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Finite-strain poro-visco-elasticity with degenerate mobility
Willem J. M. van Oosterhout, Matthias Liero

Abstract

A quasistatic nonlinear model for poro-visco-elastic solids at finite strains is considered in the
Lagrangian frame using the concept of second-order nonsimple materials. The elastic stresses
satisfy static frame-indifference, while the viscous stresses satisfy dynamic frame-indifference.
The mechanical equation is coupled to a diffusion equation for a solvent or fluid content. The
latter is pulled-back to the reference configuration. To treat the nonlinear dependence of the mo-
bility tensor on the deformation gradient, the result by Healey & Krömer is used to show that the
determinant of the deformation gradient is bounded away from zero. Moreover, the focus is on the
physically relevant case of degenerate mobilities. The existence of weak solutions is shown using
a staggered time-incremental scheme and suitable energy-dissipation inequalities.

1 Introduction

The coupling of the mechanical deformations of solids to other physical processes such as heat con-
duction or diffusion of chemical species is relevant in many applications in technology or biology. We
refer to [Ger99; Wan+20; Lat04; CSS22; Hon+08; CA10] and the references therein for applications
in thermo-mechanics, solid-state batteries, poroelasticity in biological tissue, hydrogen storage, and
elastomeric materials.

In many of these applications, the assumption of small strains is no longer justified and nonlinear,
finite-strain, theories have to be considered. While the static theory for finite-strain elasticity developed
rapidly after the seminal work of Ball [Bal77], the mathematical analysis for time-dependent processes
in the case of large strains is just currently receiving increased attention, see e.g. [MRS18] for a re-
sult on finite-strain visco-plasticity, [MR20; BFK23] for finite-strain thermo-visco-elasticity, and [Rou21;
SP23] for phase-field models in the finite-strain setting.

In this text, we consider a coupled model for the visco-elastic evolution of the deformation χ(t, x) of
a solid in the reference configuration Ω ⊆ Rd and the diffusion of a solvent, fluid content, or other
chemical species through the (visco-)elastic body. We shall call such materials poroelastic (although
this name is usually used to refer to the interaction between fluid flow and solids deformation, see
[Bio41]).

For a time horizon T > 0 and Ω ⊆ Rd a bounded, open reference configuration, we establish the
existence of a deformation χ : [0, T ]×Ω→ Rd and a concentration c : [0, T ]×Ω→ R+ satisfying
the quasi-static system

−div
(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)− div (h(D2χ))

)
= f(t), in [0, T ]× Ω, (1.1a)

.
c − div

(
M(∇χ, c)∇µ

)
= 0, in [0, T ]× Ω, (1.1b)

where quasistatic refers to the neglect of kinetic energy (and therefore inertial forces ρ
..
χ) such that

there will be no mechanical oscillations. The total stress Σtot := σel +σvi−div h consists of the elas-
tic stress σel(F, c) = ∂FΦ(F, c), coming from a free energy density Φ(∇χ, c), the viscous stress

DOI 10.20347/WIAS.PREPRINT.3027 Berlin 2023



W.J.M. van Oosterhout, M. Liero 2

σvi(F,
.
F , c) = ∂ .

F
ζ(F,

.
F , c), given in terms of a viscous dissipation potential ζ(∇χ,∇ .

χ, c), and the
hyperstress h(G) = ∂GH (G) with potential H (D2χ), which gives higher regularity of the defor-
mation. Furthermore, f is a body force,M is the mobility tensor, and µ(F, c) = ∂cΦ(F, c) is the
chemical potential. The system is completed by suitable boundary conditions. Note that the equation
for the deformation is of fourth order, due to the hyperstress regularization. Thus, the Neumann bound-
ary condition contains an additional contribution related to the surface divergence of h, and a further
boundary condition has to be satisfied, see (2.3b) and (2.3c). For the diffusion equation, we assume
the following Robin-type boundary condition

M(∇χ, c)∇µ · ~n = κ(µext(t)−µ) on ∂Ω,

where κ ≥ 0 is a transmission coefficient and µext is a fixed external potential. As is the case in
previous works [MR20], [RT20], we do not put any convexity assumptions on the energy density Φ,
but rather add the higher order convex term H (D2χ), leading to the hyperstress h. This addition
makes it into a second-grade non-simple material, a notion which was introduced by Toupin [Tou62].

We highlight that the diffusion processes takes place in the actual (deformed) configuration, which
leads to a nontrivial description when pulled back to the reference configuration Ω for the mathematical
analysis. In the actual configuration, the diffusion equation takes the form

.
c + Div(cv −M(F, c)∇µ) = 0, (1.2)

where c(t, χ(t, x)) = c(t, x)/ det∇χ(t, x) is the spatial concentration, v(t, χ(t, x)) =
.
χ(t, x) is

the Eulerian velocity, F (t, χ(t, x)) = ∇χ(t, x) is the deformation gradient, µ(t, χ(t, x)) = µ(t, x)
is the spatial chemical potential, and M is the Eulerian mobility tensor. The Lagrangian mobility tensor
M is obtained from the pull-back of M. The two are related by the formula

M(F, c) =
(CofF>)M(F, c/detF )CofF

detF
for (F, c) ∈ GL+(d)× R+,

where CofF = (detF )F−> denotes the cofactor matrix associated with F . Equation (1.1b) now
follows from (1.2) via the pullback under χ. As a consequence of the transformation, we need to
ensure that the determinant of the deformation gradient is bounded away from zero, which follows
from a result by Healey and Krömer [HK09]. Indeed, the hyperstress regularization in connection with
growth assumptions for the elastic energy contribution in Φ in the form Φ(F, c) ≥ C1/(detF )q−C2,
yields a uniform constant δ > 0 such that det∇χ ≥ δ in Ω for all deformations with finite energy, see
also [MR20, Thm. 3.1]. This blowup of the free energy, if the determinant of the deformation gradient
approaches 0 from above, gives rise to local non-selfpenetration; however, we do not enforce global
non-selfpenetration.

In [DNS22] a model for the growth of biological tissue was considered. Therein, the evolution of the
deformation is coupled to the diffusion of a nutrient and the evolution of a growth variable which plays
the role of a plastic tensor. However, the diffusion equation for the nutrient density is assumed to
take place in the reference configuration and the deformation χ only appears in a source/sink term.
In particular, no viscous stresses and no hyperstress regularization were considered. The missing
temporal compactness of the deformation (gradient) is compensated by introducing a suitable time
convoluted deformation K ∗ χ instead of χ in the source terms. In [RS22], a similar system as (1.1)
was considered. However, there the authors work purely in the Eulerian setting, which restricts them
to assuming that the actual domain is not evolving in time, i.e., χ(t,Ω) = Ω.

Our new contribution is that we allow for degenerate mobilities, i.e.M(F, 0) ∼ cm for some power
m > 0. Until now, to the best of the authors’ knowledge, the mobility was always assumed to be
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uniformly positive definite, see e.g. [Rou17b; RT20], [MR20] (which uses conductivities instead of
mobilities), or [Rou21]. Our assumptions allow, for example, for the linear (actual) mobility M(c) =
cM0, or more generally, for a polynomial mobility. This type of mobility is physically relevant, as it
models a higher species permeability whenever the material opens up (i.e., swells) due to an increase
in species concentration, see [CA10]. See Example 2.4 for the case of a Biot-type model.

Finally, an important modeling assumption is the static frame-indifference of the free energy, namely
Φ(RF, c) = Φ(F, c) for allR ∈ SO(d) and F ∈ GL+(d), and the dynamic frame-indifference of the

viscous stress potential, i.e., ζ(RF,
.
RF + R

.
F , c) = ζ(F,

.
F , c) for all smooth t 7→ R(t) ∈ SO(d),

and F,
.
F ∈ Rd. For simplicity, we will assume that the viscous stress is linear in (∇χ>∇χ)., which

is used to model non-activated dissipative processes with moderate rates, see e.g., [MR20, Sect. 2].
To control ∇ .

χ via (∇χ>∇χ)., we exploit results for generalized Korn’s inequalities by Neff [Nef02]
and the extension by Pompe [Pom03]. Here, again it is used that we can control the determinant of
the deformation gradient via the hyperstress regularization.

The main result of this paper is that under certain conditions our model always admits weak solutions
(see Definition 2.5 and Theorem 2.7). To prove the existence of solutions, we use a time-incremental
scheme consisting of two steps. First, the elastic equation is solved to obtain the new deformation χ,
with fixed concentration c from the previous time level, by reformulating the equation as minimization
problem. Then, the diffusion equation is solved using a fixed point argument to obtain the new chemical
potential µ, which also implies the existence of a concentration c. Here, it is important to note that due
to the degenerate mobility an extra regularization is needed, cf. [Jün15]. This regularization takes
the form η(−∆)θµ, with regularization parameter η > 0 and exponent θ > d

2
(such that there

is a compact embedding Hθ(Ω) ↪→ L∞(Ω)). Next, we show that these solutions satisfy an energy-
dissipation balance, from which suitable a priori estimates are derived. Due to the degenerate mobility,
the classical Aubin–Lions lemma no longer suffices to pass to the limit in the concentration terms.
Instead we use a more general compactness result due to Dubinskiı̆ [Dub65] to pass to the limit
(τ, η)→ 0, see also Theorem A.3.

The paper is structured as follows. In Section 2 we introduce our model and assumptions in a math-
ematically rigorous way, and state the main result. In Section 3, we start the proof of the main result
by introducing a regularization term and a time-incremental scheme. After showing existence of these
approximate solutions, we proceed by showing an energy-dissipation inequality, from which suitable a
priori estimates are deduced. Finally, in Section 4, we pass to the simultaneous limit with respect to
the time discretization and regularization to obtain the main result.

2 Mathematical setting and main result

Our model is described in the Lagrangian setting in the reference configuration Ω ⊆ Rd. We assume
that Ω is an open, bounded domain with Lipschitz boundary, and that ∂Ω = ΓD ∪ ΓN (disjoint)
such that the Dirichlet part has positive surface measures

´
ΓD

1 dS > 0. We denote by Lp(Ω),

Hk(Ω), and W k,p(Ω) the usual Lebesgue and Sobolev spaces with the standard norms. Moreover,
the (closed) subspaceW k,p

0 (Ω) denotes the functions inW k,p(Ω) with zero trace on ΓD. We consider
deformations χ on Ω that are fixed on the Dirichlet part ΓD, namely, we consider the space

W 2,p
id (Ω;Rd) := {χ ∈ W 2,p(Ω;Rd) | χ|ΓD = id}.

We denote by “a ·b”, “A : B”, and “G
...H” the scalar products between vectors a, b ∈ Rd, matrices

A,B ∈ Rd×d, and third-order tensors G,H ∈ Rd×d×d, respectively.
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To introduce the system of partial differential equations coupling the evolution of the deformation χ
and the concentration c of some species, we consider a free energy density Φ = Φ(∇χ, c), a higher-
order regularization H = H (D2χ), a viscous dissipation potential ζ = ζ(∇χ,∇ .

χ, c), and a
(Lagrangian) mobility tensorM =M(∇χ, c). The free energy density Φ gives rise to the first Piola–
Kirchhoff stress σel and the chemical potential µ, the viscous dissipation potential ζ to the viscous
stress σvi via

σel(F, c) := ∂FΦ(F, c), µ(F, c) := ∂cΦ(F, c), and σvi(F,
.
F , c) := ∂ .

F
ζ(F,

.
F , c), (2.1)

and the potential H to the hyperstress h(G) := ∂GH (G), where we have used the placeholders F

for∇χ,
.
F for∇ .

χ, andG for D2χ. The model is then given by the evolutionary system in the reference
domain Ω

−div
(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)− div h(D2χ)

)
= f(t), (2.2a)

.
c − div

(
M(∇χ, c)∇µ

)
= 0, (2.2b)

completed with the boundary conditions

χ = id on ΓD, (2.3a)(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)

)
~n− divs(h(D2χ)~n) = g(t) on ΓN , (2.3b)

h(D2χ) : (~n⊗ ~n) = 0 on ∂Ω, (2.3c)

M(∇χ, c)∇µ · ~n = κ(µext(t)−µ) on ∂Ω, (2.3d)

where ~n denotes the unit normal vector on ∂Ω, and κ(x) ≥ 0 and µext(t, x) are a given perme-
ability and an external potential, respectively. Here, divs denotes the surface divergence, defined by
divs(·) = tr(∇s(·)), i.e., the trace of the surface gradient ∇sv = (I − ~n ⊗ ~n)∇v = ∇v − ∂v

∂~n
~n.

Finally, we consider initial conditions

χ(0) = χ0, c(0) = c0 on Ω. (2.4)

For any R > 0, let us denote the set

FR :=
{
F ∈ GL+(d)

∣∣ |F | ≤ R, |F−1| ≤ R, and detF ≥ 1/R
}
. (2.5)

We impose the following assumptions on our model:

(A1) The hyperstress potential is a convex, frame-indifferent C1 function H : Rd×d×d → R+

such that the hyperstress is given by h(G) = ∂GH (G) ∈ Rd×d×d. Moreover, there exist
p ∈ (d,∞) ∩ [3,∞) and constants CH,1, CH,2, CH,3 > 0 such that

CH,1|G|p ≤H (G) ≤ CH,2(1 + |G|p), |∂GH (G)| ≤ CH,3|G|p−1 for all G ∈ Rd×d×d.

(A2) The mobility tensorM : GL+(d)×R+ → Rd×d
sym is a continuous map. There exist an exponent

m > 0, and for all R > 0 there exist constants C0,M,R, C1,M,R > 0 such that

ξ · M(F, c)ξ ≥ C0,M,Rc
m|ξ|2 and |M(F, c)| ≤ C1,M,Rc

m

for all ξ ∈ Rd, F ∈ FR, c ∈ R+.
(2.6)

The admissible range of the exponent m > 0 depends on the growth properties of (the deriva-
tives of) Φ and is fixed in assumption (A3).
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Finite-strain poro-visco-elasticity with degenerate mobility 5

(A3) The free energy Φ : GL+(d) × R+ → R is bounded from below, continuous, and C2 on
GL+(d) × (0,∞), i.e., for strictly positive concentrations. It is frame indifferent, and satisfies
the following assumptions:

(i) For any c ∈ R+ there exists constants CΦ,0, CΦ,1 > 0 such that

Φ(F, c) ≥ CΦ,0|F |+
CΦ,0

(detF )q
− CΦ,1 for all F ∈ GL+(d).

(ii) There exist an exponent−1 < r <∞ such that r+m ≥ 0, and for allR > 0 constants
Ci := CΦ,i,R > 0 (1 ≤ i ≤ 2) and constants γi := γΦ,i,R ≥ 0 (1 ≤ i ≤ 2) such that

C1

c
+ γ1c

r ≤ ∂2
ccΦ(F, c) ≤ C3

c
+ γ2c

r for all c ∈ R+, F ∈ FR.

Concerning the constants γi, we distinguish two cases (see also Remark 2.2(ii)):

Case I: We assume γ1 = γ2 = 0, and also require 1 ≤ m ≤ 2.

Case IIa: For γ2 ≥ γ1 > 0, we require 0 < m ≤ 3 + r.

Case IIb: For γ2 ≥ γ1 > 0, we require 0 < m ≤ 2.

(iii) There exist an exponent α ∈ R, and for all R > 0 a constant CΦ,5,R > 0 such that∣∣∂2
FcΦ(F, c)

∣∣ ≤ CΦ,5,Rc
α for all c ∈ R+, F ∈ FR

In Case I above, α is such that 0 ≤ m + α ≤ p−s
ps

, where 1 < s = md+2
md+1

< 2 and
0 ≤ m+ 2α.

In both Case IIa and Case IIb α ≥ −1 is such that 0 ≤ m + α ≤ (2 + r)p−s
ps

,

where 1 < s = min{md+2(r+2)
md+r+2

, d(m+r+1)+2(r+2)
d(m+r+1)+r+2

} < 2. Furthermore, in case Case
IIa we require that 0 ≤ m + 2α < m + 1 + r, while in Case IIb we require that
0 ≤ m+ 2α < m+ 2 + 2r

(A4) For allR > 0 there exists a concentration cR ∈ R+ such that Φ(F, cR) <∞ and |∂cΦ(F, cR)| <
∞ for all F ∈ FR.

(A5) The viscous stress potential ζ : Rd×d × Rd×d × R+ → R+ is such that ζ(F,
.
F , c) =

ζ̂(F>F, (F>F )., c), where ζ̂ : Rd×d
sym ×Rd×d

sym ×R+ → R+ is quadratic in the second variable,
namely

ζ̂(C,
.
C, c) =

1

2

.
C : D̃(C, c)

.
C.

This quadratic form is such that there exist constants Cζ,1, Cζ,2 > 0 such that

Cζ,1|(F>F )
.|2 ≤ ζ̂(F>F, (F>F )

.
, c) ≤ Cζ,2|(F>F )

.|2 for all c ∈ R+, F ∈ Rd×d.

(A6) The external forces satisfy f ∈ W 1,∞(0, T ;L2(Ω;Rd)), g ∈ W 1,∞(0, T ;L2(∂Ω;Rd)). We
set

〈`(t), χ〉 :=

ˆ
Ω

f(t) · χ dx+

ˆ
ΓN

g(t) · χ dS

such that ` ∈ W 1,∞(0, T ;H1(Ω;Rd)∗).

(A7) The permeability κ ∈ L∞(∂Ω) is nonnegative and strictly positive on a part of the boundary
∂Ω with positive surface measure, i.e.,

´
∂Ω
κ dS ≥ κ∗ > 0. We assume that the external

chemical potential is such that µext ∈ L2([0, T ]×∂Ω).
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(A8) The initial conditions satisfy χ0 ∈ W 2,p
id (Ω;Rd) with det∇χ0 ≥ ρ0 > 0 and c0 ∈ L1(Ω) with

c0 ≥ 0 and are such that
´

Ω
Φ(∇χ0, c0) dx <∞.

As an immediate consequence of these assumptions, we note the following lower bound for the free
energy.

Lemma 2.1 (Lower bound for free energy). If∇χ ∈ FR for someR > 0, then there existC1, C2, C3 >
0 such that ˆ

Ω

Φ(∇χ, c) dx ≥ C1‖c‖L logL(Ω) + γ1C2‖c‖2+r
L2+r − C3. (2.7)

Proof. Using first the lower bound ∂2
ccΦ(F, c) ≥ CΦ,1,R

c
of Assumption (A3)(ii) and Assumption (A4),

we obtain by integrating once

∂cΦ(F, c) ≥ C1,Φ,R log(c) + ∂cΦmix(F, cR)− C1,Φ,R log(cR).

Integrating again, and using Young’s inequality with ε to absorb the lower order terms in c in the highest
order term, we thus obtain ˆ

Ω

Φ(∇χ, c) dx ≥ C1‖c‖L logL(Ω) − C3.

The second part of the lower bound now follows from integrating the lower bound ∂2
ccΦ ≥ γ1c

r

twice.

Remark 2.2. (i) (Growth of free energy) Note that Assumption (A3)(ii) implies that c 7→ Φ(c, F )
is superlinear for every F ∈ GL+(d). Moreover, we see that Φ(F, c) ∼ c log c− c+ γ1c

r+2.

(ii) (Differences between Case I and II) We remark that the limit r ↓ −1 in the conditions of Case II
almost reduces to the conditions of Case I. However, in Case I, we additionally need to assume
the lower bound m ≥ 1. Without this bound, it is not possible to obtain the strong convergence
of the concentrations, which is needed to pass to the limit, see Prop. 4.1. Note that as a result,
Case I is restricted to negative exponents α < 0. Indeed, we have α ≤ p(1−ms)−s

ps
< 0 since

m ≥ 1 and s > 1. In fact, for p→∞, we get α ≤ 1
s
−m.

(iii) (Relation between µ and c) From Assumption (A3)(ii) and the resulting strict monotonicity of
c 7→ ∂cΦ(F, c) it follows that the equation µ = ∂cΦ(F, c) for F ∈ GL+(d) fixed is uniquely
solvable for given µ ∈ R. By the implicit function theorem, the map c = c(F, µ) is continuous
on GL+(d)×R. In particular, for any F ∈ GL+(d) and µ ∈ R there exist constantsM, δ > 0
depending only on |µ|, |F |, and detF such that δ ≤ c(F, µ) ≤M .

(iv) (Constraint c ≥ 0) To obtain the constraint that the concentration stays positive, we note that
∂2
ccΦ(F, c) ≥ C1

c
(cf. (A3)(ii)) implies that limc→0+ ∂cΦ(F, c) = −∞. Thus, we can extend Φ

by setting Φ(F, c) = +∞ for c ≤ 0. Note that this implies that ∂cΦ(F, c) = ∅ for c ≤ 0 (and
in particular for c = 0).

Another possibility (which we will not use) is discussed in [Rou17a, Rem. 2], where instead the
mobility is extended by settingM(F, c) = 0 for c < 0. However, this will only give the posi-
tivity of the concentration for solutions (2.2), not for the regularized problem. Indeed, since our
existence proof uses an extra regularization for the diffusion part, it is not clear if the regularized
time-discrete solution ck obtained from (3.1) is positive. Consequently, several modifications
would have to be made to the proof.

DOI 10.20347/WIAS.PREPRINT.3027 Berlin 2023



Finite-strain poro-visco-elasticity with degenerate mobility 7

(v) (Degenerate & non-degenerate mobility) If we assume that the mobility is uniformly positive
definite, continuous and bounded, i.e., if m = 0 (see [Rou17b], [MR20] (conductivities instead
of mobilities), or [RT20]), then it is possible to prove existence of solutions without using an
additional regularization. Indeed, in this case one can test the diffusion equation with µ and use
the estimateM∇µ · ∇µ ≥ C|∇µ|2 to obtain a bound for∇µ in L2(Ω). Here, we restrict the
discussion to the degenerate case, where m > 0.

(vi) (Gradient structure) The viscous-elastic evolution and the diffusion process can be formally
written in terms of a gradient-flow structure. Indeed, define the free energy functional E0(χ, c) =´

Ω
Φ(∇χ, c) + H (D2χ) dx as well as the convex dissipation potential

Rtot(χ, c,
.
χ,

.
c) =

ˆ
Ω

ζ(∇χ,∇ .
χ, c) dx

+

ˆ
Ω

M(∇χ, c)∇(−∆−1
M(∇χ,c),κ

.
c) · ∇(−∆−1

M(∇χ,c),κ
.
c) dx+

ˆ
Ω

κ(−∆−1
M(∇χ,c),κ

.
c)2 dS

with −∆−1
M(∇χ,c),κ : v 7→ µ̃ denoting the linear operator defined formally by the weak solution

µ̃ of the elliptic equation−div (M(∇χ, c)∇µ̃) = v with boundary conditionsM(∇χ, c)∇µ ·
~n+ κµ̃ = 0. The evolutionary system in (1.1) can be formally rewritten in the form

∂(
.
χ,

.
c)Rtot(χ, c,

.
χ,

.
c) + D(χ,c)E0(χ, c) = ξext,

where ξext contains the mechanical loading and the external potential µext. It is possible to ex-
ploit the gradient structure of the equations to obtain time-discrete solutions via a staggered
incremental scheme. However, since this scheme would require additional assumptions to de-
rive suitable a priori estimates, we instead use a fixed point theorem to obtain the existence of
time-discrete concentrations.

Example 2.3 (Strong coupling in free energy). Consider the multiplicative decomposition of the de-
formation gradient as F = FelFc, see e.g. [Lub04]. In this case, the free energy is formulated in
terms of Fel = FF−1

c , e.g., Φ(F, c) = Φ1(FF−1
c ) + Φ2(c), where Φ1 : GL+(d) → [0,∞) and

Φ2 : (0,∞) → [0,∞) describe the elastic and the chemical contribution to the free energy, respec-
tively. A standard choice for Fc, which models isotropic swelling, is e.g., Fc = a(c)I for some C1

function a : [0,∞)→ (0,∞) with 0 < a∗ ≤ a(c) ≤ a∗.

We assume that Φ1(Fel, c) satisfies the coercivity estimate Φ1(Fel, c) ≥ C0|Fel|+ C0

(detFel)q
−C1 with

exponent 1 < q <∞ as in Assumption (A3)(i). Then, it follows that

Φ1(∇χF−1
c , c) ≥ C0

a(c)
|∇χ|+ C0a(c)q

(detFel)q
− C1 ≥

C0

a∗
|Fel|+

C0a∗
(detFel)q

− C1,

i.e., Φ(F, c) also satisfies the coercivity estimate. However, conditions on Φ1 and Φ2 for convexity
with respect to c and the growth conditions in Assumption (A3)(ii) and (iii) are hard to formulate at this
abstract level and have to be confirmed for more concrete examples.

Example 2.4 (Biot model and Fick/Darcy’s law). The Biot model [Bio41] (cf. [RT20, Sect. 4]) with
Boltzmann entropy is given as

Φ(F, c) = Φel(F ) +
1

2
MB(c− ceq − β(detF−1))2 + kc

(
log
( c
ceq

)
− 1
)
,
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for some suitable elastic energy Φel and constants MB, β, k, ceq > 0. In this case, the assumptions
for Case II are satisfied with α = 0 and r = 0. Defining the (Eulerian) flux as j = −M(F, c)∇µ,
and assuming the mobility is linear in c, namely M(F, c) = cM0 (i.e., m = 1), we then obtain

j = −kM0∇c− cM0∇p,

where p = MB(c − ceq − β(detF−1)) is the pressure. The first term corresponds to Fick’s law,
while the second is related to Darcy’s law.

Definition 2.5 (Weak solution). Let 1 < s < 2 be as in (A3)(iii). We call a pair (χ, c) a weak solution of
the initial-boundary-value problem (2.2)–(2.4) ifχ ∈ L∞(0, T ;W 2,p

id (Ω;Rd)),
.
χ ∈ L2(0, T ;H1(Ω;Rd))

and c ∈ L∞(0, T ;L logL(Ω)),
.
c ∈ Ls(0, T ;W 1,s(Ω)∗) with ∇cm2 ∈ L2(0, T ;L2(Ω)) (Case

I). In Case II, we additionally require that c ∈ L∞(0, T ;L2+r(Ω)) and ∇cm+1+r
2 , ∇cm2 +1+r ∈

L2(0, T ;L2(Ω)). The pair satisfies the integral equations

ˆ T

0

ˆ
Ω

(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)

)
: ∇φ+ h(D2χ)

... D2φ dx dt =

ˆ T

0

〈`(t), φ〉 dt (2.8a)

for all φ ∈ L2(0, T ;W 2,p
0 (Ω;Rd)), where 〈·, ·〉 denotes the duality pairing between W 2,p(Ω;Rd)∗

and W 2,p(Ω;Rd), and

ˆ T

0

〈.c, ψ〉 dt+

ˆ T

0

ˆ
Ω

M(∇χ, c)∇µ · ∇ψ dx dt+

ˆ T

0

ˆ
∂Ω

κ(µ− µext)ψ dS dt = 0 (2.9)

for all ψ ∈ Ls
′
(0, T ;W 1,s′(Ω)), where 〈·, ·〉 denotes the duality pairing between W 1,s(Ω)∗ and

W 1,s′(Ω).

Furthermore, we require that µ ∈ ∂cΦ(∇χ, c) almost everywhere in Ω, and that µ ∈ L2([0, T ] ×
∂Ω).

We note that sufficiently smooth weak solutions indeed satisfy the classical formulation (2.2) with
boundary conditions (2.3). For the derivation of (2.2a) and (2.3a)-(2.3c), we refer to [MR20, Eqn.
(2.28)-(2.29)]. The derivation of (2.2b) and (2.3d) follows directly from integration by parts.

Remark 2.6. Note that we not state any regularity conditions for the chemical potential µ, but only for
the concentration c. Using the relation∇µ = ∂2

FcΦD2χ+ ∂2
ccΦ∇c and the bounds in (A2) and (A3),

we see that this gives a well-defined concept of weak solution.

Theorem 2.7 (Existence of weak solutions). Suppose that the assumptions (A1)–(A8) hold. Then, the
system in (2.2)–(2.4) possesses at least one weak solution in the sense of Definition 2.5.

3 Time-discretization of a regularized problem

For the time discretization, we consider an equidistant partition {0 = t0 < t1 < ... < tN = T} of
[0, T ], where N ∈ N, tk = kτ with k = 0, . . . , N and τ = T/N > 0. We construct approximate
solutions (χk, µk) such that χk ≈ χ(tk) and µk ≈ µ(tk) using a staggered scheme. In the following,
we use for the time discretization the difference notation

δτhk =
hk − hk−1

τ
for k = 1, . . . , N.
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Finite-strain poro-visco-elasticity with degenerate mobility 9

We consider the following time-discrete system for k = 1, . . . , N :ˆ
Ω

(
σel(∇χk, ck−1) + σvi(∇χk−1, δτ∇χk, ck−1)

)
: ∇φ+ h(D2χk)

... D2φ dx = 〈`k, φ〉, (3.1a)

〈δτck, ψ〉+

ˆ
Ω

M(∇χk, ck)∇µk · ∇ψ dx+

ˆ
∂Ω

κ(µk−µk,ext)ψ dS = 0, (3.1b)

where µk ∈ ∂cΦ(χk, ck) a.e. in Ω. (3.1c)

Moreover, we set `k := 1
τ

´ kτ
(k−1)τ

`(t) dt and µk,ext := 1
τ

´ kτ
(k−1)τ

µext(t) dt for k = 1, . . . N and set
`0 := `1 such that δτ`1 = 0.

We note that this scheme is constructed in a specific way: Starting from the initial conditions χk=0 =
χ0 and ck=0 = c0 (cf. (A8)), we first solve the mechanical equation using the concentration ck−1 from
the previous time step, and then we solve the diffusion equation using the just obtained deformation
χk. The existence of time-discrete solutions (χk, ck) follows from the formulation of the mechanical
equation as the Euler–Lagrange equation of a minimization problem and for the diffusion equation via
a fixed-point argument.

Due to the degeneracy of the mobility, we cannot expect to obtain the existence and suitable estimates
for∇µk. Thus, following [Jün15], we add an elliptic regularization η(−∆)θµ to the diffusion equation,
for some small parameter 0 < η � 1 and θ ∈ N. This regularization ensures that µk ∈ Hθ(Ω).
The exponent θ is chosen sufficiently large such that Hθ(Ω) ↪→ L∞(Ω) compactly, i.e., θ > d

2
. We

will use the notation |β| :=
∑d

i=1 βi for multi-indices β ∈ N0. With this regularization, we replace the
equation in (3.1b) with

〈δτck, ψ〉+

ˆ
Ω

M(∇χk, ck)∇µk · ∇ψ dx

+ η

ˆ
Ω

∑
|β|=θ

∂βµk · ∂βψ dx+

ˆ
∂Ω

κ(µk−µk,ext)ψ dS = 0 (3.1b*)

for all ψ ∈ Hθ(Ω) and with µk ∈ ∂cΦ(χk, ck) a.e. in Ω. Note that this weak formulation is still
well-defined since ck ∈ L∞(Ω) (see Remark 2.2(iii)) and thusM(∇χk, ck) ∈ L∞(Ω) and ∇µk,
∇ψ ∈ L2(Ω).

Remark 3.1. We highlight that we do not require an additional regularization term ηδτχk in the me-
chanical equation to deal with the frame-indifferent viscous dissipation potential ζ as e.g. in [MR20].

Lemma 3.2 (Existence of time-discrete solutions). Let the assumptions in (A1)–(A8) hold. We fix
µη0 ∈ Hθ(Ω) and χη0 ∈ W 2,p

id (Ω;Rd) such that det∇χη0 ≥ ρ0 > 0, and we define cη0 as the
unique density with µη0 = ∂cΦ(∇χη0, c

η
0). Then, starting for k = 0 from χη0 and cη0, we can iteratively

find weak solutions (χηk, c
η
k, µ

η
k) ∈ W 2,p

id (Ω;Rd) × L∞(Ω) × Hθ(Ω), for k = 1, . . . , N , for the
mechanical equation (3.1a) and the regularized diffusion equation (3.1b*), respectively, with cηk > 0
and µηk = ∂cΦ(∇χηk, c

η
k) a.e. in Ω.

Proof. We drop the index η throughout the proof.

Mechanical step. First, we consider the equation (3.1a), where χk−1 ∈ W 2,p
id (Ω;Rd) and ck−1 ∈

L∞(Ω) with ck−1 > 0 a.e. in Ω are fixed. Let us define the energy functional E0 and the dissipation
potentialR via

E0(χ, c) :=

ˆ
Ω

Φ(∇χ, c) + H (D2χ) dx, and R(χ,
.
χ, c) :=

ˆ
Ω

ζ(∇χ,∇ .
χ, c) dx.
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We assume thatχk−1 and ck−1 are such that E0(χk−1, ck−1) <∞. The deformationχk ∈ W 2,p
id (Ω;Rd)

is obtained as the solution of the minimization problem

χk ∈ Arg Min
{
E0(χ̃, ck−1)+τR

(
χk−1,

χ̃− χk−1

τ
, ck−1

)
−〈`k, χ̃〉

∣∣∣ χ̃ ∈ W 2,p
id (Ω;Rd)

}
. (3.2)

Note that the corresponding weak Euler–Lagrange equation is exactly (3.1a). Indeed, the Gâteaux
differentiability of χ 7→ E0(χ, ck−1) follows as in [MR20, Proposition 3.2].

To show that there exists a minimizer χk ∈ W 2,p
id (Ω;Rd), we first note that the functional in (3.2)

is bounded from below due to the assumptions (A1), and (A3)–(A6). This boundedness follows from
the embedding W 2,p

id (Ω) ↪→ W 1,∞(Ω;Rd), which gives a bound for ∇χ in L∞(Ω;Rd×d). In fact,
using the assumptions on the hyperstress, we also obtain that the functional in (3.2) is coercive on
W 2,p

id (Ω;Rd). To show that it is weak lower semicontinuous, we note that H is convex by assumption.
As the rest of the functional consists of a (non-)convex perturbation of lower order, Ioffe’s theorem
[FL07, Theorem 7.5] now gives the weak lower semicontinuity. Note that to apply Ioffe’s theorem, we
use the compact embedding W 2,p(Ω) ↪→ W 1,∞(Ω), which follows from p > d (comp. (A1)). Finally,
since the minimization is feasible as by assumption E0(χk−1, ck−1) <∞, we obtain the existence of
a minimizer χk. In particular, we also have that E0(χk, ck−1) <∞.

Diffusion step. Given χk ∈ W 2,p(Ω;Rd) from the mechanical step and ck−1 ∈ L∞(Ω) from the
previous time step, we now solve the diffusion equation (3.1b*) via a fixed-point argument, analogously
to e.g. [Jün15; Fis+22]. Let us fix µ̃ ∈ L∞(Ω) and define c̃ such that µ̃ ∈ ∂cΦ(∇χk, c̃) a.e. in Ω
(see Remark 2.2(iii)). We solve the linear problem ac̃(µ, ψ) = 〈ξc̃, ψ〉 for all ψ ∈ Hθ(Ω), where the
bilinear and linear forms ac̃ : Hθ(Ω)×Hθ(Ω)→ [0,∞) and ξc̃ ∈ Hθ(Ω)∗ are given via

ac̃(µ, ψ) =

ˆ
Ω

{
M(∇χk, c̃)∇µ · ∇ψ + η

∑
|β|=θ

∂βµ · ∂βψ
}

dx+

ˆ
∂Ω

κµψ dS,

〈ξc̃, ψ〉 = −
ˆ

Ω

c̃− ck−1

τ
ψ dx+

ˆ
∂Ω

κµk,extψ dS.

The existence of a unique solution µ ∈ Hθ(Ω) follows from the generalized Poincaré inequality for
the space Hθ(Ω), see e.g. [Tem97, Ch. 2.1.4]. Since Hθ(Ω) embeds compactly into L∞(Ω) (recall
that θ > d/2), we can define the map S : L∞(Ω) → L∞(Ω), that maps µ̃ to µ. We show that S
is continuous, compact, and that for some λ ∈ (0, 1] the set Sλ := {µ ∈ L∞(Ω) |µ = λS(µ)} is
bounded. Then, S has a fixed-point µk ∈ Hθ(Ω) ⊂ L∞(Ω) by Schauder’s fixed point theorem, see
[GT01, Thm. 11.3].

To show the continuity of S , consider a sequence of chemical potentials µ̃(n) → µ̃ in L∞(Ω) as
n → ∞ and the associated densities c̃(n). In particular, we have that ‖µ̃(n)‖L∞(Ω) ≤ K for some
K > 0 independent of n and thus also ‖c̃(n)‖L∞(Ω) ≤ C(K). Let now µ(n) := S(µ̃(n)). We have
to show that this sequence has a limit µ ∈ L∞(Ω) such that S(µ̃) = µ. Choosing ψ = µ(n) in
the equation for µ(n) gives the uniform estimate ‖µ(n)‖Hθ(Ω) ≤ C via standard arguments. Thus,

we can find a (non-relabeled) subsequence and a limit µ ∈ Hθ(Ω) such that µ(n) w−⇀ µ in Hθ(Ω).
Moreover, by possibly passing to another subsequence we can assume that c̃(n) → c̃ a.e. in Ω and
by dominated convergence also in Lp̃(Ω) for every p̃ ∈ [1,∞). Thus, we can pass to the limit in
ac̃(n)(µ(n), ψ) = 〈ξc̃(n) , ψ〉 to find that µ is the unique solution of ac̃(µ, ψ) = 〈ξc̃, ψ〉. In particular,
since it is unique, we get that µ̃ = µ and all converging subsequences converge to the same limit
µ. Thus, S is continuous. The compactness of S follows similarly, as the images of bounded sets in
L∞(Ω) under S are bounded in Hθ(Ω). Due to the compact embedding of Hθ(Ω) into L∞(Ω) the
claim follows.
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Finally, we have to show that the set Sλ for some λ ∈ (0, 1] is bounded. Let µλ ∈ Sλ, i.e., µλ satisfies
acλ(µλ, ψ) = λ〈ξcλ , ψ〉 for all ψ ∈ Hθ(Ω), where µλ = ∂cΦ(∇χk, cλ). Choosing ψ = µλ in the
equation yields

acλ(µλ, µλ) =

ˆ
Ω

{
M(∇χk, cλ)∇µλ · ∇µλ + η

∑
|β|=θ

|∂βµλ|2
}

dx+

ˆ
∂Ω

κµ2
λ dS

= 〈ξcλ , µλ〉 = λ

ˆ
∂Ω

κµλµk,ext dS − λ
ˆ

Ω

cλ − ck−1

τ
µλ dx

≤ λ

ˆ
∂Ω

κµλµk,ext dS +
λ

τ

ˆ
Ω

Φ(∇χk, ck−1) dx− λ

τ

ˆ
Ω

Φ(∇χk, cλ) dx.

Applying standard Hölder’s and Young’s inequalities for the boundary integral on the right-hand side,
we conclude that

λ

ˆ
Ω

Φ(∇χk, ck)+τ

ˆ
Ω

{
M(∇χk, cλ)∇µλ ·∇µλ+η

∑
|β|=θ

|∂βµλ|2
}

dx+τκ
(
1− λ

2

) ˆ
∂Ω

µ2
λ dS

≤
ˆ
∂Ω

κλ

2
µ2
k,ext dS + λ

ˆ
Ω

Φ(∇χk, ck−1) dx,

and thus that ‖µλ‖L∞(Ω) ≤ C∞,θ‖µλ‖Hθ(Ω) ≤ C since Φ is bounded from below and the right-hand
side is bounded.

Thus, Schauder’s fixed-point theorem yields the existence of a fixed point µk ∈ Hθ(Ω). With ck
defined as above, this fixed-point is a solution to the regularized diffusion equation (3.1b*). Moreover,
we also obtain from the estimate above for λ = 1 that E0(χk, ck) <∞. Note that by Remark 2.2(iii),
we have that ck ∈ L∞(Ω) and ck > 0 a.e. in Ω.

To pass to the limit (τ, η) → 0, we now introduce the piecewise constant and piecewise affine inter-
polants with respect to the time-discrete solutions obtained in Lemma 3.2 by

χη,τ (0) = χη0, χη,τ (t) = χηk for t ∈ (tk−1, tk], (3.3)

χ
η,τ

(0) = χη0, χ
η,τ

(t) = χηk−1 for t ∈ [tk−1, tk), (3.4)

χ̂η,τ (0) = χη0, χ̂η,τ (t) =
t− tk−1

τ
χηk +

tk − t
τ

χηk−1 for t ∈ (tk−1, tk], (3.5)

where, as before, tk = kτ for k = 0, . . . , N . Similarly, we define the interpolants with respect to ck,
µk, `k, and µk,ext.

Remark 3.3. Note that the strong convergence of the piecewise affine interpolants together with a suit-
able estimate for the time derivative of the latter also implies the strong convergence of the piecewise
constant interpolants, as for any Banach space X the following estimates hold:

‖χ̂τ − χτ‖L2(0,T ;X) ≤
τ√
3
‖
.
χ̂τ‖L2(0,T ;X), (3.6)

‖χ̂τ − χτ‖L∞(0,T ;X) ≤ τ 1/2‖
.
χ̂τ‖L2(0,T ;X). (3.7)

Of course, similar estimates also hold for χτ .
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Using the piecewise affine and constant interpolants defined above, we can rewrite equation (3.1a) for
the deformation in the form

ˆ T

0

ˆ
Ω

(
σel(∇χη,τ , cη,τ ) + σvi(∇χη,τ ,∇

.
χ̂η,τ , cη,τ )

)
: ∇φ dx dt

+

ˆ T

0

ˆ
Ω

h(D2χη,τ )
... D2φ dx dt =

ˆ T

0

〈
`τ , φ

〉
dt, (3.8a)

for φ ∈ L2(0, T ;W 2,p
0 (Ω;Rd)) and (3.1b*) for the concentration as

ˆ T

0

〈
.
ĉη,τ , ψ〉 dt+

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇ψ + η
∑
|β|=θ

∂βµη,τ · ∂βψ dx dt

+

ˆ T

0

ˆ
∂Ω

κ(µη,τ − µτ,ext)ψ dS dt = 0, (3.8b)

for ψ ∈ Ls′(0, T ;Hθ(Ω)), where µη,τ ∈ ∂cΦ(χη,τ , cη,τ ) a.e. in Ω.

We start by showing an energy-dissipation inequality.

Lemma 3.4 (Energy-dissipation inequality). Let χη,τ , cη,τ , χ
η,τ

, cη,τ , µη,τ , and χ̂η,τ denote the piece-
wise constant and affine interpolants with respect to the time-discrete solutions obtained in Lemma
3.2. For Eτ (t, χ, c) :=

´
Ω

Φ(∇χ, c) +H (D2χ) dx−〈¯̀τ (t), χ〉, the following time-discrete energy-
dissipation inequality holds for tk = kτ , k = 1, . . . , N :

Eτ (tk, χη,τ (tk), cη,τ (tk)) +

ˆ tk

0

ˆ
Ω

{
M(∇χη,τ , cη,τ )∇µη,τ ·∇µη,τ + η

∑
|β|=θ

|∂βµη,τ |2
}

dx dt

+

ˆ tk

0

ˆ
∂Ω

κµ2
η,τ dS dt+

ˆ tk

0

R
(
χ
η,τ
,
.
χ̂η,τ , cη,τ

)
dt

≤ Eτ (0, χη0, c
η
0) +

ˆ tk

0

ˆ
∂Ω

κµη,τµτ,ext dS dt−
ˆ tk

0

〈
.̂̀
τ , χη,τ 〉 dt. (3.9)

Proof. We drop the index η throughout the proof.

Using the definition of the subdifferential, we get with µk = ∂cΦ(∇χk, ck) that a.e. in Ω

Φ(∇χk, ck−1) ≥ Φ(∇χk, ck) + µk(ck−1 − ck).

Thus, it follows for all k = 1, . . . , N , after integration over Ω (and adding the hyperstress potential
H to both sides) thatˆ

Ω

Φ(∇χk, ck) + H (D2χk) dx−
ˆ

Ω

Φ(∇χk, ck−1) + H (D2χk) dx−
ˆ

Ω

µk(ck−ck−1) dx ≤ 0.

Using the time-discrete diffusion equation in (3.1b*) with test function ψ = µk ∈ Hθ(Ω) for the last
term on the left-hand side, we now obtain the discrete energy inequality

E0(χk, ck)− E0(χk, ck−1) + τ

ˆ
Ω

M(∇χk, ck)∇µk · ∇µk dx

+ τ

ˆ
∂Ω

κ(µ2
k − µkµk,ext) dS + τη

ˆ
Ω

∑
|β|=θ

|∂βµk|2 dx ≤ 0, (3.10)
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where, as before, E0(χ, c) =
´

Ω
Φ(∇χ, c) + H (D2χ) dx.

Next, we establish the analogous estimate for the mechanical step. This estimate, however, follows
directly from χk being the solution of the minimization problem (3.2). Indeed, choosing χk−1 as com-
petitor in the minimization gives

E0(χk, ck−1) + τR(χk−1, δτχk, ck−1)− 〈`k, χk〉 ≤ E0(χk−1, ck−1)− 〈`k, χk−1〉. (3.11)

To obtain the estimate in (3.9), we use the estimate (3.11) for E0(χk, ck−1) in the estimate (3.10) to
get

E0(χi, ci) + τ

ˆ
Ω

{
M(∇χi, ci)∇µi · ∇µi + η

∑
|β|=θ

|∂βµi|2
}

dx

+ τ

ˆ
∂Ω

κ(µ2
i − µiµi,ext) dS + τR(χi−1, δτχi, ci−1) ≤ E0(χi−1, ci−1) + 〈`i, χi−χi−1〉.

The inequality in (3.9) then follows from summing over i = 1, . . . , k, summation by parts for the
loading part, and the definition of the piecewise constant and affine interpolants. In particular, the
summation-by-parts formula reads

k∑
i=1

τ〈`i, δτχi〉 = 〈`k, χk〉 − 〈`0, χ0〉 −
k∑
i=1

τ〈δτ`i, χi−1〉.

The time-discrete energy-dissipation inequality gives rise to uniform a priori bounds (with respect to
τ and η) for the interpolants of the time-discrete solutions (χk, µk, ck) obtained in Lemma 3.2. We
assume in the following that the initial conditions satisfy

χη0 → χ0 in W 2,p
id (Ω;Rd), cη0 → c0 in L1(Ω), and E0(χη0, c

η
0)→ E0(χ0, c0) (3.12)

as η → 0.

Lemma 3.5 (A priori estimates). Assuming that (A1)–(A8), as well as (3.12) are satisfied, there exists
C > 0 (independent of τ and η) such that for τ, η > 0 small enough, the following uniform estimates
are satisfied

‖χη,τ‖L∞(0,T ;W 2,p
id (Ω)) + ‖

.
χ̂η,τ‖L2(0,T ;H1

0 (Ω)) + ‖(det∇χη,τ )−1‖L∞(0,T ;Lq(Ω)) ≤ C, (3.13a)
√
η‖µη,τ‖L2(0,T ;Hθ(Ω)) + ‖

√
κµη,τ‖L2([0,T ]×∂Ω) ≤ C, (3.13b)

‖cη,τ‖L∞(0,T ;L logL(Ω)) +
∥∥∇cm2η,τ∥∥L2(0,T ;L2(Ω))

+ ‖
.
ĉη,τ‖Ls(0,T ;Hθ(Ω)∗) ≤ C, (3.13c)

‖M(∇χη,τ , cη,τ )∇µη,τ‖Ls([0,T ]×Ω) ≤ Cη. (3.13d)

where s = md+2
md+1

> 1.

If additionally γ1 > 0 in Assumption (A3)(ii) then we also have that

‖cη,τ‖L∞(0,T ;L2+r(Ω)) +
∑

ω∈{0, 1+r
2
, 1+r}

∥∥∇cm2 +ω
η,τ

∥∥2

L2(0,T ;L2(Ω))
+ ‖

.
ĉη,τ‖Ls(0,T ;Hθ(Ω)∗) ≤ C,

(3.13e)

‖M(∇χη, cη)∇µη‖Ls([0,T ]×Ω) ≤ C, (3.13f)

where s = min{md+2(r+2)
md+r+2

, d(m+r+1)+2(r+2)
d(m+r+1)+r+2

} > 1.
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Proof. Step 1. To obtain the a priori estimate for χη,τ , we exploit the energy-dissipation estimate in
(3.9). We absorb the boundary integral on the right-hand side via Young’s inequality in the correspond-
ing boundary terms on the left-hand side. Moreover, neglecting any nonnegative terms on the left-hand
side gives

Eτ (tk, χη,τ (tk), cη,τ (tk)) ≤ Eτ (0, χ0, c0) +
1

2

ˆ tk

0

‖
√
κµτ,ext‖2

L2(∂Ω) dt

+

ˆ tk

0

∥∥.̂̀
τ

∥∥
W 2,p(Ω;Rd)∗

‖χ
η,τ
‖W 2,p

id (Ω;Rd) dt ≤ C0 + Λ1

ˆ tk

0

‖χ
η,τ

(t)‖W 2,p
id (Ω;Rd) dt, (3.14)

where we used Assumptions (A7) and (A6) for the data µext and `, respectively, and set Λ1 :=

‖
.
`‖L∞(0,T ;W 2,p(Ω;Rd)∗). However, due to Assumptions (A1), (A3)(i), and (A6), we find a constantCE >

0 such that the energy Eτ satisfies the lower estimate

Eτ (t, χ, c) ≥ CE‖χ‖W 2,p
id (Ω;Rd) + CΦ,0‖(det∇χ)−1‖qLq(Ω) − 1/CE . (3.15)

Thus, setting ek := Eτ (tk, χη,τ (tk), cη,τ (tk)), we have the time-discrete estimate

ek ≤ C0 +
Λ1T

C2
E

+
Λ1

CE

k−1∑
i=0

τei, k = 1, . . . , N.

An application of the discrete Gronwall lemma (see e.g. [QV94, Lemma 1.4.2]) now gives the bound

ek ≤
(
C0 +

Λ1T

C2
E

)
exp

(Λ1

CE
kτ
)
. (3.16)

Hence, estimate (3.15) gives the bound for χη,τ in L∞(0, T ;W 2,p
id (Ω;Rd)) (cf. (3.13a)).

Note that as an immediate consequence of (3.15) and (3.16), we also obtain that 1/(det∇χη,τ ) is
uniformly bounded inL∞(0, T ;Lq(Ω)) for q ≥ pd/(p−d) (comp. Assumption (A3)(i)). Consequently,
the Healey–Krömer lemma [MR20, Thm. 3.1] can be applied, which gives a uniform constant CHK > 0
and the lower bound

det∇χη,τ (t, x) ≥ CHK > 0 for all (t, x) ∈ [0, T ]× Ω.

(Note that by assumption, also det∇χ0(x) ≥ ρ0 > 0.) In particular, we see that for some R > 0
large enough,∇χη,τ (t, x) ∈ FR for all (t, x) ∈ [0, T ]× Ω.

Step 2. To obtain the a priori estimate for
.
χ̂η,τ in L2(0, T ;H1(Ω)), we use assumption (A5) to esti-

mate
ˆ T

0

R(χ
η,τ
,
.
χ̂η,τ ,cη,τ ) dt =

ˆ T

0

ˆ
Ω

ζ(∇χ
η,τ
,∇

.
χ̂η,τ , cη,τ ) dx dt

=

ˆ T

0

ˆ
Ω

ζ̂
(
(∇χ

η,τ
)>∇χ

η,τ
, (∇χ

η,τ
)>∇

.
χ̂η,τ + (∇

.
χ̂η,τ )

>∇χ
η,τ
, cη,τ

)
dx dt

≥ Cζ,1

ˆ T

0

ˆ
Ω

∣∣∣(∇χ
η,τ

)>∇
.
χ̂η,τ + (∇

.
χ̂η,τ )

>∇χ
η,τ

∣∣∣2 dx dt

≥ Cζ,1

ˆ T

0

‖
.
χ̂η,τ‖2

H1(Ω) dt = Cζ,1‖
.
χ̂η,τ‖2

L2(0,T ;H1(Ω)),
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where the last inequality follows from the generalized Korn’s inequality as in [MR20, Cor. 3.4]. The
uniform boundedness of the left-hand side now follows directly from the energy-dissipation inequality
(3.9) and hence the proof of (3.13a) is complete.

Step 3. To obtain the a priori estimates for µη,τ , we again exploit the energy-dissipation inequality (3.9)
as well as the generalized Poincaré inequality (see [Tem97, Section 2.1.4]) to obtain the estimate

√
η‖µη,τ‖L2(0,T ;Hθ(Ω)) + ‖

√
κµη,τ‖L2([0,T ]×∂Ω) ≤ C

for some constant C > 0 independent of τ and η. Thus, we have shown (3.13b).

Step 4. The first estimate of (3.13c), i.e., the estimate for cη,τ in L∞(0, T ;L logL(Ω)) follows di-
rectly from the L∞(0, T ;L∞(Ω;Rd×d))-bound for ∇χη,τ , Lemma 2.1, and the energy-dissipation
inequality (3.9). Similarly, when γ1 > 0, we also obtain the bound for cη,τ in L∞(0, T ;L2+r(Ω)).

To obtain the bounds for the gradient terms, we now use that

∇µη,τ = ∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ + ∂2

ccΦ(∇χη,τ , cη,τ )∇cη,τ ,

which by the binomial formula implies that

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇µη,τ dx dt

=

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )
{∣∣∂2

FcΦ(∇χη,τ , cη,τ )D2χη,τ
∣∣2 +

∣∣∂2
ccΦ(∇χη,τ , cη,τ )∇cη,τ

∣∣2
+ 2(∂2

FcΦ(∇χη,τ , cη,τ )D2χη,τ ) · ∂2
ccΦ(∇χη,τ , cη,τ )∇cη,τ

}
dx dt.

Thus, using Young’s inequality with ε > 0 for the last term in the brackets, we see that

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇µη,τ dx dt

≥ C

ˆ T

0

ˆ
Ω

∂2
ccΦ(∇χη,τ , cη,τ )2M(∇χη,τ , cη,τ )∇cη,τ · ∇cη,τ dx dt

− C
ˆ T

0

ˆ
Ω

|M(∇χη,τ , cη,τ )|
∣∣∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ

∣∣2 dx dt. (3.17)

We now discuss the two cases from Assumption (A3)(ii), separately, i.e., γ1 = γ2 = 0 or 0 < γ1 ≤
γ2.

Case I: γ1 = γ2 = 0. To estimate the first integral on the right-hand side of (3.17), we use that∇χη,τ ∈
FR and Assumptions (A2), (A3)(ii) to obtain

ˆ T

0

ˆ
Ω

∂2
ccΦ(∇χη,τ , cη,τ )2M(∇χη,τ , cη,τ )∇cη,τ · ∇cη,τ dx dt

≥ C

ˆ T

0

ˆ
Ω

cm−2
η,τ |∇cη,τ |2 dx dt ≥ C

∥∥∇cm2η,τ∥∥L2(0,T ;L2(Ω))
. (3.18)
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For the second integral on the right-hand side of (3.17), we note that by (A3)(iii), Hölder’s inequality,
and the uniform bound for D2χη,τ in L∞(0, T ;Lp(Ω;Rd×d×d))

ˆ T

0

ˆ
Ω

|M(∇χη,τ , cη,τ )|
∣∣∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ

∣∣2 dx dt

≤
ˆ T

0

ˆ
Ω

cm+2α
η,τ |D2χη,τ |2 dx dt ≤ C‖cm+2α

η,τ ‖
L1(0,T ;L

p
p−2 (Ω))

.

We now distinguish two cases: First, if 0 ≤ p
p−2

(m+ 2α) ≤ 1, a uniform upper estimate for the right-

hand side follows immediately from the L∞(0, T ;L1(Ω))-bound for cη,τ (cf. (3.13c)). For the second
case, when p

p−2
(m+ 2α) > 1, we note that p

p−2
≤ m

2
2d
d−2

1
m+2α

=: ω2 ∈ (1,∞), which follows from

Assumption (A3)(iii) and p > d. Since α < 0 in this case, we also have that 1 < m
2

2
m+2α

=: ω1.
Thus, we now find that∥∥cm+2α

η,τ

∥∥
L1(0,T ;L

p
p−2 (Ω))

≤ C
∥∥cm+2α

η,τ

∥∥
Lω1 (0,T ;Lω2 (Ω))

= C
∥∥cm2η,τ∥∥2/ω1

L2(0,T ;L
2d
d−2 (Ω))

.

Next, we note that 2
ω1
< 2, and thus we can use Young’s inequality with ε > 0 to obtain∥∥cm+2α
η,τ

∥∥
L1(0,T ;L

p
p−2 (Ω))

≤ C(ε) + εC
∥∥cm2η,τ∥∥2

L2(0,T ;L
2d
d−2 (Ω))

.

Using the Sobolev embedding H1(Ω) ↪→ L
2d
d−2 (Ω), we obtain

ˆ T

0

ˆ
Ω

|M(∇χη,τ , cη,τ )|
∣∣∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ

∣∣2 dx dt ≤ C(ε) + εC
∥∥cm2η,τ∥∥2

L2(0,T ;H1(Ω))
.

Finally, we note that c
m
2
η,τ is uniformly bounded in L2(0, T ;L1(Ω)) due to the boundedness of the

energy and m ≤ 2. Thus we can use a Poincaré-type inequality to find

ˆ T

0

ˆ
Ω

|M(∇χη,τ , cη,τ )|
∣∣∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ

∣∣2 dx dt ≤ C(ε) + εC
∥∥∇cm2η,τ∥∥2

L2(0,T ;L2(Ω))
.

(3.19)
Choosing ε > 0 sufficiently small, we can combine (3.17), (3.18), and (3.19) to obtain

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇µη,τ dx dt ≥ C
(∥∥∇cm2η,τ∥∥2

L2(0,T ;L2(Ω))
− 1
)
.

Thus, the energy-dissipation inequality (3.9) now gives the uniform bound for∇c
m
2
η,τ inL2(0, T ;L2(Ω)).

Case II: γ2 ≥ γ1 > 0. To estimate the first integral, we again use that∇χη,τ ∈ FR and Assumptions
(A2), (A3)(ii) to obtain

ˆ T

0

ˆ
Ω

∂2
ccΦ(∇χη,τ , cη,τ )2M(∇χη,τ , cη,τ )∇cη,τ · ∇cη,τ dx dt

≥ C

ˆ T

0

ˆ
Ω

cmη,τ (c
−1
η,τ + crη,τ )

2|∇cη,τ |2 dx dt ≥ C
∑

i∈{0, 1+r
2
, 1+r}

∥∥∇cm2 +i
η,τ

∥∥2

L2(0,T ;L2(Ω))
. (3.20)
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For the second integral, we proceed as in Case I to obtainˆ T

0

ˆ
Ω

|M(∇χη,τ , cη,τ )|
∣∣∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ

∣∣2 dx dt ≤ C‖cm+2α
η,τ ‖

L1(0,T ;L
p
p−2 (Ω))

.

Again, we consider two cases: First, if 0 ≤ p
p−2

(m+2α) ≤ 2+r it follows from theL∞(0, T ;L2+r(Ω))-
bound for cη,τ that the left-hand side is uniformly bounded. If p

p−2
(m+ 2α) > 2 + r, we define ω0 by

ω0 = m+1+r
2

in Case IIa, and ω0 = m
2

+1+r in Case IIb. Next, we note that p
p−2
≤ 2d

d−2
ω0

m+2α
=: ω2,

which follows from Assumption (A3)(iii) and p > d. Also, 1 < 2ω0

m+2α
=: ω1 so that∥∥cm+2α

η,τ

∥∥
L1(0,T ;L

p
p−2 (Ω))

≤ C
∥∥cm+2α

η,τ

∥∥
Lω1 (0,T ;Lω2 (Ω))

≤ C
∥∥cω0

η,τ

∥∥2/ω1

L2(0,T ;L
2d
d−2 (Ω))

Since 2
ω1
< 2 we can proceed as in Case I and use Young’s inequality with ε, the Sobolev embedding

H1(Ω) ↪→ L
2d
d−2 (Ω) and Poincaré’s inequality (which is applicable since cω0

η,τ ∈ L2(0, T ;L1(Ω)) as
m ≤ 3 + r (Case IIa) or m ≤ 2 (Case IIb)) to obtainˆ T

0

ˆ
Ω

|M(∇χη,τ , cη,τ )|
∣∣∂2
FcΦ(∇χη,τ , cη,τ )D2χη,τ

∣∣2 dx dt ≤ C(ε) + εC
∥∥∇cω0

η,τ

∥∥2

L2(0,T ;L2(Ω))
.

(3.21)
Thus, choosing ε sufficiently small and combining (3.17), (3.20) and (3.21), we obtainˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇µη,τ dx dt ≥ C
( ∑
i∈{0, 1+r

2
, 1+r}

∥∥∇cm2 +i
η,τ

∥∥2

L2(0,T ;L2(Ω))
− 1
)
.

The energy-dissipation inequality (3.9) now gives the uniform bound for∇c
m
2
η,τ ,∇c

m+1+r
2

η,τ and∇c
m
2

+1+r
η,τ

in L2(0, T ;L2(Ω)).

Step 5. We show that the fluxM(∇χη,τ , cη,τ )∇µη,τ is uniformly bounded inLs([0, T ]×Ω) (cf. (3.13d)).
We distinguish again between the Cases I and II in Assumption (A3)(iii).

Case I: γ1 = γ2 = 0. We estimate for 1 < s = md+2
md+1

< 2

‖M(∇χη,τ , cη,τ )∇µη,τ‖sLs([0,T ]×Ω) ≤ C

ˆ T

0

ˆ
Ω

(
cmη,τ
∣∣∂2
FcΦD2χη,τ + ∂2

ccΦ∇cη,τ
∣∣)s dx dt

≤ C

ˆ T

0

ˆ
Ω

(
cs(m+α)
η,τ |D2χη,τ |s + cs(m−1)

η,τ |∇cη,τ |s) dx dt

≤ C

ˆ T

0

(
‖c(m+α)
η,τ ‖s

L
ps
p−s (Ω)

‖D2χη,τ‖sLp(Ω;Rd×d×d)

+
∥∥cm2η,τ∥∥sL 2s

2−s (Ω)

∥∥∇cm2η,τ∥∥sL2(Ω)

)
dt,

where in the first and second inequality we used Assumptions (A2) and (A3), respectively, and in the
third inequality, we used Hölder’s inequality. We now consider the two terms on the right-hand side
separately. For the first term, the boundedness follows from the condition 0 ≤ m + α ≤ p−s

ps
,

i.e., (m + α) ps
p−s ≤ 1 (see Assumption (A3)(iii)), and the L∞(0, T ;L1(Ω))-bound for cη,τ and

L∞(0, T ;Lp(Ω;Rd×d×d))-bound for D2χη,τ .

For the second term, we use the Gagliardo-Nirenberg-Sobolev inequality to bound∥∥cm2η,τ∥∥
L

2s
2−s (Ω)

≤ C
(∥∥∇cm2η,τ∥∥λL2(Ω)

∥∥cm2η,τ∥∥1−λ
L

2
m (Ω)

+
∥∥cm2η,τ∥∥L1(Ω)

)
≤ C

(
1 +

∥∥∇cm2η,τ∥∥λL2(Ω)

)
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for almost every t ∈ [0, T ]. Here, λ ∈ (0, 1) is defined via 2−s
2s

= λd−2
2d

+ (1−λ)m
2

, or using that
s = md+2

md+1
, via s(1 + λ) = 2, and we have used that cη,τ is bounded in L∞(0, T ;L1(Ω)). Thus,

using that 1 < s < 2, we obtain
ˆ T

0

∥∥cm2η,τ∥∥s
L

2
2−s (Ω)

‖∇c
m
2
η,τ‖sL2(Ω) dt ≤ C

ˆ T

0

∥∥∇cm2η,τ∥∥sL2(Ω)
+
∥∥∇cm2η,τ∥∥s(1+λ)

L2(Ω)
dt

≤ C
(
1 +

∥∥∇cm2η,τ∥∥2

L2(0,T ;L2(Ω))

)
.

Using the bounds in (3.13c), the bound in (3.13d) follows.

Case II: γ2 ≥ γ1 > 0. To prove the bound for the flux in (3.13f), we estimate for the exponent 1 <

s = min{md+2(r+2)
md+r+2

, d(m+r+1)+2(r+2)
d(m+r+1)+r+2

} < 2

‖M(∇χη,τ , cη,τ )∇µη,τ‖sLs([0,T ]×Ω) ≤ C

ˆ T

0

ˆ
Ω

(
cmη,τ
∣∣∂2
FcΦD2χη,τ + ∂2

ccΦ∇cη,τ
∣∣)s dx dt

≤ C

ˆ T

0

ˆ
Ω

(
cs(m+α)
η,τ |D2χη,τ |s + (cs(m−1)

η,τ + cs(m+r)
η,τ )|∇cη,τ |s) dx dt

≤ C

ˆ T

0

(
‖c(m+α)
η,τ ‖s

L
ps
p−s (Ω)

‖D2χη,τ‖sLp(Ω;Rd×d×d)

+
∥∥cm2η,τ∥∥s

L
2s

2−s (Ω)

∥∥∇cm2η,τ∥∥sL2(Ω)
+
∥∥cm+r+1

2
η,τ

∥∥s
L

2s
2−s (Ω)

∥∥∇cm+r+1
2

∥∥s
L2(Ω)

)
dt,

where in the first and second inequality we used Assumptions (A2) and (A3), and in the second
and third inequality we used Hölder’s inequality. Again, we look at the integrals separately. For the first
integral, the boundedness follows from the condition (m+α) ps

p−s ≤ 2+r (cf. Assumption (A3)(iii). For
the second integral, we argue as before, now using the boundm ≤ 4+2r (which directly follows from
m ≤ 3 + r and r ≥ −1). Taking s = md+2(r+2)

md+r+2
> 1 the boundedness follows. The boundedness of

the third integral follows from m ≤ 3 + r and s = d(m+r+1)+2(r+2)
d(m+r+1)+r+2

> 1.

Step 6. To prove the final bound of (3.13c) for the time derivative
.
ĉη,τ , we now test (3.1b*) with ψ ∈

Ls
′
(0, T ;Hθ(Ω)) and use Assumption (A7) to find

ˆ T

0

〈
.
ĉη,τ , ψ〉 dt ≤ C‖M(∇χη,τ , cη,τ )∇µη,τ‖Ls([0,T ]×Ω)‖ψ‖Ls′ (0,T ;W 1,s′ (Ω))

+ Cη‖µη,τ‖L2(0,T ;Hθ(Ω))‖ψ‖L2(0,T ;Hθ(Ω))

+ C
(
‖µη,τ−µτ,ext‖L2([0,T ]×∂Ω)

)
‖ψ‖L2([0,T ]×∂Ω).

Thus, using the previously obtained uniform bounds, we conclude that
ˆ T

0

〈
.
ĉη,τ , ψ〉 dt ≤ C(‖ψ‖Ls′ (0,T ;W 1,s′ (Ω)) +

√
η‖ψ‖L2(0,T ;Hθ(Ω))), (3.22)

for all ψ ∈ Ls′(0, T ;Hθ(Ω)) so that ‖
.
cη,τ‖Ls(0,T ;Hθ(Ω)∗) ≤ C , finishing the proof of (3.13c).

4 Limit passage (τ, η)→ 0

We now pass to the limit (τ, η)→ 0. Note that to obtain strong convergence of the concentration cη,
we cannot directly use the Aubin–Lions lemma since we do not have a bound for∇cη,τ , but instead for
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∇c
m
2
τ,η, and, if γ1 > 0, also for ∇c

m
2

+i
η,τ (i ∈ {1+r

2
, 1+r}). Thus, we use a generalization, Dubinskiı̆’s

theorem, cf. Theorem A.3.

Proposition 4.1 (Limit passage (τ, η)→ 0). There exist subsequences (not relabeled) such that the
interpolants (χ̂τ , ĉτ , µτ ) converge to a weak solution (χ, c, µ) of (2.2)–(2.4) in the sense of Definition
2.5).

Proof. We show the limit passage for Case I, i.e., γ1 = γ2 = 0. The limit passage for Case II, i.e.,
γ2 ≥ γ1 > 0 follows in a similar way.

Step 1. Using the a priori estimates from Lemma 3.5, we can extract converging subsequences (not
relabeled) and some (χ, c, µ,Θ) such that

χ̂η,τ
w∗−⇀ χ in L∞(0, T ;W 2,p

id (Ω;Rd)) ∩H1(0, T ;H1(Ω;Rd)),

ĉη,τ
w∗−⇀ c in L∞(0, T ;L logL(Ω)) ∩W 1,s(0, T ;Hθ(Ω)∗),

µη,τ
w−⇀ µ∗ in L2([0, T ]× ∂Ω),

M(∇χη,τ , cη,τ )∇µη,τ
w−⇀ Θ in Ls([0, T ]× Ω).

Using the Aubin–Lions lemma, we can extract a strongly converging subsequence (not relabeled) such
that

χ̂η,τ
s−→ χ in C(0, T ;C1,λ(Ω;Rd)), with λ = 1− d

p
,

Next, we note that since c
m
2
η,τ ∈ L2(0, T ;L1(Ω)) (as 1 ≤ m ≤ 2), it follows from Poincaré’s inequality

that c
m
2
η,τ ∈ L2(0, T ;H1(Ω)). Thus, we can apply Corollary A.4 of Dubinskiı̆’s theorem to obtain a

strongly converging subsequence (not relabeled)

ĉη,τ
s−→ c in Lm(0, T ;Lm(Ω)).

Note that by Remark 3.3 these convergences also hold for the piecewise constant interpolants χη,τ ,
χ
η,τ

, cη,τ and cη,τ .

Consequently, we also have that

∇c
m
2
η,τ

w−⇀ ∇c
m
2 in L2(0, T ;L2(Ω)).

Step 2. We now pass to the limit τ → 0 in the time-discrete mechanical equation in (3.8a). Using
the above convergences and the continuity of σel : FR × R+ → Rd×d (with R > 0 as in Step 3
of the proof of the a priori estimates in Lemma 3.5), the limit in the first term on the left-hand side
follows from the dominated convergence theorem. Indeed, using the L∞(0, T ;L∞(Ω;Rd×d))-bound
for∇χη,τ and Assumption (A3)(iii), we obtain |σel(∇χη,τ , cη,τ )| ≤ C(1 + c1+α

η,τ ), which is integrable
since 0 ≤ 1 + α ≤ 1 (Case I), or since 0 ≤ 1 + α ≤ 2 + r (Case II). Using the linearity of

σvi(F,
.
F , c) with respect to

.
F , we can also directly pass to the limit in the second term. Recall that by

Assumption (A5) the tensor D̃ is uniformly bounded, hence, the dominated convergence theorem can
be applied again. The limit in the loading term on the right-hand side follows directly from the fact that
`τ → ` in L2(0, T ;H1(Ω)∗).

Finally, the limit passage in the hyperstress term follows from the strong-weak closedness of the con-
vex subdifferential ofA : X → [0,∞] defined by

A(χ) =

{´ T
0

´
Ω

H (D2χ) dx dt if χ ∈ L∞(0, T ;W 2,p(Ω;Rd)),

+∞ otherwise,
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see Lemma A.1.

Step 3. To pass to the limit τ → 0 in the diffusion equation (3.8b), we note that the first term on

the left-hand side converges by the weak convergence of
.
ĉη,τ in L2(0, T ;Hθ(Ω)∗). The third term

vanishes in the limit η → 0 using the first estimate of (3.13b). The fourth term converges using the
weak convergences of µη,τ in L2([0, T ] × ∂Ω). Finally, it remains to pass to the limit in the second
integral, i.e., to show that

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇ψ dx dt→
ˆ T

0

ˆ
Ω

M(∇χ, c)∇µ · ∇ψ dx dt

for all ψ ∈ Ls′(0, T ;Hθ(Ω)). Note that we have (up-to a subsequence)M(∇χη,τ , cη,τ )∇µτ
w−⇀ Θ

in Ls([0, T ]× Ω)) by Step 1.

Using the strong convergences of ∇χη,τ and cη,τ we can assume that ∇χη,τ (t, x) → ∇χ(t, x) in
GL+(d) and cη,τ (t, x)→ c(t, x) for almost every (t, x) ∈ [0, T ]× Ω.

To pass to the limit, we now introduce the rescaled mobility tensor M̃ by defining M̃(F, c) =
cmM(F, c) for all F ∈ FR (some R > 0) and c > 0, and the rescaled derivatives of free en-
ergy A and B defined by cαA(F, c) = ∂2

FcΦ(F, c) and B(F, c) = c∂2
ccΦ(F, c) for all F ∈ GL+(d)

and c > 0. In particular, note that by Assumption (A2) we have |M̃| ≤ C and by Assumption (A3)
that |A|, |B| ≤ C for all F and c > 0. Then, it follows that

ˆ T

0

ˆ
Ω

M(∇χη,τ , cη,τ )∇µη,τ · ∇ψ dx dt

=

ˆ T

0

ˆ
Ω

M̃(∇χη,τ , cη,τ )
(
A(∇χη,τ , cη,τ )cm+α

η,τ D2χη,τ+c
m
2

+1
η,τ B(∇χη,τ , cη,τ )∇c

m
2
η,τ

)
·∇ψ dx dt.

Since continuous functions preserve almost everywhere convergence, the limit passage follows by
applying Lemma A.5 (therein, stated for the scalar case with the extension to the vectorial case being
straightforward) with

aη,τ = M̃(∇χη,τ , cη,τ )A(∇χη,τ , cη,τ )cm+α
η,τ and Vη,τ = D2χη,τ

and
aη,τ = M̃(∇χη,τ , cη,τ )c

m
2

+1
η,τ B(∇χη,τ , cη,τ )∇c

m
2
η,τ and Vη,τ = ∇c

m
2
η,τ

for the first and second integral, respectively. Note, in particular, that this uses the Ls([0, T ] × Ω)-
bound for the fluxM(∇χη,τ , cη,τ )∇µη,τ .

The limit passage in the terms arising when γ2 ≥ γ1 > 0 follows in a similar way, and is therefore
omitted.

Step 4. It remains to show that µ∗ ∈ ∂cΦ(∇χ, c). Note that this is not immediately clear since we do
not have an L2(0, T ;H1(Ω)) estimate for µη (as is the case for nondegenerate mobilities), and thus
cannot use the trace operatorH1(Ω) ↪→ L2(∂Ω) to conclude that this µ∗ satisfies µ∗ ∈ ∂cΦ(∇χ, c).

Instead we use that ∇χ̂η,τ
s−→ χ in C(0, T ;C(Ω;Rd×d)) to extract a subsequence (not relabeled)

such that χ̂η,τ (t, x) → χ(t, x) in GL+(d) for almost every (t, x) ∈ [0, T ] × ∂Ω. Using that
H1(Ω) ↪→ L2(∂Ω) (see e.g. [Bie09, Theorem 1.1]), we thus obtain using Dubinskiı̆’s theorem
a strongly converging subsequence (not relabeled) such that cη,τ

s−→ c in Lm([0, T ] × ∂Ω). In
particular, we can extract another subsequence sucht that cη,τ (t, x) → c(t, x) for almost every
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(t, x) ∈ [0, T ] × ∂Ω. Using the Banach–Saks theorem, we now extract a subsequence (ηn, τn)
such that 1

N

∑N
n=1 µηn,τn

s−→ µ∗ in L2([0, T ] × ∂Ω). Again extracting a converging (non-relabeled)

subsequence, we thus find that 1
N

∑N
n=1 µηn,τn(t, x) → µ∗(t, x) for all (t, x) ∈ [0, T ] × ∂Ω.

Since continuity of ∂cΦ and the almost everywhere convergence of ∇χη,τ and cη,τ also imply that
µη,τ = ∂cΦ(∇χη,τ , cη,τ ) → ∂cΦ(∇χ, c) for almost every (t, x) ∈ [0, T ] × ∂Ω, we thus conclude
that µ∗ ∈ ∂cΦ(∇χ, c).

A Tools

Lemma A.1 (Strong-weak closedness of the convex subdifferential). Let X be a reflexive Banach
space, and let A : X → R ∪ ∞ be convex and lower semicontinuous. If un

s−→ u in X and
ξn ∈ ∂A(un) ⊂ X∗ such that ξn

w−⇀ ξ in X∗, then ξ ∈ ∂A(u).

Proof. Using convexity of A, we obtain A(v) ≥ A(un) + 〈ξn, v − un〉 for all v ∈ X∗. The result
now follows using by taking the lim inf of this inequality, and using the lower semicontinuity and given
convergences.

Here we state Dubinskiı̆’s theorem [Dub65] in the form of [BS12].

Definition A.2. Let A be a Banach space. Then,M+ is a seminormed nonnegative cone in A if
M+ ⊆ A satisfies:

(i) For all u ∈M+, γ ≥ 0, we have γu ∈M+.

(ii) There exists a function [·] : M+ → [0,∞) (the semi-norm) such that [u] = 0 if and only if
u = 0, and for γ ≥ 0 we have [γu] = γ[u].

We say that M+ ↪→ A continuously if there exists C > 0 such that ‖u‖A ≤ C[u] for all u ∈
M+, and we say thatM+ ↪→ A compactly if every bounded sequence inM+ has a converging
subsequence in A.

Theorem A.3 (Dubinskiı̆). LetM+ be a seminormed nonnegative cone, and A0, A1 Banach spaces
such thatM+ ↪→ A0 compactly, and A0 ↪→ A1 continuously. Let

Y+ = {ϕ : [0, T ]→M+ | [ϕ]Y+ := [ϕ]Lp(0,T ;M+) + ‖ .ϕ‖Lp1 (0,T ;A1) ≤ C}

for 1 ≤ p, p1 ≤ ∞. Then, Y+ is a seminormed nonnegative cone in Lp(0, T ;A0)∩W 1,p1(0, T ;A1),
and Y+ ↪→ Lp(0, T ;A0) compactly if either p1 > 1 or p <∞.

Corollary A.4. Let ω ≥ 1
2
, θ > d

2
, and let (ϕk) be a sequence of nonnegative functions on [0, T ]×Ω

such that there exists a constant C > 0 for which

‖(ϕk)ω‖L2(0,T ;H1(Ω)) + ‖ .ϕk‖L2(0,T ;Hθ(Ω)∗) ≤ C.

Then, (ϕk) is relatively compact in L2ω(0, T ;L2ω(Ω)).
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Proof. The proof is given in the time-discrete case in [CJL14]. In our case, we just apply Theorem A.3
withM+ = {ϕ | ϕω ∈ H1(Ω)}, A0 = L2ω(Ω), A1 = Hθ(Ω)∗, and the seminorm

[ϕ]Y+ = ‖ϕω‖
1
ω

L2(0,T ;H1(Ω)) + ‖ .ϕ‖L2(0,T ;Hθ(Ω)∗).

Lemma A.5 ([Fis+22, Lemma A.3]). Assume that an,Vn : Q→ R, n ∈ N are measurable functions
in Q ⊂ Rm (open, bounded) such that Vn

w−⇀ V in L1(Q), an(x) → a(x) for almost every x ∈ Q,
and supn∈N ‖anVn‖L1+σ(Q) <∞ for some σ > 0. Then anVn

w−⇀ aV in L1+σ(Q).
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[Rou17a] T. Roubíček. “An energy-conserving time-discretisation scheme for poroelastic media with
phase-field fracture emitting waves and heat”. In: Discrete Contin. Dyn. Syst. Ser. S 10.4
(2017), pp. 867–893. DOI: 10.3934/dcdss.2017044.
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[Rou21] T. Roubíček. “Cahn-Hilliard equation with capillarity in actual deforming configurations”.
In: Discrete Contin. Dyn. Syst. Ser. S 14.1 (2021), pp. 41–55. DOI: 10.3934/dcdss.
2020303.

DOI 10.20347/WIAS.PREPRINT.3027 Berlin 2023

https://doi.org/10.1080/014957399280823
https://doi.org/10.1080/014957399280823
https://doi.org/10.1051/cocv:2008050
https://doi.org/10.1051/cocv:2008050
https://doi.org/10.1088/0951-7715/28/6/1963
https://doi.org/https://doi.org/10.1016/j.jpcs.2003.08.037
https://doi.org/10.1007/s00205-020-01537-z
https://doi.org/10.1007/s00205-020-01537-z
https://doi.org/10.1007/s00205-017-1164-6
https://doi.org/10.1007/s00205-017-1164-6
https://doi.org/10.1017/S0308210500001591
https://doi.org/10.3934/dcdss.2017044
https://doi.org/https://doi.org/10.1002/zamm.201600269
https://doi.org/10.3934/dcdss.2020303
https://doi.org/10.3934/dcdss.2020303


W.J.M. van Oosterhout, M. Liero 24
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