in the configuration (m, (πz)z∈V ) and if we denote by P̄ the conditional
probability when m and (πz)z∈V \{x} are fixed, then for any π̃x ∈ Px(m), it holds that,

P̄(πx = π̃x) =
N c(π̃x)

Z̃
(4.16)

for some normalising constant Z̃ = Z̃(nx, N). We will now explain a procedure how to construct the
pairings at x with conditional distribution given by (4.16). We proceed by

(i) labelling the half-loops incident to x with integers from 1 to nx,

(ii) choosing uniformly and independently an orientation for each of these half-loops, independently
of everything else. Then the situation at x is that we have nx ingoing links and nx outgoing links,
each half-loop starting with an outgoing link and finishing with an ingoing link,

(iii) drawing a permutation of the set {1, . . . , nx} according to the Ewens distribution of parame-
ter θ = N/2, independently of everything else,

(iv) pairing the ingoing link of the half-loop number i with the outgoing link of the half-loop num-
ber σ(i) for every i ∈ {1, . . . , nx}, as drawn in Figure 2,

(v) eventually, forgetting the orientation of the loops, so to obtain a random pairing πx of the links
at the site x.

We will now show that under this procedure, the distribution of πx under P̄ is indeed given by (4.16).
For this, letO denote the set of the 2nx possible orientations of the half-loops at x. Moreover, for every
pairing π̃x ∈ Px(m) of the links incident to x, letO(π̃x) ⊂ O denote the set of all orientations of the
half-loops at x which are compatible with π̃x, in the sense that the orientations are consistent along
the cycles of π̃x. Then we have |O(π̃x)| = 2c(π̃x). Therefore, letting O be the random orientation
of the half-loops chosen during the above procedure, the conditional probability to obtain a given
pairing π̃x ∈ Px(m) is given by

P̄(πx = π̃x) =
∑

o∈O(π̃x)

P̄(O = o) P̄(πx = π̃x | O = o) =
∑

o∈O(π̃x)

1

2nx
× (N/2)c(π̃x)

Z(N/2, nx)

= 2c(π̃x) × 1

2nx
× (N/2)c(π̃x)

Z(N/2, nx)
=

N c(π̃x)

2nxZ(N/2, nx)
,
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x

(a)

x

15
2

3

4

(b)

Figure 2: (a) A link configuration m ∈ M and a pairing configuration πz ∈ Pz(m) at all vertices
z 6= x. The pairings are represented by the dotted gray lines. We obtain a collection of two closed
loops not visiting x and of 5 = nx open paths starting and ending at x not visiting x in between. The
colours in the figure are only for illustration. (b) Illustration of the pairing construction at x. The open
paths were labelled from 1 to 5 and for each of the paths we chose an orientation uniformly at random.
Our permutation σ ∈ S5 is given by σ(1) = 1, σ(2) = 3, σ(3) = 2, σ(4) = 5 and σ(5) = 4. The
ingoing-link of path i is paired with the outgoing link of path σ(i). We obtain three closed loops at x
and one of them is a loop of length two, i.e., a double link.

as required. Let us now consider the event

Ax =
{
w ∈ W̃ : k̃{x,y} = a{x,y} ∀y ∼ x

}
.

With the above construction, a half-loop of length two incident to x (which corresponds to a vertical
pairing at y on the edge {x, y}) with a certain label, say i, becomes a closed loop of length two if and
only if i is a fixed point of the permutation drawn in the above procedure. Thus, for every x ∈ V1, we
have

PG,U,N,β
(
Ax
∣∣∣m, (πy)y∈V \{x}

)
= p

(
N/2, nx, (vy,x)y∼x,

(
a{x,y}

)
y∼x

)
,

with p the function defined by (4.14). This proves (4.15).

Now, to conclude the proof, it is enough to show that, for every W ⊆ V1, we have

PG,U,N,β

( ⋂
x∈W

Ax

∣∣∣∣∣m, (πy)y∈V2

)
=
∏
x∈W

PG,U,N,β
(
Ax
∣∣∣m, (πy)y∈V2

)
. (4.17)

We proceed by induction on the size of W . The claim is obvious if W has cardinality 1. Assume now
that 0 ≤ r < |V1| is such that (4.17) is true for every W ⊂ V1 with |W | = r, and let W ⊂ V1

with |W | = r + 1. Choosing an arbitrary point x ∈ W and using the tower property of conditional
expectations, we may write

P
( ⋂

z∈W

Az
∣∣∣m, (πy)y∈V2

)
= E

[
P
( ⋂
z∈W

Az
∣∣∣m, (πy)y∈V \{x}

) ∣∣∣∣m, (πy)y∈V2

]

= E

[( ∏
z∈W\{x}

1Az

)
P
(
Ax
∣∣∣m, (πy)y∈V \{x}

) ∣∣∣∣m, (πy)y∈V2

]

= P

( ⋂
z∈W\{x}

Az

∣∣∣∣∣m, (πy)y∈V2

)
× P

(
Ax
∣∣∣m, (πy)y∈V \{x}

)
,

(4.18)
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where, in the second equality, we used the fact that, for every z ∈ V1 \ {x}, since z is not a neigh-
bour of x, the event Az is measurable with respect to the sigma-algebra generated by the vertical
pairings (πy)y∈V \{x} and in the last equality we applied (4.15). Using the induction hypothesis, we
deduce that (4.17) holds for W , which finishes the proof by induction and, consequently, the proof of
the lemma.

With the result of Lemma 4.4 at hand, we are now ready prove the following stochastic domination.

Lemma 4.5. For any x ∈ V1, let us denote by Xx : W̃ → N0 the number of double links around the
vertex X , that is to say,

∀w ∈ W̃ , Xx(w) :=
∑
y∼x

k̃{x,y}(w).

Let further (Yx)x∈V1 be i.i.d. random variables taking values in N0, with distribution given by

∀k ∈ N , P (Yx ≥ k) = min

{
1,

∞∑
j=k

max
{

1, N/2
}j

j!

}
. (4.19)

Then, we have the stochastic domination (Xx)x∈V1 � (Yx)x∈V1 .

Proof. To begin, we note that Lemma 4.4 implies that, conditionally on m ∈ M and (πy)y∈V2 with
πy ∈ Py(m) for all y ∈ V2, the variables (Xx)x∈V1 are independent and, for every x ∈ V1 and
every k ∈ N, we have that,

PG,U,N,β
(
Xx ≥ k

∣∣∣m, (πy)y∈V2

)
=

∑
(ay)y∼x :

∑
y∼x ay ≥ k

p

(
N

2
, nx, (vy,x)y∼x, (ay)y∼x

)

= q

(
N

2
, nx,

∑
y∼x

vy,x, k

)
,

where, for every θ ∈ R+
0 and n, v, k ∈ N, we defined

q(θ, n, v, k) := P Ewens
θ, n

(∣∣FP(σ) ∩ {1, . . . , v}
∣∣ ≥ k

)
.

Now note that, for every θ ∈ R+
0 , n ≥ k ≥ 0 and v ≥ 0, we have

q(θ, n, v, k) ≤ P Ewens
θ, n

(∣∣FP(σ)
∣∣ ≥ k

)
=

1

Z(θ, n)

n∑
j=k

(
n

j

)
θj
∑

σ∈Sn−j

θc(σ)
1{FP(σ)=∅}

≤ 1

Z(θ, n)

n∑
j=k

(
n

j

)
θjZ(θ, n− j) =

n∑
j=k

θj(1 + n− 1) . . . (1 + n− j)
j!(θ + n− 1) . . . (θ + n− j)

≤
n∑
j=k

θj

j! min{1, θ}j
=

n∑
j=k

max{1, θ}j

j!
≤

∞∑
j=k

max{1, θ}j

j!
,

where in the fourth step we applied (4.12). Since q(θ, n, v, k) is a probability (and is 0 if k > n), we
deduce that for every n, v, k ≥ 0, we have

q

(
N

2
, n, v, k

)
≤ min

{
1,

∞∑
j=k

max
{

1, N/2
}j

j!

}
= P (Yx ≥ k) .

Thus, we proved the stochastic domination conditionally on m and (πy)y∈V2 , with a stochastic upper
bound which only depends on N , hence the claimed uniform stochastic upper bound follows.
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4.1.3 Concluding proof of the upper bound in Theorem 1.2

We are now in a position to prove the upper bound on the density of any microscopic loop.

Proof of Proposition 4.1. Let k ∈ N and γ ∈ Σ(L) with α(γ) = 2k. Upon exchanging V1 and V2,
we may assume that |V1 ∩ supp (γ)| ≤ k. Let a ∈ N. Applying Lemma 4.2 we have that,

µa(γ) ≤ ψ(γ)a E
( ∏
x∈V1

∏
y∼x

k{x,y}!

(k{x,y} − a q{x,y}(γ))!
1{k{x,y}≥a×q{x,y}(γ)}

)
≤ ψ(γ)a E

( ∏
x∈V1∩ supp (γ)

Xx!

(Xx − a× nx(γ))!
1{Xx≥a×nx(γ)}

)

≤ ψ(γ)a
∏

x∈V1∩ supp (γ)

emax{1,N
2
}E

(
Z!

(Z − a× nx(γ))!
1{Z≥a×nx(γ)}

)
= ψ(γ)a

∏
x∈V1∩ supp (γ)

emax{1,N
2
} max{1, N

2
}a×nx(γ)

≤ ψ(γ)a max{e, e
N
2 }k max{1, N

2
}a×k

≤
(
ψ(γ) max{e, e

N
2 }k max{1, N

2
}k
)a

= λ(γ)a,

(4.20)

where in the second step we applied Lemma 3.2 and then we used that

n1!n2!

(n1 − k1)!(n2 − k2)!
≤ (n1 + n2)!

(n1 + n2 − k1 − k2)!

for any n1, n2, k1, k2 ∈ N0. In the third step we applied Lemma 4.5. Here, Z is a random variable that
is Poisson distributed with parameter max{1, N

2
} and by E we denote the expectation with respect

to Z . This concludes the proof of the proposition.

4.2 Proof of the lower bound in Theorem 1.2

In this section we prove the lower bound of Theorem 1.2. Throughout the section, we fix parameters
β,N > 0 and M,∆ ∈ N, and a function U : N0 → R+ that is M -good and fully supported, i.e.,
U(n) > 0 for all n ∈ N.

Proposition 4.6. Fix k ∈ N. There exists ε = ε(k,∆, β,N, U) such that for every finite connected
graph G = (V,E) with maximal degree ∆ and every γ ∈ Σ(L) with α(γ) = 2k it holds

EG,U,N,β[kγ] > ε . (4.21)

The above proposition then implies the lower bound of Theorem 1.2, by simply considering the loops
of length 2k which are the concatenation of k times the same loop of length 2.

We first prove the above proposition in the framework of the RPM. Proposition 4.6 will then follow
immediately from Lemma 3.2. We begin by showing the following lemma, which states that the local
time has finite moments.
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Lemma 4.7. For all m ∈ N, there exists b = b(m,∆, β,N, U) < ∞ such that, for every finite
connected graph G = (V,E) and every o ∈ V having degree at most ∆,

EG,U,N,β[nmo ] ≤ b . (4.22)

An immediate consequence of the above lemma is the following corollary.

Corollary 4.8. Fix a ∈ N. There exists n̄ = n̄(a,∆, β,N, U) < ∞ such that for every finite
connected graph G = (V,E) of maximal degree ∆ and any A ⊂ V such that |A| = a, it holds that

PG,U,N,β(∀x ∈ A, nx ≤ n̄) ≥ 1

2
. (4.23)

Proof. Using the union bound, Markov’s inequality and (4.22), and choosing n̄ = 2ab, where b is as
in Lemma 4.7 with m = 1, we have that,

PG,U,N,β(∀x ∈ A, nx ≤ n̄) ≥ 1−
∑
x∈A

PG,U,N,β(nx > 2ab) ≥ 1

2
.

This concludes the proof of the corollary.

We now present the proof of Lemma 4.7, which proceeds in the same spirit as the proof of [25,
Lemma 3.1].

Proof of Lemma 4.7. Letm ∈ N. We show that for any k ∈ N, there exists cm(k) = cm(k,∆, β,N, U)

such that, writing km := dk 1
m e,

PG,U,N,β(no ≥ km) ≤ cm(k) (4.24)

and such that ∑
k≥1

cm(k) <∞ , (4.25)

from which the desired result follows immediately. Fix any k ≥ 1. We set Eo := {e ∈ E : o ∈ e}
and we set Vo := {x ∈ V : x ∼ o} ∪ {o}. We let Σ = {0, 1}Eo . Recalling that µ denotes the
non-normalized measure defined by (3.2), we begin by writing

µ(no ≥ km) =
∞∑

n=km

∑
ξ∈Σ

∑
m∈M:

me∈2N+ξe∀e∈Eo,
no(m)=n

∑
π∈P(m)

µ((m,π))

=
∞∑

n=km

∑
ξ∈Σ

∑
m′∈M:

m′e=ξe ∀e∈Eo

∑
π′∈P(m′)

∑
m∈M:

me=m′e ∀e∈E\Eo,
me∈2N+ξe ∀e∈Eo,

no(m)=n

∑
π∈P(m):

πx=π′x ∀x∈V \Vo

µ((m,π))

×
∏
x∈Vo

1

(2nx(m′)− 1)!!
,

(4.26)

where we let (2k − 1)!! := (2k)!/(k! 2k), which corresponds to the number of pairings of 2k ele-
ments. Let n ≥ km. Let ξ ∈ Σ, m′ ∈ M such that m′e = ξe for all e ∈ Eo, and π′ ∈ P(m′). Let
m ∈M such thatme = m′e for all e ∈ E \Eo andme ∈ 2N+ξe for all e ∈ Eo and no(m) = n and
let π ∈ P(m) such that πx = π′x for all x ∈ V \ Vo. We now compare µ((m,π)) with µ((m′, π′)).
We note that,
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(i) # loops in (m,π) ≤ # loops in (m′, π′) + n,

(ii)
∑

e∈Eo(me −m′e) ≤ 2n,

(iii)
∏

e∈Eo
1
me!
≤
(

1
b 2n

deg(o) c!

)deg(o)

≤ (2n)deg(o) (deg(o))2n

(2n)!
.

From (i) - (iii) we deduce that

µ((m,π)) = µ((m′, π′))N# loops in (m,π)−# loops in (m′,π′)
∏
e∈Eo

βme−m
′
e

me!

∏
x∈Vo

U(nx(m))

U(nx(m′))

≤ µ((m′, π′))
cn1 (2n)deg(o)

(2n)!

∏
x∈Vo

U(nx(m))

U(nx(m′))
,

(4.27)

where c1 := max{1, N} max{1, β}2 deg(o)2. Plugging (4.27) into (4.26), and using the bounds∣∣ {π ∈ P(m) | πx = π′x, ∀x ∈ V \ Vo}
∣∣ ≤∏

x∈Vo

(2nx(m)− 1)!! (4.28)∣∣∣{ m∈M:me=m′e ∀e∈E\Eo,
me∈2N+ξe ∀e∈Eo, no(m)=n

}∣∣∣ ≤(2n)deg(o) (4.29)

we deduce that

µ(no ≥ km) ≤
∞∑

n=km

cn1 (2n)deg(o)

(2n)!

∑
ξ∈Σ

∑
m′∈M:

m′e=ξe ∀e∈Eo

∑
π′∈P(m′)

µ((m′, π′))

×
∑
m∈M:

me=m′e ∀e∈E\Eo,
me∈2N+ξe ∀e∈Eo,

no(m)=n

∑
π∈P(m):

πx=π′x ∀x∈V \Vo

∏
x∈Vo

U(nx(m))

U(nx(m′))

1

(2nx(m′)− 1)!!

≤
∞∑

n=km

cn1 (2n)deg(o)

(2n)!

[
max

0≤i≤j≤i+n

U(j)(2j − 1)!!

U(i)(2i− 1)!!

]deg(o)+1

×
∑
ξ∈Σ

∑
m′∈M:

m′e=ξe ∀e∈Eo

∑
π′∈P(m′)

µ((m′, π′))
∣∣∣{ m∈M:me=m′e ∀e∈E\Eo,

me∈2N+ξe ∀e∈Eo, no(m)=n

}∣∣∣
≤

∞∑
n=km

c̃n1
(2n)!

(2n)2 deg(o)
∑
ξ∈Σ

∑
m′∈M:

m′e=ξe ∀e∈Eo

∑
π′∈P(m′)

µ((m′, π′))

≤
∑
n≥km

c̃n1
(2n)!

(2n)2 deg(o) ZG,U,N,β ,

(4.30)

where c̃1 := (2M)∆+1 c1. In the third step of (4.30) we used that U being good implies that for any
n ∈ N and any 0 ≤ i ≤ j ≤ i+ n, it holds that,

U(j)(2j − 1)!!

U(i)(2i− 1)!!
≤ 2j−i

U(j)

U(i)
j (j − 1) · · · (i+ 1) ≤ (2M)j−i ≤ (2M)n . (4.31)

Setting

cm(k) :=
∑
n≥km

c̃n1
(2n)!

(2n)2∆
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we deduce (4.24). Since there exists c′ <∞ such that

cm(k) ≤ c̃km1

(2km)!
(2km)2∆

∑
n≥0

c̃n1
(2n)!

(n+ 1)2∆ ≤ c′
c̃km1

(2km)!
(2km)2∆ ,

and
∞∑
k=1

c̃km1

(2km)!
(2km)2∆ ≤

∞∑
n=1

c̃n1
(2n)!

(2n)2∆ nm <∞ ,

we deduce (4.25) and the proof of the lemma is concluded.

We now present the proof of Proposition 4.6.

Proof of Proposition 4.6. Fix γ ∈ Σ(L) with α(γ) = 2k. Recalling from (4.1) that we denote by
supp(γ) the set of distinct vertices visited by γ, we have aγ := |supp(γ)| ≤ 2k. Let me(γ) denote
the number of times that the loop γ uses the edge e. Fix n0 = n0(k,∆, β,N, U), such that

P(∀x ∈ supp(γ), nx ≤ n0) ≥ 1

2
. (4.32)

The existence of n0 follows from Corollary 4.8, choosing n0(k,∆, β,N, U) = n̄(2k,∆, β,N, U).
Consider the events

A = {w ∈ W̃ : ∀x ∈ supp(γ), nx ≤ n0, k̃γ = 0}
B = {w ∈ W̃ : ∀x ∈ supp(γ), nx ≤ n0 + nx(γ), k̃γ > 0} .

We introduce the map φ : A → B, which for any w ∈ A acts by inserting me(γ) links on the edge
e such that they have the highest labels, and by pairing them with an arbitrary deterministic rule such
that we obtain one additional cycle, which under the map ϑ (defined in (3.6)) reduces to γ. For any
w ∈ A we then have that

µ(φ(w)) = µ(w) β2kN
∏
e∈E

me(γ)>0

1

(me(w) + 1) · · · (me(w) +me(γ))

∏
x∈supp(γ)

U(nx(w) + nx(γ))

U(nx(w))

≥ c µ(w) ,
(4.33)

where

c = c(k,∆, β,N, U) :=
β2kN

[(2n0 + 1) · · · (2n0 + 2k)]2k

(
min

a≤n0, j≤k

U(a+ j)

U(a)

)2k

.

Since φ is an injection, we deduce from (4.33) that

P(B) ≥ P(φ(A)) ≥ cP(A)

= c
(
P(∀x ∈ supp(γ), nx ≤ n0)− P(∀x ∈ supp(γ), nx ≤ n0, k̃γ > 0)

)
≥ c
(
P(∀x ∈ supp(γ), nx ≤ n0)− P(B)

) (4.34)

and the latter, together with (4.32), implies

P(B) ≥ c

2(1 + c)
. (4.35)

Applying Lemma 3.2, we deduce from (4.35) that

E(kγ) = E(k̃γ) ≥ P(k̃γ > 0) ≥ P(B) ≥ c

2(1 + c)
,

which concludes the proof of the proposition.
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5 Proof of Theorem 1.3

In this section we present the proof of Theorem 1.3, which follows from Proposition 5.1 and Proposition
5.2 below.

5.1 Extension of the McBryan and Spencer proof

Throughout this section we fix d = 2 and L > 0. The next proposition states that the spin-spin
correlation 〈S1

xS
1
yS

2
xS

2
y〉GL,N,β admits polynomial decay for any N ∈ N with N > 1 and any β ∈

R+. The proof of the proposition is an adaptation of the proof of polynomial decay for 〈S1
xS

1
y〉GL,N,β

given in [16, 27].

Proposition 5.1. For any β ∈ R+ and N ∈ N with N > 1, there exists c = c(β,N) ∈ (0, 1) such
that for any x, y ∈ Z2,

lim
L→∞

∣∣〈S1
xS

1
yS

2
xS

2
y〉GL,N,β

∣∣ ≤ 1

8
|x− y|−c. (5.1)

Proof. To begin, we let N = 2 and fix β ∈ R+. We parametrize the unit sphere by angles such
that Sx = (cos θx, sin θx), where θx ∈ [0, 2π) for any x ∈ ΛL. Using trigonometric identities, the
invariance of the measure under simultaneous rotation of all spins and the fact that |Re(z)| ≤ |z| for
all z ∈ C, we obtain that for any L > 0 and any x, y ∈ ΛL,∣∣〈S1

xS
1
yS

2
xS

2
y〉GL,N,β

∣∣ =
1

8

∣∣〈cos(2(θx − θy))− cos(2(θx + θy))〉GL,N,β
∣∣

=
1

8

∣∣〈cos(2(θx − θy))〉GL,N,β
∣∣

≤ 1

8

∣∣〈e2i(θx−θy)〉GL,N,β
∣∣.

(5.2)

The derivation of the upper bound (5.1) now follows analogously to the proof of [16, Theorem 9.12], in
which an upper bound on the quantity |〈ei(θx−θy)〉GL,N,β| instead of |〈e2i(θx−θy)〉GL,N,β| was derived.
More precisely, following [16] and shifting the integration of the angles to the complex plane, there
exists c = c(β) ∈ (0,∞) such that for any L > 0 and any x, y ∈ ΛL,∣∣〈e2i(θx−θy)〉GL,N,β

∣∣ ≤ e−c
(
gL(x,x)−gL(x,y)−gL(y,x)+gL(y,y)

)
, (5.3)

where gL(·, ·) denotes the Green function in GL of the simple random walk X = (Xk)k≥0 on Z2

defined by

∀x, y ∈ ΛL, gL(x, y) := Ex

( τL−1∑
n=0

1{Xn=y}
)
,

where τL := inf{k ≥ 0 : Xk ∈ Z2 \ ΛL} and Ex denotes the expectation of the simple random
walk on Z2 starting at x. By [20, Theorem 1.6.2] it holds that,

lim
L→∞

gL(x, x)−gL(x, y) = lim
L→∞

gL(y, y)−gL(y, x) =
2

π
log ||x−y||2+O(1) as ||x−y||2 →∞.

(5.4)
From (5.2), (5.3) and (5.4) we conclude (5.1) in the case N = 2.

The case N > 2 is handled by a straightforward generalization as explained in [27]. Namely, we
parametrize the N -sphere by angles θ(1), . . . , θ(N−2), ψ with |θ(r)| ≤ π

2
for all r ∈ [N − 2] and

|ψ| ≤ π in such a way that only the first two components S(1), S(2) of a unit spin vector depend on
ψ. We can then apply the method of [16] as in the previous case performing a shift of integration only
with respect to ψ.
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5.2 From spin correlations to connection probabilities

In this section, we fix β, L ∈ R+ and d,N ∈ N with N ≥ 2. We let G = GL and U = U s
N , where

U s
N was defined in (1.4). For lighter notation, we will omit all sub-scripts. The next proposition gives

an upper and a lower bound on the spin correlation 〈S1
xS

1
yS

2
xS

2
y〉 for any x 6= y ∈ ΛL in terms of the

probability of observing a loop connecting x and y in the corresponding random walk loop soup.

Proposition 5.2. For any m ∈ N and any x 6= y ∈ ΛL, it holds that,

c1P(x↔ y)
1+ 1

2(m−1) ≤ 〈S1
xS

1
yS

2
xS

2
y〉 ≤

1

2N
P(x↔ y), (5.5)

where c1 = c1(β,N,m) > 0 and ñz(ω) := nz(ω) + N
2

for any ω ∈ Ω and z ∈ ΛL.

Proof. Fix m ∈ N and let x 6= y ∈ ΛL. Recall from Section 4.1 that for any ` ∈ L we denote by
nx(`) the number of visits of the loop ` at x. From [30, Theorem A.1, Lemma 5.4, Theorem 3.14] it is
known that the correlation of spins can be written as

〈S1
xS

1
yS

2
xS

2
y〉 =

2

N
E
( |ω|∑

j=1

nx(`j)ny(`j)
U s
N(nx(ω) + 1)

U s
N(nx(ω))

U s
N(ny(ω) + 1)

U s
N(ny(ω))

)

=
1

2N
E
( |ω|∑

j=1

nx(`j)ny(`j)
1

ñx(ω) ñy(ω)

)
,

(5.6)

where in the last step we used the definition of U s
N . Using that

|ω|∑
j=1

nx(`j)ny(`j) ≤ 1{x↔y}(ω)nx(ω)ny(ω)

for any ω ∈ Ω, we deduce from (5.6) the upper bound in (5.5). We now derive the lower bound.
Applying the Cauchy-Schwarz inequality iteratively m times, we have that

P(x↔ y) = E
(
1{x↔y}

1√
ñxñy

√
ñxñy

)
≤ E

(
1{x↔y}

1

ñxñy

) 1
2 E
(
1{x↔y} ñxñy

) 1
2

≤ E
(
1{x↔y}

1

ñxñy

) 1
2 P(x↔ y)

1
2
− 1

2m E
(

(ñxñy)
2m−1

) 1
2m

≤ E
(
1{x↔y}

1

ñxñy

) 1
2 P(x↔ y)

1
2
− 1

2m E
(

(ñx)
2m
) 1

2m+1

E
(

(ñy)
2m
) 1

2m+1

,

(5.7)

where in the last step we applied the Cauchy-Schwarz inequality. From (5.6) we further observe that

E
(
1{x↔y}

1

ñxñy

)
≤ 2N 〈S1

xS
1
yS

2
xS

2
y〉. (5.8)

Besides, by [30, Theorem 3.14], and Lemma 4.7, we have that, for every x ∈ ΛL,

E
(

(ñx)
2m
)

= E
(

(ñx)
2m
)
≤ b , (5.9)

DOI 10.20347/WIAS.PREPRINT.3029 Berlin 2023



N. Forien, M. Quattropani, A. Quitmann, L. Taggi 28

where b = b(m, 2d, β, N, U s
N) < ∞ is given by Lemma 4.7, and with slight abuse of notation

we also set ño(w) := no(w) + N
2

for any w ∈ W̃ . Rearranging the terms in (5.7) and using (5.8)
and (5.9) we deduce the lower bound of (5.5), with

c1 =
1

2N
b−

1
2m−1 .

This ends the proof of the proposition.

Proof of Theorem 1.3. The result follows from Proposition 5.1 and 5.2.
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