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An introduction to the analysis of gradients systems
Alexander Mielke

Abstract

The present notes provide an extended version of a small lecture course (of 36 hours) given
at the Humboldt-Universität zu Berlin in the Winter Term 2022/23. The material starting in Section
5.4 was added afterwards.

The aim of these notes to give an introductory overview on the analytical approaches for
gradient-flow equations in Hilbert spaces, Banach spaces, and metric spaces and to show that
on the first entry level these theories have a lot in common. The theories and their specific setups
are illustrated by suitable examples and counterexamples.

The merit of the right gradient flow formulation
of a dissipative evolution equation is that

it separates energetics and kinetics:
The energetics endow the state space M

with a functional E,
the kinetics endow the state space with a

(Riemannian) geometry via the metric tensor g.

Felix Otto 2001

Contents

1 Introduction 3

1.1 Gradients in the finite dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Gradient systems and their gradient-flow equations . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Gradient structures for partial differential equations . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Otto’s gradient structure for diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Gradient structures for the heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Further remarks on modeling with gradient systems . . . . . . . . . . . . . . . . . . . . . . . 11

2 Gradient systems with Hilbert-space structure 11

2.1 Differentials and subdifferentials on Banach spaces . . . . . . . . . . . . . . . . . . . . . . . 11

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



A. Mielke 2

2.2 Semiconvexity and closedness of subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Existence via time-incremental minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The first convergence proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Completion of the Hilbert-space gradient flow via Evolutionary Variational Inequalities (EVI) . . . 21

3 Generalized gradient systems in Banach spaces 24

3.1 Legendre duality and nonlinear kinetic relations . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Generalized gradient systems and the gradient-flow equations . . . . . . . . . . . . . . . . . . 27

3.3 The energy-dissipation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The abstract chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Existence theory via time-incremental minimization . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Time dependent gradient systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.2 Weakly compact sublevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.3 Approaches without semiconvexity and variational interpolants . . . . . . . . . . . . . . 43

4 Metric gradient systems 43

4.1 Minimizing movements for metric gradient systems . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Curves of maximal slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 The metric chain-rule inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 De Giorgi’s variational interpolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Existence of curves of maximal slopes via MMS . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Metric evolutionary variational inequalities (EVI) . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Evolutionary Γ-convergence for gradient systems 67

5.1 Γ-convergence for (static) functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Evolutionary Γ-convergence via EVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Evolutionary Γ-convergence using the energy-dissipation balance . . . . . . . . . . . . . . . . 79

5.4 EDP-convergence for gradient systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Rate-independent systems 90

6.1 Introduction to rate independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Energetic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Existence of energetic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Closedness of the stable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



An introduction to the analysis of gradients systems 3

1 Introduction

In this section we introduce our notions, provide a series of examples and give motivations concerning
the origins of gradients systems.

1.1 Gradients in the finite dimensional case

We first discuss the notion of gradient of a function F : Rd → R. We distinguish the gradient gradF
and the Fréchet derivative DF via

gradF(u) =

 ∂u1F(u)
...

∂udF(u)

 and DF(u) =
(
∂u1F(u), · · · , ∂udF(u)

)
∈
(
Rd
)∗
.

We will use the abbreviation “grad” for general gradients and reserve the symbol “∇” for PDE appli-
cations like ∆u = div(∇u).

For the function F(u1, u2) = 1
2
u2

1 + 1
2
u2

2 + a
4
u4

2 we obtain

gradF(u) =

(
u1

u2+au3
2

)
and DF(u) =

(
u1, u2+au3

2

)
.

However we may describe the same function in polar coordinates x = r(cosφ, sinφ) giving F̃(r, φ) =
1
2
r2 + a

4
r4(sinφ)4. The definition of the gradient of F in polar coordinates, ∇̃F̃ , is no longer given

by the vector of partial derivatives but

g̃rad F̃(r, φ) = K̃(r, φ)

(
∂rF̃(r, φ)

∂φF̃(r, φ)

)
with K̃(r, φ) =

(
1 0

0 1/r2

)
.

What is the reason for the nontrivial K̃? One justification is that we want the gradient-flow equations

u̇ = − gradF(u) and

(
ṙ

φ̇

)
= −g̃rad F̃(r, φ) (1.1)

to be the same.

However, more importantly, the right perspective is to consider the space R2 as a manifold M and
F : M → R as a general function. Then, DF(u) is the differential of F at u (in differential geometry
written as dF(u)). It is defined via

DF(u)[v] := lim
h→0

1

h

(
F(u+hv)−F(u)

)
and thus we have DF(u) ∈ Lin(TuM ;R) =: T∗uM . Here we use the notion of the tangent space
TuM and the co-tangent space T∗uM at a point u ∈M . We also use the duality notation

DF(u)[v] = T∗uM

〈
DF(u), v

〉
TuM

,

where X∗〈·, ·〉X always means a duality pairing between a space X and its dual space X∗.
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A. Mielke 4

However, by the definition of the gradient-flow equation u̇ = − gradF(u) we see that the gradient
has to lie in the tangent space TuM . Hence, we need a mapping that maps the differential DF(u) ∈
T∗uM into the vector gradF(u) ∈ TuM .

This mapping is generated by a Riemannian structure G. A pair (M,G) is called a Riemannian
manifold, if

•M is a manifold and
• G(u) : TuM → T∗uM is symmetric and positive,
• g defined via g(v, ṽ)u = 〈G(u)v(u), ṽ(u)〉 is a symmetric 2-tensor.

Riemannian structures are used for measuring length of curves and angles between curves, as they
define a scalar product on each TuM . For curves γ : [s0, s1]→M one sets

lengthG(γ) :=

∫ s1

s0

(〈
G(γ(s))γ′(s), γ′(s)

〉)1/2

ds.

When doing a transformation u = Φ(w) with Φ : N → M the chain rule gives immediately the
transformation rule G̃(w) = DΦ(w)∗G(Φ(w))DΦ(w) : TwN → T∗wN .

Definition 1.1 (Gradient) The gradient of a function F in a Riemannian manifold is defined via

gradGF(u) := G(u)−1DF(u) = K(u)DF(u), (1.2)

where K(u) :=
(
G(u)

)−1
: T∗uM → TuM is called the Onsager operator.

For the above example in R2 we haveGEuclid =
(

1 0
0 1

)
and the transformation u = Φ(r, φ) into polar

coordinates gives G̃(r, φ) =
(

1 0
0 r2

)
. Thus we find the gradient in polar coordinates in the following

form

g̃rad F̃(r, φ) =

(
1 0

0 1
r2

)
DF̃(r, φ) =

(
∂rF̃(r, φ)

1
r2
∂φF̃(r, φ)

)
=

(
r + ar3(sinφ)4

ar2(sinφ)3 cosφ

)
.

With this, one can indeed check that the the two ODEs in (1.1) transform properly into each other.

1.2 Gradient systems and their gradient-flow equations

We still stay in the framework of finite-dimensional manifolds M and define what exactly we mean by
the words “gradient system”, “gradient structure”, “gradient flow”, and “gradient-flow equation”.

Definition 1.2 A gradient system is a triple (M,F ,G) such that (M,G) is a Riemannian manifold
and F : M → R is a C1 function.

This gradient system generates the associated gradient-flow equation

u̇ = −gradGF(u) = −K(u)DF(u) ∈ TuM ⇐⇒ 0 = G(u)u̇+ DF(u) ∈ T∗uM. (1.3)

We say that u : [0, T [→M is a solution for (M,F ,G;u0) if it satisfies (1.3) with u(0) = u0.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023
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We see that F is a Lyapunov function, i.e. along solutions u : [0, T ]→M the function F is decreas-
ing:

d

dt
F(u(t)) = 〈DF(u), u̇〉 = −〈DF(u),K(u)DF(u)〉

= −〈G(u)gradGF(u), gradGF(u)〉 ≤ 0.

The left equation in (1.3) will be called the rate form of the gradient-flow equation, whereas the right
equation is called the force-balance form of the gradient-flow equation. Here ξ = G(u)u̇ is the viscous
force induced by the rate. We call

ξv = G(u)u̇ or equivalently u̇ = K(u)ξv

the kinetic relation encoding the frictional properties of the system. The force ξ = DF(u) is the
potential restoring force. Of course, kinetic relations can be more general, e.g. by a non-symmetric
linear relation or by nonlinear relations, see Section 3.1.

However, from a thermodynamical point of view the case of symmetric and positive definite G or
K is distinguished as is shown by the fundamental work by Lars Onsager “Reciprocal relations in
irreversible processes” [Ons31]. His “reciprocal relations” were derived in the context of linearized
irreversible thermodynamics and simply mean, in modern language, the symmetry relation G = G∗.
In fact, Onsager was awarded the Nobel prize for chemistry in 1968 for exactly this work, see

https://www.nobelprize.org/prizes/chemistry/1968/ceremony-speech/

As Onsager and Machlup state in the follow-up work [OnM53, p. 1507] [formulas slightly adapted]:

The tendency of the system to seek equilibrium is measured by the thermodynamic
forces (=restoring forces) ξ = DS(α) (eqn. (2-1)), which evidently vanish at α = 0.

The fluxes (of matter, heat, electricity) are measured by the time derivative α̇. The es-
sential physical assumption about the irreversible processes is that they are linear; i.e.,
that the fluxes depend linearly on the forces that “cause” them:

Gα̇ = ξ (2-2) or Kξ = α̇ (2-3),

where the matrices G and K are mutual reciprocal [inverses].

These equations express, for instance, Ohm’s law for electric conduction, Fourier’s law
for heat conduction, Fick’s law for diffusion, and the extension of these laws to interact-
ing flows, e.g., anisotropic conduction (heat, electricity), thermoelectric effects, thermal
diffusion. For systems for which microscopic reversibility holds (to which this work is con-
fined), we have the reciprocal relations [symmetry relations]G = Gtr (eqn. (2-4)), where
the subscript tr means transpose.

Under sufficient smoothness, for each u0 ∈M there exists a (local or global) solution u(t) = St(u
0)

where St : M →M is the gradient flow associated with (M,F ,G). Assuming that all solutions exist
globally, i.e. for t ∈ [0,∞[ the gradient flow (St)t≥0 satisfies

(1) S0 = idM and ∀ t, r ≥ 0 : St ◦ Sr = St+r,

(2) u(t) = St(u0) is a solution for (M,F ,G;u0).

Property (1) is called the semigroup property of the family (St)t≥0.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



A. Mielke 6

Remark 1.3 (Hamiltonian systems) The notion of gradient systems is chosen in analogy to Hamil-
tonian systems (M,H,Ω) (cf. [AbM78, Arn89]) where (M,Ω) is a symplectic manifold with Ω(u) :
TuM → T∗uM satisfying Ω(u)∗ = −Ω(u), J(u) = (Ω(u))−1 exists, and dΩ ≡ 0 (in the sense of
two-forms). The associated Hamiltonian equations are given by

u̇ = J(u)DH(u) ∈ TuM ⇐⇒ Ω(u)u̇ = DH(u) ∈ T∗uM. (1.4)

Along solutions we have d
dt
H(u(t)) = 〈DH(u), u̇〉 = 〈DH(u), J(u)DH(u)〉 = 0, which means

energy conservation.

Definition 1.4 (Gradient structure) Given a differential equation u̇ = V (u) on a manifold M we
say that the equation has the gradient structure (M,F ,G) if V (u) = K(u)DF(u) for all u ∈ M ,
i.e. the ODE is the gradient-flow equation associated with (M,F ,G).

Note the two different perspectives:

(I) The GS (M,F ,G) generates the (unique) gradient-flow equation u̇ = −K(u)DF(u).

(II) A given ODE can have one or many gradient structure or no at all.

Example 1.5 (Trivial scaling) If u̇ = V (u) has the gradient structure (M,F ,G), then for all λ > 0

it also has the gradient structure (M, F̃ , G̃) = (M,λF , λG). Simply observe that K̃ = (λG)−1 =
1
λ
K, such that λ cancels.

Example 1.6 (Two nontrivial structures) Let M = R2 and u̇ = V (u) =
( −u1
−u2−au32

)
with a > 0.

From above we know that we have the gradient structure

G = IEucl =

(
1 0

0 1

)
and F(u) =

1

2
u2

1 +
1

2
u2

2 +
a

4
u4

2.

However, there is another gradient structure (R2, F̃ , G̃), namely

G̃ =

(
1 0

0 1
1+au22

)
and F(u) =

1

2
u2

1 +
1

2
u2

2.

Thus, when looking at the ODE we do not know whether the coefficient a > 0 and the nonlinear term
−au3

2 arises because of a nonquadratic energy (as in F ) or because of a state-dependent friction law
(as in G̃).

The last example shows that different gradient structures for an ODE refer to different physics/mechanics
behind the model. The gradient structure contains additional information that is not contained in the
ODE.

The next example is a more recent one and relates to chemical reaction-rate equations.

Example 1.7 (Reaction-rate equations) We consider three chemical species denoted by X1, X2,
and X3 with densities c1, c2, and c3, respectively. Hence, the states are c = (ci)i in the manifold is
M = ]0,∞[3. We consider three reactions

X1 
 X2, X1 +X2 
 2X3, a1X1 + a3X3 
 b2X2

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



An introduction to the analysis of gradients systems 7

which follow the mass-action law, i.e. the reaction rates are proportional to the corresponding mono-
mials. The ODE reads

ċ = R(c) := k1(c1−c2)

 −1

1

0

+ k2(c1c2−c2
3)

 −1

−1

2

+ k3(ca11 c
a3
3 −cb22 )

 −a1

b2

−a3


It was observed in [Yon08] and in a more general setting in [Mie11c, MaM20], that the above equation
has a gradient structure (because of the detailed-balance condition, see the references above). If we
set

F(c) =
3∑
i=1

λB(ci) and K(c) =
3∑
r=1

krΛ
(
cα

r

, cβ
r)

(αr−βr)⊗ (αr−βr),

where λB(c) = c log c − c + 1 is the Boltzmann function and Λ(r, ρ) =
∫ 1

0
rsρ1−s ds =

(r−ρ)/ log(r/ρ) is the logarithmic mean of r and ρ. The stoichiometric vectors αr,βr ∈ N3
0 are

given via

α1 =

1
0
0

 , β1 =

0
1
0

 , α2 =

1
1
0

 , β2 =

0
0
2

 , α3 =

a1

0
a3

 , β3 =

 0
b2
0

 .

One nice feature of the above model is that it nicely shows the additive structure of K: it is given
as a sum over individual terms corresponding to a single reaction. This additive structure will often
reappear, namely whenever there are several distinguishable dissipative processes. Their effect will
be additive on the level ofK but not on the level ofG. Hence, for modeling it is often more convenient
to work with K.

1.3 Gradient structures for partial differential equations

In this part we do mainly formal calculations only, and see this as a motivation for the analysis in the fol-
lowing sections. Nevertheless we are motivated by the philosophy from the smooth, finite-dimensional
case discussed in the previous section. But now the function F may no longer be smooth but may
attain the value +∞ outside a dense set. Moreover the operator K may be unbounded.

As a first example we consider the Allen-Cahn equation, which is a nonlinear parabolic equation,
sometimes called reaction-diffusion equation:

mu̇ = α∆u+ β (u− u3) in Ω, u = 0 on ∂Ω, (1.5)

where Ω is a bounded Lipschitz domain in Rd.

We want to show that this equation has the gradient structure (L2(Ω),FAC,mIR), where IR : H →
H∗ denotes the Riesz isomorphism of a Hilbert space H with its dual space H∗. The Allen-Cahn
functional is given by

FAC(u) =

{ ∫
Ω

(
α
2
|∇u|2 + β

4
(u2−1)2

)
dx for u ∈ dom(FAC),

∞ for u ∈ L2(Ω) \ dom(FAC),

where dom(FAC) = H1
0(Ω) ∩ L4(Ω). Moreover the differential DFAC is replaced by the variational

derivative, which is defined on an even smaller set:

DFAC(u) = −α∆u− β (u− u3) for u ∈ dom(DFAC) := H2(Ω) ∩ H1
0(Ω) ∩ L6(Ω).

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



A. Mielke 8

This notion of derivative will be made rigorous in terms of the Fréchet subdifferential to be introduced
in Section 2. Recalling our choiceG = mIR for the Riemannian metric, we see that the “force-balance
formulation” Gu̇ = −DF(u) for the given gradient structure indeed yields the Allen-Cahn equation
(1.5).

Next we consider the simple linear parabolic equation

u̇ = ∆u in Ω, ∇u · ν = 0 on ∂Ω, (1.6)

where Ω ⊂ Rd is again a bounded Lipschitz domain and ν is the outward unit normal on ∂Ω. We will
construct four quite different gradient structures, each of which corresponds to a different application of
this equation. Recall that the name for this equation is usually “heat equation”; however, it is sometimes
also called “diffusion equation”.

Gradient Structure 1: Allen-Cahn type L2 gradient flow: We consider the GS (L2(Ω),FDir, IR)
with the Dirichlet functional defined on L2(Ω), namely

FDir(u) =

{ ∫
Ω

1
2
|∇u|2 dx for u ∈ H1(Ω),

+∞ for u ∈ L2(Ω) \ H1(Ω)

Here the differential can be interpreted as a convex subdifferential, which is either empty or a singleton,
namely DFDir(u) = −∆u. Thus, we obtain (1.6) as the associated gradient-flow equation. This will
be made rigorous in Section 2.

Gradient Structure 2: H−1(Ω) gradient flow: We again consider a spatially constant Hilbert-space

structure, but now in the spaceH :=
(
H1(Ω)

)∗ =: H−1
0 (Ω) such that the dual space isH∗ = H1(Ω)

and we have the Riesz isomorphism IR : H−1
0 (Ω)→ H1(Ω). On the formal level we consider

FL2(u) =
1

2
‖u‖2

L2 =

∫
Ω

1

2
u2 dx and K(2)


H1(Ω) → H−1

0 (Ω),

ξ 7→ −∆ξ.

Note that theFL2 has domain dom(FL2) = L2(Ω) $ H−1
0 (Ω). Moreover, the differential DFL2(u) =

u ∈ H∗ = H1(Ω) has the even smaller domain dom
(
DFL2

)
= H1(Ω).

Again we obtain the desired gradient-flow equation

u̇ = −K(2)DFL2(u) = −
(
−∆

)
u = ∆u.

The exact details will be made rigorous in Section 2.

Two more gradient structures will be handled in the two following subsections. They play an important
role in the modeling as well as in the initiation of a new branch of mathematics, namely optimal trans-
port for PDEs, see [Ott01, AGS05, Vil09, Pel14, DaS14, San17]. We give some more details here,
because the standard parabolic equation u̇ = ∆u is most often simply called the “heat equation” but
sometimes also “diffusion equation”. On the level of PDEs there is no distinction, it is simply a parabolic
equation. However, on the level of gradient-flow equations the distinction will become apparent.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023
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1.4 Otto’s gradient structure for diffusion

The theory of gradient systems received a major push around the year 2000 through the seminal work
of Felix Otto in [Ott96, JKO98, Ott01]. It is interesting to note the title and a citation of the latter work:

“The geometry of dissipative evolution equations: the porous medium equation”

p. 108: . . . The merit of the right gradient flow formulation of a dissipative evolution equa-
tion is that it separates energetics and kinetics: The energetics endow the state space
M with a functionalE, the kinetics endow the state space with a (Riemannian) geometry
via the metric tensor g.

This work suggests the following choice of a gradient structure (Prob(Ω), EBolz,KOtto):

M = Prob(Ω) :=
{
u ∈ L1(Ω)

∣∣ u ≥ 0 a.e.,
∫

Ω
udx = 1

}
⊂ L1(Ω),

F(u) = EBolz(u) =

∫
Ω

λB(u(x))dx where λB(z) =

 z log z − z + 1 for z > 0,
1 for z = 0,

+∞ for z < 0;

KOtto(u)ξ := − div
(
u∇ξ

)
.

Of course, it was known for a century that the (relative) Boltzmann entropy EBolz is a good Lyapunov
function for the diffusion equation u̇ = ∆u. However, introducing the (Riemannian-type) geometrical
structureKOtto was the key step. In these papers, and in more than one hundred follow-up papers, the
geometry is called Wasserstein geometry because calculating the corresponding geodesic distance
dKOtto one obtains the 2-Wasserstein distance W2 on Prob(Ω), see more on that in Section 4.

On the formal level we easily see that the associated gradient-flow equation is indeed the linear diffu-
sion equation, if we use DEBolz(u) = λ′B(u) = log u and the classical chain rule∇ log u = 1

u
∇u:

u̇ = −KOtto(u)DEBolz(u) = −
(
− div

[
u∇λ′B(u)

])
= div(u

1

u
∇u) = div(∇u) = ∆u.

Of course, the works [Ott96, JKO98, Ott01] and the follow-up works provide the rigorous analysis
following from this choice of the gradient structure. Because of its big importance in the recent de-
velopments for diffusion equation, we define the Otto gradient (unfortunately often called Wasserstein
gradient) of a general functional F(u) =

∫
Ω

(
F (u(x))− V (x)u(x)

)
dx, namely

gradOttoF(u) := KOtto(u)DF(u) = − div
(
u∇
[
F ′(u)−V ]

)
. (1.7)

Clearly this choice is physically highly relevant (and can be justified in the Onsager-Machlup sense
[OnM53] via fluctuation theory for diffusion, see e.g. [DaG87, AD∗11, MPR14]), but it leaves the range
of linear theory. The energy is nonquadratic and even enforces the positivity of u. Otto’s approach
to diffusion applies genuinely nonlinear methods to a linear problem, which hence opens the theory
to nonlinear applications such as the porous medium equation as in [Ott01]. In particular, this new
gradient structure has created a whole new branch of mathematics, namely the treatment of diffusion
equations using ideas from optimal transport of probability measures, see [AGS05].

1.5 Gradient structures for the heat equation

On the level of gradient systems there is a strong distinction between the heat and the diffusion equa-
tion, which will become clear below. For diffusion a good gradient structure is Otto’s gradient structure,
but it is not appropriate for heat conduction.
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When writing the heat equation in terms of the absolute temperature θ > 0 we need the internal
(or heat) energy e = E(x, θ) and the internal entropy s = S(x, θ) which are related by the Gibbs
relation E ′(x, θ) = θS ′(x, θ), where ′ means ∂θ. One major point is that E ′ is called heat capacity
and it must be positive, following the intuition that for heating up a body one has to invest energy (e.g.
4.18 Joule for heating up 1 kg of water by 1 Kelvin). By Gibbs’ relation also S ′(x, θ) > 0.

The fundamental laws of thermodynamics say that the total energy is conserved in a closed system
while the total entropy increases. The heat equation reads

ė+ div q = 0 in Ω, q · ν = 0 on ∂Ω. (1.8)

Here e(t, x) = E(x, θ(t, x)) and q(t, x) ∈ Rd denotes the heat flux that is given by Fourier’s
law in the form q(t, x) = −K(x, θ)∇θ, where K(x, θ) = K(x, θ)∗ > 0 is the heat conduction
matrix (recall Onsager’s symmetry) and ∇θ is now the classical Euclidean gradient of the function
θ(t, ·) : Ω → R. The boundary conditions q · ν = 0 say that the body Ω is insulated such that heat
cannot leave or enter Ω. Integrating over Ω we find conservation of total energy t 7→ E(x, θ(t)):

d

dt
E(x, θ(t)) =

∫
Ω

∂

∂t
E(x, θ(t, x))dx

(1.8)
=

∫
Ω

− div qdx
Gauß
= −

∫
∂Ω

q · ν da = 0.

We can now try to generate the heat equation as a (anti-) gradient-flow equation for the total entropy

S(θ) =

∫
Ω

S(x, θ(x))dx with DS(θ) = S ′(x, θ),

where “anti” stands for a functional that increases along solutions.

We now follow [Mie11d] and generalize the idea of Otto by looking for an Onsager operator Hheat in
the form

Kheat(θ)ξ = − 1

E ′(x, θ)
div
(
A(x, θ)∇

( ξ

E ′(x, θ)

))
,

where the factor 1/E ′(x, θ) was introduced twice in such a way that K∗heat is still a symmetric differ-
ential operator. This prefactor is essential to handle the term ė = ∂t(E(x, θ(t, x))) = E ′(x, θ)θ̇ in
the heat equation (1.8).

With this we calculate the anti gradient-flow equation

θ̇ = +Kheat(θ)DS(θ) = − 1

E ′(x, θ)
div
(
A(x, θ)∇

(S ′(x, θ)
E ′(x, θ)

))
Gibbs
= − 1

E ′(x, θ)
div
(
A(x, θ)∇

(1

θ

)) ∗
=

1

E ′(x, θ)
div
( 1

θ2
A(θ)∇θ

)
,

where in
∗
= we used∇(1

θ
) = − 1

θ2
∇θ. Thus, the abstract equation leads to the heat equation

ė = E ′(x, θ)θ̇ = − div q = div(K∇θ) with K(x, θ) =
1

θ2
A(x, θ).

This approach teaches us, just by formal arguments, that −∇(S ′/E ′) = −∇(1/θ) is the correct
(nonlinear) term that drives heat conduction. This is indeed important at interfaces, where the jump of
1/θ matters.

To obtain the simple linear heat equation θ̇ = ∆θ, we can use E(θ) = θ and S(θ) = log(θ/θ◦) and
have to choose A(θ) = θ2I, i.e.

Kheat(θ)ξ = − div
(
θ2∇ξ

)
,

which is clearly different from KOtto because of the power 2 in θ2.

So far, the analysis for this (Riemannian) geometry has still to be developed.
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An introduction to the analysis of gradients systems 11

1.6 Further remarks on modeling with gradient systems

A general approach to modeling with gradient systems is given in the expository work [Pel14]. In
particular, it addresses the proper derivation of gradient systems from microscopic stochastic models
via so-called large-deviation principles. Thus, proceeds along the path developed in [OnM53].

General development of gradient structures for semiconductor models or energy-reaction-diffusion
systems, also with interfaces, can be found in [Mie11c, Mie13, GlM13].

The interplay of Hamiltonian dynamics and gradient systems can be described in term of the frame-
work GENERIC, which is an acronym for General Equation for Non-Equilibrium Reversible Irreversible
Coupling, see [GrÖ97, Ött05, Grm10, Mie11b, DPZ13]. This approach was also used to couple clas-
sical thermodynamical models to quantum systems in [MiM17, KM∗19], where the interaction of the
quantum system and its classical environment is modeled by a suitable Onsager operator.

2 Gradient systems with Hilbert-space structure

In this section we provide a mathematical rigorous framework for gradient systems in Hilbert spaces.
By this name we do not only mean that the underlying space is a Hilbert spaceH , but we also use the
full nice properties of the Hilbert-space geometry, i.e. we will always assume that G is independent
of the state variable u ∈ H and equals the Riesz isomorphism IR : H → H∗. Of course, this still
allows us to adapt the Hilbert-space norm, if we have an equivalent norm. For example we consider
the parabolic PDE

c(x)u̇ = div
(
A(x)∇u

)
− ∂uF (x, u(x)) in Ω, u = 0 on ∂Ω,

where c ∈ L∞(Ω) with c(x) ≥ c0 > 0 a.e. and suitable A and F . Then we can choose the gradient
structure (H,F ,G) with

H = L2(Ω), Gv = IRieszv = cv, F(u) =

∫
Ω

1

2
∇u(x) · A(x)∇u(x) + F (x, u(x))

)
dx

for u ∈ H1
0(Ω) and +∞ otherwise on L2(Ω). Here H1(Ω) is the Sobolev space of functions with

square integrable gradient, and H1
0(Ω) is the closed subspace obtained by closing C∞c (Ω) in H1(Ω).

2.1 Differentials and subdifferentials on Banach spaces

For PDEs it is essential to have a suitable notion of differential, because of two important facts:

• (even quadratic) functionals and their differentials need to be defined on dense subsets

• nonsmoothness is important in applications (contact, Coulomb friction, plasticity, ...)

We are now working on general Banach spacesX with dual spacesX∗ and dual pairing X∗〈·, ·〉X . In
particular, we avoid the identificationH ∼ H∗ in Banach spaces. As Gâteaux and Fréchet differentials
are only useful for continuous functions, we directly define so-called subdifferentials, which are set-
valued mappings. For a mapping A : X → 2Y = P(Y ) we shortly write A : X ⇒ Y , i.e. for all
u ∈ X we have A(u) ⊂ Y , where A(u) = ∅ is of course possible.

Here we develop a theory in the spirit of Brézis’ foundational work, see in particular the existence
result in [Bré73, Thm. 3.6, p. 72]. However, the approach there is completely different, because it is
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A. Mielke 12

based on Yosida regularizations for maximal monotone operators whereas we use time-incremental
minimization for gradient systems. Our approach can be adapted easily to Banach spaces and metric
spaces.

Definition 2.1 (Subdifferentials) Let F : X → R∞ := R ∪ {+∞} be a functional. The (convex)
subdifferential ∂F : X ⇒ X∗ is defined via ∂F(u) = ∅ for F(u) =∞ and

∂F(u) :=
{
ξ ∈ X∗

∣∣ ∀w ∈ X : F(w) ≥ F(u) + 〈ξ, w−u〉X
}
⊂ X∗

otherwise. The Fréchet subdifferential ∂FF : X ⇒ X∗ is defined via ∂FF(u) = ∅ for F(u) = ∞
and

∂FF(u) :=
{
ξ ∈ X∗

∣∣ F(w) ≥ F(u) + 〈ξ, w−u〉X + o(‖w−u‖X) for w → u
}
⊂ X∗

otherwise. The domains of F , ∂F , and ∂FF are the subsets of X defined via

dom(F) =
{
u ∈ X

∣∣ F(u) <∞
}
, dom(∂F) =

{
u ∈ X

∣∣ ∂F(u) 6= ∅
}
,

dom(∂FF) =
{
u ∈ X

∣∣ ∂FF(u) 6= ∅
}
.

By the definition, we clearly have ∂F(u) ⊂ ∂FF(u).

Exercise 2.1 Consider X = R and the following functions:

F1(u) =
1

4
(u2−1)2, F2(u) = −|u|+ u2, F3(u) = min{0, |u|−1,

1

2
u2 − 1}.

Calculate ∂F and ∂FF for all three cases.

Exercise 2.2 Let Ω be a smooth bounded domain in Rd.
(A) As an example we consider the quadratic functional F : L2(Ω)→ R∞ with

F(u) =

∫
Ω

1

2
|∇u(x)|2 dx on dom(F) = H1(Ω).

Show that dom(∂F) =
{
u ∈ H1(Ω)

∣∣∆u ∈ L2(Ω), ∇u·ν = 0 on ∂Ω
}

and ∂F(u) = {−∆u} ⊂
L2(Ω).
(B) Consider exponents p and q with 1 < p < q and let

X = Lp(Ω) and F(u) =

∫
Ω

1

q
|u(x)|q dx.

Calculate dom(F) and the differentials ∂F and ∂FF .

The important property of the Fréchet subdifferential is that there is a sum rule. Similar sum rules
play an important role many areas of applied analysis: calculus of variations, optimization, abstract
evolution equations, and of course in the theory of gradient systems.

Proposition 2.2 (Sum rule for subdifferentials) If F1 : X → R∞ is convex and F2 : X → R is
Fréchet differentiable (i.e. for all u ∈ X we have F2(u+v) − F2(u) − 〈DF2(u), v〉 = o(‖v‖) for
v → 0), then

∂FF(u) = DF2(u) + ∂F1(u) ⊂ X∗.
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Proof. As F2(u) ∈ R for all u ∈ X we have dom(F) = dom(F1).

Now consider ξ ∈ ∂F1(u). Then, for w ∈ X we have

F(w) = F1(w) + F2(w) ≥ F1(u) + 〈ξ, w−u〉+ DF2(u)[w−u] + o(‖w−u‖X)

= F(u) + 〈ξ+DF2(u), w−u〉+ o(‖w−u‖X),

which means that DF2(u) + ∂F1(u) ⊂ ∂FF(u).

For the opposite inclusion we assume η ∈ ∂FF(u) and obtain

F1(w) = F(w)−F2(w)

≥ F(u) + 〈η, w−u〉+ o(‖w−u‖)−F2(u)− 〈DF2(u), w−u〉+ o(‖w−u‖)
= F1(u) +

〈
η−DF2(u), w−u

〉
+ o(‖w−u‖).

By convexity of F1 we have F1(wθ) ≤ (1−θ)F1(w) + θF1(u), where wθ = (1−θ)w + θu, and
conclude (by setting w = wθ in the above estimate)

F1(w) ≥ 1

1−θ
(
F1(wθ)− θF1(u)

)
above
≥ 1

1−θ
(
F1(u) +

〈
η−DF2(u), wθ−u

〉
+ o(‖wθ−u‖)− θF1(u)

)
= F1(u) +

〈
η−DF2(u), w−u

〉
+ o((1−θ)‖w−u‖)

θ→1−−→ F1(u) +
〈
η−DF2(u), w−u

〉
.

Thus, we conclude η−DF2(u) ∈ ∂F1(u) which means ∂FF(u) ⊂ DF2(u)+∂F1(u).

Exercise 2.3 (Convex subdifferentials) Consider a reflexive Banach space X and a functional F :
X → R∞ that is proper, lower semicontinuous, and convex.

(A) For ξ ∈ X∗ define the functional Gξ : u 7→ F(u) − 〈ξ, u〉. Show the sum rule ∂Gξ(u) =
−ξ + ∂F(u).

(B) Assume additionally that F is superlinear, i.e. F(u)/(1+‖u‖) → ∞ for ‖u‖ → ∞. Show that
the subdifferential ∂F : X ⇒ X∗ is surjective, i.e. for each ξ ∈ X∗ there exists uξ ∈ X such that
ξ ∈ ∂F(uξ). (Hint: Minimize a suitable functional.)

2.2 Semiconvexity and closedness of subdifferentials

An important class of functionals will be the following one.

Definition 2.3 (Semiconvexity) A function F : X → R∞ is called λ-convex, if

∀u0, u1 ∈ X ∀ θ ∈ [0, 1]:

F
(
(1−θ)u0+θu1

)
≤ (1−θ)F(u0) + θF(u1)− λ

2
θ(1−θ)‖u1−u0‖2

X .
(2.1)

We simply say that F is semiconvex if there exists λ ∈ R such that F is λ-convex.
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We will often use the notion of sublevels ofF , namely SFE :=
{
u ∈ H

∣∣F(u) ≤ E
}

. It is a classical
fact that F is (weakly) lower semicontinuous if and only if for all E ∈ R the sublevels SFE are (weakly)
closed. (For that reason, in some papers and books, lsc functionals are simply called ‘closed’.)

Exercise 2.4 (Convex hulls of sublevels of semiconvex functionals) Assume that F : X → R∞
is λ-convex.

(A) Show that in the case λ ≥ 0 the sublevels SFE are convex.

(B) Give an example where F is (−1)-convex and SFE is nonconvex for some E ∈ R.

(C) Consider a subset A of X such that A ⊂ BR(0) ∩ SFE . Show that the convex hull co(A) lies in
SF
Ẽ

for a suitable Ẽ depending on λ and R.

Two of the fundamental properties of semiconvex functionals are a simple global characterization of
the Fréchet subdifferential and the so-called closedness of the graph of ∂FF .

Lemma 2.4 (Characterization of Fréchet subdifferential) Assume thatF : X → R∞ is λ-convex,
then the Fréchet subdifferential admits the following global representation: For all u ∈ dom(F) we
have

∂FF(u) =
{
ξ ∈ X∗

∣∣ ∀w ∈ X : F(w) ≥ F(u) + 〈ξ, w−u〉+
λ

2
‖w−u‖2

X

}
(2.2)

Proof. Set A(u) for the right-hand side in (2.2). As ‖w−u‖2 = o(‖w−u‖) we immediately have
A(u) ⊂ ∂FF(u).

For the opposite inclusion consider ξ ∈ ∂FF(u) and arbitrary x ∈ X . By λ-convexity we have, with
wθ = (1−θ)w + θu,

F(w) ≥ 1

1−θ
(
F(wθ)− θF(u) +

λ

2
θ(1−θ)‖w−u‖2

X

)
≥ 1

1−θ
(
F(u) +

〈
ξ, wθ−u

〉
+ o(‖wθ−u‖)− θF(u)

)
+
λ

2
θ‖w−u‖2

X

= F(u) + 〈ξ, w−u〉+
o((1−θ)‖w−u‖)

1− θ
+
λ

2
θ‖w−u‖2

X .

Taking the limit θ → 1− we obtain ξ ∈ A(u) and conclude ∂FF(u) ⊂ A(u) as desired.

While the above lemma can be seen as a technical tool, the following closedness property is essential
for showing existence of solutions via limiting processes. This condition parallels the important concept
of “closedness of a graph of a linear operator” (recall the closed-graph theorem).

Definition 2.5 (Closedness of the differential) A set-valued mappingA : X ⇒ Y is called (strong-
weak) closed if

un → u in X, yn ⇀ y in Y

yn ∈ A(un)

}
=⇒ y ∈ A(u).

Let ∂F : X ⇒ X∗ by any (sub-) differential of F : X → R∞, then ∂F is called (strong-weak)
energy closed (in short E-closed) if

un → u in X, ξn ⇀ ξ in X∗

sup
n∈N
F(un) <∞, ξn ∈ ∂F(un)

 =⇒ ξ ∈ ∂F(u).
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One can also define (α, β)-closedness for α, β ∈ {weak, strong}. In particular, for quadratic func-
tionals with ∂FF(u) = {Au} it may be relevant to define (weak,weak) closedness.

Exercise 2.5 (Closedness) Consider X = L2(Ω) with Ω = ]0, `[ ⊂ R1 and the functional F(u) =∫
Ω

(
2
3
|u(x)|3/2 + 1

2
u(x)2

)
dx.

Show that F is strong-weak closed but not weak-weak closed.

Obviously, in general a subdifferential is not closed, simply consider F : R → R; u 7→ 1
2
u2 − |u|

then ∂FF (0) = ∅ while ∂FF(u) = u− sign(u) for u 6= 0. Hence ξn = 1/n− 1 ∈ ∂FF(1/n) and
(un, ξn) = ( 1

n
, 1
n
−1)→ (0,−1) = (u∗, ξ∗), but ξ∗ = −1 6∈ ∂FF(u∗).

However, the situation is much better for semiconvex functionals, where we can take advantage of the
global characterization of the Fréchet subdifferential.

Proposition 2.6 (Closedness of ∂FF ) If F : X → R∞ is proper, lower semicontinuous, and semi-
convex, then its Fréchet subdifferential ∂FF is strong-weak [energy???] closed.

Proof. We consider sequences (un)n in X and (ξn)n in X∗ satisfying the properties in the definition
of weak-strong closedness. Using the global characterization of Lemma 2.4 we have, for all n ∈ N
and all w ∈ X , the estimate

F(w) ≥ F(un) + 〈ξn, w−un〉+
λ

2
‖w−un‖2.

In this identity we can pass to the limit n → ∞ using strong lsc of F , the weak-strong continuity of
the duality product (v, η) 7→ 〈η, v〉, and the strong continuity of the norm. Thus, we find F(w) ≥
F(u) + 〈ξ, w−u〉+ λ

2
‖w−u‖2.

As F is proper, we conclude F(u) < ∞, and applying the global characterization (2.2) gives ξ ∈
∂FF(u) as desired.

Of course, this result is only one of the easy results and there are many other possibilities for estab-
lishing closedness of subdifferentials.

2.3 Existence via time-incremental minimization

One of the most versatile methods of showing existence results for evolutionary problems is that of
time discretization. Fixing a time horizon T > 0 (which will be completely arbitrary here) we choose
N ∈ N and define the (constant) time step τ = T/N > 0. One of the main advantages of treating
gradient-flow equations is that the time-incremental problem can be formulated as a minimization
problem. Thus, we are speaking about time-incremental minimization or the minimizing-movement
scheme.

Given a gradient system (H,F , IR) on a Hilbert space H and an initial condition u0 ∈ H , the aim is
to find a solution u ∈W1,1([0, T ];H) such that

IRu̇(t) ∈ −∂FF(u(t)) for a.a. t ∈ [0, T ], u(0) = u0. (2.3)

Note that for Hilbert spaces we have W1,1([0, T ];H) = AC([0, T ];H) ⊂ C0([0, T ];H) such that
posing the initial condition u(0) = u0 is well defined.
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The backward Euler time-discretization (fully implicit) is defined via

0 ∈ IR
1

τ
(uk−uk−1) + ∂FF(uk) in H∗. (2.4)

Here u0 = u0 is the initial condition and uk is to be found incrementally for k = 1, . . . , N . Recalling
that the functional

u 7→ 1

2τ
‖u−uk−1‖2 =

1

2τ

〈
IR(u−uk−1), u−uk−1

〉
is Fréchet differentiable with derivative IR 1

τ
(u−uk−1) we see that (2.4) is the Euler-Lagrange equation

for the following

time-incremental minimization scheme for τ = T/N :

set u0 = u0;

for k = 1, . . . , N find uk as a minimizer of the functional

u 7→ ΦFτ (uk−1;u) :=
1

2τ
‖u−uk−1‖2

H + F(u).

(2.5)

In the case thatF is lower semicontinuous and λ-convex onH we easily see that ΦFτ (w, ·) is (λ+ 1
τ
)-

convex. Hence, for sufficiently small τ > 0, the minimizer uk is unique and minimizing ΦFτ (uk−1; ·) is
equivalent to solving the Euler scheme (2.4).

Based on the discrete solution (uk)k=0,...,N we are now able to define the piecewise affine interpolant
ûτ ∈ C0([0, T ];H) and the piecewise constant interpolant uτ ∈ L∞([0, T ];H) as follows:

ûτ ((k+θ−1)τ) = (1−θ)uk−1 + θuk for k ∈ {1, . . . , N} and θ ∈ [0, 1],

uτ (0) = u0 and uτ (t) = uk for t ∈ ](k−1)τ, kτ ] and k ∈ {1, . . . , N}.

These two interpolants are constructed in such a way that the discrete equation (2.4) leads to the
relation in the evolutionary form

0 ∈ IR ˙̂uτ (t) + ∂FF(uτ (t)) for all t ∈ [0, T ] \ { kτ | k = 0, ..., N }. (2.6)

On each open subinterval ](k−1)τ, kτ [ the terms on the right-hand side are constant and equal the
terms in (2.4).

The following theorem shows that in the limit τ → 0+ we indeed obtain convergence to a limiting
function u and this function indeed is a solution of the gradient-flow equation (2.3). Thus, the follow-
ing result is not only an existence result, but it is also a convergence result for the time-incremental
minimization scheme.

Theorem 2.7 (Existence of a gradient flow for (H,F , IR)) Consider the gradient system (H,F ,
IR) where H is a Hilbert space with Riesz isomorphism IR and F : H → R∞ is proper, lower
semicontinuous, λ-convex for some λ ∈ R, and has compact sublevels, i.e. for all E ∈ R the sets
SFE :=

{
u ∈ H

∣∣ F(u) ≤ E
}

are compact in H .

Then for all u0 ∈ dom(F) the solutions ûτ : [0, T ] → H obtained from the incremental minimizing
scheme converge to the unique solution u ∈W1,2([0, T ];H) of (2.3), i.e.

∀ t ∈ [0, T ] : ûτ (t)→ u(t) in H.

Moreover, for any two solutions u0 and u1 we have the λ-contractivity estimate

‖u1(t)− u0(t)‖H ≤ e−λ(t−s) ‖u1(s)− u0(s)‖H for 0 ≤ s < t. (2.7)
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The proof will be given in the next subsection.

Example 2.8 (Nonsmooth energy in R2) We consider R2 equipped with the Hilbert space norm
‖v‖2 = v2

1/a + v2
2/b, i.e. K =

(
a 0
0 b

)
. Moreover, we consider the nonsmooth functional F(u) =

max{|u1|, |u2|}. Clearly, F is convex but nonsmooth. The subdifferential is a singleton for points not
lying on the two diagonals u1 = ±u2:

∂F(u) = ∂FF(u) =



{
(

sign(u1)
0

)
} for 0 < |u2| < |u1|,

{
(

0
sign(u2)

)
} for 0 < |u1| < |u2|,{

sign(u1)
(
θ

1−θ

) ∣∣ θ ∈ [0, 1]
}

for 0 6= u1 = u2,{
sign(u2)

( −θ
1−θ

) ∣∣ θ ∈ [0, 1]
}

for 0 6= u1 = −u2,{ (
ξ1
ξ2

) ∣∣ |ξ1|+|ξ2| ≤ 1
}

for 0 = u1 = u2.

As F is convex, we know that the GFE has exactly one solution for each initial condition.

We now piece together the solutions of the GFE u̇ ∈ K∂F(u). Without loss of generality we start in
u0 in the triangle u0

1 > u0
2 > 0. As long as the solution stays in this triangle the subdifferential ∂F(u)

is the singleton (1, 0)>. Hence, we have the velocity u̇ = −(a, 0)>, i.e.

u(t) = u0 −
(
at

0

)
for t ∈ [0, t1] with t1 := (u0

1−u0
2)/a.

At t = t1 the solution has reached the ray u1 = u2 > 0, and it has to stay there, i.e.

u̇ = α

(
1

1

)
and 0 ∈ α

(
1

1

)
+

(
a 0

0 b

)(
θ

1−θ

)
.

Thus, we find θ = b/(a+b) and α = −ab/(a+b) which gives

u(t) =
(
u0

2 −
ab

a+b
(t−t1)

)(1

1

)
for t1 ≤ t ≤ t2 = t1 +

a+b

ab
u0

2 and u(t) = 0 for t ≥ t2.

Clearly this provides a solution, and by uniqueness it is the only solution.

We emphasize that for this system our existence theory implies the existence of a contractive semiflow,
i.e. uniqueness for positive times and Lipschitz continuous dependence on the initial data.

However, this example does not admit any uniqueness or Lipschitz continuity backward in time. Indeed,
all solutions starting in the ball BR(0) reach u = 0 in a finite time tR > 0 and then satisfy u(t) = 0
for t ≥ tR.

Example 2.9 (Allen-Cahn equation) Here we want to show that the result applies to the Allen-Cahn
equation (1.5) (also called Chafee-Infante equation) the GFE for (L2(Ω),FAC,mIR), where m is a
positive constant.

Let Ω ⊂ Rd be a smooth bounded domain and d ≤ 3 such that H1
0(Ω) ⊂ L6(Ω). Then, using

α, β > 0, it is standard to see that the functional

FAC(u) =


∫

Ω

(α
2
|∇u|2 +

β

4
(u2−1)2

)
dx for u ∈ H1

0(Ω),

+∞ for u ∈ L2(Ω) \ H1
0(Ω)
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has domain dom(FAC) = H1
0(Ω) and Fréchet subdifferential ∂FFAC given by

∂FFAC(u) =

{ {
−α∆u− β(u−u3)

}
for u ∈ dom(∂FFAC) := H2(Ω) ∩ H1

0(Ω),

∅ for u ∈ L2(Ω) \ dom(∂FFAC).

Moreover, we see that u 7→ FAC(u) + λm
2
‖u−u0‖2

H is convex if and only if λm ≥ β. To see
this one uses that u 7→ α

2
‖∇u‖2 is quadratic and non-negative, and hence convex. Moreover, z 7→

β
4
(z2−1)2 + λm

2
(z−z0)2 is convex if and only if λm ≥ β. Thus, we conclude that FAC is (−β/m)-

convex.

Thus, we conclude existence of solutions for the Allen-Cahn equation for all initial values u0 ∈ H1(Ω)
and obtain Lipschitz-continuous dependence of the solution on the initial data in the sense that

‖uAC(t)− ũAC(t)‖L2 ≤ eβ(t−s)/m ‖uAC(s)− ũAC(s)‖L2 for 0 ≤ s < t.

2.4 The first convergence proof

The following proof consists of the classical steps for most constructions of the solutions of PDEs. We
give the steps in some detail to prepare for the more advanced cases.

Step 0: construction of approximations (here via time discretization),

Step 1: a priori estimates,

Step 2: extraction of convergent subsequences,

Step 3: identification of the equation,

Step 4: uniqueness and convergence of the full sequence.

In particular, we will essentially rely on the gradient structure in two points, namely in (1) by doing
energy estimates, in (3) when using the closedness of subdifferentials, and in (4) when using semi-
convexity. Of course, very similar steps will appear in later sections.

Proof of Theorem 2.7. We follow the above five steps.

Step 0: Approximants via time discretization. The time discretization with time step τ = T/N with
N ∈ N is described above leading to the time-incremental minimization scheme (2.5). We have
existence of minimizers because F is lower semicontinuous and bounded from below by Fmin =
minu∈H F(u). Here we used that Fmin = infu∈H F(u) is attained by the one-sided Weierstraß
extremal principle exploiting the compactness of the sublevels of F . Similarly uk as minimizer of
ΦFτ (uk−1; ·) exists.

Step 1: A priori estimates. As uk is a minimizer of ΦFτ (uk−1; ·) we have

1

2τ
‖uk−uk−1‖2 + F(uk) = ΦFτ (uk−1;uk) ≤ ΦFτ (uk−1;uk−1) = F(uk−1).

From this we immediately obtain

Fmin ≤ F(uk) ≤ F(u0) <∞ for k ∈ {0, . . . , N} and∫ T

0

‖ ˙̂uτ (t)‖2 dt =
N∑
k=1

τ
∥∥1

τ
(uk−uk−1)

∥∥2 ≤ 2
(
F(u0)− Fmin

)
.

(2.8)
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The second estimate follows by adding up the incremental estimate for k = 1, . . . , N .

Step 2: Extraction of subsequences. As the sequence ûτ is bounded in W1,2([0, T ];H) we can ex-
tract a subsequence (not relabeled) such that

ûτ ⇀ u in L2([0, T ];H) and ˙̂uτ ⇀ u̇ in L2([0, T ];H)

for a limit u ∈W1,2([0, T ];H).

Moreover, for all t ∈ [0, T ] and τ = T/N the values ûτ (t) lie in the compact sublevel SFF(u0).
Together with the equi-continuity

‖ûτ (t)−ûτ (s)‖ ≤ |t−s|1/2‖ ˙̂uτ‖L2([0,T ];H) ≤ |t−s|1/2
(
2(F(u0)−Fmin)

)1/2

we can apply the Arzelà-Ascoli theorem and find, after extracting a further sequence (not relabeled),
the uniform convergences

ûτ → u in C0([0, T ];H) and uτ → u in L∞([0, T ];H).

For the second convergence we observe ûτ (kτ) = uτ (kτ) and that uτ is piecewise constant. Hence

we have ‖ûτ−uτ‖L∞([0,T ];H) ≤
√
τ
(
2(F(u0)−Fmin)

)1/2 → 0 for τ → 0+.

Step 3: Identification of equation. To show that the limit u satisfies the gradient-flow equation we define

ξτ = −IR ˙̂uτ ∈ L2([0, T ];H∗)
∼
=
(
L2([0, T ];H)

)∗
.

By construction we have the following three properties

uτ → u in L2([0, T ];H), ξτ ⇀ ξ∗ := −IRu̇ in L2([0, T ];H∗),

supF(uτ (t)) ≤ F(u0), ξτ (t) ∈ ∂FF(uτ (t)) a.e. in [0, T ].
(2.9)

We now would like to apply the closedness property following from Proposition 2.6. For this we set

X = L2([0, T ];H) and F(u(·)) :=

∫ T

0

F(u(t))dt.

It is a simply calculation to show that F is still proper, lower semicontinuous, and λ-convex on X if F
is λ-convex on H . A deeper result is the characterization of the Fréchet subdifferential of F; namely

∂FF(u(·) =
{
ξ ∈ L2([0, T ];H∗)

∣∣∣ ξ(t) ∈ ∂FF(u(t)) a.e. in [0, T ]
}
,

see Exercise 2.6. With this, we can apply Proposition 2.6 to F : X → R∞ such that (2.9) implies
ξ∗ ∈ ∂FF(u). Thus, using the characterization of ∂FF(u) once again, we have

ξ∗(t) = −IRu̇(t) ∈ ∂FF(u(t)) for a.a. t ∈ [0, T ],

which is the desired gradient-flow equation (2.3) as u(0) = u0 holds as well.

Step 4: Uniqueness and full convergence. For this we use that u 7→ Fλ(u) := F(u) − λ
2
‖u‖2

H is
convex. Clearly we have ∂Fλ(u) = −λIRu+ ∂FF(u). Thus, for arbitrary u1, u0 ∈ dom(∂FF) and
ξj ∈ ∂FF(uj) we set ηj = ξj − λIRuj ∈ ∂Fλ(uj) and obtain〈

ξ1−ξ0, u1−u0

〉
=
〈
η1−η0, u1−u0

〉
+ λ
〈
IR(u1−u0), u1−u0

〉
≥ 0 + λ‖u1−u0‖2,
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by using the monotonicity of subdifferentials of the convex function Fλ.

We now assume that we have two solutions u0, u1 ∈ W1,2([0, T ];H) which implies that t 7→
‖u1(t)−u0(t)‖2 is absolutely continuous. Because of −IRu̇j ∈ ∂FF(uj(t)) a.e., we have

1

2

d

dt
‖u1(t)−u0(t)‖2 = 〈IR(u̇1(t)− u̇0(t)), u1(t)− u0(t)〉 ≤ −λ‖u1(t)−u0(t)‖2.

Applying Grönwall’s estimate we obtain the desired Lipschitz continuity (2.7). Assuming u1(0) =
u0(0) = u0 we obtain uniqueness of solutions.

Having this uniqueness we see that the choice of the subsequences does not matter and the whole
sequence (ûτ ) has to converge without taking any subsequence.

We emphasize that semiconvexity was used only at two positions: (i) to show closedness for subdif-
ferential ∂FE and (ii) for the contraction estimate (2.7). Thus, semiconvexity is not really necessary for
showing existence of solutions, if we obtain closedness with other methods.

In fact, using the λ-convexity of F it is possible to show better even quantitative convergence rates.
This is important for two reasons: first it shows convergence without assuming the compactness of the
sublevels SFE , and secondly the convergence rate ûτ (t)−u(t) = O(τα) for α = 1/2 or even α = 1
is useful in numerical implementations.

Exercise 2.6 (Evolutionary closedness) Consider a reflexive Banach space X and a proper, lower
semicontinuous and λ-convex functional F : X → R∞ and denote by ∂FF : X ⇒ X∗ its subdiffer-
ential.

(a) Define the Banach space X := L2([0, T ];X) with its dual X∗ = L2([0, T ];X∗) and the func-
tional

E :

{
X → R∞,
u(·) 7→

∫ T
0
F(u(t))dt.

Show that E is again proper, lsc, and λ-convex.

(b) Show that ∂FE admits the following characterization:

∂FE(u) = N (u) :=
{
ξ ∈ X∗

∣∣∣ ξ(t) ∈ ∂FF(u(t)) a.e. in [0, T ]
}
.

Hint: It is useful to know that Lebesgue points are dense, i.e. for a.a. t ∈ [0, T ] we have
1
2δ

∫
|t−s|<δ ξ(s)ds→ ξ(t) (strongly in X∗) as δ → 0+.

Exercise 2.7 (Alternative proof of evolutionary closedness)
(A) Given a sequence ξn ⇀ ξ ∈ L1([0, T ];Y ), define, for each t ∈ [0, T ], the accumulation set
Ξ(t) ⊂ Y via

Ξ(t) := co(Aw(t)) where Aw(t) :=
{
y ∈ Y

∣∣ ∃ (nk)k : nk →∞ and ξnk(t) ⇀ y
}
.

Show that ξ(t) ∈ Ξ(t) for a.a. t ∈ [0, T ]. (Hint: use a version of Mazur’s theorem.)

(B) For semiconvex F show that each ∂FF(u) is a closed and convex set.

(C) Assume that F is semiconvex and

un → u in L1([0, T ];X), ξn ⇀ ξ in L1([0, T ];X∗),

sup
n∈N, t∈[0,T ]

F(un(t)) <∞, ξn(t) ∈ ∂FF(un(t)) a.e.,

and conclude ξ(t) ∈ ∂FF(u(t)), i.e. “evolutionary” closedness.
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2.5 Completion of the Hilbert-space gradient flow via Evolutionary Variational
Inequalities (EVI)

The previous existence and uniqueness theorem provides a semiflow (Σt)t≥0 on dom(F) defined as
follows: For u0 ∈ dom(F) we set Σt(u

0) := u(t) where u : [0,∞[ → H is the unique solution of
the GFE (2.3). As the problem is autonomous, we obtain the semigroup property Σt+r = Σt ◦ Σr for
all t, r ≥ 0. Moreover, we have a global λ-contractivity which is completely independent of F(u0):

∀u0, u1 ∈ dom(F) ∀ t ≥ 0 : ‖Σt(u
1)− Σt(u

0)‖ ≤ e−λt‖u1 − u0‖.

Hence, we can solve the initial-value problem for more initial data by approximating them with elements
from dom(F). This is possible on the closure of the domain:

D := dom(F)
H
.

Note that for the Allen-Cahn equation we have H = L2(Ω) and dom(FAC) = H1(Ω). Hence, in this
case we find D = H = L2(Ω) which enlarges the class of admissible initial conditions considerably.

For u0 ∈ D we can choose (u0
m)m with u0

m ∈ dom(F) and u0
m → u0 in H . Then, there is a unique

solution um : [0,∞[→ H and we have ‖um(t)−uk(t)‖H ≤ e−λt‖u0
m−u0

k‖H → 0 for k,m→∞.
Hence, on each bounded interval [0, T ] we have a Cauchy sequence in C0([0, T ];H) and we obtain
a continuous limit u : [0,∞[→ H with u(0) = u0 and ‖um(t)− u(t)‖H ≤ e−λt‖u0

m−u0‖H for all
t ≥ 0. The question is of course, in what sense this limit u satisfies the GFE (2.3).

The prototypical example is the Allen-Cahn gradient system (L2(Ω),FAC,mIR), where dom(FAC) =
H1(Ω) is dense inH = L2(Ω). The following theory will show that initial conditions u0 ∈ D = L2(Ω)
can be treated.

We summarize the result in the following theorem. Its proof is based on Evolutionary Variational In-
equalities, which are not really needed, but we can prepare in this way to a general idea used later in
metric spaces.

Theorem 2.10 (Completed gradient flow for (H,F , IR)) Let the GS (H,F , IR) be given as in The-
orem 2.7. Then, there exists a λ-contractive, continuous semiflow (St)t≥0 on D (“the gradient flow”
associated with the GS (H,F , IR)), i.e.

(S1) St : D → D , S0 = idD , St ◦ Sr = St+r for all t, r ≥ 0.

(S2) For all u0 ∈ D the function [0,∞[ 3 t 7→ St(u
0) ∈ H is continuous,

(S3) For all u0, u1 ∈ D and all t ≥ 0 we have ‖St(u1)−St(u0)‖ ≤ e−λt‖u1−u0‖,
such that for all u0 the function u : [0,∞[ → H; t 7→ St(u

0) is a solution of the GFE (2.3). In par-
ticular, we have u ∈W1,2

loc(]0,∞[;H) and ]0,∞[ 3 t→ F(u(t)) ∈ R (finite values) is continuous,
decreasing and satisfies limt→0+ tF(u(t)) = 0.

In W1,2
loc(]0,∞[;H) the subscript “loc” means that for all subsets D b ]0,∞[ (compactly contained)

we have W1,2(D;H)

Exercise 2.8 (Non-integrability of u̇) Consider (H,F , IR) with F(u) = 1
2
〈Au, u〉 and A = A∗ ≥

0 is a possibly unbounded self-adjoint operator.

(A) Show that the gradient flow (St)t≥0 equals the classical strongly continuous semigroup (e−tA)t≥0,
i.e. St(u0) = e−tAu0 for all u0 ∈ D = H .

(B) Assume further thatA has compact resolvent andH is infinite dimensional. Show that there exists
u0 ∈ D = H such that for t 7→ u(t) = e−tAu0 we have u̇ 6∈ L1(]0, τ [;H) for any τ > 0.
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Before starting the proof we develop a preliminary theory for EVI for Hilbert spaces. The full theory was
developed in [AGS05, Sav07, DaS14, MuS20] and will be studied further in Section 4. The major ad-
vantage of the EVI formulation is that it is a weak form in the classical sense: all solutions constructed
above also solve (EVI)λ. Moreover, it does not need any time derivative u̇ nor any subdifferential ∂FF .
Thus, taking limits in EVI will be especially simple.

For the solutions u ∈W1,2([0, T ];H) constructed above and arbitrary w ∈ H , we have

1

2

d

dt
‖u(t)−w‖2 = 〈IRu̇(t), u(t)−w〉 = 〈ξ(t), w−u(t)〉 for ξ(t) ∈ ∂FF(u(t))

F λ-cvx
≤ F(w)−F(u(t))− λ

2
‖u(t)−w‖2.

This is already the Differential form of the Evolutionary Variational Inequality

(DEVI)λ

 ∀w ∈ dom(F) ∀a.a.t ∈ [0,∞[ :

1

2

d

dt
‖u(t)−w‖2 +

λ

2
‖u(t)−w‖2 ≤ F(w)−F(u(t)).

(2.10)

We see that DEVI is much weaker, because we do not need to impose the existence of u̇. Instead we
only need to impose absolute continuity of t 7→ ‖u(t)−w‖2.

We can simplify further by applying a Grönwall estimate and using that t 7→ F(u(t)) is decreasing.
Then, no derivative is needed any more and we can impose conditions for all s ≥ 0 and all t > 0.
This leads to the final Evolutionary Variational Inequality:

(EVI)λ

 ∀w ∈ dom(F) ∀ s ≥ 0 ∀ t > s :

1

2
‖u(t)−w‖2 ≤ 1

2
e−λ(t−s)‖u(s)−w‖2 +Mλ(t−s)

(
F(w)−F(u(t))

)
.

(2.11)

where Mλ(τ) =
∫ τ

0
e−λ(τ−s) ds. We emphasize that we need F(u(t)) < ∞ for t > 0 but not for

t = 0.

Indeed, starting from (DEVI)λ we define ρ(t) = 1
2
eλt‖u(t)−w‖2 and obtain ρ̇ ≤ eλt(F(w)−F(u(t)).

Integration over [s, t] we find

ρ(t) ≤ ρ(s) +

∫ t

s

eλr(F(w)−F(u(r))dr ≤ ρ(s) +

∫ t

s

eλr dr
(
F(w)−F(u(t))

)
.

Now, inserting the definition of ρ and multiplying with e−λt gives (EVI)λ.

The main observation for completing the proof of Theorem 2.10 is that all functions t 7→ St(u
0) with

u0 ∈ D satisfy (EVI)λ. In Section 4 we will show that (EVI)λ already characterizes the solutions
uniquely, thus (EVI)λ characterizes the gradient flow (St)t≥0 on D = dom(F) ⊂ H completely.

Proposition 2.11 (Gradient flow and EVI) Let the GS (H,F , IR) and the gradient flow St : D →
D be given as in Theorem 2.10. Then, for all u0 ∈ D the functions u : [0,∞[ 7→ St(u

0) ∈ D ⊂ H
satisfy (EVI)λ. Moreover, we have F(u(t)) <∞ for t > 0 and lim supt→0+ tF(u(t)) = 0.

Proof. By construction, we already know that for all u0 ∈ dom(F) the solutions u(t) = St(u
0)

satisfy (EVI)λ. For all other initial conditions u0 ∈ D \ dom(F) we can choose a sequence u0
m with

u0
m ∈ dom(F) and u0

m → u0 in H . The corresponding solutions um = St(u
0
m) satisfy

1

2
‖um(t)−w‖2 ≤ 1

2
e−λ(t−s)‖um(s)−w‖2 +Mλ(t−s)

(
F(w)−F(um(t))

)
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for t > s ≥ 0 and w ∈ dom(F). By λ-contractivity we have uniform (strong) convergence of um
to u : t 7→ St(u

0) on all compact subsets of [0,∞[. Thus, we can pass to the limit in the first two
terms. In the last term we can use the lower semicontinuity F(u(t)) ≤ lim infm→∞F(um(t)) and
Mλ(t−s) ≥ 0.

This limit passage would even be allowed ifF(u(t)) =∞, however (EVI)λ gives, for allw ∈ dom(F)
and s = 0 the upper bound

F(u(t)) ≤ F(w) +
e−λt

2Mλ(t)
‖u0−w‖2.

As F is proper, we have shown F(u(t)) < t for t > 0. Moreover, multiplying by t > 0 we can take
the limsup for t→ 0+ and find

lim sup
t→0+

tF(u(t)) ≤ 1

2
‖u0−w‖2 for all w ∈ dom(F).

As dom(F) is dense in D we find the desired result lim supt→0+ tF(u(t)) = 0.

To appreciate the last relation concerning the boundedness of tF(u(t), we consider the example
(L2(Ω),FDir, IR) with FDir(u) = 1

2
‖∇u‖2

L2 on dom(FDir) = H1
0(Ω). From linear PDE theory

we know the explicit estimate ‖u(t)‖H1 ≤ Ct−1/2‖u(0)‖L2 which corresponds to the statement
tFDir(u(t)) ≤ 1

2
C2‖u(0)‖2

L2 . Hence, our general and abstract theory recovers a very similar behav-
ior which is optimal in the sense that the power α = 1 cannot be decreased without losing bounded-
ness of tαF(u(t).

We are now in the position to study the remaining properties of the completion of the semiflow.

Proof of Theorem 2.10. It remains to show that u(t) = St(u
0) is differentiable a.e. and that GFE

holds.

We observe that ũ : [0,∞[ 7→ u(t+t∗) is a solution of the GFE (2.3) with ũ(0) = u(t∗). For this,
first note that F(ũ(0)) = F(u(t∗)) < ∞. Hence, there is a unique solution û ∈ W1,1

loc ([0,∞[;H)
with û(0) = u(t∗). Moreover, by the semigroup property and ũ(t) = u(t+t∗) we have ũ(t) =
u(t+t∗) = St+t∗(u

0) = St(St∗(u
0)) = St(u(t∗)) = û(t). Thus, we conclude that the solutions

obtained in the limit um(·)→ u(·) are differentiable, as desired.

It is possible to establish many more properties of the gradient flows in Hilbert spaces. E.g. in [Bré73,
Thm. 3.1(5+6)] it is shown that for convex functionals F all solutions u of the GFE (2.3) have the
property that the one-sided derivatives

u̇+(t) = lim
h→0+

1

h

(
u(t+h)− u(t)

)
exist and can be identified with the “norm-minimal selection” in the subdifferential ofF , i.e. for all t > 0
one has

−IRu̇+(t) = ∂0F(u(t)) := argmin
{
‖ξ‖H∗

∣∣ ξ ∈ ∂F(u(t))
}
.

Moreover, the mapping ]0,∞[ 3 t 7→ ‖u̇+(t)‖ is decreasing.

Indeed the latter property is not so surprising if we use the λ-contractivity (2.7) for the two solutions
t 7→ u(t) and t 7→ u(t+h). After dividing by h > 0 we obtain∥∥1

h

(
u(t+h)− u(t)

)∥∥ ≤ e−λ(t−s)∥∥1

h

(
u(s+h)− u(s)

)∥∥.
Thus, for λ ≥ 0 we obtain that the norms of the difference quotients are decreasing. Clearly, if the
limits exist in the strong sense, then they are still decreasing.
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3 Generalized gradient systems in Banach spaces

In this section we generalize the theory in a twofold way. First we go from Hilbert spaces to Banach
spaces and second we generalize the linear kinetic relation ξ = G(u)u̇ or u̇ = K(u)ξ to nonlinear
kinetic relations, which allows a much larger set of applications.

3.1 Legendre duality and nonlinear kinetic relations

Now the kinetic relation X 3 u̇ = v ↔ ξ ∈ X∗ cannot be given by a simple linear map such as the
Riesz isomorphism IR : H → H∗, because X and X∗ are not isomorphic in general.

The typical replacements in general (separable, reflexive) Banach spaces are maximal monotone
operatorsA : X ⇒ X∗ and their inverse

A−1 : X∗ ⇒ X; A−1(ξ) :=
{
v ∈ X

∣∣ ξ ∈ A(v)
}
,

which is again a maximal monotone operator, because the notion of (maximal) monotonicity is sym-
metric:

A monotone ⇐⇒ ∀ v1, v0 ∈ X ∀ ξ1 ∈ A(v1), ξ0 ∈ A(v0) : 〈ξ1−ξ0, v1−v0〉 ≥ 0.

The corresponding evolution equations are then called doubly nonlinear equations (cf. [CoV90, Col92]):
0 ∈ A(u̇) + ∂FF(u(t))− `(t), where ` ∈ L1([0, T ];X∗) is a general external forcing.

To obtain a theory of generalized gradient systems we consider a subclass of these kinetic relations
that encode a nonlinear version of the Onsager symmetry. This class is given by subdifferentials of
convex potentials.

To motivate this, we first consider the quadratic functional Ψ : H → R; v 7→ 1
2
〈Av, v〉. Then the

differential reads

DΨ(v) = Gv with G =
1

2
(A+A∗),

such that G automatically enjoys the Onsager symmetry G∗ = G for A ∈ Lin(H;H∗). Moreover,
G ≥ 0 is equivalent to Ψ(v) ≥ 0 for all v ∈ H . However, it is easy to see thatA(v) = {Av} defines
a (maximal) monotone operator A : H ⇒ H∗ if and only if 1

2
(A+A∗) ≥ 0, i.e. the skew-symmetric

part 1
2
(A−A∗) is completely arbitrary.

Secondly, we consider time-incremental minimization schemes in the form

uk minimizes u 7→ τΨ
(1

τ
(u−uk−1)

)
+ F(u)

for a convex function Ψ : X → R∞. Assuming the sum rule, the Euler-Lagrange equation reads
0 ∈ ∂Ψ

(
1
τ
(uk−uk−1)

)
+ ∂FF(uk) which will be interpreted as the backward-Euler (fully implicit)

discretization of the evolutionary inclusion 0 ∈ ∂Ψ(u̇(t)) + ∂FF(u(t)).

Definition 3.1 (Dissipation potential) A function Ψ : X → R∞ is called a dissipation potential on
X , if Ψ is lower semicontinuous, convex and satisfies Ψ(v) ≥ Ψ(0) = 0.

We call the Legendre-Fenchel dual (conjugate) Ψ∗ = LΨ : X∗ → R∞ the dual dissipation potential
for Ψ. It is defined by

Ψ∗(ξ) = (LΨ)(ξ) := sup
{
〈ξ, v〉 −Ψ(v)

∣∣ v ∈ X }.
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To justify the above name “dual dissipation potential”, note Ψ∗ = LΨ is automatically convex and lsc.
Moreover, Ψ(0) ≥ 0 implies Ψ∗(ξ) ≥ 0, whereas Ψ(v) ≥ 0 for all v ∈ X implies Ψ∗(0) = 0.

On a Hilbert space H we have

Ψ(v) =
1

2
〈Gv, v〉 ⇐⇒ Ψ∗(ξ) =

1

2
〈ξ,Kξ〉 with K = G−1.

If p ∈ ]1,∞[ and (X, ‖ · ‖X) is a Banach space with dual space (X∗, ‖ · ‖X∗), then

Ψ(v) =
1

p
‖v‖pX ⇐⇒ Ψ∗(ξ) =

1

p∗
‖ξ‖p

∗

X∗ with p∗ =
p

p−1
.

A trivial but nevertheless important consequence of the definition of Ψ∗ = LΨ is the

Fenchel-Young inequality : ∀ (v, ξ) ∈ X×X∗ : Ψ(v) + Ψ∗(ξ) ≥ 〈ξ, v〉. (3.1)

We refer to [Fen49] for the first occurrence in X = Rn and [BaC17, Prop. 13.15] for a general theory
(in Hilbert spaces).

The following important relation is the basis of the term “duality theory”.

Lemma 3.2 (Legendre transform is an involution) Assume thatX is reflexive, i.e.X∗∗ = (X∗)∗ =
X . Then, L maps proper, lsc, convex functions on X onto proper, lsc, convex functions on X∗ and
vice versa. Moreover, Ψ∗∗ = (Ψ∗)∗ = L(L(Ψ)) = Ψ, i.e. L is an involution.

Proof. The definition of L immediately shows that Ψ∗ is again proper, lsc, and convex.

Using the Fenchel-Young inequality (3.1) we easily obtain, for all v ∈ X ,

(Ψ∗)∗(v) = sup
{
〈ξ, v〉 −Ψ∗(ξ)

∣∣ ξ ∈ X∗ } ≤ sup
{

Ψ(v)
∣∣ ξ ∈ X∗ } = Ψ(v).

To show Ψ(v) ≤ Ψ∗∗(v) we use that Ψ is convex and lsc. For fixed v0 ∈ X and a0 < Ψ(v0) there
exists ξ0 ∈ X∗ such that Ψ(v) ≥ a0 + 〈ξ0, v−v0〉. This implies Ψ∗(ξ0) ≤ −a0 + 〈ξ0, v0〉 and hence
Ψ∗∗(v0) ≥ a0. As a0 < Ψ(v0) was arbitrary, we conclude Ψ(v0) ≤ Ψ∗∗(v0).

With this, the pair (Ψ,Ψ∗) is called a conjugate pair as Ψ∗ = LΨ and Ψ = L(Ψ∗). We will use the
word ‘primal dissipation potential’ for Ψ and ‘dual dissipation potential’ for Ψ∗, but of course, the notion
of ‘primal’ and ‘dual’ can be interchanged in the case of reflexive spaces X and X∗.

For our theory the most important duality result are the so-called Fenchel equivalences which we
formulate explicitly here as a theorem, even though in some textbooks they are considered simple
lemmas or exercises. See also [BaC17, Thm. 16.29] for a proof in the Hilbert space setting.

Theorem 3.3 (Fenchel equivalences [Fen49]) Consider a reflexive Banach space X with dual X∗

and consider a conjugate pair (Ψ,Ψ∗) of proper, lsc, and convex functions. Then, for all (v0, ξ0) ∈
X×X∗ the following five statements are equivalent:

(i) v0 minimizes the functional v 7→ Ψ(v)− 〈ξ0, v〉 (optimality of v ∈ X);

(ii) ξ0 ∈ ∂Ψ(v0) (subdifferential inclusion in X∗);

(iii) Ψ(v0) + Ψ∗(ξ0) ≤ 〈ξ0, v0〉 (optimality condition in R);
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(iv) v0 ∈ ∂Ψ∗(ξ0) (subdifferential inclusion in X);

(v) ξ0 maximizes the functional ξ 7→ 〈ξ, v0〉 −Ψ∗(ξ) (optimality of ξ ∈ X∗).

Here in (iii) we can either write “≤ ” or “ = ”, because the Fenchel-Young inequality (3.1) always gives
“≥ ”.

Proof. Obviously, the equivalences (i)⇔ (ii) and (iv)⇔ (v) easily follow by the Euler-Lagrange equa-
tion for the convex functionals.

Thus, it remains to show (ii)⇔ (iii) and (iii)⇔ (iv). By duality the two equivalences can be proved in
the same way, so we concentrate on the first.

“(ii)⇒ (iii)” Starting from (ii) gives Ψ(v) ≥ Ψ(v0) + 〈ξ0, v−v0〉. Inserting this into the definition of
Ψ∗(ξ0) we immediately obtain Ψ∗(ξ0) ≤ 〈ξ0, v0〉 −Ψ(v0), which is (iii).

“(iii)⇒ (ii)” (iii) is the upper bound Ψ∗(ξ0) ≤ 〈ξ0, v0〉 − Ψ(v0), which using Ψ = Ψ∗∗ implies the
lower bound

Ψ(v) = sup
{
〈ξ, v〉 −Ψ∗(ξ)

∣∣ ξ ∈ X∗ } ≥ 〈ξ0, v〉 −Ψ∗(ξ0) ≥ 〈ξ0, v−v0〉+ Ψ(v0).

Hence, we have ξ0 ∈ ∂Ψ(v0) which is (ii).

We emphasize that the equivalence (ii) ⇐⇒ (iv) shows that the set-valued mapping X 3 v ⇒
∂Ψ(v) ⊂ X∗ is exactly the inverse mapping (in the sense of set-valued monotone operators) of the
set-valued mapping X∗ 3 ξ ⇒ ∂Ψ∗(ξ) ⊂ X .

Example 3.4 (Viscoplasticity) As a nontrivial and mechanically important example we treat vis-
coplasticity, where p ∈ X = L2(Ω;Rd×dsym) denotes the plastic distortion. The viscoplastic dissipation
potential depends on the plastic rate π = ṗ and takes the form

Ψ(π) =

∫
Ω

ψ(π(x))dx with ψ(π) = σyield|π|+
µ

2
|π|2 where |π|2 =

d∑
i,j=1

π2
ij.

The dual variables are the plastic (back-) stresses Σp ∈ L2(Ω;Rd×dsym). Clearly, we have (cf. Exercise
2.6)

∂Ψ(π) =
{

Σp ∈ L2(Ω;Rd×dsym)
∣∣∣ Σp(x) ∈ ∂ψ(π(x)) a.e. in Ω

}
.

where the pointwise subdifferential ∂ψ is given by

∂ψ(π) =

{
σyieldB1(0) for π = 0,{ σyield
|π| π + µπ

}
for π 6= 0.

The relation Σp ∈ ∂ψ(π) can be inverted explicitly, giving

π = Dψ∗(Σp) with ψ∗(Σp) =
1

2µ

(
max{0, |Σp|−σyield}

)2
.

Note that this relation shows that π = ṗ = 0 whenever |Σp| ≤ σyield, i.e. if the stress does not reach
the threshold σyield for yielding.

In particular, we find the dual dissipation potential depending on the plastic stress:

Ψ∗(Σp) =

∫
Ω

ψ∗(Σp(x))dx.
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Exercise 3.1 (Dissipation functions) For a differentiable dissipation potential Ψ : X → [0,∞] we
define the

dissipation function DissΨ(v) = 〈DΨ(v), v〉.
(a) Show that DissΨ(v) ≥ Ψ(v) and give an example where DissΨ is non convex.

(b) Discuss the equality DissΨ(v) = Ψ(v).

(c) Assume that Ψ is differentiable and positively p-homogeneous, i.e. Ψ(λv) = λpΨ(v) for all λ > 0
and v ∈ X , and show DissΨ(v) = pΨ(v).

(d) Assume now that Ψ is only radially differentiable, i.e. for all v ∈ X the function ]0,∞[ 3 λ →
Ψ(λv) is differentiable. Show that for each v ∈ X the values of 〈ξ, v〉 are constant for all ξ ∈ ∂Ψ(v).
Conclude

DissΨ(v) = Ψ(v) + Ψ∗(ξ) for all ξ ∈ ∂Ψ(v).

Hint: Consider g(λ) = Ψ(λv) + Ψ∗(ξ)− 〈ξ, λv〉.

The function v 7→ DissΨ(v) is called (primal) dissipation function, and similarly ξ → DissΨ∗(ξ) is
called dual dissipation function. These functions are often used in modeling, especially when their
subdifferentials are single-valued. However, they have to be clearly distinguished from the dissipation
potentials. They can be used in the energy-dissipation balances below, see e.g. (3.3), but have weaker
properties.

Exercise 3.2 (Duality of properties) On a reflexive Banach space X consider a pair of Legendre
dual functions Ψ : X → R∞ and Ψ∗ : X∗ → R∞.

For a general lsc, convex functional Φ : Y → R∞ consider the properties:

(P1) Φ(0) ≤ 0;

(P2) Φ(y) ≥ 0 for all y;

(P3) Φ(y) ≥ c‖y‖ − C for all y;

(P4) Φ is superlinear, i.e. Ψ(u)/‖u‖ → ∞ for ‖u‖ → ∞;

(P5) Φ(y) ≤M for all y ∈ BR(0) ⊂ Y ;

(P6) Φ takes only finite values;

(P7) v 7→ Φ(v)− 〈η, v〉 has a unique minimizer;

(P8) ∂Φ(w) is single-valued.

Try to find implications or equivalences like “if Ψ satisfies (Pn) then Ψ∗ satisfies (Pk).

3.2 Generalized gradient systems and the gradient-flow equations

Above we have always used v ∈ X as a placeholder for the rate u̇. Of course, in general systems we
may have state-dependent kinetic relations. We start again with the manifold setting M where now
the state-dependent (primal) dissipation potentialR is defined on the tangent bundle:

R: TM → [0,∞] such that ∀u ∈M : R(u, ·): TuM → [0,∞] is a dissipation potential.

The dual dissipation potentialR∗ : T∗M → [0,∞] is obtained at fixed u ∈M , i.e.

R∗(u, ξ) :=
(
L(R(u, ·))

)
(ξ)
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When we write subdifferentials ofR orR∗ we always mean subdifferentials with respect to the second
variable in the linear space TuM or T∗uM :

∂R(u, v) := ∂vR(u, v) = ∂
(
R(u, ·)

)
(v) ⊂ T∗uM and

∂R∗(u, ξ) := ∂ξR∗(u, ξ) = ∂
(
R∗(u, ·)

)
(ξ) ⊂ TuM.

Definition 3.5 (Generalized gradient system: ODE case) A triple (M,F ,R) (or equivalently
(M,F ,R∗)) is called a generalized gradient system, if M is a manifold, F : M → R is a differen-
tiable function andR : TM → [0,∞] (or equivalentlyR∗ : T∗M → [0,∞]) is a (state-dependent)
dissipation potential.

The associated gradient-flow equation is given by

0 ∈ ∂R(u, u̇) + DF(u) ⊂ T∗uM ⇐⇒ u̇ ∈ ∂R∗(u,−DF(u)) ⊂ TuM.

By the Fenchel equivalences, we can also reformulate the gradient-flow equation by the optimality
condition, which is a power identity:

R(u, u̇) +R∗(u,−DF(u)) = −〈DF(u), u̇〉 = − d

dt
F(u(t)). (3.2)

This equation we can integrate and obtain the energy-dissipation balance

∀ 0 < s < t : F(u(t)) +

∫ t

s

(
R(u, u̇)+R∗(u,−DF(u))

)
dr = F(u(s)), (3.3)

which simply states that the energy F(u(t)) at the later time t plus the dissipated energy in the time
interval [s, t] give exactly the energy F(u(s)) at the earlier time s.

Of course, by the results from Exercise 3.1 we can write the energy-dissipation balance also in one of
the following simpler forms

F(u(t))+

∫ t

s

DissR(u,·)(u̇)dr = F(u(s)) or F(u(t))+

∫ t

s

DissR∗(u,·)(−DF(u))dr = F(u(s)).

But there is a major difference between (3.3) and the latter two forms. The formulation involving
“R⊕R∗” is derived from the optimality condition, and thus we will be able to show that the EDB
(3.3) is still equivalent to the full gradient-flow equations. The same is not true for the latter two formu-
lations, which hold along all solutions, but do not characterize the solutions. Thus, to emphasize this
fact, we will sometimes insist that (EDB) is always assumed to be in “R⊕R∗ form”.

We now turn to the case of infinite dimensional evolution equations on a reflexive Banach space X .
Of course, for PDEs or abstract evolutionary equations one typically needs several Banach spaces,
so here X denotes the space in which rates u̇ typically are located; other spaces associated with
the energy will be implicitly defined by dom(F) or dom(∂FF). For simplicity, we will again use the
Fréchet subdifferential ∂FF : X ⇒ X∗ but other choices might be possible.

Definition 3.6 (Generalized gradient systems: PDE case) A triple (X,F ,R) (or equivalently
(X,F ,R∗)) is called a generalized gradient system on the Banach space X , if F : X → R∞
is a lower semicontinuous functional and R is a primal dissipation potential meaning that R(u, ·) :
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X → [0,∞] is a dissipation potential for all u ∈ X (or equivalently R∗(u, ·) : X∗ → [0,∞]). The
associated gradient flow equation is given by

0 ∈ ∂R(u(t), u̇(t)) + ∂FF(u(t)) a.e. in [0, T ] ⇐⇒


u̇(t) ∈ ∂R∗(u,−ξ(t))
and ξ(t) ∈ ∂FF(u(t))

for a.a. t ∈ [0, T ].

(3.4)

Subsequently, we will often use the pair (u, ξ) to denote the solutions.

Example 3.7 (Doubly nonlinear diffusion equation) For p, q ∈ ]1,∞[ we consider the spaceX =
Lq(Ω), the energy F with F(u) =

∫
Ω

1
p
|∇u|p dx for u ∈ W1,p(Ω) and +∞ otherwise in X .

Moreover, we consider the dissipation potentialR(u, v) =
∫

Ω
1
q
(2+ cosu)|v|q dx. Both differentials

∂FF and ∂R are single-valued and we obtain the doubly nonlinear diffusion equation

(2+ cosu)|u̇|q−2u̇ = ∆pu := div
(
|∇u|p−2∇u

)
in Ω, ∇u · ν = 0 on ∂Ω,

as the associated gradient-flow equation.

For course, as in the ODE case we can replace the two formulations in (3.4) by the optimality condition

R(u(t), u̇(t)) +R∗(u(t),−ξ(t)) = −〈ξ(t), u̇(t)〉 and ξ(t) ∈ ∂FF(u(t)) a.e. in [0, T ]. (3.5)

However, integration of this relation is no longer trivial for two reasons: First we cannot simply assume
that “R⊕R∗” is integrable for solutions (u, ξ), and secondly, the application of the chain rule to 〈ξ, u̇〉
may be not valid. These two points will be discussed in the following subsection.

However, at this stage we can see already the main impact of the gradient system on the gradient flow
equation. The gradient structure provides an easy way for setting up a

time-incremental minimization scheme for time step τ = T/N > 0:

uτ0 = u0 ∈ X (given initial value)

for k = 1, . . . , N find uτk as minimizer of the functional

ΦF ,Rτ (uk−1; · ) : X 3 u 7→ τR
(
uk−1,

1

τ
(u−uk−1)

)
+ F(u).

(3.6)

As in the Hilbert-space case the minimizers uk (for notational convenience we drop the superscript for
the upcoming calculation) satisfy the Euler-Lagrange equation

0 ∈ ∂R
(
uk−1,

1

τ
(uk−uk−1)

)
+ ∂FF(uk)

or equivalently

∃ ξk ∈ X∗ : ξk ∈ ∂FF(uk) and −ξk ∈ ∂R
(
uk−1,

1

τ
(uk−uk−1)

)
. (3.7)

The last relation can be used to apply the Fenchel equivalences giving

R
(
uk−1,

1

τ
(uk−uk−1)

)
+R∗(uk−1,−ξk) = −

〈
ξk,

1

τ
(uk−uk−1)

〉
.
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Assuming further that F is λ-convex we can estimate the right-hand side by using F(uk−1) ≥
F(uk) + 〈ξk, uk−1−uk〉+ λ

2
‖uk−uk−1‖2. After multiplying by τ > 0 we arrive at a discrete type of

energy-dissipation inequality:

τ
(
R
(
uk−1,

1

τ
(uk−uk−1)

)
+R∗(uk−1,−ξk)

)
≤ F(uk−1)−F(uk)−

λ

2
‖uk−uk−1‖2. (3.8)

Reintroducing the superscript τ in uτk and ξτk again, We can now define the four interpolants ûτ , uτ ,
and uτ from [0, T ]→ X and ξτ : [0, T ]→ X∗ as follows:

ûτ ((k+θ−1)τ) = (1−θ)uτk−1 + θuτk for k ∈ {1, . . . , N} and θ ∈ [0, 1];

uτ (0) = uτ0 and uτ (t) = uτk for t ∈ ]kτ−τ, kτ ] and k ∈ {1, . . . , N};
uτ (t) = uτk for t ∈ [kτ, kτ−τ ] and k ∈ {0, . . . , N−1} and uτ (T ) = uτN ;

ξτ (0) = 0 ∈ X∗ and ξτ (t) = ξτk for t ∈ ](k−1)τ, kτ ] and k ∈ {1, . . . , N}.

(3.9)

Here uτ and ξτ are the left-continuous, piecewise constant interpolants, uτ is the right-continuous,
piecewise constant interpolant, and ûτ is the continuous piecewise affine interpolant which has the
piecewise constant derivative

˙̂uτ (t) =
1

τ

(
uτk − uτk−1

)
for k ∈ {1, . . . , N} and t ∈ ]kτ−τ, kτ [.

With these definitions we can rewrite the incremental Euler-Lagrange equation (3.7) as an approximate
equation on [0, T ] as follows

ξτ (t) ∈ ∂FF(uτ (t)) and 0 ∈ ∂R
(
uτ (t),

˙̂uτ (t)
)

+ ξτ (t) for a.a. t ∈ [0, T ]. (3.10)

Note that all four interpolants are needed because our scheme is “semi-implicit”, namely implicit in the
functional F and explicit in the state-dependence ofR.

We may also consider the discrete energy dissipation inequality (3.8). After summation over k =
1, . . . , N we find

F(uτ (T )) +

∫ T

0

(
R
(
uτ ,

˙̂uτ
)
+R∗

(
uτ ,−ξτ

))
dt ≤ F(u0)− τλ

2

∫ T

0

‖ ˙̂uτ (t)‖2 dt. (3.11)

In the following we will show that we can pass to the limit τ → 0+ in this discrete energy-dissipation
inequality and thus find solutions.

3.3 The energy-dissipation principle

We have already seen in the previous subsection that in the ODE case we obtain the energy-dissipation
balance (3.3), i.e. for all solutions u of the gradient-flow equation we have the Energy-Dissipation In-
equality

(EDI) F(u(T )) +

∫ T

0

(
R(u, u̇)+R∗(u,−DF(u))

)
dt ≤ F(u(0)).

In fact, (3.3) gives the balance with “=” instead of “≤”, but we want to make the point that even the
estimate is equivalent to solving the GFE

0 ∈ ∂R(u, u̇) + DF(u) a.e. in [0, T ]. (3.12)
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The argument involves only the Fenchel theory and the chain rule. Indeed, by the chain rule, (EDB)
can be rewritten as ∫ T

0

(
R(u, u̇)+R∗(u,−DF(u)) + 〈DF(u), u̇〉

)
dt ≤ 0.

However, by the Fenchel-Young estimate we know that the integrand is nonnegative. Thus, we con-
clude that it must be 0 a.e. in [0, T ]. But this implies the power identity (3.2). But by the Fenchel
equivalence this implies the GFE (3.12).

To make this argument also rigorous for the nonsmooth setting in infinite-dimensional Banach spaces,
we need a corresponding abstract chain rule. At this point we simply give a definition that exactly
provides what we need, and in Section 3.4 we then show that this condition can be obtained in the
Banach-space setting under suitable conditions such as semiconvexity of F .

Definition 3.8 (Abstract chain rule condition) We say that a GS (X,F ,R) satisfies the (abstract)
chain rule, if the following holds:

If u ∈W1,1([0, T ];X) and ξ ∈ L1([0, T ];X∗) satisfies sup
[0,T ]

∣∣F(u(t))
∣∣ <∞,

ξ(t) ∈ ∂FF(u(t)) a.e. in [0, T ] and

∫ T

0

(
R(u, u̇)+R∗(u,−ξ)

)
dt <∞,

then t 7→ F(u(t)) is absolutely continuous,
(
t 7→ 〈ξ(t), u̇(t)〉

)
∈ L1([0, T ]),

and
d

dt
F(u(t)) = 〈ξ(t), u̇(t)〉 a.e. in [0, T ].


(3.13)

With this we are ready to state a precise version of the so-called energy-dissipation principle, which
concerns roughly that solving the gradient-flow equation is equivalent to finding a function satisfying
the energy-dissipation inequality (EDI). However, we warn the reader that sometimes the gradient-flow
equation as a PDE may have solutions that do not have finite energy (cf. [SSZ12, Rem. 2.8]) and such
solutions are not covered by this principle.

Several versions of the Energy-Dissipation Principle were used previously, see e.g. [Mie16, Thm. 3.3.1].
The following precise, but still very general version is due to Riccarda Rossi and Artur Stephan, see
[MRS22].

Theorem 3.9 (The Energy-Dissipation Princple (EDP)) Consider the generalized gradient system
(X,F ,R) on a separable Banach space X that satisfies the abstract chain-rule condition (3.13).
Then, for all pairs (u, ξ) ∈ W1,1([0, T ];X)×L1([0, T ];X∗) with ξ(t) ∈ ∂FF(u(t)) a.e. in [0, T ]
the following two statements are equivalent:

(A) (u, ξ) satisfies supt∈[0,T ]F(u(t)) <∞ and

(EDI) F(u(T )) +

∫ T

0

(
R(u, u̇)+R∗(u,−ξ)

)
dt ≤ F(u(0)) <∞. (3.14)

(B) (u, ξ) satisfies the gradient-flow equation

0 ∈ ξ(t) + ∂R(u(t), u̇(t)) and ξ(t) ∈ ∂FF(u(t)) for a.a. t ∈ [0, T ] (3.15)
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and the energy-dissipation balance inRR∗ form:

(EDB) F(u(t)) +

∫ t

s

(
R(u, u̇)+R∗(u,−ξ)

)
dr = F(u(s)) <∞ (3.16)

for 0 ≤ s < t ≤ T .

Proof. (B) =⇒ (A). This direction is trivial.

(A) =⇒ (B). We proceed exactly as in the ODE case. We start from (A). Because of F(u(0)) < ∞
and F(u(T )) > −∞ we conclude that the finiteness of the dissipation integral in the RR∗ form
in Assumption (3.13) is satisfied. Hence, we can apply the assumed abstract chain rule and rewrite
F(u(T ))−F(u(0)) in the form

∫ T
0
〈ξ(t), u̇(t)〉dt. Combining this with (EDI) we find∫ T

0

(
R(u, u̇)+R∗(u,−ξ) + 〈ξ, u̇〉

)
dt = −δ ≤ 0,

where δ ≥ 0 is the gap (RHS minus LHS) in (EDI). By the Young-Fenchel inequality the inte-
grand is nonnegative, hence we conclude δ = 0 which means that (EDI) is in fact (EDB)[0,T ] given
in (3.16). Moreover, the nonnegative integrand must be 0 a.e. in [0, T ], which implies the identity
R(u, u̇)+R∗(u,−ξ) = −〈ξ, u̇〉. By the Fenchel equivalences this is equivalent to the GFE (3.15).

By the abstract chain rule we can also integrate the identity R(u, u̇)+R∗(u,−ξ) = −〈ξ, u̇〉 on the
subinterval [s, t] ⊂ [0, T ] and thus obtain (EDB)[s,t].

To illustrate the EDP we look at a very simple example, namely the Hilbert-space GS (L2(Ω),FDir, IR)
with FDir(u) = α

2
‖∇u‖2

L2 and dom(FDir) = H1
0(Ω). Then we have ξ = ∂FFDir(u) = −α∆u and

R∗(−ξ) = 1
2
‖α∆u‖2

L2 . Thus, (EDI) can be written in the form

0 ≥ α

2
‖u(T )‖2

L2 +

∫ T

0

(1

2
‖u̇‖2

L2 +
1

2
‖α∆u‖2

L2

)
dt− α

2
‖u(0)‖2

L2

=

∫ T

0

(1

2
‖u̇‖2

L2 +
1

2
‖α∆u‖2

L2 + 〈−α∆u, u̇〉
)

dt =

∫ T

0

1

2

∥∥u̇− α∆u
∥∥2

L2 dt

The major importance is that all terms in the left-hand side of (EDI) have good lower semicontinu-
ity properties when passing to limits of approximating sequences. Hence starting from the discrete
energy-dissipation inequality (3.11) it is reasonable to end up with (EDI) if suitable technical condi-
tions hold, see Section 3.5. To finalize the proof we will then use the abstract chain rule to invoke the
energy-dissipation principle to obtain solutions.

3.4 The abstract chain rule

We want d
dt
F(u(t)) = 〈ξ(t), u̇(t)〉 under as general as possible conditions. Can it work for nons-

mooth energies?

Example 3.10 (Chain rule for nonsmooth F ) We consider X = R2 and the nonsmooth, but con-
vex functional F(u1, u2) = max{|u1|, |u2|}. For u = (y, y) with y > 0 we obtain the set-valued
subdifferential ∂F(u) =

{
(θ, 1−θ) ∈ R2

∣∣ θ ∈ [0, 1]
}

.
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Thus, for the curve u(t) = (y(t), y(t)) with y(t) > 0 we obtain elements in the subdifferential
ξ(t) = (θ(t), 1−θ(t)), where θ ∈ [0, 1] is completely arbitrary.

Moreover, we have f(t) = F(u(t)) = y(t) which implies

ẏ(t) = ḟ(t)
CR
= 〈ξ(t), u̇(t)〉 = 〈

(
θ

1−θ

)
,
(
ẏ
ẏ

)
〉 = ẏ.

Indeed the chain rule holds, although ξ ∈ ∂FF(u(t)) is not unique.

Example 3.11 (Classical Gelfand evolutionary triple) For solving parabolic equation one often con-

siders a so-called Gelfand triple V
d
⊂ H

∼
= H∗

d
⊂ V ∗.

By approximation the solutions u are constructed with u ∈W1,2([0, T ];V ∗)∩L2([0, T ];V ). A major
step is then to show that this implies u ∈ C0([0, T ];H).

Sometimes one even shows that the mapping t 7→ ‖u(t)‖2
H is absolutely continuous with

1

2

d

dt
‖u(t)‖2

H = V ∗〈u̇(t), u(t)〉V .

This is typically used when solving the diffusion equation u̇ = ∆u with V = H1
0(Ω), H = L2(Ω),

and V ∗ = H−1(Ω). Then

1

2

d

dt
‖u‖2

L2 = H−1〈u̇, u〉H1
0

= H−1〈∆u, u〉H1
0

= −
∫

Ω

|∇u|2 dx.

A more general chain rule was established in [Bré73, Lem. 3.3, p. 73] for general convex functionals
on a Hilbert space (literal interpretation with “A” replaced by “∂F ”) :

LEMMA 3.3. Let u ∈ W1,2(0, T ;H) be such that u(t) ∈ dom(∂F) a.e. in ]0, T [.
Suppose there exists g ∈ L2(0, T ;H) such that g(t) ∈ ∂F(u(t)) a.e. in ]0, T [. Then
the function t 7→ F(u(t)) is absolutely continuous.

Denote by T the set of points t ∈ ]0, T [ such that u(t) ∈ dom(∂F) and that u and
F ◦ u are differentiable. Then, for all t ∈ T we have

d
dt
F(u(t)) = 〈h, u̇(t)〉 for all h ∈ ∂F(u(t)).

We will generalize such a result to λ-convex functionals on a Banach space. Our result is based on
the theory developed in [MRS13, MiR23] which relies on ideas in [AGS05, Thm. 1.2.5]. Of course,
the result in [MiR23, Prop. A.1] is much more general, in particular the condition of λ-convexity is
weakened significantly.

The following result will use the quantitative Young estimate for the dissipation potentialR:

∃ cY, CY > 0 ∀u, v ∈ X ∀ ξ ∈ X∗ : R(u, v) +R∗(u, ξ) ≥ cY‖v‖X‖ξ‖X∗ − CY. (3.17)

If R only depends on v through its norm, i.e. R(u, v) = ρ(u, ‖v‖), then one has cY = 1 and
CY = 0, see the discussion in [MiR23]. Another case where (3.17) holds is given whenR has uniform
upper and lower p-growth, namely c‖v‖p−CR(u, v) ≤ C‖v‖p+C . Then,R∗(u, ξ) ≥ c̃‖ξ‖p∗− C̃
and (3.17) follows.

In the following result the main chain-rule property is totally independent of the dissipation potential
R, i.e. it is a property of (X,F) alone. The connection to the gradient systems (X,F ,R) is coming

when we want to establish the integrability condition
∫ T

0
‖u̇‖X ‖ξ(t)‖X∗ dt < ∞ via the quantitative

Young estimate (3.17).
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Theorem 3.12 (Chain rule in Banach spaces) On a reflexive Banach space X consider a proper,
lsc, and semiconvex functional F : X → R∞. Then, the following chain rule holds:

If u ∈W1,1([0, T ];X) and ξ ∈ L1([0, T ];X∗) satisfies sup[0,T ]

∣∣F(u(t))
∣∣ <∞,

ξ(t) ∈ ∂FF(u(t)) a.e. in [0, T ], and

∫ T

0

‖u̇‖X ‖ξ(t)‖X∗ dt <∞,

then t 7→ F(u(t)) is absolutely continuous and d
dt
F(u(t)) = 〈ξ(t), u̇〉 a.e.

In particular, if R satisfies the quantitative Young estimate (3.17), then the abstract chain rule (3.13)
holds.

Proof. To shorten the presentation we set Σ :=
{
t ∈ [0, T ]

∣∣ ∂FF(u(t)) 6= ∅
}

and abbreviate
f(t) := F(u(t)). By assumption Σ is a set of full measure.

Step 1: Absolute integrability of f̃ under arc-length parametrization. We first consider the case that
‖u̇(t)‖ = 1 a.e. in [0, T ]. Then, we immediately have ‖u(t1)−u(t0)‖ ≤ |t1−t0|.
Choosing arbitrary tj−1 < tj in Σ we use λ-convexity of F to obtain

f(tj)− f(tj−1) ≥ 〈ξ(tj−1), u(tj)−u(tj−1)〉+
λ

2
‖u(tj)−u(tj−1)‖2

≥ −‖ξ(tj−1)‖ (tj−tj−1) +
λ

2
|tj−tj−1|2 and

f(tj−1)− f(tj) ≥ −‖ξ(tj)‖ (tj−tj−1) +
λ

2
|tj−tj−1|2,

where the second inequality follows from the first by interchanging tj−1 and tj .

For an arbitrary interval [s, t] with s, t ∈ Σ we choose partitions s = t0 < t1 < · · · < tN = t with
tj ∈ Σ and add up the inequalities which leads to

N∑
j=1

(
−‖ξ(tj−1)‖(tj−tj−1) +

λ

2
|tj−tj−1|2

)
≤ f(t)− f(s) (3.18)

≤
N∑
j=1

(
‖ξ(tj)‖(tj−tj−1)− λ

2
|tj−tj−1|2

)
.

By a refined theory of the Riemann integral for L1 functions (see [DFT05, Sec. 4.4] and [Hah15] for
the historic origin) it can be shown that it is always possible to choose a sequence of partitions with
fineness tending to 0 such that the limit of Riemann sums equals the Lebesgue integral. (There ξ is
defined everywhere, and we can set ξ(r) = 0 for r 6∈ Σ.) Hence, we conclude

−
∫ t

s

‖ξ(r)‖dr ≤ f(t)− f(s) ≤
∫ t

s

‖ξ(r)‖dr.

Thus, we have established |f(t) − f(s)| ≤
∫ t
s
‖ξ(r)‖ dr for all s, t ∈ Σ ⊂ [0, T ]. Because of

ξ ∈ L1([0, T ];X∗) this shows that there is a absolutely continuous function f̃ ∈ W1,1([0, T ]) ∩
C0([0, T ]) satisfying f(t) = f̃(t) for all t ∈ Σ.
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Step 2. f = f̃ under arclength parametrization. We continue under the same conditions as in Step 1

and show f(t) = f̃(t) for all t ∈ [0, T ]. By continuity of t 7→ u(t) ∈ X and lsc of F we know that f

is lower semicontinuous, which implies f(t) ≤ f̃(t) for all t ∈ [0, T ].

To show the opposite inequality we restrict to t ∈ [0, 2T/3] and define for r ∈ ]0, T/3[ the averages

fr(t) =
1

r

∫ t+r

t

f(s)ds =
1

r

∫ t+r

t

f̃(s)ds → f̃(t) for r → 0+.

(For t ∈ [T/3, T ] one can proceed analogously by taking backward averages fr(t) = 1
r

∫ t
t−r f(s)ds.)

Here fr is well defined, because f is bounded by assumption and lsc, hence (Borel) measurable and
integrable. Thus, it suffices to show f(t) ≥ lim supr→0+ fr(t) = f̃(t). For this we proceed as above
and obtain

f(t)−fr(t) =
1

r

∫ t+r

t

(
f(t)− f̃(s)

)
ds ≥ 1

r

∫ t+r

t

(
−‖ξ(s)‖ |t−s| − |λ|

2
|t−s|2

)
ds
)

≥ 1

r

∫ t+r

t

(
−‖ξ(s)‖ r − |λ|

2
r2
)

ds = −
∫ t+r

t

‖ξ(s)‖ds− |λ|
2
r2 → 0 for r → 0+.

Thus, we conclude that t 7→ f(t) = F(u(t)) is equal to the continuous representative f̃ , and the
desired absolute continuity of f is shown under the assumption ‖u̇(t)‖ = 1 a.e.

Step 3: Reparametrization. For the general case with u̇ ∈ L1([0, T ];X) we follow [AGS05, Lem. 1.1.4]
and consider the reparametrization

σ(t) =

∫ t

0

‖u̇(r)‖dr giving σ : [0, T ]→ [0, `],

where ` = σ(T ) =
∫ T

0
‖u̇(r)‖ dr. Clearly, σ ∈ W1,1([0, T ]) ⊂ C0([0, T ]) and σ′(t) ≥ 0. We

define the inverse

τ :

{
[0, `] → [0, T ],

s 7→ min
{
t ∈ [0, T ]

∣∣ σ(t) = s
}
,

which is increasing and continuous from the left such that σ(τ(s)) = s for all s ∈ [0, `]. Moreover,
we have

τ(σ(t)) ≤ t and u(τ(σ(t))) = u(t) for all t ∈ [0, T ]. (3.19)

For the second relation note that on intervals ]t0, t1[ where t0 = τ(σ(t0)) = τ(σ(t)) < t we have
u̇(t) = 0 giving u(t) = u(t0).

With this we define û(s) = u(τ(s)), and for 0 ≤ s0 < s1 ≤ ` we have

‖û(s1)−û(s0)‖ = ‖u(τ(s1))−u(τ(s0))‖ ≤
∫ τ(s1)

τ(s0)

‖u̇(r)‖dr = σ(τ(s1))−σ(τ(s0)) = s1−s0.

Thus, û is 1-Lipschitz. Moreover, the reflexivity ofX gives CLip([0, T ];X) = W1,∞([0, T ];X), such
that the derivative û′(s) exists and ‖û′(s)‖ ≤ 1 a.e. in [0, `].

Moreover, for 0 ≤ t0 < t1 ≤ T we find

‖u(t1)−u(t0)‖ = ‖û(σ(t1))− û(σ(t0))‖ ≤
∫ σ(t1)

σ(t0)

‖û′(ρ)‖dρ =

∫ t1

t0

‖û′(σ(r))‖σ̇(r)dr.
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This implies ‖u̇(t)‖ ≤ ‖û′(σ(t))‖σ̇(t) for a.a. t ∈ [0, T ]. Using σ̇(t) = ‖u̇(t)‖ and ‖û′(s)‖ ≤ 1
from above we find ‖û′(s)‖ = 1 a.e. in [0, `].

Step 4. Absolute continuity of f in the general case. We now apply the reparametrization from the pre-

vious step also to f and ξ by setting f̂(s) = f(τ(s)) and ξ̂(s) = ξ(τ(s)) and obtain f(t) =

f̂(σ(t)) = F(u(τ(σ(t)))) by using u(τ(σ(t))) = u(t) from (3.19). Moreover, we have∫ `

0

‖ξ̂(s)‖ds
tr
=

∫ T

0

‖ξ̂(σ(t))‖σ̇(t)dt =

∫ T

0

‖ξ(τ(σ(t)))‖ ‖u̇(t)‖dt
∗
=

∫ T

0

‖ξ(t)‖ ‖u̇(t)‖dt <∞.

(For a justification of the transformation rule in “
tr
=” with s = σ(t) we refer to [Bog07, Thm. 5.8.30] and

note that the absolute continuous function σ satisfies the Lusin property (N).) The last bound is simply
the assumption, whereas in

∗
= we use that u̇(t) = 0 whenever τ(σ(t)) 6= t, see the comments after

(3.19). Hence we have ξ̂ ∈ L1([0, `]) as well as ‖û′(s)‖ = 1 a.e. in [0, `]. Thus, we can apply Step

2 and find |f̂(s1)−f̂(s0)| ≤
∫ s1
s0
‖ξ̂(s)‖ds and conclude via

|f(t1)− f(t0)| = |f̂(σ(t1))− f̂(σ(t0))| ≤
∫ σ(t1)

σ(t0)

‖ξ̂(s)‖ds

=

∫ t1

t0

‖ξ̂(σ(t))‖σ̇(t)dt =

∫ t1

t0

‖ξ(t)‖ ‖u̇(t)‖dt,

which is the desired absolute integrability of f : t 7→ f(t) = F(u(t)) as t 7→ ‖u̇‖ ‖ξ‖ lies in
L1([0, T ]).

Step 5: Identification of the derivative. As f is differentiable a.e. in [0, T ] the set T ⊂ ]0, T [ on which
u : [0, T ] → H is differentiable, f : [0, T ] → R is differentiable, and ∂FF(u(t)) is nonempty is of
full measure. Now take t ∈ T and choose an arbitrary η ∈ ∂FF(u(t)). Then, for all h ∈ [−t, T−t]
we have

f(t+h)− f(t) ≥ 〈η, u(t+h)−u(t)〉+
λ

2

∥∥u(t+h)− u(t)
∥∥2
.

Dividing by h > 0 and taking the limit h→ 0+ we find ḟ(t) ≥ 〈η, u̇(t)〉. Dividing by h < 0 and taking
the limit h→ 0− gives the opposite estimate. Hence we have shown d

dt
F(u(t)) = ḟ(t) = 〈η, u̇(t)〉

for all t ∈ T, and the chain rule is established.

Step 6: Abstract chain rule. Starting from
∫ T

0

(
R(u, u̇) +R∗(u,−ξ)

)
dt < ∞ and the quantitative

Young estimate (3.17) we obtain∫ T

0

‖u̇‖X‖ξ‖X∗ dt ≤ 1

cY

(∫ T

0

(
R(u, u̇) +R∗(u,−ξ)

)
dt+ CY

)
< ∞.

Thus the above results are applicable and we obtain (3.13).

3.5 Existence theory via time-incremental minimization

Our existence theory indeed follows very similar steps as in the Hilbert-space setting. The difference
is that we are now using the energy-dissipation principle, i.e. we do not work with the evolutionary
equation directly. We rather exploit the favorable structure of the energy-dissipation inequality, which
allows us to pass to the limit by arguments of the calculus of variations.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



An introduction to the analysis of gradients systems 37

We emphasize that uniqueness of solutions cannot be expected in this general setting. Even if we are
able to obtain uniqueness of the incremental minimizers uτk we cannot expect the continuous solutions
to be unique because of the doubly nonlinear structure.

We start by collecting a set of sufficient condition that allow us to study a large class of generalized
gradient systems. However, the assumptions are restricted for didactic reasons, and we will comment
on possible extensions and generalizations in the next subsection.

For the following list of conditions we recall the sublevels SFE = {u ∈ X | F(u) ≤ E }.

X is a separable reflexive Banach space. (3.20a)

F : X → R∞ is semiconvex and has compact sublevels. (3.20b)

R : X×X → [0,∞] andR∗ : X×X∗ → [0,∞] are

uniformly superlinear on sublevels, i.e. ∀E ∈ R
∃ increasing, convex, superlinear ψE : [0,∞[→ [0,∞[ such that

∀ (u, v, ξ) ∈ SFE×X×X∗ : R(u, v) ≥ ψE(‖v‖) andR∗(u, ξ) ≥ ψE(‖ξ‖).

 (3.20c)

(X,F ,R) satisfies the abstract chain rule condition (3.13). (3.20d)

For each level E ∈ R there exists a modulus of continuity ωRE

such that ∀u0, u1 ∈ SFE ∀ v ∈ X :∣∣R(u1, v)−R(u0, v)
∣∣ ≤ ωRE

(
‖u1−u0‖

) (
1 +R(u0, v)

)
.

 (3.20e)

We emphasize that the semiconvexity condition in (3.20b) is rather strong: First, it allows us to derive
the discrete approximation of the energy-dissipation inequality. Secondly, by our results in Section 2.2
it implies the important condition of closedness of the Fréchet subdifferential ∂FF : X ⇒ X∗. Thirdly,
it is a very helpful condition of establishing the chain rule, see Theorem 3.12.

The upcoming existence result is now based on the time-incremental minimization scheme (3.6), the
four associated interpolants ûτ , uτ , uτ , and ξτ (see (3.9)), and the discrete EDI (3.11). The proof
follows similar steps as the existence proof in the Hilbert-space setting, but now in the last step we
exploit the Energy-Dissipation Principle, where the quantitative Young estimate (3.20d) is needed to
provide the abstract chain rule.

Theorem 3.13 (Existence for (X,F ,R)) Consider a generalized GS (X,F ,R) satisfying the as-
sumptions (3.20). Then, for all u0 ∈ X with F(u0) < ∞ there exists a solution (u, ξ) ∈ W1,1

([0, T ];X)×L1([0, T ];X∗) satisfying u(0) = u0, the gradient-flow equation

0 ∈ ξ(t) + ∂R(u(t), u̇(t)) and ξ(t) ∈ ∂FF(u(t)) for a.a. t ∈ [0, T ], (3.21)

and the energy-dissipation balance F(u(t)) +
∫ t
s

(
R(u, u̇)+R∗(u,−ξ)

)
dr = F(u(s)) for 0 ≤

s < t ≤ T .

Before starting the full proof, we provide a few auxiliary results that are useful but are also of indepen-
dent interest. First we recall that the Legendre transformation L is antimonotone, which implies that
lower (upper) bounds forR imply upper (lower) bounds forR∗ and vice versa.

The lower bounds forR andR∗ in (3.20e) hence imply the upper bounds

R(u, v) ≤ ψ∗E(‖v‖) and R∗(u, ξ) ≤ ψ∗E(‖ξ‖),
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where ψ∗(ζ) = sup
{
zζ − ψ(z)

∣∣ z ≥ 0
}

. As ψ is finite everywhere, ψ∗ is again increasing,
convex, and superlinear. As examples we can keep in mind ψ(z) = czp − C for p > 1 giving
ψ∗(ζ) = c̃ζp

∗
+ C or ψ(z) = (z+1) log(z+1) − C giving ψ∗(ζ) = C + eζ−1 − e−1. Since R

and R∗ are upper and lower bounded on each ball BR(0), they are even Lipschitz continuous with
bounded subdifferentials.

The continuity ofR in (3.20e) also provides upper and lower bounds ofR(u1, ·) in terms ofR(u0, ·),
namely

−ω1,0 + (1−ω1,0)R(u0, v) ≤ R(u1, v) ≤ ω1,0 + (1+ω1,0)R(u0, v), (3.22)

where ω1,0 = ωRE
(
‖u1−u0‖

)
. The upper bound for R(u1, ·) transforms into a lower bound for

R∗(u1, ·), namely

R∗(u1, ξ) ≥ −ω1,0 + (1+ω1,0)R
(
u0,

1

1+ω1,0

ξ
)
. (3.23)

If for w ∈W1,1([0, T ];X) we have the superlinear bound B :=
∫ T

0
ψ
(
‖ẇ‖

)
dt <∞, we obtain an

explicit equicontinuity.

‖w(t)−w(s)‖ ≤ 1

µ

∫ t

s

µ‖ẇ‖dt ≤ 1

µ

∫ t

s

(
ψ∗(µ) + ψ(‖ẇ‖)

)
dt ≤

(
(t−s)ψ∗(µ) +B

)
/µ.

Taking the infimum over µ > 0, we obtain the desired result, namely∥∥w(t)−w(s)
∥∥ ≤ ωBψ

(
|t−s|

)
where ωBψ (r) := inf

{ 1

µ

(
rψ∗(µ) +B

) ∣∣ µ > 0
}
. (3.24)

For every B > 0 the function ωBψ is a modulus of continuity, i.e., ωBψ (r)→ 0 for r → 0+.

Proof of Theorem 3.13. The proof consists of the typical steps.

Step 0: construction of approximations via time-incremental minimization. We first show that scheme
in (3.6) has minimizer uk = uτk for all k = 1, . . . , N . For this we use that F is lsc (because of closed
sublevels) and that u 7→ τR

(
uk−1,

1
τ
(u−uk−1)

)
is continuous and coercive. Hence, ΦF ,Rτ (uk−1; ·)

is lsc and coercive. Moreover, the sublevels are compact, as they are contained in a sublevel of F .
Hence, by the one-sided Weierstraß extremal principle a minimizer uτk exists, namely

∀w ∈ X : τR
(
uk−1,

1

τ
(uk−uk−1)

)
+ F(uk) ≤ τR

(
uk−1,

1

τ
(w−uk−1)

)
+ F(w). (3.25)

As R(u, ·) is convex and continuous, the sum rule gives ∂FΦ(u∗;u) = ∂vR
(
u∗,

1
τ
(u−u∗)

)
+

∂FF(u) and we obtain the inclusion 0 ∈ ∂vR
(
uk−1,

1
τ
(uk−uk−1)

)
+ ∂FF(uk) or equivalently

−ξk ∈ ∂vR
(
uk−1,

1

τ
(uk−uk−1)

)
and ξk ∈ ∂FF(uk), k = 1, . . . , N. (3.26)

Step 1: a priori estimates. Testing (3.25) withw = uk−1 we immediately concludeF(uk) ≤ F(uk−1)
≤ F(u0) =: F0 < ∞. Hence, all uk lie in the compact sublevel SFF0

b X . The same test of (3.25)
also provides a bound on increments, namely

τψ
(1

τ
‖uk−uk−1‖

)
≤ τR

(
uk−1,

1

τ
(uk−uk−1)

)
) ≤ F(uk)−F(uk−1). (3.27)
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To obtain a supremum bound we divide by τ and estimate the energies:

ψ
(1

τ
‖uk−uk−1‖

)
≤ 1

τ

(
F(u0)− Fmin

)
, where Fmin := min

X
F > −∞. (3.28)

For an integral bound we sum (3.27) over k = 1, . . . , N to obtain∫ T

0

ψ
(
‖ ˙̂uτ‖

)
dt =

N∑
k=1

τψ
(1

τ
‖uk−uk−1‖

)
≤ ∆F := F(u0)− Fmin <∞, (3.29)

where ûτ is the piecewise affine interpolant. Hence, (3.24) gives ‖ûτ (t)−ûτ (s)‖ ≤ ω∆F
ψ (|t−s|) for

all t, s ∈ [0, T ].

We also observe that ˙̂uτ is piecewise constant such that τ ˙̂uτ (t) = uτk−uτk−1 for t ∈ ]kτ−τ, kτ [.

Thus, we find τ‖ ˙̂uτ‖L∞([0,T ];X) = max
{
‖ûτ (kτ)−ûτ (kτ−τ)‖

∣∣ k = 1, ..., N
}
≤ ω∆F

ψ (τ) → 0
for τ → 0. Later we will need the following estimate:

E(τ) := τ

∫ T

0

‖ ˙̂uτ‖2 dt ≤ τ‖ ˙̂uτ‖L∞

∫ T

0

1 ‖ ˙̂uτ‖dt

≤ ω∆F
ψ (τ)

∫ T

0

(
ψ∗(1) + ψ

(
‖ ˙̂uτ‖

))
dt ≤ ω∆F

ψ (τ)
(
Tψ∗(1)+∆F

)
,

(3.30)

such that E(τ)→ 0 for τ → 0+.

To obtain an a priori estimate on the dual variable ξk, we proceed as at the end of Section 3.2 where
we use again the interpolants uτ , uτ , and ξτ and obtained the discrete approximate energy-dissipation
inequality (3.11), namely

F(ûτ (T )) +

∫ T

0

(
R
(
uτ ,

˙̂uτ
)
+R∗

(
uτ ,−ξτ

))
dt ≤ F(u0)− λ

2
E(τ), ξτ ∈ ∂FF(uτ ). (3.31)

This immediately implies∫ T

0

(
ψ
(
‖ ˙̂uτ‖

)
+ ψ

(
‖ξτ‖

))
dt ≤ ∆F +

|λ|
2
E(τ) ≤ ∆F + 1 <∞, (3.32)

for 0 < τ � 1. Of course, from uτk ∈ SFF0
b X we also have the a priori estimates

‖ûτ‖L∞([0,T ];X) ≤ R, ‖uτ‖L∞([0,T ];X) ≤ R, ‖uτ‖L∞([0,T ];X) ≤ R.

Step 2: extraction of convergent subsequences. As all ûτ satisfy the uniform bound (3.29) we obtain
equi-continuity via (3.24):

‖ûτ (t)− ûτ (s)‖ ≤ ωBψ
(
|t−s|

)
with B = ∆F .

As the interpolants ûτ , uτ , and uτ coincide for t = kτ we conclude

ω̃(τ) := ‖ûτ − uτ‖L∞([0,T ];X) + ‖ûτ − uτ‖L∞([0,T ];X) ≤ 2ωBψ (τ)→ 0 for τ → 0+.

Moreover, exploiting the compactness of the sublevel SFF0
in X , we can apply the Arzelà-Ascoli

selection principle to (ûτ )τ and obtain a subsequence (not relabeled) and a limit function u ∈
C0([0, T ];X) such that

ûτ → u, uτ → u, uτ → u in C0([0, T ];X).
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Moreover, since ψ in (3.32) is superlinear, the criterion of de la Vallée Poussin shows that ( ˙̂uτ )τ
and (ξτ )τ are uniformly equi-integrable families in L1([0, T ];X) and L1([0, T ];X∗), respectively.
Hence there exists a further subsequence (again not relabeled) and limits v ∈ L1([0, T ];X) and
ξ ∈ L1([0, T ];X∗) such that

˙̂uτ ⇀ v in L1([0, T ];X) and ξτ ⇀ ξ in L1([0, T ];X∗).

Choosing a test function η ∈ C1
c(]0, T [;X∗) we can pass to the limit τ → 0+ in the identity∫ T

0
〈η, ˙̂uτ 〉 dt = −

∫ T
0
〈η̇, ûτ 〉 dt and find v = u̇. Thus, we have ûτ ⇀ u in W1,1([0, T ];X)

(along the subsequence chosen above).

Step 3: derivation of (EDI). We derive (EDI) by passing to the limit τ → 0+ in (3.31).

(3.a) Because of E(τ) → 0 (cf. (3.30)) the right-hand side in (3.31) converges to the desired limit
F(u0) = F0.

On the left-hand side we treat the three terms separately and note that it is sufficient to derive a liminf
estimate.

(3.b) By ûτ (T )→ u(T ) and lower semicontinuity F(u(T )) ≤ lim infτ→0F(ûτ (T )).

(3.c) For the rate term R, we use the lower bound (3.22) with u0 = u(t), u1 = uτ (t), and v =
˙̂uτ (t). Note that uτ (t) and u(t) lie in the sublevel SFF0

, such that we can apply (3.22) with ω1,0 =
ωRF0

(
‖uτ (t)−u(t)‖L∞

)
≤ ω̂(τ) := ωRF0

(
‖uτ−u‖L∞

)
→ 0 for τ → 0. With this we obtain the

estimate

lim inf
τ→0

∫ T

0

R
(
uτ (t),

˙̂uτ (t)
)

dt ≥ lim inf
τ→0

∫ T

0

(
−ω̂(τ) +

(
1−ω̂(τ)

)
R
(
u(t), ˙̂uτ (t)

))
dt

= lim inf
τ→0

∫ T

0

(
−0 + 1R

(
u(t), ˙̂uτ (t)

))
dt ≥

∫ T

0

R
(
u(t), u̇(t)

)
dt,

where in the last estimate we used the weak lower semicontinuity following from the convexity of the
primal dissipation potentialR(u, ·).

(3.d) For theR∗ term we proceed analogously now relying on (3.23):

lim inf
τ→0

∫ T

0

R∗
(
uτ (t),−ξτ (t)

)
dt ≥ lim inf

τ→0

∫ T

0

(
−ω̂(τ) +

(
1−ω̂(τ)

)
R∗
(
u(t),

−1

1−ω̂(τ)
ξτ (t)

))
dt

= lim inf
τ→0

∫ T

0

(
−0 + 1R∗

(
u(t),

−1

1−ω̂(τ)
ξτ (t)

))
dt ≥

∫ T

0

R∗
(
u(t),−ξ(t)

)
dt.

Combining the results of (3.a-d) we obtain the desired EDI

F(u(T )) +

∫ T

0

(
R(u, u̇) +R∗(u,−ξ)

)
dt ≤ F(u0).

Clearly, we still have u(0) = u0 and it remains to identify ξ. We recall that for all τ we have ξτ (t) ∈
∂FF(uτ (t)) for a.a. t ∈ [0, T ]. Since uτ → u and ξτ ⇀ ξ, we can use the strong-weak closedness
of ∂FF and obtain ξ(t) ∈ ∂FF(u(t)) for a.a. t ∈ [0, T ].

We remark here that this we need a generalization of the approach in Step 3 (see page 19) the proof
of Theorem 2.7, which relies on the result in Exercise 2.6. Instead we can exploit the result of Exercise
2.7, which only needs uτ → u in L1([0, T ];X) (strongly) and ξτ ⇀ ξ in L1([0, T ];X∗) (weakly).
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Step 4: derivation of the gradient-flow equation. It remains to apply the Energy-Dissipation Principle
from Theorem 3.9, which can be applied because our assumption (3.20d) enforces the abstract chain
rule condition (3.13). Thus, we conclude that the constructed pair (u, ξ) satisfies the gradient-flow
equation (3.15) and the energy-dissipation balance (3.16).

We emphasize that in this case we are not able to show uniqueness. Thus, different choices of the
subsequences may lead to different solutions. Hence, we cannot define a “gradient flow” as in Section
2.5.

From the proof we can even learn more by observing that we did several liminf estimates to obtain
(EDI). However, later we showed that in fact (EDB) holds. This implies that the liminf estimates must
have been “attained” at least along the chosen subsequence. Thus we additionally conclude:

� for 0 ≤ s < t ≤ T we have F(u(t)) +
∫ t
s

(
R(..)+R∗(..)

)
dr = F(u(s)).

� ∀ t ∈ [0, T ] : F(ûτ (t))→ F(u(t)).

�
∫ T

0
R(u, ˙̂uτ )dt→

∫ T
0
R(u, u̇)dt.

�
∫ T

0
R(u, ξτ )dt→

∫ T
0
R(u, ξ)dt.

� R∗(u(t),−ξ(t)) = inf
{
R∗(u(t),−η

∣∣ η ∈ ∂FF(u(t))
}

for a.a. [t ∈ [0, T ]

Hence, under additional strict convexity assumptions on R(u, ·) and R∗(u, ·) it is even possible to
show that the strong convergences ˙̂uτ → u̇ in L1([0, T ];X) and ξτ → ξ in L1([0, T ];X∗), see
[MiR15, Prop. C.3.3] for Visintin’s argument from [Vis84].

Example 3.14 (State-dependent dissipation) We consider the GS (Lq(Ω),F ,R) with

dom(F) = W1,p
0 (Ω), F(u) =

∫
Ω

(1

p
|∇u|p + F (u)

)
dx and R(u, v) =

∫
Ω

a(u)

q
|v|q dx,

where Ω ⊂ Rd is a bounded Lipschitz domain, p ∈ ]d,∞[, and q ∈ ]1,∞[. The function F : R →
[0,∞[ is C1 and semiconvex and a : R→ ]0,∞[ is continuous.

Exercise 3.3 Formulate the associated gradient-flow equation and check that the assumptions of
Theorem 3.13 hold.

3.6 Extensions

We discuss a few possible extensions that allow us to widen the applicability of the theory.

3.6.1 Time dependent gradient systems

Often one is interested in the case of time-dependent functionals F : [0, T ]×X → R∞. A typical
case is F(t, u) = E(u)−〈`(t), u〉 implying that ∂FF(t, u) = ∂FE(u)− `(t), where the convention
is now that ∂FF(t, u) = ∂F

(
F(t, ·)

)
(u). The forcing ` appears in the associated gradient-flow

equation as source term:

0 ∈ ∂R(u, u̇) + ∂FF(t, u) = ∂R(u, u̇) + ∂FE(u)− `(t).
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The above theory can be carried through under suitable technical assumptions such as

D := dom(F(t, ·)) is independent of t ∈ [0, T ], (3.33a)

∀u ∈ D : F(·, u) ∈ C1([0, T ]), (3.33b)

∃ cF, CF > 0 ∀u ∈ D, t ∈ [0, T ] : |∂tF(t, u)| ≤ cFF(t, u) + CF, (3.33c)

(tn, un)→ (t, u) and sup
n∈N
F(tn, un) <∞ imply ∂tF(tn, un)→ ∂tF(t, u). (3.33d)

With this the chain rule needs to be generalized into

d

dt
F(t, u(t)) = 〈ξ(t), u̇(t)〉+ ∂tF(t, u(t))

and the energy-dissipation balance takes correspondingly the form

F(t, u(t)) +

∫ t

s

(
R(u, u̇) +R∗(u,−ξ)

)
dr = F(s, u(s)) +

∫ t

s

∂rF(r, u(r))dr,

where the last term can be understood as the work of the time-dependent external forces.

Now the energy F(t, u(t)) is no longer decreasing, but (3.33c) provides the upper bound

F(t, u(t)) + CF ≤ ecF(t−s)(F(s, u(s)) + CF

)
for 0 ≤ s < t.

The construction of solutions still follows the time-incremental minimization scheme (3.6), namely

uτk minimizes u 7→ τR
(
uτk−1,

1

τ
(u−uk−1)

)
+ F(kτ, u).

As the minimizer uτk satisfies ξτk ∈ ∂FF(kτ, uτk) and −ξτk ∈ ∂R(uτk−1,
1
τ
(uτk−uk−1)

)
, we can

proceed as for (3.8). Using the Fenchel equivalences and the λ-convexity of F(t, ·) we find

F(kτ, uk) + τ
(
R
(
uk−1,

1

τ
(uk−uk−1)

)
+R∗(uk−1,−ξk)

)
≤ F(kτ, uk−1)− λ

2
‖uk−uk−1‖2

= F(kτ−τ, uk−1) +

∫ kτ

kτ−τ
∂tF(t, uk−1)dt− λ

2
‖uk−uk−1‖2.

Using the interpolants as introduced in (3.9) we see that the approximate EDI (3.11) generalizes to

F(T, uτ (T )) +

∫ T

0

(
R
(
uτ ,

˙̂uτ
)
+R∗

(
uτ ,−ξτ

))
dt

≤ F(0, u0) +

∫ T

0

∂tF(t, uτ )dt+
τλ

2

∫ T

0

‖ ˙̂uτ (t)‖2 dt.

(3.34)

From this, suitable a priori estimates can be derived and the limit passage works as before, where
(3.33d) is used for the term involving ∂tF .

3.6.2 Weakly compact sublevels

A similar theory can be developed if the sublevels of the energy are not compact in the strong topol-
ogy, but only in the weak topology. The major difference needed then, is that the closedness of the
subdifferential has to be imposed in the weak-weak topology. But this is the case of the leading term
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in the energy is quadratic. For instance consider the Allen-Cahn energy FAC on H = H1
0(Ω) with

bounded Ω ⊂ Rd and d ∈ {1, 2, 3}:

FAC(u) =

∫
Ω

(α
2
|∇u|2 +

β

4
(u2−1)2

)
dx for u ∈ dom(FAC) = H = H1

0(Ω).

Then (un, ξn) ⇀ (u, ξ) in H×H∗ = H1
0(Ω)×H−1(Ω) and ξn = DFAC(un) = {−α∆un +

β(u3
n−un)}. Hence, the embedding H1

0(Ω) ≤ L6(Ω) for p ∈ [1, p] which is compact for p < 6,
implies boundedness of β(u3

n−un) and strong convergence to the desired limit β(u3−u) in Lq(Ω)
for all q ∈ [1, 2[. Thus, we have the desired closedness ξ = DFAC(u).

3.6.3 Approaches without semiconvexity and variational interpolants

Semiconvexity of the functional F has proved to be a very useful condition, because it implies closed-
ness of the subdifferential, it helps to establish the abstract chain rule, and it provides a simple ap-
proach the discrete EDI. However, for many applications semiconvexity is too strong and it is desirable
to avoid this assumption.

For instance, in [MiR23, Prop. A.1] the chain rule is established under a much weaker “uniform Fréchet
differentiability”. Also the closedness of the subdifferential can be shown by advanced PDE methods,
thus avoiding semiconvexity.

The major problem is the derivation of the approximate discrete EDI, which then provides an a priori
estimate for the forces ξτ . The main idea is to avoid the linear interpolation in the piecewise affine
interpolant ûτ , which can only be useful, if the functional F can be controlled along straight lines. The
main new idea is due to Ennio De Giorgi, but he has never published it. It can be found in the works
[Amb95, AGS05] of his PhD student Luigi Ambrosio in the context of metric gradient flows, see Section
4.4. For Hilbert-space gradient systems without λ-convexity this idea was developed first in [RoS06]
and for generalized gradient systems on Banach spaces in [MRS13, Lem. 6.1].

We construct (uτk)k=1:N by time-incremental minimization as before and define the variational (De
Giorgi) interpolant ũτ : [0, T ]→ X such that for all k = 0, . . . , N−1 and θ ∈ ]0, 1[ we have

ũτ
(
kτ + θτ

)
minimizes u 7→ θτ R

(
uτk,

1

θτ
(u−uτk)

)
+ F(u).

As ũτ (t) for t ∈ ]kτ, kτ+τ ] is obtained as a minimizer, there is a ξ̃τ (t) ∈ ∂FF(ũτ (t)) with−ξ̃τ (t) ∈
∂R(uτk,

1
t−kτ (ũτ (t)−uτk)

)
. Under suitable assumptions, it is then possible to show

F(uτk) + τR
(
uτk−1,

1

τ
(uτk−uτk−1)

)
+

∫ kτ

kτ−τ
R∗
(
uτk−1,−ξ̃τ (t)

)
dt ≤ F(uτk−1)

with ξ̃τ (t) ∈ ∂FF(ũτ (t)) a.e., which replaces the former discrete EDI (3.8), which was derived using
λ-convexity.

But now λ-convexity is no longer needed for obtaining the discrete EDI. It remains to generalize the
abstract chain rule to cases without λ-convexity.

4 Metric gradient systems

In this section we generalize the previous theory from Banach spaces to much more general metric
spaces, where we mainly follow [AGS05, Ch. 2–4]. It is surprising that the concept of gradient systems
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can be generalized to spaces without a linear structure. The main reason for this is the variational
character encoded in the time-incremental minimization scheme via the energy functional F and the
dissipation potentialR. The major idea is to replace the time derivative u̇(t) = limh→0

1
h

(
u(t+h)−

u(t)
)
∈ X and the forces ξ ∈ ∂FF(u) ⊂ X∗ by appropriate quantities that are still available

in metric spaces. In particular, convexity methods are no longer available. In generalizing to metric
spaces, we will also drop the assumption of semiconvexity that was very helpful in the Hilbert and
Banach space setting. For this we exploit the variational interpolant as introduced by De Giorgi, see
Section 4.4.

4.1 Minimizing movements for metric gradient systems

Throughout Section 4 we will work with a complete metric space (M,D), i.e. D : M×M → [0,∞[
is a metric satisfying positivity, symmetry and the triangle inequality. Completeness of (M,D) means
that all Cauchy sequences have a limit in M . For simplicity, we will always use the topology on M
that is induced by the metric, however the general theory needs to be developed by a second weaker
topology, where convergence is often denoted by

σ
⇀, see e.g. [AGS05, Cha. 3]. This is in analogy to

Banach spaces where convergence in D corresponds to norm convergence, whereas
σ
⇀ indicates

weak convergence.

Definition 4.1 (Metric gradient systems and minimizing movements) A quadruple (M,F ,D, ψ)
is called generalized metric gradient system if

• (M,D) is a complete metric space,

• F : M → R∞ is a proper, lsc functional,

• ψ : R→ [0,∞] is a dissipation potential.

Standard metric gradient systems are given by the special choice ψ = ψquadr : r 7→ 1
2
r2. One then

shortly writes (M,F ,D) := (M,F ,D, ψquadr).

The associated minimizing movement scheme (MMS) is given by

uτk minimizes u 7→ τk ψ
( 1

τk
D(uτk−1, u)

)
+ F(u),

where τk > 0 is a possibly variable time step. A curve u : [0,∞[ → M is called minimizing
movement for the metric GS (M,F ,D, ψ) if it is the limit (pointwise in t) of the piecewise constant in-
terpolants uτ : [0,∞[→M of the MMS even, when varying time steps are allowed. One then writes
u ∈ MM(M,F ,D, ψ). If u is only the limit of some sequence of partitions (with fineness tending to
0), then u is called a generalized minimizing movement and we write u ∈ GMM(M,F ,D, ψ).

Note that the MMS for the standard metric GS (M,F ,D) = (M,F ,D, ψquadr) leads to the standard
minimizing movement scheme (MMS) given by

standard MMS: uτk minimizes u 7→ 1

2τk
D(uτk−1, u)2 + F(u),

which is a direct generalization of the time-incremental minimization scheme (2.5) in the Hilbert-space
setting.
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Figure 4.1: The figure shows the streamlines for the gradient-
flow equations (4.1). All solutions satisfy u̇1 ≤ 1, and the axis
u2 = 0 is invariant leading to the ODE u̇1 = −|u1|1/2 hav-
ing non-unique solutions. All other solutions stay away from
u2 = 0 and, hence, are uniquely determined by their initial
condition.

The notion of (generalized) minimizing movements can be seen as a solution concept for metric GS.
However, these solutions are only defined as limit (or accumulation) points, which is a situation that
is not always satisfactory. The point is that it is difficult to derive further properties of solutions, in
particular a continuous dependence on a parameter µ. The latter relies on interchanging the two limits
τ → 0 and µk → µ, which is absolutely nontrivial. See also Example 4.2. Thus, it is desirable to find
a formulation of solutions that replaces the gradient-flow and allows a direct study of solution without
referring to the limiting process τ → 0.

Example 4.2 (Missing upper semicontinuity for minimizing movements) ConsiderM = R2 with
D(u,w) = |u−w|Eucl and ψ(r) = 1

2
r2 such that we are in the Hilbert-space setting R(u, v) =

1
2
(v2

1+v2
2) of Section 2. We choose the energy functional F(u) = 2

3
u1(u2

1+u4
2)5/4 which is smooth

on R2 \ {0}. The gradient-flow equation reads

u̇1 = − 3u2
1 + 2u4

2

2(u2
1+u4

2)3/4
, u̇2 = − u1u

3
2

(u2
1+u4

2)3/4
, (4.1)

and Figure 4.1 shows the solutions. The vector field is locally Lipschitz continuous on R2 \ {0}, and
the u1 axis is invariant because F is even in u2.

We consider the solutions starting at the initial points u0 = (1, a)> for small a and denote these
solutions by t 7→ Ua(t). We obviously have a one-parameter family of solutions for a = 0, namely

U0
(µ)(t) =


9
16

(
4
3
−t
)2

for t ∈ [0, 4
3
],

0 for 4
3
≤ t < µ,

9
16

(t−µ)2 for t ≥ µ.

For a 6= 0 the solutions Ua are unique, as they never hit the non-Lipschitz point u = (0, 0)>. To
see this, observe that for u1(t) ≤ 0 we have u̇2 ≥ 0, while for u1(t) ∈ [0, 1] and u2 ≥ 0 we have

(u2
1+u4

2)3/4 ≥ max{u3/2
1 , u3

2} which gives u̇2 ≥ −min{u1, u
3
2/u

1/2
1 } and bounds u2 away from 0.

Hence, we see that taking the limit 0 6= a→ 0 (from above or from below) we see that

∀ t > 0 : Ua(t)→ U0
(4/3)(t) for 0 6= a→ 0.

Below we will show that for this example, the MMS determines, for each initial datum, a unique mini-
mizing movement in the sense of Definition 4.1. The theory to be developed below will show that the
MMS always provides as least one solution (a GMM) for each initial condition u0 = (1, a)>. If the
solution Ua of the gradient-flow equation is unique, then the GMM is an MM and coincides with this
solution.
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This is the case for a 6= 0. However, also for a = 0 we obtain a unique minimizing movement. For
a = 0 we start on the invariant line u2 = 0 and the following Euler-Lagrange equations show that we
always stay there: u = uτk has to satisfy

1

τ

(
u− uτk−1

)
+

1

2(u2
1+u4

2)3/4

(
3u2

1 + 2u4
2

2u1u3
2

)
=

(
0

0

)
.

By induction over k we see first that uτk,2 = 0 and then that

1

τ

(
uτk,1−uτk−1,1

)
+

3

2

√
uτk,1 = 0 =⇒

√
uτk,1 =

√
9τ 2

16
+ uτk−1,1 −

3τ

4
> 0.

Since all uτk,1 are positive, we have convergence to the only solution U0
(µ) that is non-negative, i.e.

µ =∞.

The important remark is now that considering the limit 0 6= a → 0 we see that the limit of Ua =
MM

(
R2,F , | · |E, (1, a)>

)
is not in GMM

(
R2,F , | · |E, (1, 0)>

)
, i.e. the solution set is not upper

semi-continuous. The notion of curves of maximal slope encompasses this disadvantage of MM or
GMM.

We refer to [FlS20] for a way to modify the MMS to obtain all curves of maximal slope.

4.2 Curves of maximal slope

The solution concept “curves of maximal slopes for the GS (M,F ,D, ψ)” will be tailored exactly to
contain all u ∈ GMM(M,F ,D, ψ). Moreover, it is a direct generalization of the solutions concept
derived for Banach-space GS (X,F ,R).

The major idea of generalizing the gradient-flow theory from Banach spaces to metric spaces is ob-
tained by looking at special classes in the Banach-space setting. For this we consider generalized GS
(X,F ,R) in a Banach space X with dissipation potentials R(u, v) = ψ

(
‖v‖X

)
where ψ : R →

[0,∞] is a scalar dissipation potential. The dual dissipation potential readsR∗(u, ξ) = ψ∗
(
‖ξ‖X∗

)
.

Note that this choice is a special instance of a generalized metric GS, where we choose M = X and
D(u,w) = ‖w−u‖X . Moreover, the energy dissipation balance (EDB), see e.g. (3.16), now takes
the special form

F(u(T )) +

∫ T

0

(
ψ
(
‖u̇‖X

)
+ ψ∗

(
‖DF(u(t))‖X∗

))
dt = F(u(0)),

where we assumed that ∂FF(u) is the singleton
{

DF(u)
}

.

The main observation is that within this special class, we do not need the vector-valued quantities
u̇(t) ∈ X and DF(u(t)) ∈ X∗, but it is enough to control the real-valued quantities ‖u̇(t)‖X ∈ R
and ‖DF(u(t))

∥∥
X∗
∈ R. We will see below that there are natural generalizations of these two

real-valued quantities in the metric setting, where no linear structure is available.

We first study absolutely continuous curves γ : [0, T ]→M in the metric space (M,D).

Definition 4.3 (Absolutely continuous curves) A curve γ : [0, T ] → M is called absolutely con-
tinuous in (M,D), if there exists a function g ∈ L1([0, T ]) such that

D
(
γ(t1), γ(t2)

)
≤
∫ t2

t1

g(t)dt for all t1, t2 ∈ [0, T ] with t1 < t2. (4.2)
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We then write γ ∈ AC
(
[0, T ]; (M,D)

)
or shortly γ ∈ AC

(
[0, T ];M

)
ifD is clear from the context.

If additionally g ∈ Lp([0, T ]) for some p ∈ [1,∞], we write γ ∈ ACp
(
[0, T ];M

)
.

As in the case of Banach spaces, we also have the embeddings in the Hölder spaces ACp([0, T ];M)
⊂ C1−1/p([0, T ];M), which follows via Hölder’s inequality:

D
(
γ(t1), γ(t2)

)
≤
∫ t2

t1

1 · g(t)dt ≤
(∫ t2

t1

1p
∗
dt
)1/p∗(∫ t2

t1

g(t)pdt
)1/p

≤
∣∣t2−t1∣∣1/p∗‖g‖Lp ,

where p∗ = p/(p−1). If (M,D) is given by a reflexive Banach space (X, ‖ · ‖), then we have
ACp([0, T ];X) = W1,p([0, T ];X). However, for general Banach spaces we only have the inclusion
W1,p([0, T ];X) ⊂ ACp([0, T ];X). As an example consider X = L1(R) with the standard norm.
Now consider the curve γ̂ : [0, T ]→ L1(R) with

γ̂(t) = 1[0,cosh(t)] : x 7→
{

1 for x ∈ [0, cosh(t)],

0 otherwise.

Clearly, we have ‖γ̂(t1) − γ̂(t2)‖L1 = | cosh(t2)− cosh(t1)| such that γ̂ ∈ ACp([0, T ]; L1(R))
for all p with function g : t 7→ sinh(t). However, γ̂ does not lie in W1,1([0, T ]; L1(R)) because for
h > 0 the difference quotients 1

h

(
γ̂(t+h)−γ̂(t)

)
= 1

h
1] cosh(t),cosh(t+h)] converge to sinh(t) δt(·)

(Dirac distribution at x = t) in the sense of measures, but do not converge in L1(R), even though the
difference quotients are bounded.

The following result from [AGS05, Thm. 1.1.2] shows that the metric speed is well-defined a.e. along
absolutely continuous curves.

Theorem 4.4 (Metric speed) For p ∈ [1,∞] assume γ ∈ ACp
(
[0, T ];M

)
. Then, the metric speed

γ̇ D(t) defined via

γ̇ D(t) := lim
|h|→0

1

|h|
D
(
γ(t), γ(t+h)

)
exists a.e. in [0, T ] and γ̇ D(·) ∈ Lp([0, T ]).

Moreover, for every g satisfying (4.2), we have γ̇ D ≤ g a.e.

Proof. We choose a countable dense set
{
sn ∈ [0, T ]

∣∣ n ∈ N} and define the auxiliary functions

δn(t) = D
(
γ(sn), γ(t)

)
for t ∈ [0, T ].

By the inverse triangle inequality we find, for 0 ≤ t1 < t2 ≤ T ,

|δn(t2)− δn(t1)| ≤ D(γ(t1), γ(t2)) ≤
∫ t2

t1

g(t)dt, (4.3)

Thus, we conclude δn ∈ ACp([0, T ]) = W1,p([0, T ]), where we use that X = R is a reflexive
Banach space. Thus, δn is differentiable a.e., more precisely δ̇n(t) = limh→0

1
h

(
δn(t+h) − δn(t)

)
exists for t ∈ [0, T ] \ En with L1(En) = 0. Clearly, |δ̇n| ≤ g a.e.

We now define the function

µ(t) = sup
{
|δ̇n(t)|

∣∣ n ∈ N} for t ∈ [0, T ] \ E and µ(t) = 0 for t ∈ E := ∪
n∈N

En
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and observe µ ≤ g ∈ Lp([0, T ]). Using (4.3) for all t ∈ [0, T ] \ E we find

lim inf
h→0

1

|h|
D
(
γ(t), γ(t+h)

)
≥ sup

n∈N

(
lim inf
h→0

1

|h|
∣∣δn(t)− δn(t+h)

∣∣) = sup
n∈N

∣∣δ̇n(t)
∣∣ = µ(t).

Moreover, if snk → t1 then δnk(t2)−δnk(t1)→ D
(
γ(t1), γ(t2)

)
−0. Together with (4.3) we observe,

for h > 0,

D
(
γ(t), γ(t+h)

)
= sup

n∈N

∣∣δn(t)− δn(t+h)
∣∣ ≤ sup

n∈N

∫ t+h

t

|δ̇n(r)|dr ≤
∫ t+h

t

µ(r)dr.

Dividing by h > 0 and doing the corresponding estimate for h < 0 we arrive at

lim sup
h→0

1

|h|
D
(
γ(t), γ(t+h)

)
≤ lim sup

h→0

1

|h|

∣∣∣ ∫ t+h

t

µ(r)dr
∣∣∣ = µ(t),

for a..a. t ∈ [0, T ], namely all right and left Lebesgue points of µ ∈ Lp([0, T ]).

Together we have shown 1
|h|D

(
γ(t), γ(t+h)

)
→ µ(t) ≤ g(t) a.e.

We may return to the above example γ̂ : [0, T ]→ L1(R) which does not lie in W1,1
(
[0, T ]; L1(R)

)
.

We can now easily verify that the metric speed in L1(R) exists for all t ∈ [0, T ], namely ˙̂γ L1(t) =
sinh(t).

The second important notion for metric gradient systems is a scalar notion for the differential ∂FF :
X ⇒ X∗ of the energy functionalF : X → R∞. In the following definition of the metric slope ∂F D
we call a point u ∈ M isolated if there exists a positive r such that Br(u) ∩M = {u} and use the
notation [F ]+ := max{F, 0} for the positive part.

Definition 4.5 (Metric slope) Given a metric GS (M,F ,D, ψ) we define the (local) metric slope
∂F D : M → [0,∞] of the functional F via

∂F D(u) :=


∞ for u 6∈ dom(F),

0 for isolated u ∈ dom(F),

lim sup
w→u

[
F(u)−F(w)

]
+

D(u,w)
for nonisolated u ∈ dom(F).

(4.4)

For λ ∈ R we also define the global metric λ-slope ∂gl
λF D of F via

∂gl
λF D(u) :=


∞ for u 6∈ dom(F),

sup
w∈M\{u}

[F(u)−F(w)

D(u,w)
+
λ

2
D(u,w)

]
+

for u ∈ dom(F).
(4.5)

We say that F has a λ-global metric slope if ∂gl
λF D = ∂F D, and we say that F has a semiglobal

metric slope if there exists λ ∈ R such that ∂gl
λF D = ∂F D.

From the definitions we easily see that λ1 < λ2 implies

∂F D(u) ≤ ∂gl
λ1
F D(u) ≤ ∂gl

λ2
F D(u).

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



An introduction to the analysis of gradients systems 49

The important consequence of the λ-global slopes is that we have the estimate

∀u ∈ dom(F) ∀w ∈M : F(w) ≥ F(u)− ∂F D(u)D(u,w) +
λ

2
D(u,w)2, (4.6)

which is a generalization of the characterization of the Fréchet subdifferential in Lemma 2.4. In partic-
ular, ∂F D(u) is the smallest number such that (4.6) for all w ∈M .

The notion of semiglobal and λ-global metric slopes will play a similar role as semiconvexity and
λ-convexity of functionals in the Banach-space setting. In Sections 2 and 3 we used semiconvexity
for three important steps, namely (i) showing strong-weak closedness of the Fréchet subdifferential,
(ii) establishing the chain rule, and (iii) deriving a discrete energy-dissipation estimate from the time-
incremental minimization scheme. In the metric setting the notion of “semiglobal slopes” will be good
enough to how (i’) the lower semicontinuity of the metric slope and (ii’) a metric chain-rule estimate.

Example 4.6 (Local and semiglobal slopes)

(A) Consider (M,D) = (R,DEucl) and F(u) = a±u for ±u ≥ 0. For u > 0 we obviously have
∂F D(u) = |a+|, while ∂F D(u) = |a−| for u < 0. The case u = 0 is special and we obtain
∂F D(u) = max{0, a−,−a+}.

(B) Consider (M,D) = (R,DEucl) andF(u) =
∣∣|u|−1

∣∣. We easily find the local slope ∂F D(u) =
1 for u 6= ±1 and ∂F D(±1) = 0, i.e. ∂F D is lsc but not continuous.

For the λ-global slope we obtain ∂gl
λF D = ∂F D for all λ ≤ 0, i.e. ∂F D is a semiglobal slope.

For λ > 0 we obtain larger values, e.g. for u > we have ∂gl
λF D(u) = 1 + λ

2
(u−1) if λ ∈ ]0, 2

u+1
]

and ∂gl
λF D(u) = u−1

u+1
+ λ

2
(u+1) for λ ≥ 2

u+1
.

(C)If (M,D) is given by a Banach space (X; ‖ · ‖) and F : X → R∞ is lsc, then for u ∈ dom(F)
we have

∂F D(u) =
{
‖ξ‖X∗

∣∣ ξ ∈ ∂FF(u)
}
.

Moreover, if F is µ-convex, then ∂F D is a λ-global slope for all λ ≥ µ.

Exercise 4.1 (Slopes) (a) (M,D) = (R,DEucl) consider F(u) = min{u, 0}. Calculate ∂F D
explicitly and show that it is not lsc. Moreover, calculate ∂gl

λF D for all λ ∈ R.

(b) Establish the claims in part (C) of Example 4.6.

Note that the proof of the following result is very similar to the corresponding closedness of the Fréchet
subdifferential for semiconvex functionals, see Proposition 2.6. Part (A) in Example 4.6 shows that
∂F D is not lsc in general, see Exercise 4.6

Proposition 4.7 (Lsc of semiglobal metric slopes) If F is lsc and has a semiglobal slope ∂F D
on the metric space (M,D), then ∂F D : M → [0,∞] is lower semicontinuous.

Proof. For a sequence uk → u in (M,D), we have to show σ := lim infk→∞ ∂F D(uk) ≥
∂F D(u). Obviously, the case α =∞ is trivial.

Hence we assume σ < ∞ which implies uk ∈ dom(F). Thus we have (4.6) for u = uk for all k.
Using the lsc of F and D(uk, w)→ D(u,w) we immediately find

F(w) ≥ F(u)− σD(u,w) +
λ

2
D(u,w)2 for all w ∈M.
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But this implies ∂F D(u) ≤ σ, which is the desired estimate.

We have now all the ingredients to define the metric version of the generalized gradient-flow equation.

Definition 4.8 (Curves of maximal slope) Given a generalized metric GS (M,F ,D, ψ) we call a
curve u : [0, T ] → M a ψ-curve of maximal slope if u ∈ AC

(
[0, T ]; (M,D)

)
and for all t1, t2 ∈

[0, T ] with t1 < t2 we have

F(u(t2)) +

∫ t2

t1

(
ψ
(
u̇ D(t)

)
+ ψ∗

(
∂F D(u(t))

))
dt = F(u(t1)). (4.7)

If ψ(r) = 1
p
rp for p ∈ ]1,∞[ we shortly say that u is a p-curve of maximal slope of (M,F ,D). If

ψ = ψquadr : r 7→ 1
2
r2, then u is simply called a curve of maximal slope for the standard metric GS

(M,F ,D).

As we have learned in Sections 2 and 3, we know that the above formulations are enough to char-
acterize the solutions of the corresponding gradient-flow equations, if we are in the special case
R(u, v) = ψ(‖v‖X). Of course, the notion is much more general as will become clear by the follow-
ing examples.

Example 4.9 (Different instances of curves of maximal slope)

(A) Nonuniqueness. We consider (R,F ,DEucl, ψquadr) with F (u) = 1
2
u2 − |u|.

This system can also be treated as a Hilbert-space GS but, then the subdifferential ∂FF is not
closed: ∂FF(u) = {u− 1} for u > 0 and ∂FF(0) = ∅.
Treating it as a metric GS leads to the metric slope ∂F D(u) =

∣∣1−|u|∣∣which is even semiglobal
with λ = 0.

We now show that there are two solutions starting at u0 = 0, namely u(t) = ±(1−e−t). To
show that these two solutions are curves of maximal slope, we can simply check that

d

dt
F(u(t)) = −1

2

(
u̇ D(t)

)2 − 1

2

(
∂F D(u(t)))2

by inserting the explicit solutions.

(B) Riemannian manifold. We consider a Riemannian manifold (M,G) with a smooth functional
F ∈ C1(M). For the smooth GS (M,F ,G) we have the associated GFE u̇ = −gradGF(u) =
−G(u)−1DF(u).

We now want to switch to the metric picture. For this we define the metric distance

DG(u0, u1) := inf
{ ∫ 1

0

‖γ̇‖Gdt
∣∣∣ γ ∈ C1([0, T ];M), γ(0) = u0, γ(1) = u1

}
,

where ‖γ̇‖2
G = 〈G(γ)γ̇, γ̇〉.

Doing some classical calculations in local charts one finds ACp
(
[0, T ]; (M,DG)

)
= W1,p([0, T ];

M) and u̇ D(t) = ‖γ̇(t)‖G.

Similarly, the metric slope takes the form ∂F D(u) = ‖DF(u)‖G−1 .
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With this the condition for curves of maximal slope takes the form

0 =
d

dt
F(u(t)) +

1

2
u̇ D(t)2 +

1

2
∂F D(u(t))2

= 〈DF(u), u̇〉+
1

2
〈G(u)u̇, u̇〉+ 〈DF(u),G(u)−1DF(u)〉

=
1

2

〈
G(u)

(
u̇−G(u)−1DF(u)

)
, u̇−G(u)−1DF(u)

〉
=

1

2

∥∥u̇−G(u)−1DF(u)
∥∥2

G.

Thus, we see that for this nice case the metric formulation is equivalent to the classical gradient-
flow equation.

(C) Wasserstein space and Otto diffusion. We consider a bounded open set Ω ⊂ Rd and de-
note by Prob(Ω) the space of probability measures, which is a closed convex subset of the
signed measures SM(Ω) =

(
C(Ω)

)∗
. On this set the Kantorovich-Wasserstein distances Wp

(cf. [AGS05, Vil09]) are defined via

Wp(µ0, µ1)p := inf
{ ∫

Ω×Ω

|x−y|pΠ(dx, dy)
∣∣∣ Π ∈ C(µ0, µ1)

}
, where

C(µ0, µ1) :=
{

Π∈Prob(Ω×Ω)
∣∣ ∀meas.A ⊂ Ω : Π(A×Ω) = µ0(A), Π(Ω×A) =

µ1(A)
}
. For all p ∈ [1,∞[, the pair (Prob(Ω),Wp) defines a complete metric space and the

convergence is equal to the weak* convergence.

For p = 2 the Wasserstein space (Prob(Ω),W2) is even a geodesic metric space (see Definition
4.21) which has many similarities with a Riemannian manifold with nonsmooth boundaries. In a
series of papers around 2000, the corresponding metric theory was developed and summarized
in [AGS05]. The metric speed of a curve µ ∈ AC

(
[0, T ]; (Prob(Ω),W2)

)
can be defined as

follows. For every such function, there exists a vector field V ∈ L1([0, T ]×Ω;Rd) such that the
continuity equation

µ̇+ div
(
V µ
)

= 0 holds in
(
C∞c (]0, T [×Ω)

)∗
(where “c” stands for compactly contained support), and the metric speed takes the form µ̇ W2(t)

=
( ∫

Ω
|V (t, x)|2µ(t, dx)

)1/2
for a.a. t ∈ [0, T ].

Similarly one can derive a formula for the metric slope of certain functionals. Choosing a lsc,
convex, and superlinear functional E : [0,∞[→ [0,∞] and ϕ ∈ C1(Ω) on can define

F(µ) =

{∫
Ω

(
E(ρ(x)) + ϕ(x)ρ(x)

)
dx for µ = ρdx with ρ ∈ L1

≥(Ω),

∞ otherwise,

where L1
≥(Ω) denotes the non-negative functions in L1(Ω). Then, F is lsc on (Prob(Ω),W2)

and the metric slope is given by

∂F W2(ρdx) =
(∫

Ω

∣∣∇(E ′(ρ)+ϕ)
∣∣2ρdx

)1/2

,

see [AGS05] for more precise statements and the justification of these relations.

Under the assumption that a curve of maximal slope for (Prob(Ω),F ,W2) has the form µ(t) =
ρ(t, ·) dx with ρ sufficiently smooth and bounded from below, one can show that ρ satisfies a
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drift-diffusion equation. We argue as in Example (B):

0 =
d

dt
F(µ(t)) +

1

2
µ̇ W2(t)

2 +
1

2
∂F W2(µ(t))2

µ=ρdx
=

∫
Ω

(
(E ′(ρ)+ϕ)ρ̇+

1

2
ρ|V |2 +

1

2
ρ
∣∣∇(E ′(ρ)+ϕ)

∣∣2)dx

∗
=

∫
Ω

ρ

2

∣∣V+∇(E ′(ρ)+ϕ)
∣∣2 dx,

where for the last identity we inserted the continuity equation and integrated by parts, thus finding
a complete square.

This shows that for curves µ = ρ dx of maximal slope (with ρ sufficiently smooth and positive),
the velocity field V in the continuity equation can be identified as −∇(E ′(ρ) + ϕ). This leads to
the nonlinear drift-diffusion equation

ρ̇ = − div(ρV ) = div
(
ρ∇(E ′(ρ)+ϕ)

)
= div

(
ρE ′′(ρ)∇ρ+ ρ∇ϕ

)
.

In particular, one may consider the Boltzmann entropy with E(ρ) = ρ log ρ − ρ + 1. Then
E ′′(ρ) = 1/ρ and we left with the linear Fokker-Planck equation as the associated gradient-flow
equation

ρ̇ = div
(
∇ρ+ ρ∇ϕ

)
.

This link between Wasserstein distance and the linear Fokker-Planck equation was first observed
in [Ott96, JKO98]. For that reason the Minimizing Movement Scheme in the case of D = W2 is
nowadays called the JKO scheme for “Jordan-Kinderlehrer-Otto”.

For the entropies E(ρ) =
(
ρm −mρ + m− 1

)
/(m2−m) we have E ′′(ρ) = ρm−2 and in the

case ϕ = 0 the associated gradient-flow equation is the porous medium equation

ρ̇ = div
(
ρm−1∇ρ

)
=

1

m
∆ρm.

Exercise 4.2 (Nontrivial metric space) We consider M = Rk with the nontrivial metric Dsq(u,w)

=
√
|u−w|Eucl that is topologically equivalent to the Euclidean one.

(a) Show that AC
(
[0, T ]; (Rk,Dsq)

)
is trivial in the sense that it only contains constant functions.

(b) For a smooth function F ∈ C1(Rk) calculate ∂F D with D = Dsq.

(c) Characterize all curves of maximal slope for (M,F ,Dsq, ψ) in terms of their initial condition
u(0) = u0.

4.3 The metric chain-rule inequality

To prove existence of curves of maximal slopes we will use the minimization scheme in a similar
way as for in the Banach-space setting. In this subsection we develop the corresponding replacement
of the chain rule formula d

dt
F(u(t)) = 〈ξ(t), u̇(t)〉 with ξ(t) ∈ ∂FF(u(t)). As we do not have

any linear structure in the metric space (M,D), we use the fact that in the existence proof for the
GFE in Banach spaces we do not really need the above chain-rule identity. From the Fenchel-Young
inequality we already have an inequality such that it would be sufficient to have the lower estimate
d
dt
F(u(t)) ≥ 〈ξ(t), u̇(t)〉. It turns out that in the metric setting a corresponding chain-rule inequality

can be established.
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Definition 4.10 (Abstract metric chain-rule inequality) We say that the generalized metric GS (M,
F ,D, ψ) satisfies the abstract metric chain-rule inequality if the following holds.

If u ∈ AC([0, T ];M) satisfies supt∈[0,T ]F(u(t)) <∞

and
∫ T

0

(
ψ( u̇ D(t)) + ψ∗

(
∂F D(u(t))

))
dt <∞,

then t 7→ F(u(t)) is absolutely continuous and

d

dt
F(u(t)) ≥ − ∂F D(u(t)) u̇ D(t) a.e. in [0, T ]. (4.8)

We will see that this inequality is enough for completing the existence proof for curves of maximal
slope. The next result demonstrates that the condition that ∂F D is a semiglobal slope is sufficient
for showing that the abstract metric chain-rule inequality holds. Moreover, the proof is almost identical
to the corresponding Theorem 3.12 in Banach spaces. In fact, the origin of the proof of the latter result
is [AGS05, Thm. 1.2.5], which is almost identical to our next result. Hence, a full proof for the case
∂F D = ∂gl

0 F D can be found there. Here we only give a sketch of the proof, by referring back to
our proof of Theorem 3.12.

Proposition 4.11 (Metric chain-rule inequality) Consider a generalized metric GS (M,F ,D, ψ)
such that ∂F D is a semiglobal slope. Then, the following holds:

If u ∈ AC([0, T ];M) satisfies supt∈[0,T ]F(u(t)) <∞
and

∫ T
0

(
ψ( u̇ D(t)) + ψ∗

(
∂F D(u(t))

))
dt <∞,

then t 7→ F(u(t)) is absolutely continuous and

∣∣ d

dt
F(u(t))

∣∣ ≤ ∂F D(u(t)) u̇ D(t) a.e. in [0, T ]. (4.9)

In particular, for all dissipation potentials ψ : R → [0,∞[ the abstract metric chain-rule inequality of
Definition 4.10 holds.

Sketch of proof. We follow the proof of Theorem 3.12 and set f(t) = F(u(t)) and σ(t) =
∂F D(u(t)). Using that F has a semiglobal slope, i.e. there exists λ ∈ R such that ∂F D =
∂gl
λF D, and choosing any partition of [s, t] lying in Σ :=

{
t ∈ [0, T ]

∣∣ σ(t) < ∞
}

, we obtain the
estimates

N∑
j=1

(
−σ(tj−1)D

(
u(tj−1), u(tj)

)
+
λ

2
D
(
u(tj−1), u(tj)

)2
)

≤ F(u(t))−F(u(s)) = f(t)− f(s)

≤
N∑
j=1

(
−σ(tj)D

(
u(tj−1), u(tj)

)
+
λ

2
D
(
u(tj−1), u(tj)

)2
)
,

which correspond to (3.18) in the case of arclength parametrization, i.e. D(u(s1), u(s2)) = |s2−s1|
for all s1, s2 ∈ [0, T ].

As before we can pass to the limit and find the desired estimate∣∣F(u(t))−F(u(s))
∣∣ ≤ ∫ t

s

σ(r) u̇ D(r)dr,
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which provides the absolute continuity as well as the desired estimate.

Finally, the abstract metric chain-rule inequality follows by applying the Fenchel-Young inequality to
the scalar dissipation potential ψ, namely∫ T

0

σ(r) u̇ D(r)dr ≤
∫ T

0

(
ψ
(
σ(r)

)
+ ψ∗

(
u̇ D(r)

))
dr <∞.

As (4.9) implies (4.8), Proposition 4.11 is established.

In [AGS05] the names “chain rule” and “metric chain-rule inequality” are not used as here. There,
the same notion is encoded in the term “strong upper gradient”. For instance, [AGS05, Thm. 1.2.5]
states that “if F isD-lsc, then ∂gl

0 F D is a strong upper gradient for F ”, which means that the metric
chain-rule inequality holds, if we replace ∂F D by ∂gl

0 F D in (4.9).

As for generalized GS (X,F ,R) in Banach spaces we again have an Energy-Dissipation Principle in
the following form.

Proposition 4.12 (Metric energy-dissipation principle) Consider a generalized metric GS (M,F ,
D, ψ) that satisfies the abstract metric chain-rule inequality of Definition 4.10. Then, for u ∈ AC([0, T ];
M) the following two statements are equivalent:

(A) u satisfies the EDI given by F(u(T )) +
∫ T

0

(
ψ( u̇ D) + ψ∗( ∂F D(u))

)
dt ≤ F(u(0)).

(B) u is a ψ-curve of maximal slope, i.e. (EDB)[t0,t1] holds for 0 ≤ t0 < t1 ≤ T .

Proof. (B) =⇒ (A). This direction is trivial.

(A) =⇒ (B). We set

f(t) = F(u(t)), v(t) = u̇ D(t), and σ(t) = ∂F D(u(t))

and observe that the chain-rule inequality implies ḟ + σv ≥ 0 a.e. Hence, we obtain

0 ≤
∫ T

0

(
ḟ + σv

)
dt

FenYou
≤

∫ T

0

(
ḟ + ψ(v) + ψ∗(σ)

)
dt

(EDI)
≤ 0.

Thus, all inequalities “≤” must be equalities “=”. Moreover the nonnegative integrand ḟ + ψ(v) +
ψ∗(σ) ≥ ḟ + σv ≥ 0 must vanish a.e. in [0, T ]. However, integrating ḟ + ψ(v) + ψ∗(σ) = 0 a.e.
over t ∈ [t0, t1] given (EDB) on [t0, t1].

4.4 De Giorgi’s variational interpolant

In the subsequent analysis we will use the following assumptions on ψ:

ψ : R→ [0,∞[ is a strictly convex dissipation potential and ψ ∈ C1
(
[0,∞[

)
. (4.10)

The MMS gives global minimizers uk = uτk, namely

∀w ∈M : τψ
(1

τ
D(uk−1, uk)

)
+ F(uk) ≤ τψ

(1

τ
D(uk−1, w)

)
+ F(w). (4.11)

From this we can derive a first slope estimate.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



An introduction to the analysis of gradients systems 55

Proposition 4.13 (Metric slope estimate) Assume that ψ satisfies (4.10) and let (uk)k=1,..,N be the
sequence obtained via the MMS for the generalized metric GS (M,F ,D, ψ), then

∂F D(uk) ≤ ψ′
(1

τ
D(uk−1, uk)

)
for k = 1, . . . , N.

Proof. Rearranging the terms in (4.11) for w 6= u we have

F(uk)−F(w)

D(uk, w)
≤
ψ
(

1
τ
D(uk−1, w)

)
− ψ

(
1
τ
D(uk−1, uk)

)
1
τ
D(uk, w)

.

Using the triangle inequality and the monotonicity ofψ we haveψ
(

1
τ
D(uk−1, w)

)
≤ ψ

(
1
τ
D(uk−1, uk)

+ 1
τ
D(uk, w)

)
. Now taking the limit w → uk we find

lim sup
w→uk

F(uk)−F(w)

D(uk, w)
≤ lim sup

w→uk

ψ
(

1
τ
D(uk−1, uk)+

1
τ
D(uk, w)

)
− ψ

(
1
τ
D(uk−1, uk)

)
1
τ
D(uk, w)

= lim sup
H→0+

ψ
(

1
τ
D(uk−1, uk) +H

)
− ψ

(
1
τ
D(uk−1, uk)

)
H

= ψ′
(1

τ
D(uk−1, uk)

)
.

As the right-hand side is non-negative (as ψ is a dissipation potential), we can take the positive part
on both sides and obtain the desired result.

In some sense, the last result can be seen as a generalization of the Euler-Lagrange equations 0 ∈
∂R
(

1
τ
(uk−uk−1)

)
+ ∂FF(uk) in the Banach-space setting. There we used Fenchel’s equivalence

and λ-convexity of F to derive the discrete EDI (with ξk ∈ ∂FF(uk))

τ
(
R
(1

τ
(uk−uk1)

)
+R∗(−ξk)

)
≤ −〈ξk, uk−uk−1〉 ≤ F(uk−1)−F(uk)−

λ

2
‖uk−uk−1‖2.

The importance of this inequality is the telescoping structure with respect to the energies F(uj).

In the metric setting we can also apply Fenchel’s equivalence to the scalar relation σk := ψ′(vk)
where vk := 1

τ
D(uk−1, uk). Exploiting the slope estimate in Proposition 4.13 we obtain

τ
(
ψ
(1

τ
D(uk−1, uk)

)
+ψ∗

(
∂F D(uk)

)) Prop.
≤ τ

(
ψ(vk)+ψ

∗(ψ′(vk)))
= τ
(
ψ(vk)+ψ

∗(σk)
) Fenchel

= τσkvk = ψ′
(1

τ
D(uk−1, uk)

)
D(uk−1, uk)

??

≤ ∂F D(uk)D(uk−1, uk).

The last estimate
??

≤ would be necessary to exploit the λ-global slope in (4.6) for generating again a
discrete energy estimate with a telescoping structure. However, this would mean that one has to show
equality in the slope estimate of Proposition 4.13, which is false in general metric spaces, e.g. in the
simple case M = R, F(u) = α

u
2/2, and D(u,w) = arctan(|u−w|).

De Giorgi’s variational interpolant will be a way around this problem and, much more importantly,
paves the way to solve problems without semiconvexity in Banach spaces or semiglobal slopes in
metric spaces. The definition of the interpolant is based on minimization only. We refer to [Amb95,
Lem. 2.5] and [AGS05, Def. 3.2.1] for the first occurrences of the variational interpolant.
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Definition 4.14 (De Giorgi’s variational interpolant) For a generalized metric GS (M,F ,D, ψ), a
starting point u0 ∈ M , and a time step τ = T/N we consider a discrete approximant (uτk)k=0,..,N

obtained via the MMS for uτ0 = u0. Then, the variational interpolants ũτ : [0, T ] → M are defined
via ũτ (jτ) = uτj for j = 0, 1, . . . , N and

ũτ (kτ+r) minimizes w 7→ Φr(u
τ
k, w) := rψ

(1

r
D(uτk, w)

)
+ F(w).

for k = 0, . . . , N−1 and r ∈ ]0, τ [.

In general, the variational interpolant will not be continuous in t, but nevertheless it has good prop-
erties, because it is created by the intrinsic building blocks of the metric GS. In particular, we will not
need the interpolant ũτ so often, but can rely on the so-called value function

φ(r, uτk−1) := Φr

(
uτk−1, ũτ (kτ+r)

)
.

It will turn out that r 7→ φ(r, uτk−1) is absolutely continuous and that the derivative can be expressed
by the derivative of r 7→ Φr(u

τ
k−1, w). For showing this, we introduce the auxiliary function

Ψ : [0,∞[2 → [0,∞]; Ψ(r, a) =


0 for a = 0,

rψ(a/r) for r > 0,

∞ for r = 0 and a > 0.

The following gives a series of properties of Ψ that will be used in the upcoming analysis. We leave
the elementary proof to the reader.

Lemma 4.15 (Properties of Ψ) Assume that the dissipation potential ψ : R → [0,∞[ satisfies
(4.10), then Ψ : [0,∞[2 → [0,∞] is lsc and satisfies the following properties:

(i) For all a ≥ 0 the function r 7→ Ψ(r, a) is decreasing with ∂rΨ(r, a) = −ψ∗
(
ψ′(a/r)

)
for all r > 0.

(ii) For all a ≥ 0 the function r 7→ Ψ(r, a) is strictly convex.

(iii) For 0 < r1 < r2 the function a 7→ Ψ(r1, a)−Ψ(r2, a) is strictly increasing.

With this we are able to provide some first results concerning the value function. For this we introduce
a few simplifying notations. We fix a state u∗ ∈M and define, for r > 0,

φ(r, u∗) := inf
{

Φr(u∗, w)
∣∣ w ∈M }

,

A(r, u∗) := Argmin
{

Φr(u,w)
∣∣ w ∈M }

:=
{
ur ∈M

∣∣ Φr(u, ur) = φ(r, u∗)
}
,

d+(r, u∗) := sup
{
D(u, ur)

∣∣ ur ∈ A(r, u∗)
}
, d−(r, u∗) := inf

{
D(u, ur)

∣∣ ur ∈ A(r, u∗)
}
.

Proposition 4.16 (Value function and distances) Consider a generalized metric GS (M,F ,D, ψ)
such that F has compact sublevels and ψ satisfies (4.10). Then for all u∗ ∈M and r2 > r1 > 0 the
functions φ, A, and d± are well defined and satisfy

(a) φ(r2, u∗) ≤ φ(r1, u∗) ≤ F(u∗);
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(b) d+(r2, u∗) ≥ d−(r2, u∗) ≥ d+(r1, u∗);

(c) φ(r, u∗)→ F(u∗) for r → 0+;

(d) If u∗ ∈ dom(F), then d+(r, u∗)→ 0 for r → 0+.

Property (b) implies that d±(·, u∗) : ]0,∞[ → R are increasing and continuous for t ∈ [0, τ ] \ J ,
where J is at most countable. Moreover, d+(r, u∗) = d−(r, u∗) for all ∈ ]0,∞[ \ J .

Proof. Step 1: Wellposedness and attainment. We first observe that the properties that F is proper

and has compact sublevels guarantee that A(r, u∗) is nonempty and compact. Hence, the infimum in
the definition of φ is attained. Moreover, by Weierstraß’ extreme-value principle the continuous function
w 7→ D(u∗, w) attains its minimum and maximum on A(t, u∗).

Step 2: Monotonicity (a). Clearly Φr(u∗, w) = Ψ(r,D(u∗, w)) + F(w) is decreasing in r. Thus,
choosing any uj ∈ A(rj, u∗) we have

F(u∗) = Φr1(u∗, u∗) ≥ φ(r1, u∗) = Φr1(u∗, u1) ≥ Φr2(u∗, u1) ≥ Φr2(u∗, u2) = φ(r2, u∗),

which is the desired monotonicity.

Step 3. Intertwining property. We trivially have d+ ≥ d− because sup ≥ inf. However, it is absolutely
nontrivial that d+(r1, u∗) can be estimated from above by d−(r2, u∗) for all r2 > r1. To see this, we
have to exploit the special structure of Φr(u∗, w) = Ψ(r,D(u∗, w)) +F(w). Again choose arbitrary
uj ∈ A(rj, u∗) and set Dj := D(u∗, uj), then we have

Ψ(r1,D1) + F(u1) = Φr1(u∗, u1) = φ(r1, u∗) ≤ Φr1(u∗, u2) = Ψ(r1,D2) + F(u2)

= Φr2(u∗, u2) + Ψ(r1,D2)−Ψ(r2,D2) ≤ Φr2(u∗, u1) + Ψ(r1,D2)−Ψ(r2,D2)

= Ψ(r2,D1) + F(u1) + Ψ(r1,D2)−Ψ(r2,D2).

We observe that F(u1) can be eliminated on both ends, and rearranging gives

Ψ(r1,D1)−Ψ(r2,D1) ≤ Ψ(r1,D2)−Ψ(r2,D2).

Now we can exploit Lemma 4.15(iii) and conclude D(u∗, u1) = D1 ≤ D2 = D(u∗, u2). As
uj ∈ A(rj) were arbitrary, we can take the supremum over u1 and the infimum over u2 and ob-
tain d+(r1, u∗) ≤ d−(r2, u∗) as desired.

Step 4: d+ = d− whenever one is continuous. By the last step we know that d+ and d− are increasing
functions. Hence, they are continuous for all t except for an at most countable jump set J+ or J−,
respectively. However, if d+ is continuous at r∗ > 0, then for 0 < εn → 0 we have

d+(r∗, u∗)← d+(r∗−εn, u∗) ≤ d−(r∗−εn/2, u∗) ≤ d+(r∗, u∗)

≤ d−(r∗+εn/2, u∗) ≤ d+(r∗+εn, u∗)→ d+(r∗, u∗).

As εn → 0 was arbitrary, we conclude that d− is continuous at r = r∗, i.e. J− ⊂ J+, as well
as d+(r∗, u∗) = d−(r∗, u∗). Interchanging “+” and “−” we obtain J+ = J− =: J , and the final
assertion is established.

Step 5: φ(r, u∗)→ F(u∗). From Step 1 we have φ(r, u∗) ≤ F(u∗). Hence, by the monotonicity we
have φ(r, u∗)→ φ∗ ≤ F(u∗) for r → 0+.
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Choose d+(r, u∗) → d∗ > 0 for r → 0, then φ(r, u∗) = Ψ(r,D(u∗, ur))
+ F(ur) ≥ Ψ(r, d+(r, u∗)) + Fmin → ∞. This means φ∗ = F(u∗) = ∞ and the assertion
holds.

If d+(r, u∗)→ 0 for r → 0+, then there exists ur ∈ A(t, u∗) such thatD(u∗, ur) ≤ d+(r, u∗)→ 0,
and the lsc of F implies lim infr→0+ F(ur) ≥ F(u∗). Because of Ψ ≥ 0 we find

φ(r, u∗) = Φr(u∗, ur) = Ψ(r,D(u∗, ur)) + F(ur) ≥ F(ur),

which now implies φ∗ ≥ F(u∗). Thus φ∗ = F(u∗) is established.

Step 6: d+(r, u∗)→ 0. For arbitrary w ∈ dom(F) and ur ∈ A(r, u∗) we have

φ(r, u∗) = rψ
(1

r
D(u∗, ur)

)
+ F(ur) ≤ rψ

(1

r
D(u∗, w)

)
+ F(w).

Solving for D(u, ur) we use the strict monotonicity of ψ and find

D(u, ur) ≤ rψ−1
(
ψ
(1

r
D(u,w)

)
+

1

τ

(
F(w)−F(ur)

))
.

As ψ is convex with ψ(0) = 0, the inverse ψ−1 is concave with ψ−1(0) = 0, and thus subadditive.
Hence, we have

D(u, ur) ≤ rψ−1
(
ψ
(1

r
D(u,w)

))
︸ ︷︷ ︸

=D(u,w)

+rψ−1
(1

τ

[
F(w)−F(ur)

]
+

)
. (4.12)

As Ψ is superlinear, we have ψ−1(a) = o(a)a→∞ such that the last term tends to 0 for r → 0+. This
implies limr→0+ d

+(r, u∗) ≤ D(u∗, w). Since w ∈ dom(F) was arbitrary, and u∗ ∈ dom(F) we
obtain limr→0+ d

+(r, u∗) = 0.

We are now ready to prove the following discrete energy-dissipation estimate, which first appears in
[Amb95, Lem. 2.5] and in a slightly more elaborate version in [AGS05, Thm. 3.1.4]. According to sev-
eral oral presentations of these authors, the following result should be called “De Giorgi’s lemma”, as it
was inspired by his personal communication. Our version is slightly more general, as we treat arbitrary
dissipation potentials ψ. We can now show that the value function r 7→ φ(r, u∗) is differentiable and
satisfies

d

dr
φ(r, u∗) = −ψ∗

(
ψ′
(1

r
d+(r, u∗)

))
a.e. in ]0, τ ].

Theorem 4.17 (De Giorgi’s lemma) Consider a generalized metric GS (M,F ,D, ψ) where F has
compact sublevels and ψ satisfies (4.10). Fix u∗ ∈ dom(F) and τ > 0 and define φ, d+, and the
variational interpolant ũ : [0, τ ]→M as above. Then, we have

φ(τ, u∗) +

∫ τ

0

ψ∗
(
ψ′
(1

r
d+(r, u∗)

))
dr = F(u∗). (4.13)

If additionally the function r 7→ ũτ (r) ∈M is measurable, then

τψ
(1

τ
D(u∗, ũτ (τ))

)
+

∫ τ

0

ψ∗
(
∂F D(ũτ (r))

)
dr ≤ F(u∗). (4.14)
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Proof. Step 1: (4.13) implies (4.14). We exploit the metric slope estimate in Proposition 4.13 and the

monotonicity of ψ∗ giving

ψ∗
(
∂F D(ũτ (r))

)
≤ ψ∗

(
ψ′
(D(u∗, ũτ (r))

r

))
≤ ψ∗

(
ψ′
(d+(r, u∗)

r

))
for r ∈ ]0, τ ]. (4.15)

As r 7→ ũτ (r) ∈ M is measurable, and u 7→ ψ∗
(
∂F D(u)

)
∈ [0,∞] is Borel measurable (as a

composition of a continuous and a lsc map), we see that r 7→ ψ∗
(
ψ′
(

1
r
d+(r, u∗)

))
≥ 0 is integrable

and we obtain the desired estimate (4.14) by integrating (4.15) and exploiting (4.13).

Step 2: Local Lipschitz continuity of ]0, τ ] 3 r 7→ φ(r, u∗). For 0 < r < s and all us ∈ A(s, u∗) and
ur ∈ A(r, u∗) we have

Φs(u∗, ur)− Φr(u∗, ur) ≥ Φs(u∗, us)− Φr(u∗, ur) = φ(s, u∗)− φ(r, u∗)

≥ Φs(u∗, us)− Φr(u∗, us).

In the first and last term the appearance of F cancels and we are left with the estimate

Ψ(s,D(u∗, ur))−Ψ(r,D(u∗, ur)) ≥ φ(s, u∗)− φ(r, u∗) ≥ Ψ(s,D(u∗, us))−Ψ(r,D(u∗, us)).

By Lemma 4.15(iii) the mapping a 7→ Ψ(s, a) − Ψ(r, a) is decreasing hence, we may maximize for
ur ∈ A(r, u∗) and minimize for us ∈ A(s, u∗) to obtain

Ψ(s, d+(r, u∗))−Ψ(r, d+(r, u∗)) (4.16)

≥ φ(s, u∗)− φ(r, u∗) ≥ Ψ(s, d−(s, u∗))−Ψ(r, d−(s, u∗)).

From this we can derive Lipschitz continuity by assuming 0 < r∗ ≤ r < s ≤ τ , namely

0 ≥ φ(s, u∗)− φ(r, u∗) ≥
∫ s

r

∂tΨ
(
t, d−(s, u∗)

)
dt

(i)
= −

∫ s

r

ψ∗
(
ψ′
(1

t
d−(t, u∗)

))
dt ≥ −(s−r)ψ∗

(
ψ′
( 1

r∗
d+(τ, u∗)

))
=: −(s−r)K∗,

where we used the monotonicity of ψ∗ ◦ ψ′ in the last step and
(i)
= indicates the identity derived in

Lemma 4.15(i). Thus, we have Lipschitz continuity with Lipschitz constant K∗ on [r∗, τ ].

Step 3: Identification of the derivative. Because of local Lipschitz continuity, we have differentiability
a.e. in ]0, τ ]. To identify the derivative we divide (4.16) by s− r > 0 and obtain, again using Lemma
4.15(i),

−ψ∗
(
ψ′
(d+(r, u∗)

r

))
= lim

s→r+

Ψ(s, d+(r, u∗))−Ψ(r, d+(r, u∗))

s − r

≥ lim sup
s→r+

φ(s, u∗)−φ(r, u∗))

s − r
and (4.17)

−ψ∗
(
ψ′
(d−(s, u∗)

s

))
= lim

r→s−

Ψ(s, d−(s, u∗))−Ψ(r, d−(s, u∗))

s − r

≤ lim inf
r→s−

φ(s, u∗)−φ(r, u∗))

s − r
. (4.18)
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Denote by T ⊂ ]0, τ ] the set of points where r 7→ φ(r, u∗) is differentiable and where d+ and d−

are continuous. Together with Propositions 4.16 we know that T is a set of full measure and that
d+(t, u∗) = d−(t, u∗) on T. Taking r = t in (4.17) and s = t in (4.18) we obtain

d

dt
φ(t, u∗) = −ψ∗

(
ψ′
(d±(t, u∗)

t

))
for all t ∈ T.

Step 4: Integral formula on [0, τ ]. Step 3 implies, for all r ∈ ]0, τ [, the relation

φ(τ, u∗) +

∫ τ

r

ψ∗
(
ψ′
(1

s
d+(s, u∗)

))
ds = φ(r, u∗).

By Proposition 4.16(c) we have φ(r, u∗) → F(u∗) for r → 0+, i.e. convergence on the right-
hand side. The convergence for r → 0+ on the left-hand side follows from Beppo Levi’s monotone
convergence theorem as the integrand is nonnegative. Thus, identity (4.13) is established.

4.5 Existence of curves of maximal slopes via MMS

We are now ready to show the existence of ψ-curves of maximal slope. Of course, the construction
is based on the MMS and it will follow closely the proof of Theorem 3.13 for Banach-space gradient
systems. The major difference is that we do no longer assume any type of λ-convexity (of λ-global
slopes) and exploit De Giorgi’s variational interpolant instead.

Theorem 4.18 (Existence of ψ-curves of maximal slope) Consider a generalized metric gradient
system (M,F ,D, ψ) that additionally satisfies

F has compact sublevels SFE ⊂M ; (4.19a)

∂F D : M → [0,∞] is lower semicontinuous; (4.19b)

ψ ∈ C1([0,∞[) and is strictly convex; (4.19c)

(M,F ,D, ψ) satisfies the metric chain-rule inequality (4.8). (4.19d)

Then, for all u0 ∈ dom(F) there exists a ψ-curve of maximal slope u : [0,∞[ → M satisfying
u(0) = u0.

Proof. We fix a time T > 0 and construct solutions on [0, T ] at first. For N ∈ N we define the time
step τ > 0.

Step 0: Construction of approximants. Because of the compact sublevels of F (see (4.19a)) we know
that F(u) ≥ Fmin for all u ∈ M . Moreover, using F(u0) < ∞ we know that the MMS produces
solutions (uτk)k=0,..,N lying in the compact sublevel SFF(u0). Moreover, we can construct De Giorgi’s
variational interpolant ũτ : [0, T ] → M and apply De Giorgi’s lemma (i.e. Theorem 4.17) on each
time interval [kτ−τ, kτ ] and obtain

F(ũτ (kτ)) +

∫ kτ

kτ−τ

(
ψ
(
Sτ (r)

)
+ ψ∗

(
Gτ (r)

))
dr = F(ũτ (kτ−τ)) (4.20)
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for k = 1, . . . , N = T/τ , where we introduced the functions Sτ and Gτ as follows:

Sτ (t) =
1

τ
D(ũτ (kτ−τ), ũτ (kτ)) for t ∈ ]kτ−τ, kτ ],

Gτ (t) = ψ′
(1

r
d+(t, ũτ (kτ−τ))

)
for t = kτ−τ + r ∈ ]kτ−τ, kτ ].

We note that it is tempting to replaceGτ (t) by the smaller value ∂F D(ũτ (t)) (cf. the slope estimate
in Proposition 4.13), however we refrain from doing so because then we would need to show mea-
surability (which is possible but technical). It is better to keep Gτ as defined, which is automatically
measurable and apply the slope estimate later (see Step 3).

Step 1: A priori estimates. Clearly, summing (4.20) over k = 1, . . . , N leads to a telescope sum and
we find∫ T

0

(
ψ(Sτ (t)) + ψ∗(Gτ (t))

)
dt = F(ũτ (0))−F(ũτ (T )) ≤ F(u0)−Fmin =: ∆F <∞. (4.21)

This provides superlinear a priori estimates for Sτ and Gτ .

We also want to derive a “kind of equi-continuity” of the sequence (ũτ )τ . Of course, we cannot expect
the individual ũτ for fixed τ = T/N to be continuous but it should be close to a continuous function.
We will show that there exists a modulus of continuity ω̃ such that

D
(
ũτ (s), ũτ (t)

)
≤ ω̃

(
τ + |t−s|

)
for all s, t ∈ [0, T ] and all τ = T/N. (4.22)

For this we first quantify the convergence d+(r, u∗) → 0 in Proposition 4.16(d), i.e. we show that
variational interpolants ũτ are close to the nodal points ũτ (kτ). Setting u = w = ũτ (kτ) in (4.12),
for k = 0, . . . , N−1 and r ∈ ]0, τ [ we find

D
(
ũτ (kτ), ũτ (kτ+r)

)
≤ r ψ−1

(1

r

(
F(ũτ (kτ))−F(ũτ (kτ+r))

))
≤ r ψ−1

(1

r
∆F
)

=: ω̂(r) = o(1)r→0+ .

Here we used that ψ−1 is increasing and growing less than linear, because ψ is superlinear. Hence ω̂
is an modulus of continuity.

We define the function tτ : [0, T ] → [0, T ] via tτ (s) = max{ kτ | kτ ≤ s } = τbs/τc. With this,
we obtain, for 0 ≤ r < s ≤ T , the estimate

D
(
ũτ (r), ũτ (s)

)
≤ D

(
ũτ (r), ũτ (tτ (r))

)
+D

(
ũτ (tτ (r)), ũτ (tτ (s))

)
+D

(
ũτ (tτ (s)), ũτ (s)

)
≤ ω̂

(
r−tτ (r)

)
+

bs/τc−1∑
k=br/τc

τ
1

τ
D
(
ũτ (kτ), ũτ (kτ+τ)

)
+ ω̂

(
s−tτ (s)

)
≤ ω̂(τ) +

∫ tτ (s)

tτ (r)

Sτ (t)dt+ ω̂(τ). (4.23)

We proceed as in the Banach-space case (cf. Section 3.5) by estimating Sτ ≤ 1
µ
µSτ ≤ 1

µ

(
ψ(Sτ )+

ψ∗(µ)
)

and obtain

D
(
ũτ (r), ũτ (s)

)
≤ 2ω̂(τ) +

∫ s

[r−τ ]+

Sτ (t)dt ≤ 2ω̂(τ) + ω∆F
ψ

(
s−r + τ

)
,
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where ωBψ is defined in (3.24) and ∆F in (4.21). Hence, (4.22) is established with ω̃ = 2ω̂ + ω∆F
ψ .

Step 2: Extraction of converging subsequences. Since ψ and ψ∗ are superlinear, the a priori estimate
(4.21) and the criterion of de la Vallée-Poussin guarantee that the sequences (Sτ )τ and (Gτ )τ are
equi-integrable and there exists a subsequence (not relabeled) such that

Sτ ⇀ S0 and Gτ ⇀ G0 in L1([0, T ]).

Moreover, the equi-continuity (4.22) allows us to employ the generalized Arzelà-Ascoli theorem, such
that along a further subsequence (not relabeled) we have pointwise convergence to a continuous limit
function u : [0, T ]→M , namely

∀ t ∈ [0, T ] : ũτ (t)→ u(t) as τ → 0+.

Because of ũτ (0) = u0, we also have u(0) = u0. By passing to the limit in (4.23) we obtain

∀ s, t ∈ [0, T ] with s < t : D(u(s), u(t)) ≤
∫ t

s

S0(t)dt, (4.24)

which shows u ∈ AC([0, T ];M).

Step 3: Derivation of (EDI). We return to (4.21) in the form

F(ũτ (T )) +

∫ T

0

ψ(Sτ (t))dt+

∫ T

0

ψ∗(Gτ (t))dt = F(ũτ (0)),

and calculate the liminf for τ → 0+ for the three terms on the left-hand side.

From ũτ (T )→ u(T ) and the lsc of F we have lim infτ→0+ F(ũτ (T )) ≥ F(u(T )).

For the second term we observe that the mapping α 7→
∫ T

0
ψ(α(t))dt is convex and strongly lsc on

L1([0, T ]). Hence, the mapping is also weakly lsc andSτ ⇀ S0 implies lim infτ→0+
∫ T

0
ψ(Sτ (t))dt ≥∫ T

0
ψ(S0(t)) dt ≥

∫ T
0
ψ
(
u̇ D(t)

)
dt. For the last estimate we used that ψ : [0,∞[ → [0,∞[ is

increasing and the characterization of the metric speed in Theorem 4.4, i.e. u̇ D ≤ S0 because of
(4.24).

For the third term we fix t ∈ [0, T ] and exploit the slope estimate in Proposition 4.13 as well as the
lsc of the slope ∂F D, see assumption (4.19b). Using that ψ∗ : [0,∞[ → [0,∞[ is continuous and
increasing and that ũτ (t)→ u(t) we have

ψ∗
(
∂F D(u(t))

)
≤ lim inf

τ→0+
ψ∗
(
∂F D(ũτ (t))

)
≤ lim inf

τ→0+
ψ∗
(
Gτ (t)

)
.

Thus, Fatou’s lemma yields lim infτ→0+
∫ T

0
ψ∗
(
Gτ (t)

)
dt ≥

∫ T
0
ψ∗
(
∂F D(u(t))

)
dt.

In summary, we find the EDI

F(u(T )) +

∫ T

0

(
ψ
(
u̇ D(t)

)
+ ψ∗

(
∂F D(u(t))

))
dt ≤ F(u(0)).

Step 4: Derivation of (EDB). As we have assumed the abstract metric chain-rule inequality in (4.19d)
we can apply the metric energy-dissipation principle from Proposition 4.12. Hence, u is a ψ-curve of
maximal slope.
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As in Section 3 one can infer additional convergences (along the chosen subsequence), if we assume
strict convexity of ψ and ψ∗:

∀ t ∈ [0, T ] : ũτ (t)→ u(t) and F(ũτ (t))→ F(u(t)).

∀a.a.t ∈ [0, T ] :
1

τ
D
(
ũτ (tτ (t)), ũτ (tτ (t)+τ)

)
→ u̇ D(t)

and ∂F D(ũτ (t))→ ∂F D(u(t)).

We emphasize that there is no easy way of showing uniqueness in this general setting. Example 4.9(A)
provides a case where all assumption of the above existence theorem are satisfied, but uniqueness
fails. Moreover, the following example shows that one may have even uncountably many solutions for
a given initial point u0.

Example 4.19 (Non-uniqueness for curves of maximal slope) Consider the gradient system
(R2,F , | · |1, ψquadr) with F(u) = u1 + u2 and |(v1, v2)|1 = |v1| + |v2|. A curve u : [0, T ]→ R2

is a curve of maximal slope if and only if u ∈W1,∞([0, T ];R2) with

u̇1(t), u̇2(t) ∈ [−1, 0] and u̇1(t) + u̇2(t) = −1 a.e. in [0, T ].

Thus, all the curves u(t) = u0 − t(1−θ, θ) + g sin(ωt)(1,−1) with θ ∈ [0, 1] and |gω| ≤
min{θ, 1−θ} are curves of maximal slope starting at u0.

4.6 Metric evolutionary variational inequalities (EVI)

We recall that in the case of Hilbert spaces (see Section 2.5) the evolutionary variational inequality
(EVI)λ did only use the norms ‖u−w‖ and no time derivatives u̇ or subdifferentials ∂FF(u) appear.
Hence, we can easily define the corresponding EVI notion for metric GS. We emphasize that this
theory is restricted to the quadratic dissipation function ψ = ψquadr : δ 7→ δ2/2, thus use the short-
hand (M,F ,D) := (M,F ,D, ψquadr).

Definition 4.20 (Metric EVIλ solutions) We consider a metric GS (M,F ,D). Then, we call u :
[0, T ]→M an (EVI)λ solution, if

∀ s, t ∈ [0, T ] with s < t ∀w ∈ dom(F) :

1

2
D(u(t), w)2 ≤ 1

2
e−λ(t−s)D(u(s), w)2 +Mλ(t−s)

(
F(w)−F(u(t))

)
,

where Mλ(r) =
∫ r

0
e−λ(r−s) ds.

We will see below that it is possible to derive uniqueness for EVI solutions, however it is very difficult to
establish existence. Except for the Hilbert-space case discussed in Section 2, there is no direct way of
showing that curves of maximal slope (with ψ = ψquadr) are also EVI solutions if F satisfies a suitable
λ-convexity condition.

Instead, there is an independent existence theory for EVI solutions based on rather strong assump-
tions on the metric space (M,D) and on the functional F . We refer to [AGS05, Cha. 4] and [Sav07,
DaS14, MuS22] because the general existence theory is ongoing research.

The major new assumption is that of the existence of geodesic curves.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



A. Mielke 64

Definition 4.21 (Geodesic metric spaces) In a metric space (M,D) a curve γ : [0, 1] → M is
called a (constant speed) geodesic if

∀ r, s ∈ [0, 1] : D(γ(r), γ(s)) = |s−r| D(γ(0), γ(1)).

In this case we say that the geodesic γ connects the points γ(0) and γ(1) and write Geod
(
γ(0), γ(1)

)
for the set of all such geodesics.

The metric space (M,D) is called a geodesic space, if for all u0, u1 ∈ M there exists a geodesic
connecting u0 and u1.

A function F : M → R∞ is called geodesically λ-convex if

∀u0, u1 ∈ dom(F) ∃ γ ∈ Geod(u0, u1) ∀ s ∈ [0, 1] :

F(γ(s)) ≤ (1−s)F(γ(0)) + sF(γ(1))− λ

2
s(1−s)D(γ(0), γ(1))2.

With these conditions we are able to state the following simplified version of the existence result in
[AGS05, Thm. 4.0.4]. Again, the construction uses the MMS and, because of uniqueness, the con-
structed solutions are minimizing movements in the sense of Definition 4.1. In this case we also have
a true gradient flow (St)t≥0 on dom(F), similar to Theorem 2.10 for Hilbert spaces.

Theorem 4.22 (Existence of EVI solutions) Consider the metric GS (M,F ,D) (with ψ = ψquadr)
with the following properties

(M,D) is a geodesic space, (4.25a)

∀u∗ ∈M : u 7→ 1

2
D(u∗, u)2 is geodesically 1-convex, (4.25b)

∃λ ∈ R : F ;M → R∞ is geodesically λ-convex. (4.25c)

Then, for all u0 ∈ D := dom(F) there exists a unique (EVI)λ solution u : [0,∞[ → M which
satisfies u(0) = u0 and u ∈ MM(M,F ,D).

Moreover, the mapping St : D → D defined by the unique solutions via St(u(0)) := u(t) is a
λ-contractive, continuous semigroup, namely

(S1) St : D → D , S0 = idD , St ◦ Sr = St+r for all r, t ≥ 0.

(S2) For all u0 the function [0,∞[ 3 t 7→ St(u
0) is continuous.

(S3) For all u0, u1 ∈ D we have D
(
St(u0), St(u1)

)
≤ e−λtD(u0, u1).

The critical condition in the above theorem is that of the geodesic 1-convexity of u 7→ 1
2
D(u∗, u)2 in

(4.25b). This condition is satisfied in Hilbert spaces, but it does not hold for many geodesic spaces. In
particular, it does not hold for the Wasserstein space (Prob(Ω),W2) from Example 4.9(C). Thus, in
[AGS05, Thm. 4.0.4] condition (4.25b) is replaced by a weaker one.

In [MuS20, Ch. 3+4] the question is addressed how EVI solutions and curves of maximal slope are re-
lated. From [MuS20, Thm. 3.5, cf. (3.17)] one easily sees that every EVI solution is a curve of maximal
slope. The reverse statement that a curve of maximal slope is also an EVI solution (and hence unique)
is more desirable, but it is known only under strong additional conditions, see [MuS20, Thm. 4.2]. In
particular, one needs an independent existence result for EVI solutions.
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For the proof of the above existence result we refer to [AGS05, Cha. 4]. Here we provide the analysis
that is necessary for establishing the λ-contractivity. For this we derive a few properties (P.n) for all
EVI solutions u.

(P.1) Finite energy: For all t 	 0 we have F(u(t)) <∞.

We insert s = 0 and w ∈ dom(F) 6= ∅ into (EVI)λ and obtain after dropping 1
2
D(u(t), w)2 the

estimate

F(u(t)) ≤ F(w) +
e−λt

2Mλ(t)
D(u(0), w)2 <∞.

(P.2): t 7→ F(u(t)) is decreasing.

For 0 < s < t we insert w = u(s) into (EVI)λ and obtain

F(u(t)) ≤ F(u(s)) +
e−λ(t−s)

2Mλ(t)

(
0 − 1

2
D(u(t), u(s))2

)
≤ F(u(s)).

If u(0) ∈ dom(F) we can also do this for s = 0, whereas in the case F(u(0)) = ∞ we have
∞ = F(u(0)) > F(u(s)) ≥ F(u(t)) for 0 < s < t.

(P.3) Local Hölder continuity: u ∈ C1/2
loc (]0,∞[;M).

Choose [t0, T ] b ]0,∞[ (compactly contained), then for t0 ≤ s < t ≤ T and w = u(s) in (EVI)λ
we find

D(u(s), u(t))2 ≤ 2Mλ(t−s)
(
F(u(s))−F(u(t))

)
≤ Ct0,T,λ |t−s|

(
F(u(t0))−F(u(T ))

)
.

This implies D(u(s), u(t)) ≤ C̃t0,T,λ |t−s|1/2 as desired.

(P.4) Local absolute continuity: u ∈ AC2
loc(]0,∞[;M).

For [t0, T ] b ]0,∞[ as above and N ∈ N we define τN = (T−t0)/N and the partition tNk =
t0 + kτN for k = 0, 1, ..., N . Now (EVI)λ gives

F(u(tNk )) +
1

2Mλ(τN)
D
(
u(tNk−1), u(tNk )

)2 ≤ F(u(tNk−1)).

When adding over k = 1, ..., N we can exploit the telescope sum and obtain

τN
2Mλ(τN)

N∑
k=1

τN

( 1

τN
D
(
u(tNk−1), u(tNk )

))2

≤ F(u(t0))−F(u(T )) =: ∆.

Defining the piecewise constant function SN via SN(t) = 1
τN
D
(
u(tNk−1), u(tNk )

)
for t ∈ ]tNk−1, t

N
k ],

we have the L2 bound
∫ T
t0
SN(t)2 dt ≤ ∆. Thus, after extracting a subsequence (not relabeled) we

may assume SN ⇀ S0 in L2([t0, T ]).

For arbitrary r, s ∈ [t0, T ] with r < s we choose l(N),m(N) ∈ {0, 1, ..., N} such that r̃N :=
tNl(N) → r and s̃N := tNm(N) → s. Using the triangle inequality we obtain

D(u(r), u(s)) ≤ D(u(r), u(r̃N)) +
( m(N)∑
k=l(N)+1

D
(
u(tNk−1), u(tNk )

))
+D(u(s̃N), u(s))

≤ C
∣∣r − r̃N ∣∣1/2 +

∫ T

t0

1[r̃N ,s̃N ](t)S
N(t)dt+ C

∣∣s− s̃N ∣∣1/2,
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where we used the Hölder continuity (P.3) and the definition of SN . We can now pass to the limit
N → ∞ on the right-hand side and arrive at D(u(r), u(s)) ≤

∫ s
r
S0(t) dt which implies u ∈

AC2([t0, T ];M) with u̇ D ≤ S0 ∈ L2([t0, T ]) a.e. in [t0, T ], see Theorem 4.4.

Proposition 4.23 (λ-contractivity for solutions of (EVI)λ) For (M,F ,D) consider two (EVI)λ so-
lutions u, ũ : [0,∞[→M . Then, we have

D
(
u(t), ũ(t)

)
≤ e−λ(t−s)D

(
u(s), ũ(s)

)
for 0 ≤ s < t. (4.26)

Proof. Step 1: First two applications of EVI. We insert w = ũ(t) into the (EVI)λ for u and w̃ = u(t)

into the (EVI)λ for ũ. Adding the two inequalities we see that all terms involving F cancel, and we
obtain

D
(
u(t), ũ(t)

)2
=
(1

2
+

1

2

)
D
(
u(t), ũ(t)

)2 ≤ e−λ(t−s)
(1

2
D
(
u(s), ũ(t)

)2
+

1

2
D
(
ũ(s), u(t)

)2
)
.

Note that on the right-hand side the four different points u(s), u(t), ũ(s), and ũ(t) appear.

Step 2: Third and fourth application of EVI. We again use (EVI)λ for u but now with w = ũ(s) and
(EVI)λ for ũ with w̃ = u(s). Thus we can estimate the terms on the right-hand side and arrive at

D
(
u(t), ũ(t)

)2 ≤ e−λ(t−s)
(

e−λ(t−s)(1

2
+

1

2

)
D
(
u(s), ũ(s)

)2
(4.27)

+Mτ (t−s)
(
F(u(s))−F(u(t)) + F(ũ(s))−F(ũ(t))

))
.

Step 3: Absolute continuity of [t0, T ] 3 t→ δ(t) = D
(
u(t), ũ(t)

)
. For r, s ∈ [t0, T ] the triangle in-

equality gives∣∣δ(r)− δ(s)∣∣ =
∣∣D(u(r), ũ(r)

)
−D

(
u(s), ũ(s)

)∣∣
≤
∣∣D(u(r), ũ(r)

)
−D

(
u(s), ũ(r)

)∣∣+
∣∣D(u(s), ũ(r)

)
−D

(
u(s), ũ(s)

)∣∣
≤ D

(
u(r), u(s)

)
+D

(
ũ(r), ũ(s)

)
≤
∫ s

r

(
u̇ D(t) + ˙̃u D(t)

)
dt.

Hence, u, ũ ∈ AC2([t0, T ];M) implies δ ∈ AC2([t0, T ];R) = W1,2([t0, T ]).

Step 4: Conclusion. We set ρ(t) = e2λtδ(t)2, then the product rule and Step 3 give ρ ∈W1,2([t0, T ]).
Moreover, by the definition of ρ, the estimate (4.27) turns into

ρ(t)− ρ(s) ≤ eλ(t+s)Mλ(t−s)
(
F(u(s))−F(u(t)) + F(ũ(s))−F(ũ(t))

)
,

for t0 ≤ s < t ≤ T .

Now assume that s = s∗ is a point of differentiability of ρ, which is true on a set of full measure. Then,
dividing by t− s∗ > 0 and taking the limit t→ s+

∗ gives

ρ̇(s∗) = lim
t→s+∗

ρ(t)− ρ(s∗)

t− s∗
≤ lim sup

t→s+∗

(
Bλ(t, s∗)

(
F(u(s∗))−F(u(t)) + F(ũ(s∗))−F(ũ(t))

))
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with Bλ(t, s∗) = eλ(t+s∗)Mλ(t−s∗)/(t−s∗)→ e2λs∗ for t→ s∗.

Using the Hölder continuity (P.3) and lsc of F we have

lim sup
t→s∗

(
F(u(s∗))−F(u(t))

)
= F(u(s∗))− lim inf

t→s∗
F(u(t)) ≤ F(u(s∗))−F(u(s∗)) = 0,

and similarly for ũ. Hence, we conclude ρ̇(s∗) ≤ 0. Because ρ is absolutely continuous, we have the
monotonicity ρ(t) ≤ ρ(s) for s < t, which is the desired estimate (4.26) when recalling the definition

ρ(t) = e2λtD
(
u(t), ũ(t)

)2
.

5 Evolutionary Γ-convergence for gradient systems

In this section we study families of gradient systems (X,Fε,Rε) or (M,Fε,Dε, ψε) where ε ∈
[0, 1]. The typical question one is interested are the following:

Q1 Assume we have solutions uε : [0, T ] → X for (X,Fε,Rε) with uε(0)  u0. Is it possible
to find a subsequence (not relabeled) and a limit function u : [0, T ] → X such that uε(t)  
u0(t) for all t ∈ [0, T ].

Q2 Is their a notion of convergence for the energies Fε
energ
 F0 and for dissipation potentials

Rε
diss
 R0 such that u0 is a solution of the effective gradient system (X,F0,R0).

Q3 There are cases, where limitsF0 andR0 as in Q2 exists, but they produce the wrong solutions!
Is there a direct way to construct the correct effective GS (X,Feff ,Reff ) is the sense that

(Fε,Rε)
GS
 (Feff ,Reff ).

In light of our examples in Section 1 question Q3 cannot be answered by studying the solutions uε
of the gradient-flow equations 0 ∈ ∂Rε(u, u̇) + ∂FFε(u) and then showing that the limits u0 of
sequences uε solve the effective evolution equation u̇ = Veff (u). Of course, it is always a major
achievement to find the effective evolution equation, but it does not answer the question whether the
effective equation has a gradient structure. Moreover, if it has a gradient structure it may have many
of them. Hence, it is of independent interest, in particular in the sense of physical modeling, to show
how the gradient structure passes to the limit.

Of course, we are not so interested to study the case of “continuous dependence on parameters”
as is studied in the theory of ODEs. If V : [0, 1]×[0, T ]×Rn → Rn is continuous and globally
Lipschitz in u ∈ Rn., then the unique solution uε : [0, T ] → Rn of u̇ε(t) = V (ε, t, uε(t)) depends
continuously on ε ∈ [0, 1] and t ∈ [0, T ]. If we follow this approach in the setting of classical gradient
systems (M,Fε,Gε) on a finite-dimensional manifold M , then we need assumptions on the energy
F : [0, 1]→M → R as well as on the Riemannian tensorGε(u) : TuM → T∗uM may depend on
ε. The gradient-flow equation reads

u̇ = −Gε(u)DFε(u) =: V (ε, u).

Thus, to apply the above-mentioned continuous dependence result for ODEs, we needG ∈ C0
(
[0, 1];

CLip(M ;F2(M))
)

and F ∈ C0
(
[0, 1]; C1,Lip(M)

)
.
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Such results are not relevant for PDEs because the vector fields are not not smooth and only defined
on dense subsets. There the question of “singular limits” is studied (cf. [FeN09]), for instance PDEs of
the form

u̇ε = div
(
A(

1

ε
x)∇u

)
− b(1

ε
x)uε, x ∈ Ω, uε|∂Ω = 0.

λεẇε = ε∂2
x(wε) +

1

ε

(
wε − w3

ε), x ∈ Ω, wε|∂Ω = 1.

We refer to [SaS04, Ser11, Bra14, MMP21, Mie16, MuS22] for general approaches in evolutionary
Γ-convergence.

5.1 Γ-convergence for (static) functionals

To study limits of functionals we define a notion of convergence in the spirit of question Q3 above,
but now in the static case. If the “problem” associated with a GS (X,F ,R) is the solution of the
gradient-flow equation, then the “problem” associated with a static functional J is to find its minimizer.
Of course, we have seen that these problems are strongly linked by the time-incremental minimization
sometimes also called minimizing movement scheme. Thus, for a family (Jε)ε>0 of functionals Jε :
M → R∞, we ask the (static) question:

Question: What is a good notion of convergence Jε  J0 such that any limit u0 of (a subsequence
of) minimizers uε of Jε is automatically a minimizer of J0.

Again, we are not so much interested in the case Jε → J0 in C1
loc(X), which is of course sufficient

to show convergence in the associated Euler-Lagrange equations.

We consider a complete metric space (M,D) and functionals Jε : X → R∞. In a metric space
“uk → u” will always denote convergence in the metric; if M is a Banach space X then uk → u
and vk ⇀ v denote strong and weak convergence, respectively. We first introduce more classical
notions of convergence of functionals, namely the pointwise convergence Jε

pw−→ J0 and continuous
convergence (also weak in Banach spaces) defined via

Jε
pw→ J0, if Jε(u)→ J0(u) for all u ∈M ; (5.1a)

Jε
cc−→ J0, if uε → u =⇒ Jε(uε)→ J0(u). (5.1b)

In the context of minimization of functionals, the concept of Γ-convergence is more natural, see The-
orem 5.6. This convergence was originally called variational convergence or epi-graph convergence
(cf. [DeF75, DeG77, Att84]), but nowadays the term Γ-convergence is more common and we refer to
[Dal93, Bra02, Bra06, Bra14] for further details.

Definition 5.1 (Γ and Mosco convergence) Let (M,D) be a complete metric space. We say that

Jε Γ-converges to J0 and write Jε
Γ
⇀ J0 or J0 = Γ-lim

ε→0
Jε, if (Γ.inf) and (Γ.sup) hold:

(Γ.inf) uε → u =⇒ J0(u) ≤ lim inf
ε→0

Jε(uε) (liminf estimate)

(Γ.sup) ∀ û ∃ (ûε)ε: ûε → û and J0(û) = lim sup
ε→0

Jε(ûε) (limsup estimate)

If (M,D) is a Banach space (X; ‖ · ‖) we say that Jε (sequentially) weakly Γ-converges to J0
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and write Jε
Γ
⇀ J0 and J0 = Γw-lim

ε→0
Jε, if (Γ.inf) and (Γ.sup) when “→” is replaced by “⇀”. If

Jε
Γ−→ J0 and Jε

Γ
⇀ J0 hold, then we say that Jε Mosco-converges to J0 and write Jε

M−→ J0

or J0 = M-lim
ε→0

Jε. In this case, it suffices to show (Γ.inf) for weak convergence and (Γ.sup) for

strong convergence.

We will see in Lemma 5.3 that there are simple quadratic functionals for which weak and strong Γ-limits
exist, but they are different.

The conditions (Γ.sup) is often replaced by the so-called existence of recovery sequences:

(Γ.rec) ∀ û ∃ (ûε)ε: ûε → û and Jε(ûε)→ J0(û). (recovery sequence)

Of course, (Γ.rec) implies (Γ.sup). Moreover, assuming that (Γ.inf) holds, (Γ.rec) follows from
(Γ.sup). The sequence (ûε)ε is called recovery sequence as it recovers the correct energy J0(û).
Moreover, one sees in several examples that ûε has to “recover” the correct microscopic structure
which makes the energy Jε(ûε) small enough to reach (recover) the lowest possible value for J0(û).

We emphasize that the definition of Γ-convergence is asymmetric and fits to “minimization”. For “liminf”
we impose a condition for all sequences, while for “limsup” we only need one sequence. This way we
lose the linearity for Γ-convergence. If Γ-limJε, Γ-limGε, and Γ-lim(Gε+Jε) exist we do not have
Γ-lim(Gε+Jε) =

(
Γ-limGε

)
+
(

Γ-limJε
)

in general.

Example 5.2 (A) Consider X = R1 and Jε(u) = 1
2
u2 − cos(u/ε). We claim

Jε
Γ−→ J0 with J0(u) =

1

2
u2 − 1.

To show (Γ.inf) we use cosα ≤ 1 and obtain Jε(u) ≥ J0(u) for all u. As J0 is continuous, the
result follows. To show (Γ.sup) we start from an arbitrary û ∈ R and look for a close-by ûε such
that Jε(ûε) is close to J0(û). This means that we want to have cos(ûε) close to 1. Thus, we choose
ûε = 2πεbû/(2πε)c, where the floor function b·c rounds down to the nearest integer. Obviously, we
have ûε → û and Jε(ûε) = J0(ûε)→ J0(û) as desired.

(B) For an arbitrary λ ∈ R, we set Gε = λJε. With an analogous argument we obtain

Gε
Γ−→ G0 with G0(0) =

λ

2
u2 − |λ|

In the case λ < 0 one chooses ûε = πε
(
2bû/(2πε)c+ 1

)
to find cos(ûε/ε) = −1.

(C) We see that linearity is destroyed, in particular we have

0 = Γ-lim
ε→0

(Jε − Jε) 6=
(

Γ-lim
ε→0
Jε
)

+ Γ-lim
ε→0

(
−Jε

)
= −1 + (−1) = −2.

The following lemma presents a simple quadratic example in which the weak and the strong Γ-limits
exist but they are different. We define

Fε(w) =

∫
Ω

1

2
w(x) · A

(1

ε
x
)
w(x)dx for w ∈ X = L2(Ω;Rm),

where Ω ⊂ Rd is a bounded Lipschitz domain andA ∈ L∞(Rd;Rm×msym ) is 1-periodic, i.e.A(y+n) =
A(y) for all y ∈ Rd and all n ∈ Zd. Moreover, we assume that A is uniformly positive definite, i.e.
a|w|2 ≤ w · A(y)w ≤ a|w|2 for a > a > 0. The main tools is the Riemann lemma stating that the
sequence Aε : x 7→ A(1

ε
x) satisfies Aε

∗
⇀ Aarith, see [Dal93, Exa. 6.6] for more general results of

this type.
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Lemma 5.3 Define the arithmetic and harmonic mean of A via

Aarith :=

∫
[0,1]d

A(y)dy and Aharm :=
(∫

[0,1]d
A(y)−1 dy

)−1

and the two functionals

Farith(w) =

∫
Ω

1

2
w(x) · Aarithw(x)dx and Fharm(w) =

∫
Ω

1

2
w(x) · Aharmw(x)dx.

In X = L2(Ω;Rm) we have Fε
Γ
⇀ Fharm and Fε

cc−→ Farith, which implies Fε
Γ−→ Farith.

Proof. We first prove Fε
Γ
⇀ Fharm. For the liminf estimate assume wε ⇀ w in L2(Ω). Writing

Aε(x) = A(1
ε
x) we have

Fε(wε) =
1

2

∫
Ω

wε · Aεwεdx = (5.2)

=
1

2

∫
Ω

(wε−A−1
ε Aharmw)·Aε(wε−A−1

ε Aharmw)︸ ︷︷ ︸
≥0

+ 2 wε︸︷︷︸
⇀w

·Aharmw − Aharmw· A−1
ε︸︷︷︸

∗
⇀A−1

harm

Aharmwdx. (5.3)

Dropping the nonnegative term, the limit ε → 0 leads to the desired lower estimate lim infεFε(wε)
≥ 1

2

∫
Ω

0 + 2w·Aharmw − w·Aharmwdx = F0(w).

For the limsup-estimate we use the same reformulation of Fε as in (5.2). For a given ŵ we choose
ŵε = A−1

ε Aharmŵ. Since by construction the first term in the integral is 0 we find Fε(ŵε) = 1
2

∫
Ω

0 +
2A−1

ε Aharmŵ·Aharmŵ − Aharmŵ·A−1
ε Aharmŵdx→ Fharm(ŵ).

For strong continuous convergence take any wε → w in L2(Ω) and write

Fε(wε) =
1

2

∫
Ω

w· Aεw︸︷︷︸
⇀Aarithw

−2w·Aε (w−wε)︸ ︷︷ ︸
→0

+ (w−wε)︸ ︷︷ ︸
→0

·Aε(w−wε)dx (5.4)

→ Farith(w). (5.5)

This proves the strong continuous and hence the strong Γ-convergence.

Clearly, continuous convergence is much stronger than Γ-convergence. We have the following rela-
tions.

Lemma 5.4 (Properties of Γ-limits) On the complete metric space (M,D) consider the functionals
Jε, Kε : M → R∞.

(a) Jε
Γ−→ J0 =⇒ J0 : M → R∞ is lsc.

(b) Jε
Γ−→ J0 and Kε

cc−→ K0 =⇒ Jε+Kε
Γ−→ J0+K0

(c) Jε
cc−→ J0 =⇒ Jε

Γ−→ J0
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Proof. Part (a): We use an argument that is standardly used for constructing recovery sequences. For

un → u we have to show J0(u) ≤ lim infn→∞ J0(un). As J0 = Γ-limJε we find (ûnε )ε with
ûnε → un and Jε(ûnε )→ J0(un). Thus for each n we can find εn > 0 such that

εn ∈ ]0, 1/n[, D(ûnεn , un) ≤ 1/n, Jεn(ûnεn) ≤ J0(un) + 1/n.

Setting ũεn := ûnεn we have εn → 0 andD(ũεn , u) ≤ D(ũεn , un) +D(un, u)→ 0. Setting ũε = u
for ε 6∈ { εn | n ∈ N }, we have ũε → u and obtain

lim inf
n→∞

J0(un) ≥ lim inf
n→∞

Jεn(ũεn) ≥ lim inf
ε→0+

Jε(ũε) ≥ J0(u),

where the last estimate follows from (Γ. inf) and ũε → u.

Part (b): This follows easily as convergent sequences can be chosen as needed forJε, and continuous
convergence for Kε gives the result.

Part (c): This is trivial because the liminf estimate is a limit. As recovery sequence one can take any
convergent sequence, e.g. the constant sequence with ûε = û.

The following properties of sequences of functionals will be useful in the formulation of the following
results. Recall the sublevels SFE :=

{
u ∈M

∣∣ F(u) ≤ E
}

.

Definition 5.5 (Uniform properties) On a complete metric space (M,D) consider a family (Jε)ε of
functionals Jε : M → R∞.

(i) The family is called equi-coercive, if

∀E ∈ R ∃R > 0, u∗ ∈M ∀ ε : SJεE ⊂ BR(u∗).

(ii) The family is called equi-compact, if (where “b” means compactly contained)

∀E ∈ R ∃K bM ∀ ε : SJεE ⊂ K.

(iii) If (M,D) is a Banach space (X, ‖ · ‖), we call the family equi-superlinear, if there exists a
superlinear function ϕ : [0,∞[→ R such that

∀u ∈ X ∀ ε : Jε(u) ≥ ϕ
(
‖u‖
)
.

Warning: In many papers and textbooks our notion of “equi-compactness” is simply called “equi-
coercivity”. We distinguish these two concepts, which is quite useful for gradient systems where dif-
ferent functionals like Fε and Rε or Dε are considered on the same space. Moreover, it allows us to
avoid switching between weak and strong topologies in Banach spaces, where equi-coercivity implies
weak equi-compactness.

The origin for the definition of Γ-convergence, which is clearer in the original name “variational con-
vergence”, is the following convergence of minimizers, see [Dal93, Bra02].

Theorem 5.6 (Convergence of minimizers) In a complete metric space (M,D) assume Jε
Γ−→ J0

with inf J0 =: α0 ∈ R.
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(a) If uε → u0 and lim infε→0+ Jε(uε) = α0, then u0 is a minimizer of J0.

(b) If the family (Jε)ε is equi-compact, then αε = inf Jε satisfies αε → α0. Moreover, every se-
quence (uε)ε>0 with Jε(uε)→ α0 has a convergent subsequence uεk → u0 and each such limit u0

is a minimizer of J0. In particular, if (uεk) is a sequence of minimizers for Jεk , then all accumulation
points u0 of this sequence are minimizers of J0.

Proof. Part (a). By the (Γ. inf) we have J0(u0) ≤ lim infε→0 Jε(uε) = α0. However, with α0 =

inf J0 ≤ J0(u0) we conclude α0 = J0(u0), i.e. u0 is a minimizer.

Part (b). By Lemma 5.4 we know that J0 is lsc and the equi-compactness implies that the sublevels of
J0 are compact. Hence J0 has a minimizer u0 with J0(u0) = α0.

By (Γ. sup) there exists a recovery sequence ûε → u0 with Jε(ûε) → J0(u0) = α0. Using
αε = inf Jε ≤ Jε(ûε) we find lim supε→0 αε ≤ α0. Moreover, we can choose a subsequence
εk → 0 such that lim infε→0 αε = limk→∞ αεk . In addition, there exist uk with Jεk(uk) ≤ αεk +εk,
and the equi-compactness guarantees the existence of a convergent subsequence uk(l) → u∗ for
l→∞. Now (Γ. inf) implies

α0 ≤ J0(u∗) ≤ lim inf
l→∞

Jεk(l)(uk(l)) ≤ lim inf
l→∞

(αεk(l)+εk(l)) = lim inf
ε→0

αε ≤ lim sup
ε→0

αε ≤ α0.

Hence, αε → α0 is established.

If a sequence uε satisfies Jε(uε) → α0 ∈ R, it lies in a compact set, because of equicompactness.
By (a) all accumulation points are minimizers.

The last statement is a consequence of the previous assertion and the convergence αε → α0.

Example 5.7 For (M,D) = (R,DEucl) the sequence Jε(u) = cos(εu) satisfies Jε
Γ−→ J0 with

J0 ≡ 1. Indeed, for u in the compact interval [−R,R] we have |εu| ≤ εR and find 0 ≤ 1−Jε(u) ≤
1
2
ε2R2, which gives uniform convergence on compact sets to J0 : u 7→ 1.

However, for all ε > 0 we have αε = infR Jε = −1, whereas for ε = 0 we have α0 infR J0 = 1.

The main result of the above theorem is that solving a minimization problem forJε can be interchanged
with passing to the limit ε→ 0. This can be depicted by the following commuting diagram:

Jε
Γ J0

ε −→ 0minimizing Jε minimizing J0

ArgminJε 3 uε u0 ∈ ArgminJ0

We make this more explicit in the Banach space setting by considering an equi-superlinear family Fε
with Fε

Γ
⇀ F0. Then, for all ` ∈ X∗ we set J `

ε = Fε − 〈`, ·〉 and observe J `
ε

Γ−→ J `
0 , cf. Lemma

5.4(b). We define the LimSup for a family
(
Aε
)
ε

of sets Aε ⊂ X via

LimSup
ε→0

Aε :=
{
u ∈ X

∣∣ ∃ (εk, uk)k∈N : 0 < εk → 0, uk ∈ Aεk , uk → u
}

Thus, the theory of Γ-convergence leads to the following result on the upper semicontinuity of mini-
mizers.
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Corollary 5.8 (Upper semicontinuity of the sets of minimizers) If
(
Fε
)
ε

is equi-superlinear on a
Banach space X . Then, we have

Fε
Γ
⇀ F0 =⇒ ∀ ` ∈ X∗ : LimSup

ε→0
Argmin

(
Fε−`

)
⊂ Argmin

(
F0−`

)
.

The following useful result seems to be folklore, but it is not easy to locate a specific reference. Hence,
we give a full proof.

Proposition 5.9 (Γ-convergence versus Mosco convergence) Assume thatX andZ are reflexive
Banach spaces such that Z is compactly embedded in X , written Z b X . Moreover, assume that
the functionals Jε are equi-coercive in Z, i.e.

∀ J > 0 ∃R > 0 ∀ ε > 0, u ∈ X : Jε(u) ≤ J ⇒ ‖u‖Z ≤ R : (5.6)

Then, Jε
M−→ J0 in X is equivalent to Jε

Γ
⇀ J0 in Z.

Proof. The equi-coercivity is meant such that all Jε take the value +∞ on X \Z.

“⇒” We start from Jε
M−→ J0 in X . If uε ⇀ u in Z, then this also holds in X . Hence, the liminf

estimate follows. To construct a recovery sequence ûε ⇀ û inZ for arbitrary û ∈ Z, we first assume

J0(û) < ∞. We choose the recovery sequence ûε guaranteed by Jε
M−→ J0 in X , i.e. we know

ûε → û in X . The equi-coercivity (5.6) and Jε(ûε) → J0(û) < ∞ imply ‖ûε‖Z ≤ R. Hence,
ûε ⇀ û in Z by reflexivity of Z. If J0(û) = ∞, we choose ûε = û giving ûε → û in Z. Hence,
the liminf estimate yields ∞ = J0(û) ≤ lim infε→0 Jε(û), which shows that we have a recovery
sequence in Z.

“⇐” Given Jε
Γ
⇀ J0 in Z, we take any sequence uε ⇀ u in X . If we have lim infε→0 ‖uε‖Z =∞,

then the equi-coercivity implies Jε(uε)→∞ and the liminf estimate holds. If for some subsequence

‖uεk‖Z ≤ C , then uεk ⇀ u in Z, and the liminf estimate follows from that of Jε
Γ
⇀ J0 in Z. For

the construction of recovery sequences, we can choose ûε = û if û ∈ X \Z. If û ∈ Z we choose a
recovery sequence ûε ⇀ û in Z. By the compact embedding we have ûε → û in X and the proof is
finished.

The following result will be very useful for studying the evolutionary Γ-convergence for gradient sys-
tems (X,Fε,Ψε) in Banach spaces, because there we need Γ-convergence for Ψε and for Ψ∗ε. The
connection between Legendre transform and Γ-convergence is nontrivial because it involves the du-
ality product X×X∗ 3 (v, ξ) 7→ 〈ξ, v〉 which is only weak-strongly or strong-weakly continuous and
moreover it is order reversing because of −Ψε, hence “inf” and “sup” are interchanged.

Theorem 5.10 ([Att84, pp. 271]) Let X be a separable, reflexive Banach space and assume that all
Ψε : X → [0,∞] are dissipation potentials (namely lsc, convex and Ψε(0) = 0). Then,

Ψε
Γ
⇀ Ψ ⇐⇒ Ψ∗ε

Γ−→ Ψ∗ .

The proof uses techniques from [Mos71], where the following equivalence was shown:

Ψε
M−→ Ψ ⇐⇒ Ψ∗ε

M−→ Ψ∗, (5.7)
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which is a direct consequence of the above theorem, but holds under weaker assumptions.

Sketch of proof. The following four implications imply the desired result.

(1) (Γw. inf) for Ψε =⇒ (Γs. sup) for Ψ∗ε

(2) (Γw. sup) for Ψε =⇒ (Γs. inf) for Ψ∗ε

(3) (Γs. inf) for Ψ∗ε =⇒ (Γw. sup) for Ψε

(4) (Γs. sup) for Ψ∗ε =⇒ (Γw. inf) for Ψε

The simpler directions are from “sup” to “inf”, because we don’t have to show existence of a converg-
ing sequence. We give the proof of (2) and observe that (4) is analogous.

Part (2): We consider an arbitrary sequence ξε → ξ.

For δ > 0 we find v̂0 such that Ψ∗(ξ) ≤ δ + 〈ξ, v̂0〉 − Ψ(v̂0). By (Γw. sup) we find a recovery
sequence v̂ε ⇀ v̂0 and Ψ(v̂0) ≥ lim supε→0 Ψε(v̂ε). With this, we have

lim inf
ε→0

Ψ∗ε(ξε)
Legr
≥ lim inf

ε→0

(
〈ξε, v̂ε〉 −Ψε(v̂ε)

)
∗
= 〈ξ, v̂0〉 − lim sup

ε→0
Ψε(v̂ε) ≥ 〈ξ, v̂0〉 −Ψ(v̂0) ≥ Ψ∗(ξ)− δ.

In
∗
= we use the weak-strong continuity of (v, ξ) 7→ 〈ξ, v〉. As δ > 0 was arbitrary, we have

lim infε→0 Ψ∗ε(ξε) ≥ Ψ∗(ξ) as desired for (Γs. inf).

Part (1): We show this under the additional assumption that the family
(
Ψε

)
ε

is equi-superlinear. In

this case, the constant recovery sequence ξ̂ε = ξ̂ always works.

We first observe v 7→ Ψε(v)−〈ξ, v〉 has at least one minimizer vε because Ψε is superlinear, lsc, and
convex. By equi-superlinearity we find ‖vε‖ ≤ C <∞ for all ε > 0. We first choose a subsequence
εk → 0 such that Ψεk(ξ) → lim supε→0 Ψε(ξ). Next, we can extract a further subsequence such
that vεk(l) ⇀ v∗ for l→∞ and conclude

−Ψ∗(ξ)
Legr
= inf

v∈X

(
Ψ(v)− 〈ξ, v〉

)
≤ Ψ(v∗)− 〈ξ, v∗〉

(Γw. inf)

≤ lim inf
l→∞

(
Ψ(vεk(l))− 〈ξ, vεk(l)〉

)
= lim

l→∞

(
−Ψ∗εk(l)(ξ)

)
= − lim sup

ε→0
Ψε(ξ),

which is the desired estimate of (Γs. sup).

Part (3): This is much more difficult and we refer the reader to [Att84, pp. 271].

Lemma 5.3 provides an interesting example for the application of Theorem 5.10. In fact, we have
F∗ε (ξ) = 1

2

∫
Ω
ξ·A−1

ε ξdx. Thus, the strong convergence forF∗ε leads to the effective matrix arith(A−1)
= harm(A)−1.

Another important tool of convex analysis is the weak-strong closedness of the graphs of the subdif-
ferentials ∂FFε : X ⇒ X∗ in the limit ε → 0. The following result is a variant of [Att84, Thm. 3.66],
and it again relies strongly on semi-convexity.

Proposition 5.11 (Strong-weak closedness for subdifferentials for Γ-limits) Assume that allFε :

X → R∞ are proper and lsc and Fε
Γ−→ F0 in the reflexive Banach space X . Moreover, assume that
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(
Fε
)
ε

is equi-semiconvex, i.e. there exists λ ∈ R such that all Fε are λ-convex. Then, we have

uε → u in X, ξε ⇀ ξ in X∗

∀ ε > 0 : ξε ∈ ∂FFε(uε)

}
=⇒ Fε(uε)→ F0(u) and ξ ∈ ∂FF0(u). (5.8)

Proof. The λ-convexity of Fε gives

Fε(w) ≥ Fε(uε) + 〈ξε, w−uε〉+
λ

2
‖w−uε‖2 for all w ∈ X. (5.9)

Choosing an arbitrary ŵ ∈ X the limsup condition (Γ. sup) provides a recovery sequence ŵε → ŵ
with Fε(ŵε) → F0(ŵ). Inserting w = ŵε into (5.9) and passing to the limit ε → 0 we can exploit
the strong convergence ŵε − uε → ŵ − u and the weak convergence ξε ⇀ ξ. Setting F 0 =
lim supε→0Fε(uε) we find

F0(ŵ) ≥ F 0 + 〈ξ, ŵ−u〉+
λ

2
‖ŵ−u‖2 for all ŵ ∈ X. (5.10)

Using (Γ. inf) we have F0(u) ≤ lim infε→0Fε(uε), while (5.10) with ŵ = u gives F0(u) ≥ F 0 =
lim supFε(uε), which provides the desired convergence Fε(uε)→ F0(u).

Moreover, replacing F 0 in (5.10) by F0(u) we conclude ξ ∈ ∂FF0(u) as desired.

5.2 Evolutionary Γ-convergence via EVI

We consider metric GS (M,Fε,Dε) (recall that this notation implies ψ = ψquadr) and the associated
EVI formulation which is ideal to pass to the limit ε → 0 because the formulation only contains the
functionals Fε and Dε, but no derivatives like u̇ε Dε or ∂Fε Dε appear.

The following result is a variant of [DaS14, Thm. 2.17], where the more restrictive case Dε = D is
treated, see also [MuS22].

Theorem 5.12 (Evolutionary Γ-convergence via EVI) Consider a complete metric space (M,D)
and the metric GS (M,Fε,Dε) with the following properties:

∃C ≥ 1 ∀ ε > 0 : D ≤ Dε ≤ CD; (5.11a)

Dε
cc−→ D0 in (M,D); (5.11b)(

Fε
)
ε

is equi-compact in (M,D); (5.11c)

Fε
Γ−→ F0 in (M,D),where F0 is proper; (5.11d)

∃λ ∈ R ∀ ε > 0 : (M,Fε,Dε) has an (EVI)λ semiflow

Sεt : Dε → Dε := dom(Fε). (5.11e)

Then, (EVI)λ for (M,F0,D0) has for each u0
0 ∈ D0 a unique solution t 7→ u0(t) =: S0

t (u
0
0).

Moreover, S0
t : D0 → D0 is a λ-contractive semiflow, and we have convergence of solutions as

follows

Dε 3 u0
ε → u0

0 ∈ D0 =⇒ ∀ t > 0 :

{
Sεt (u

0
ε)→ S0

t (u
0
0) and

Fε
(
Sεt (u

0
ε)
)
→ F0

(
S0
t (u

0
0)
)
.
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Proof. The proof follows closely the general strategy of the existence proofs.

Step 0: Approximating sequences. Here uε : [0, T ]→M are given as EVI solutions.

Step 1: A priori estimate for finite energies. We start with u0
0 ∈ dom(F0) and use (Γ. sup) to con-

struct a recovery sequence u0
ε → u0

0 with Fε(u0
ε) → F0(u0

0). Moreover, F0 is lsc and has compact
sublevels, hence by equi-compactness (5.11c) inf F0 =: α0 ∈ R and inf Fε =: αε → α0, see
Theorem 5.6. Thus, for ε ∈ ]0, ε∗[ we have

Fε(u0
ε) ≤ F0(u0

0) + 1, αε ≥ α0 − 1, Fε(u0
ε)− αε ≤ F0(u0

0)− α0 + 2 =: ∆F .

Our a priori estimates for EVI solutions in Section 4.6 provide∫ T

0

1

2
u̇ε D(t)2 dt ≤

∫ T

0

1

2
u̇ε Dε(t)

2 dt ≤ Fε(u0
ε)−Fε(uε(T )) ≤ ∆F ,

where we used the first estimate in (5.11a), which implies u̇ D ≤ u̇ Dε a.e. Moreover, using
Fε(uε(t)) ≤ Fε(u0

ε) ≤ F0(u0
0) + 1 and the equi-compactness (5.11c) show that there is a compact

set K bM such that uε(t) ∈ K for all t ∈ [0, T ] and all ε ∈ ]0, ε∗].

Step 2: Extraction of converging subsequences. With the results of Step 1 we have the equi-continuity

D
(
uε(s), uε(t)

)
≤ C|t−s|1/2 and we can apply the Arzelà-Ascoli theorem to obtain a uniformly

converging subsequence (not relabeled) in [0, T ], where T > 0 was arbitrary, hence we have

∀ t ≥ 0 : uε(t)→ u(t) in (M,D).

Step 3: Limit passage ε→ 0. For all ε > 0 we have (EVI)λ:

∀wε ∈ dom(Fε) ∀ 0 ≤ s < t :

1

2
Dε
(
wε, uε(t)

)2 ≤ e−λ(t−s)

2
Dε
(
wε, uε(s)

)2
+Mλ(t−s)

(
Fε(wε)−Fε(uε(t))

)
.

(5.12)

We emphasize here that λ is independent of ε.

For given w ∈ dom(F0) (Γ.sup) from (5.11d) provides a recovery sequence ŵε → w with Fε(ŵε)
→ F0(w). Insertingwε = ŵε into (5.12) we can pass to the limit ε→ 0+, where we useMλ(t−s) >
0, the continuous convergence (5.11b) for the distance, and (Γ. inf) for Fε(uε(t)):

∀w ∈ dom(F0) ∀ 0 ≤ s < t :

1

2
D0

(
w, u(t)

)2 ≤ e−λ(t−s)

2
D0

(
w, u(s)

)2
+Mλ(t−s)

(
F0(w)−F0(u(t))

)
.

Thus, u : [0,∞[→M solves (EVI)λ for the GS (M,F0,D0).

As the EVI solutions are unique, we conclude that the convergence does hold for the whole family, i.e.
without the extraction of a subsequence.

Step 4: Convergence of general initial data. From Section 4.6 we know that the induced semigroups
(Sεt )t≥0 are λ-contractions in (M,Dε) wherever they are defined. In particular, we can extend the
domain to its closure Dε := dom(Fε). This also holds for the case ε = 0. Assume now

Dε 3 u0
ε → u0

0 ∈ D0 and uε(t) = Sεt (u
0
ε).
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For arbitrary δ > 0 we choose û0
0 ∈ dom(F0) with D(u0

0, û
0
0) < δ and a recovery sequence

û0
ε → û0

0 with Fε(û0
ε)→ F0(û0

0). Then,

D(u0
ε, û

0
ε) ≤ D(u0

ε, u
0
0) +D(u0

0, û
0
0) +D(û0

0, û
0
ε) < 2δ for ε ∈ ]0, ε1[.

With this and setting ∆̂δ
ε(t) := D(Sεt (û

0
ε), S

0
t (û

0
0)
)
, we can estimate for all t ≥ 0 as follows:

D
(
uε(t), u0(t)

)
≤ D

(
uε(t), S

ε
t (û

0
ε)
)

+ ∆̂δ
ε(t) +D(S0

t (û
0
0), u0(t)

)
(5.11a)
≤ ∆̂δ

ε(t) + C eλtD
(
u0
ε, û

0
ε

)
+ C e−λtD(û0

0, u
0
0

)
≤ ∆̂δ

ε(t) + C e−λt
(
2δ + δ

)
.

Because Step 2 shows the uniform convergence of ∆̂δ
ε → 0 on all [0, T ] for δ > 0 fixed and ε→ 0,

we obtain uniform convergence of uε → u = u0 on [0, T ] by first making δ small and then ε.

Step 5: Energy convergence. We refer to Step 4 in the proof of [DaS14, Thm. 2.17].

As in the static case we have a commuting diagram. Passing to the “right limit” in (Fε,Dε, u0
ε) for

ε→ 0 (horizontal direction) can be interchanged by solving (EVI)λ (vertical direction).

Fε
Dε
u0
ε

Γ
cc

F0

D0

u0
0

ε −→ 0solving EVIελ solving EVI0λ

for all t > 0: uε(t) = Sεt (u
0
ε) u0(t) = S0

t (u
0
0)

Figure 5.1: Commuting diagram for Γ-convergence of EVI solutions.

We consider two applications, where the first treats a linear parabolic equation and shows that ho-
mogenization can be treated with the above result. In the second example we treat a simple ODE in
M = H = R1 and show that solutions do not converge, because of the solutions of the gradient-flow
equation cannot be EVI solutions.

Example 5.13 (Homogenization of an Allen-Cahn equation) Consider the Hilbert spaceM = H =
L2(Ω) with Ω = ]0, `[ ⊂ R1. For 1-periodic functions a, b, B, c ∈ L∞(R) satisfying a(y) ≥ a > 0,
B(y) ≥ B > 0 and c(y) ≥ c > 0 for all y ∈ R we set aε(x) = a(x/ε) and similarly bε, Bε, and cε.
With this, we define the energy functional

Fε(u) =


∫

Ω

(aε
2
u2
x +

bε
2
u2 +

Bε

4
u4
)

dx for u ∈ H1(Ω),

∞ otherwise.

and the distances Dε and D via

Dε(u,w)2 =

∫
Ω

cε|u−w|2 dx, D0(u,w)2 =

∫
Ω

carith|u−w|2 dx,D(u,w)2 =

∫
Ω

c |u−w|2 dx,
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where the subscripts “arith” and “harm” denote the arithmetic and harmonic mean as in Lemma 5.3.
Clearly, the assumptions (5.11a) and (5.11b) for Dε and D are satisfied with C = ‖c‖/c.
Using a, B > 0 we obtain equi-coercivity of

(
Fε
)
ε>0

in H1(Ω), which implies equi-compactness in
H = L2(Ω), i.e. (5.11c) is also satisfied. Moreover, using the results from the Section 5.1 it is not
difficult to show that we have the Γ-convergence (5.11d), namely

Fε
Γ−→ F0 : u 7→


∫

Ω

(aharm

2
u2
x +

barith

2
u2 +

Barith

4
u4
)

dx for u ∈ H1(Ω),

∞ otherwise.

Finally, we can use the existence results of Section 2.5 to show that EVI solutions exist. The impor-
tance is of course that we find one λ ∈ R that works for all ε > 0. In our Hilbert-space case the only
non-convexity of Fε can arise from the quadratic term bεu

2/2 which can be negative if ess infb < 0.
Indeed, choosing λ = ess inf

{
b(y)/c(y)

∣∣y ∈ R} we see that u 7→ Fε(u)− λ
2
Dε(0, u)2 is convex.

Hence, we obtain an EVIλ semiflow for
(
L2(Ω),Fε,Dε

)
.

Because we have dom(Fε) = H1(Ω) for all ε ≥ 0, we have Dε = L2(Ω), and the convergence
Theorem 5.12 shows that for all sequence u0

ε → u0
0 the solutions uε : [0,∞[ → L2(Ω) of the

Allen-Cahn equation

cεu̇ε = ∂x
(
aε∂xuε

)
− bεuε −Bεu

3
ε in Ω, ∂xuε(t, x) = 0 on ∂Ω, uε(0, ·) = u0

ε

converge to the unique solution u0 : [0,∞[→ L2(Ω) of the homogenized Allen-Cahn equation

carithu̇0 = ∂x
(
aharm∂xu0

)
− barithu0 −Barithu

3
0 in Ω, ∂xu0(t, x) = 0 on ∂Ω, u0(0, ·) = u0

0

in the sense that uε(t)→ u0(t) in L2(Ω) locally uniformly in [0,∞[.

The next example is the opposite, because it describes a situation where the interchanging of limiting
process ε→ 0 and solving the gradient-flow equation does not work.

Example 5.14 (The wiggly-energy problem) The following model was introduced by [Jam96, ACJ96],
but it goes back to much earlier [Pra28, Tom29] explaining the emergence of dry friction from a molecu-
lar origin. A treatment of this problem using EDP-convergence, as is discussed in the following section,
can be found in [DFM19].

We consider the Hilbert-space gradient system

M = H = R1, Fε(u) =
1

2
u2 + εα cos(u/ε) with α > 0, Rε(v) =

1

2
v2.

We see that the dissipation does not depend on ε at all and is given by the Euclidean distance Dε =
DEucl, in particular we have Dε = DEucl

cc−→ DEucl. For the energy, the condition α > 0 gives

Fε
cc−→ F0 : u 7→ 1

2
u2 =⇒ Fε

M−→ F0.

In this simple case, we can study the gradient-flow equation directly:

u̇ε = −DFε(uε) = −uε + εα−1 sin
(
uε/ε

)
, uε(0) = u0

ε.
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For α > 1 the right-hand side in the ODE convergences uniformly to −u and hence, we can expect
uε(t)→ u0

0 e−t for all t ≥ 0, if u0
ε → u0

0.

For α ∈ ]0, 1[ the situation is different. We see that u 7→ −DFε(u) has many zeros, indeed their
spacing around u0

ε is roughly πε, if εα−1 � |u0
ε|. Thus, the solutions t 7→ uε(t) get stuck between

two zeros. Indeed if DFε(uε) = 0 = DFε(uε) and u0
ε ∈ [uε, uε], then we have uε(t) ∈ [uε, uε] for

all t ≥ 0. By the fast oscillations of u 7→ sin(u/ε) we can always find uε and uε with uε−uε ≤ 4επ.
Thus, we conclude

α ∈ ]0, 1[ and u0
ε → u0

0 =⇒ uε(t)→ u0
0 for all t ≥ 0.

The constant limits u0 of the solutions uε are certainly not the solutions of the limiting gradient system
(R1,F0,DEucl).

For α = 1 a similar problem occurs: solutions uε starting with u0
ε → u0

0 ∈ [−1, 1] get stuck and
satisfy uε(t) → u0

0. For u0
0 > 1, first decay and reach u = +1 in finite time, namely uε(t) →

u0(t) = cosh
(

max{Arcosh(u0
0)−t, 0}).

One can easily check that all assumptions in (5.11) are satisfied except for (5.11e). This implies
that for the case α ∈ ]0, 1] there is no λ ∈ R, such that the evolutionary variational inequality
(EVI)λ has a solution for all ε ∈ ]0, 1]. Indeed, from the general existence result in Theorem 4.22,
we know that geodesic λ-convexity is a sufficient condition for existence. In this simple example we
haveD = DEucl, hence geodesic λ-convexity is Hilbert-space λ-convexity, which means D2Fε(u) =
1− εα−2 cos(u/ε) ≥ λ for all u ∈ R. Clearly, equi-semiconvexity only holds for α ≥ 2.

5.3 Evolutionary Γ-convergence using the energy-dissipation balance

The approach to evolutionary Γ-convergence in the previous section is restrictive because of two major
assumptions, namely (i) it applies only to classical gradient systems, i.e. ψ = ψquadr (but of course it
allows metric gradient systems), and (ii) it needs equi-λ-convexity.

The following result uses the energy-dissipation balance and hence is more flexible. Of course, the re-
sult is weaker which is seen in two aspects. First, we will not have uniqueness of solutions and hence
can only establish convergence along subsequences. Nevertheless, one can show that all accumula-
tion points of families of solutions solve the limiting problem. Second, we have to impose a stronger
condition on the convergence of the initial condition, i.e. they need to be well prepared :

well-preparedness of initial conditions: u0
ε → u0

0 and Fε(u0
ε)→ F0(u0

0) <∞.

Thus, we need the sequence of initial conditions (u0
ε)ε>0 to be a recovery sequence for u0

0 ∈ dom(F0).
While the restriction to recovery sequences is not too severe, the restriction to finite energy is signifi-
cant as we see in the Allen-Cahn equation where dom(Fε) = H1(Ω) is significantly smaller than the
whole space H = L2(Ω).

The proof of following convergence result is only a small variant of the existence result provided in
Theorem 3.13, but now we can start directly from the EDB for ε > 0 and pass to the limit in the four
terms. Results of this type were originally developed in [MRS13, Thm. 4.8], where still the stronger

conditionRε
M−→ R0 was imposed. Only in [LiR18] it was shown that the weaker conditionRε

Γ−→ R0

is sufficient.
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Theorem 5.15 (Evolutionary Γ-convergence using EDB) On a reflexive Banach space we consider
a family (X,Fε,Rε)ε≥0 of gradient systems. If we assume(

Rε

)
ε≥0

and
(
R∗ε)ε≥0 are state-independent and equi-superlinear; (5.13a)

Rε
Γ−→ R0 (or equivalently R∗ε

Γ
⇀ R∗0); (5.13b)(

Fε
)
ε≥0

is equi-compact; (5.13c)

Fε
Γ−→ F0, where F0 : X → R∞ is proper; (5.13d)

the subdifferentials
(
∂FFε(·)

)
ε≥0

are “closed for ε→ 0”, i.e.

uε → u0, ξε ⇀ ξ0,

∀ ε > 0 : ξε ∈ ∂FFε(uε)

}
=⇒ ξ0 ∈ ∂FF0(u0). (5.13e)

(X,F0,R0) satisfies the abstract chain rule (3.13); (5.13f)

then the following holds. If
(
uε
)
ε>0

is a family of EDB solutions uε : [0, T ]→ X for (X,Fε,Rε) with

well-prepared initial conditions, i.e. uε(0)→ u0
0 and Fε(uε(0))→ F0(u0

0), (5.14)

then there exists a subsequence εk → 0 and an EDB solution u0 : [0, T ]→ X for (X,F0,R0) with
u0(0) = u0

0 such that

uεk(t)→ u0(t) in X for all t ∈ [0, T ]; (5.15a)

u̇εk ⇀ u̇0 in L1([0, T ];X); (5.15b)

Fεk(uεk(t))→ F0(u0(t)) for all t ∈ [0, T ]. (5.15c)

In the proof we will also show the convergences∫ T

0

Rεk

(
u̇εk(t)

)
dt→

∫ T

0

R0

(
u̇0(t)

)
dt and

∫ T

0

R∗εk
(
−ξεk(t)

)
dt→

∫ T

0

R∗0
(
−ξ0(t)

)
dt,

which may be used to improve the convergences of u̇ε and ξε.

Before giving the proof of the above theorem we provide two auxiliary results. We leave the proof of
the first lemma as an exercise.

Lemma 5.16 (Γ-convergence of integral functionals) Consider an equi-superlinear family
(
Gε
)
ε≥0

of proper lsc functionals Gε : Y → R∞ on a reflexive Banach space Y satisfying Gε
Γ
⇀ G0. On

Z = L1([0, T ];Y ) define Jε(u(·)) :=
∫ T

0
Gε(u(t)) dt for T > 0 and all ε ∈ [0, 1]. Then, we have

Jε
Γ
⇀ J0.

The next result should be seen as a simple generalization of the closedness result derived in Proposi-
tion 2.6. It shows that equi-semiconvexity for the family

(
Fε)ε≥0 is sufficient to establish the condition

“closed for ε → 0” imposed abstractly in (5.13e). However, equi-semiconvexity is not necessary
which is easily seen in Example 5.14. There the wiggly energy Fε(u) = 1

2
u2 + εα cos(u/ε) is equi-

semiconvex for α ≥ 2, but the subdifferentials DFε(u) = u− εα−1 sin(u/ε) are “closed for ε→ 0”
whenever α > 1.
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Proposition 5.17 (Closedness for ε→ 0) On a reflexive Banach space X we consider a family(
Fε)ε≥0 that is equi-semiconvex, i.e.

∃λ ∈ R ∀ ε ∈ [0, 1] : Fε is λ-convex on X.

If Fε
Γ−→ F0, then we have the following closedness for ε→ 0:

uε → u0, ξε ⇀ ξ0,

∀ ε > 0 : ξε ∈ ∂FFε(uε)

}
=⇒ Fε(uε)→ F0(u0) and ξ0 ∈ ∂FF0(u0). (5.16)

Proof. We follow the proof of Proposition 2.6 but need to use the Γ-convergence Fε
Γ−→ F0.

Using the global characterization of the Fréchet subdifferential in Lemma 2.4 we have

∀ ε ∈ [0, 1] ∀wε ∈ W : Fε(wε) ≥ Fε(uε) + 〈ξε, wε−uε〉+
λ

2
‖wε−uε‖2. (5.17)

For all ŵ ∈ X (Γ. sup) provides a recovery sequence ŵε → ŵ with Fε(ŵε) → F0(ŵ). Setting
F ∗ = lim supε→0Fε(uε) and inserting wε = ŵε we can pass to the limit in (5.17) and arrive at

F0(ŵ) ≥ F ∗ + 〈ξ0, ŵ−u0〉+
λ

2
‖ŵ−u0‖2.

Choosing ŵ = u0 we find lim supε→0Fε(uε) = F ∗ ≤ F0(u0). By (Γ. inf) we also have F0(u0) ≤
lim infε→0Fε(uε), which implies Fε(uε) → F0(u0). Replacing F ∗ by F0(u0) is the last displayed
formula gives ξ0 ∈ ∂FF0(u0) as desired.

Proof of Theorem 5.15.

Step 0: approximating sequences. Here the given solutions uε : [0, T ]→ X serve as the approxima-
tions for the desired limiting solution u0 : [0, T ]→ X .

Step 1: a priori estimates. For ε > 0 we have EDB solutions, i.e.

Fε(uε(T )) +

∫ T

0

(
Rε

(
u̇ε(t)

)
+R∗ε

(
−ξε(t)

))
dt = Fε(uε(0)).

As in Step 1 of the proof of Theorem 5.12 we have

Fε(uε(0)) ≤ F0(u0
0)+1 and Fε(uε(0))−Fε(uε(T )) ≤ F0(u0

0)− inf F0 + 2 =: ∆F . (5.18)

According to assumption (5.13a) there exists a superlinear function ψ : R→ R such that∫ T

0

ψ
(
‖u̇ε(t)‖X

)
dt ≤ ∆F and

∫ T

0

ψ
(
‖ξε(t)‖X∗

)
dt ≤ ∆F .

As in Step 1 of the proof of Theorem 3.13 we obtain the equi-continuity∥∥uε(t)− uε(s)∥∥X ≤ ω∆F
ψ

(
|t−s|

)
for all t, s ∈ [0, T ] and ε > 0.

Finally, using Fε(uε(t)) ≤ Fε(uε(0)) ≤ F0(u0
0) + 1 and the equi-compactness assumed in (5.13c),

we find a compact set

K b X such that uε(t) ∈ K for all t, s ∈ [0, T ] and ε > 0.
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Step 2: extraction of convergent subsequences. According to Step 1 we can apply Arzelà-Ascoli’s se-
lection principle and find a subsequence εk → 0 and a continuous limit function u0 : [0, T ] → X
such that uεk → u0 in C0([0, T ];X). Moreover, using the superlinear bounds in the reflexive Banach
spaces X and X∗ we can choose a further subsequence (not relabeled) such that

u̇εk ⇀ u̇0 in L1([0, T ];X) and ξεk ⇀ ξ0 in L1([0, T ];X∗).

Step 3: limit passage in (EDB)ε, derivation of (EDI). For passing to the limit in (5.18) we will first derive
an energy-dissipation inequality (EDI), i.e. it will be enough to derive liminf estimates on the left-hand
side, but we need a limsup estimate for the right-hand side.

We first consider the two energy terms. For the right-hand side we simply use the well-preparedness
(5.14) to obtain the desired convergence. For the first term on the left-hand side we use (Γ. inf) from

Fε
Γ−→ F0 and the pointwise convergence from Step 2 and concludeF0(T )) ≤ lim infε→0Fε(uε(T )).

The two dissipation terms involvingRε andR∗ε, respectively, can be treated separately. Using ξεk ⇀

ξ0 in L1([0, T ];X∗) andR∗ε
Γ
⇀ R∗0 from (5.13b) we can apply Lemma 5.16 and find∫ T

0

R∗0
(
−ξ0(t)

)
dt ≤ lim inf

k→∞

∫ T

0

R∗εk
(
−ξεk(t)

)
dt.

For the remaining term the convergence u̇εk ⇀ u̇0 is not enough, because we only have Rε
Γ−→ R0

which does not allow for weak convergence. To compensate for that we do a time discretization via
τ = T/N and N ∈ N. Defining ûτ : [0, T ] → X to be the piecewise affine interpolant of u0 :
[0, T ]→ X satisfying ûτ (jτ) = u0(jτ) for j = 0, ..., N , we obtain∫ T

0

R0

(
u̇0(t)

)
dt =

N∑
j=1

∫ kτ

kτ−τ
R0(u̇0(t))dt

Jensen
≥

N∑
j=1

τ R0

(1

τ

∫ jτ
jτ−τ u̇0(t)dt

)
=

N∑
j=1

τ R0

(1

τ

(
u0(jτ)− u0(jτ−τ)

))
=

N∑
j=1

τ R0

(1

τ

∫ jτ
jτ−τ

˙̂uτ (t)dt
)

=

∫ T

0

R0

(
˙̂uτ (t)

)
dt.

Doing the same time discretization for ε > 0 we obtain the lower estimate

lim inf
k→∞

∫ T

0

Rεk

(
u̇εk(t)

)
dt ≥ lim inf

k→∞

N∑
j=1

τ Rεk

(1

τ

(
uεk(jτ)− uεk(jτ−τ)

))
∗
≥

N∑
j=1

τ R0

(1

τ

(
u0(jτ)− u0(jτ−τ)

))
=

∫ T

0

R0

(
˙̂uτ (t)

)
dt,

where
∗
≥ uses the liminf estimate of Rε

Γ−→ R0 and the strong convergence uεk(t) → u0(t) estab-
lished in Step 2.

In the last estimate we can now perform the limit τ = T/N → 0 and use ˙̂uτ → u̇0 strongly in
L1([0, T ];X), which implies, after extracting a subsequence τn → 0, the convergence ˙̂uτn(t) →
u̇0(t) a.e. in [0, T ]. Thus, using Fatou’s lemma and the lsc ofR0 we have

lim inf
τn→0

∫ T

0

R0

(
˙̂uτn(t)

)
dt

Fatou
≥

∫ T

0

lim inf
τn→0

R0

(
˙̂uτn(t)

)
dt

lsc
≥
∫ T

0

R0

(
u̇0(t)

)
dt.
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With this we have shown lim infk→∞
∫ T

0
Rεk

(
u̇εk(t)

)
dt ≥

∫ T
0
R0

(
u̇0(t)

)
dt, and the energy-

dissipation inequality

F0(u0(T )) +

∫ T

0

(
R0

(
u̇0(t)

)
+R∗0

(
−ξ0(t)

))
dt ≤ F0(u0(0))

is established.

It remains to identify ξ0, for this we use the closedness condition (5.13e) and argue as in Exercise 2.7
and obtain ξ0(t) ∈ ∂FF0(u0(t)) a.e. in [0, T ].

Step 4: Derivation of (EDB) for ε = 0. With the abstract chain rule assumed to hold in (5.13f) we can
apply the energy-dissipation principle from Theorem 3.9 and conclude that u0 is indeed a EDB solu-
tion.

Moreover, the chain rule implies that the liminf estimates in Step 3 were indeed limits such that
Fεk(uεk(T )) → F0(u0(T )) holds. However, we could have performed the liminf estimates on
any subinterval [0, t∗] with t∗ ∈ ]0, T [, from which we obtain Fεk(uεk(t∗)) → F0(u0(t∗)) for all
t∗ ∈ [0, T ].

5.4 EDP-convergence for gradient systems

In the above two section we studied the convergence of (a subsequence of) the solutions uε of a
gradient system (X,Fε,Rε) to a solution u0 of the limiting gradient system (X,F0,Reff ) where
F0 = Γ-limFε andReff = Γ-limRε in suitable topologies. It is important to note here that the two
Γ-limits are not independent, because both have to be considered in the same Banach space X . The
choice of X is dictated by the family of dissipation potentials

(
Rε

)
ε
. Then, the family

(
Fε
)
ε

has to be
considered in the same space X , and not in a so-called “energy space” which is often constructed as
the smallest space in which

(
Fε
)
ε

is weakly equi-compact.

However, there are situations in which the interaction between energy and dissipation is even stronger.
Recovery sequences for the energy may not be compatible with recovery sequences for the dissipa-
tion. In such cases, the effective dissipation Reff cannot be obtained by looking at the family

(
Rε

)
ε

alone, but one needs to consider the family of pairs
(
(Fε,Rε)

)
ε
. Such a definition is the so-called

EDP-convergence which was first defined in [LM∗17] and made more precise in [MMP21]. We also re-
fer to [DFM19] for a treatment of the wiggly-energy model of Example 5.14, to [MiS20, MPS21] for ap-
plications in reaction systems with slow and fast reactions, and to [Fre19, FrM21, Ste21, FrL21, PeS22]
for reaction-diffusion systems.

The name of EDP-convergence derives from convergence in the sense of the energy-dissipation prin-
ciple, because this notion of convergence is strongly linked to the EDP as formulated in Theorem 3.9 or
Proposition 4.12. We give the main ideas and a few examples by using the Banach space formulation,
but a similar theory can be obtained in the metric setting.

Considering the family (X,Fε,Rε)ε>0 of gradient systems and a time horizon T > 0, we define the
dissipation functionals

Dε(u) :=

∫ T

0

(
Rε(u(t), u̇(t)) +R∗ε

(
u(t),−DFε(u(t))

))
dt. (5.19)

Here we wrote the so-called “slope term of the dissipation” in terms ofR∗ε and a single-valued single-
valued subdifferential DFε. However, in general one can replace this term by the more correct defini-
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tion

Sε(u) := lsc
(
S̃ε
)

: u 7→ inf
{

inf
uk→u

S̃ε(uk)
∣∣ uk → u

}
, where

S̃ε(u) :=

{
inf{R∗ε(u,−ξ) | ξ ∈ ∂FF(u) } for ∂FF(u) 6= ∅,

∞ otherwise.

With this, the proper definition of Dε is given by Dε(u) =
∫ T

0

(
Rε(u, u̇)+Sε(u)

)
dt, however we will

continue to use the (R,R∗) form to emphasize the special duality character encoded into Dε.

The main point of the definition of Dε is that it is a functional on curves u : [0, T ]→ X , unlike to Fε,
which are functionals on the state space X . The idea is now to use classical Γ-convergence for the
functionals Dε as well, but now on a space of curves, let us say L2([0, T ];X). To reflect the idea of
gradient flows with well-prepared initial conditions we adapt the topology of L2([0, T ];X) by asking
the families of functions (uε)ε>0 additionally have uniformly bounded energy.

Definition 5.18 (Energy-bounded Γ-convergence of Dε) Given a Banach spaceX , a family (Fε)ε>0

of energies Fε : X → R∞, and a family (Dε)ε≥0 of functionals Dε : L2([0, T ];X) → R∞ we

say that Dε Γ-converges to D0 with bounded energies, and shortly write Dε
ΓE−→ D0 or D0 =

ΓE-limε→0 Dε, if the following holds:

Energy-bounded liminf estimate: (5.20a)

uε → u0 in L2([0, T ];X) and

supε≥0, t∈[0,T ]Fε(uε(t)) ≤ F∗ <∞

}
=⇒ lim inf

ε→0+
Dε(uε) ≥ D0(u0),

Energy-bounded limsup estimate: (5.20b)

∀ û0 ∈ L2([0, T ];X) with supt∈[0,T ]F0(û0(t)) ≤ F0 <∞
∃ F∗ ∈ R ∃

(
ûε
)
ε>0

with supε>0, t∈[0,T ]Fε(ûε(t)) ≤ F∗ :

ûε → û0 in L2([0, T ];X) and lim sup
ε→0+

Dε(ûε) ≤ D0(û0).

In particular applications, the choice L2([0, T ];X) for the space of curves can be replaced by other
function spaces and the condition of energy boundedness can be dropped or amended by other con-
ditions. The choice of a good notion of Γ-convergence should be seen as a problem-specific task or a
modeling issue.

Using the above notion we can now define the simplest notion of EDP-convergence, and we refer to
[DFM19, MMP21] for the more advance notions of “EDP-convergence with tilting” (in short tilt-EDP
convergence) and “contact EDP-convergence with tilting” (in short “contact-EDP convergence).

Definition 5.19 (EDP-convergence of gradient system) A family
(
(X,Fε,Rε)

)
ε>0

of gradient sys-
tems is said to converge in the sense of the energy-dissipation principle (in short “to EDP-converge”),
if there exists an effective gradient system (X,Feff ,Reff ) such that for all T > 0 the following holds:

Fε
Γ−→ Feff in X and Dε

ΓE−→ D0 in L2([0, T ];X)

where Dε is defined in (5.19) and D0 has the form

D0(u) =

∫ T

0

(
Reff

(
u(t), u̇(t)

)
+R∗eff

(
u(t),−DFeff (u(t))

))
dt.

We then shortly write (X,Fε,Rε)
EDP−→ (X,Feff ,Reff ) for ε→ 0+.
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We observe that EDP-convergence of gradient systems has similar properties as Γ-convergence of
functionals:

(I) The notion is independent of the concept of “solution”, which in the case of classical functionals
means minimizer (after adding a linear loading −〈`, ·〉) and in the case of gradient systems
systems means solutions of the gradient-flow equation (after adding an initial condition u(0) =
u0.

(II) Nevertheless, under suitable technical assumptions EDP-convergence of gradient systems im-
plies the convergence of solutions if the initial conditions are well-prepared, see Proposition
5.20.

(III) The EDP limit (X, Eeff ,Reff ) is uniquely determined by the family (X,Fε,Rε), see Remark
5.21. Asking only the liminf estimate for D0 will be enough to find some gradient structure that
produces the correct gradient-flow equation, but the uniqueness of the gradient structure is lost,
see Remark 5.24.

(IV) The involvement of general curves u ∈ L2([0, T ];X) in the definition of EDP-convergence can
be understood in the sense of fluctuation theory and the associated large-deviation principle,
which provide a thermodynamical justification of the theory of gradient systems, see e.g. the
discussion in [Pel14, Chap. 4] and [AD∗11, MPR14, MP∗17].

The next result shows that EDP-converge implies convergence of the solutions if suitable condi-
tions are met. This result corresponds to Theorem 5.6 and Corollary 5.8 for the case of (static) Γ-
convergence of functionals.

Proposition 5.20 (EDP-convergence implies convergence of solutions) Assume

(X,Fε,Rε)
EDP−→ (X,Feff ,Reff ) for ε → 0+ and that (X,Feff ,Reff ) satisfies the abstract chain

rule (3.13). Moreover, assume that for a sequence (εk)k∈N with εk → 0+ there are EDB solutions
uεk : [0, T ]→ X for (X,Fεk ,Rεk) satisfying

uεk → u in L2([0, T ];X), ∀ t ∈ [0, T ]: uεk(t)→ u(t) in X, and Fεk(uεk(0))→ F0(u(0)).
(5.21)

If additionally u ∈ AC([0, T ];X), then it is an EDB solution for (X,Feff ,Reff ), and for εk → 0+ we
have

Fεk(uεk(t))→ Feff (u(t)) for all t ∈ [0, T ] and Dεk(uεk)→ D0(u).

Proof. To simplify notation, we write ε in place of εk.

The argument uses the lsc property of the energy-dissipation balance as in previous sections. As uε
is an EDB solution we have

Fε(uε(T ))+Dε(uε) = Fε(uε(T )) +

∫ T

0

(
Rε(uε, u̇ε)+R∗ε(uε,−DFε(uε))

)
dt = Fε(uε(0)).

We pass to the limit ε→ 0+ in this relation. By the assumption of the well-preparedness of the initial
conditions uε(0) we have convergence on the right-hand side.

On the left-hand side we use Fε
Γ−→ Feff and pointwise convergence uε(T ) → u(T ) to obtain

Feff (u(T )) ≤ lim infε→0+ Fε(uε(T )).
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To treat the term Dε(uε) we observe that by the well-preparedness we haveFε(uε(0)) ≤ Feff (u(0))
+1 =: E∗ for sufficiently small ε. Hence, the EDB solutions uε satisfyFε(uε(t)) ≤ Fε(uε(0)) ≤ E∗.
Thus, we can use the energy-bounded liminf estimate and obtain D0(u) ≤ lim infε→0+ Dε(uε).

Using the duality structure of D0 in terms of Feff and Reff we see that u satisfies the energy-
dissipation inequality

Feff (u(T )) +

∫ T

0

(
Reff (u, u̇) +R∗eff (u,−DFeff (u))

)
dt ≤ Feff (u(0)).

Since u is absolutely continuous and (X,Feff ,Reff ) satisfies the abstract chain rule, we can apply
the energy-dissipation principle from Theorem (3.9) and conclude that u is an EDB solution.

As u is an EDB solution we know that EDI is in fact an EDB which implies that the liminf estimates are
indeed limits providing an equality. This proves Fε(uε(T )) → Feff (u(T )) and Dε(uε) → D0(u).
Since T can be replaced by any T ′ ∈ ]0, T [ the assertion is established.

(X,Fε,Rε)

u0
ε

Fε(u0
ε)

EDP

X

R

(X,Feff ,Reff )

u0
0

F0(u0
0)

ε −→ 0solving GFEε solving GFE0

for all t > 0:

well-preparedness:

uε(t) = Sεt (u
0
ε) u0(t) = S0

t (u
0
0)

(subseq.)

Figure 5.2: Commuting diagram for EDP-convergence and EDB solutions under suitable technical
conditions.

Figure (5.2) shows the corresponding commuting diagram that can be established if we have enough
compactness on the solutions (uε)ε>0 to extract subsequences satisfying the assumptions in (5.21).

Exercise 5.1 Discuss what additional conditions are needed such that the evolutionary Γ-convergence
in Theorem 5.15 can be turned into a result on EDP-convergence.

Remark 5.21 (On the uniqueness of EDP-limits) Assuming that there are two gradient structures
we first observe that Eeff andD0 as Γ-limits are uniquely determined. Hence, if there exist two effective
dissipation potentialsReff andReff generating D0 we must have

Reff (u, u̇) +R∗eff

(
u,−DFeff (u)

)
= Reff (u, u̇) +R∗eff

(
u,−DFeff (u)

)
=:M(u, u̇). (5.22)

Setting u̇ = 0 we have Reff (u, 0) = 0 = Reff (u, 0) and find immediatelyR∗eff

(
u,−DFeff (u)

)
=

M(u, 0) = R∗eff

(
u,−DFeff (u)

)
. Subtracting this identity from (5.22) and assuming M(u, 0) <

∞, we obtainReff (u, u̇) = Reff (u, u̇), which is the desired uniqueness.

The main advantage in the definition of EDP convergence is that it can be applied in degenerate cases,
where Rε and R∗ε are not uniformly coercive, but may degenerate for ε → 0+. Moreover, keeping
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the two termsRε(uε, u̇ε) andR∗ε(uε,−DFε(uε)) together we allow for the option that “microscopic
information of Fε may move intoReff ”. We may define

Drate
ε (u) =

∫ T

0

Rε(u, u̇)dt and Dslope
ε (u) =

∫ T

0

R∗ε(u,−DFε(u))dt,

such that Dε = Drate
ε + Dslope

ε .

Keeping the sum Drate
ε + Dslope

ε together is the main difference to the theory developed in [SaS04,
Ser11] where along EDB solutions uε → u the two independent liminf estimates∫ T

0

Reff (u, u̇)dt ≤ lim inf
ε→0+

Drate
ε (uε) and

∫ T

0

R∗eff (u,−DFeff (u))dt ≤ lim inf
ε→0+

Dslope
ε (uε)

(5.23)
are supposed. We emphasize that here the estimates are on EDB solutions and not on general curves.
For a discussion of this concept we refer to [Bra14, Sec. 11.2] and [Mie16, Sec. 3.3.3]. Note also
that our assumption for Theorem 5.15 are such that in Step 3 of the proof we can establish the two
estimates in (5.23).

We discuss now three simple ODE examples of EDP-convergence and refer to [Fre19, MiS20, MPS21,
FrM21, Ste21, FrL21, PeS22] for further applications including PDEs.

Example 5.22 (Two binary reactions generate one ternary reaction) In [Mie23] as reaction sys-
tem with four species with density vector c = (c1, c2, c3, c4) ∈ C := [0,∞[4 is considered that react
by two binary reaction pairs X1 +X2 
 X4 and X1 +X4 
 X3. The point is that X4 is considered
as an intermediate product that exists only with a much lower equilibrium density c∗4(ε) = ε2w∗, while
the other equilibrium densities c∗i for i = 1, 2, 3 are independent of ε.

The gradient system (C,Fε,R∗ε) is given by

Fε(c) = λB

( c4

ε2w∗
)
ε2w∗ +

3∑
i=1

λB

( ci
c∗i

)
c∗i and

R∗ε(c; ξ) =
κ1

ε
(c1c2c4)1/2C∗

(
ξ1+ξ2−ξ4

)
+
κ2

ε
(c1c3c4)1/2C∗

(
ξ1−ξ3+ξ4

)
.

The associated gradient-flow equation is the following reaction-rate equation

ċ =
κ1

ε

(A1

ε
c4 −

ε

A1

c1c2

) 1
1
0
−1

+
κ2

ε

( ε

A2

c3 −
A2

ε
c1c4

) 1
0
−1
1

 ,

where A1 := (c∗1c
∗
2/w

∗)1/2 and A2 =
(
c∗3/(c

∗
1w
∗)
)1/2

. We see that that setting c4 = ε2w leads to a
right-hand side that is independent of ε, but then we have ε2ẇ on the left-hand side.

Doing the formal limit ε→ 0+ (which can be justified rigorously, see [Bot03]) we arrive at ċ1

ċ2

ċ3

0

 = κ1

(
A1w −

1

A1

c1c2

) 1
1
0
−1

+ κ2

( 1

A2

c3 − A2 c1w
) 1

0
−1
1

 .

From the last equation we can calculate w explicitly as via (κ1A1+κ2A2)w = κ1
A1
c1c2 + κ2

A2
c3. Note

that the relation for w guarantees that the two terms in front of the stoichiometric vectors must be
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equal, such that we are left with one reaction only having the form(
ċ1

ċ2

ċ3

)
= κeff (c1)

(A1

A2

c3 −
A2

A1

c2
1c2

)( 2
1
−1

)
with κeff (c1) =

κ1 κ1

κ1A1 + κ2A2c1

.

Thus, the effective reaction for ε→ 0 is the ternary reaction pair 2X1 +X2 
 X3.

So far, the analysis was on the gradient-flow equation only. The EDP-limit (C,Feff ,Reff ) is shown to
exist in [Mie23], where

Fε
Γ−→ Feff : c 7→

{∑3
i=1 λB(ci/c

∗
i )c
∗
i for c4 = 0,

∞ for c4 > 0,
and

R∗eff (c; ξ) = κeff (c1)
(
c2

1c2c3

)1/2
C∗
(
2ξ1+ξ2−ξ3

)
.

In the next example we return to the wiggly-energy model that was already discussed in Example
5.14. We now follow the analysis in [DFM19, MMP21] where contact EDP-convergence with tilting to
the gradient system (R,Feff ,Reff ) was established (cf. [MMP21, Def. 2.14]). Here we establish the
weaker notion of EDP-convergence to the gradient system (R,Feff ,Reff ).

Example 5.23 (EDP-convergence for the wiggly-energy model) We consider a variant of the wiggly-
energy problem studied in Example 5.14, namely (R,Fε,Rε) with

Fε(u) = φ(u)− Aε

2π
cos(2πu/ε) and Rε(v) =

1

2
v2,

where A is a positive constant. Obviously, we have

Fε → Feff : u 7→ φ(u) and Rε → R0 : v 7→ 1

2
v2.

However, the Γ-limit D0 of

Dε : u 7→
∫ T

0

(1

2
u̇2 +

1

2

(
φ′(u) + A sin(2πu/ε)

)2
)

dt

is nontrivial, see [DFM19], and has the form D0(u) =
∫ T

0
M(u̇, φ′(u))dt with

M(v, ξ) = inf
{ ∫ 1

0

(v2

2
z′(s)2 +

1

2

(
ξ+A sin(2πz(s))

)2
)

ds
∣∣∣ z ∈ H1(]0, 1[), z(1) = z(0)+1

}
.

From the definitions we easily see the symmetries M(−v, ξ) = M(v, ξ) = M(v,−ξ).

Moreover, [DFM19, Lem. 4.3] provides the following expansion for v ≈ 0:

M(v, ξ) = M0(ξ) +M1(ξ)|v|+O(|v|3/2) with M0(ξ) =
1

2
min{|ξ|−A, 0}2

and M1(ξ) =

∫ 1

0

((
ξ+A sin(2πy)

)2 − 2M0(ξ)
)1/2

dy.
(5.24)

Here M1 can be evaluated explicitly (see also Figure 5.3) giving

M1(ξ) =

{
2
π

(√
A2−ξ2 + ξ arcsin(ξ/A)

)
for |ξ| ≤ A,

2
π

(√
|ξ|−A+ |ξ| arcsin

(√
A/|ξ|

))
for |ξ| ≥ A.
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We first observe that we have the estimate M(v, ξ) ≥ ξv for all v, ξ ∈ R, which is a remainder of
the Fenchel-Young inequality. To see this, we observe∫ 1

0

(v2

2
z′(s)2 +

1

2

(
ξ+A sin(2πz(s)

)2
)

ds ≥
∫ 1

0

vz′(s)
(
ξ+A sin(2πz(s)

)
ds (5.25)

= vξ

∫ 1

0

z′(s)ds+ vA

∫ 1

0

z′(s) sin(2πz(s))ds

= vξ
(
z(1)−z(0)

)
+
vA

2π

(
cos(2πz(0))− cos(2πz(1))

)
= vξ,

where we used the boundary condition z(1) = z(0)+1 for the last identity. Taking the infimum over z
gives M(v, ξ) ≥ ξv as desired.

Moreover, we can discuss the equality M(v, ξ) = ξv explicitly. For v = 0 we have M(0, ξ) = 0 if
and only if ξ ∈ [−A,A] by the form ofM0. For v > 0, we see that the equalityM(v, ξ) = ξv implies
equality a.e. for the integrand in (5.25), i.e. vz′(s) = ξ+A sin(2πz(s)) > 0 and hence ξ > A. With
this we find

1 =

∫ 1

s=0

ds =

∫ 1

s=0

vz′(s) ds

ξ+A sin(2πz(s))
=

∫ z(0)+1

z=z(0)

v dz

ξ + A sin(2πz)
=

v√
ξ2−A2

.

With the similar argument for v < 0, we obtain 0 6= |v| =
√
ξ2−A2. As a result we have shown that

∀ ξ ∈ R : min
{
M(v, ξ)− ξv

∣∣ v ∈ R} = 0. (5.26)

We now define the effective dissipation potentialReff via

Reff (u, v) := M(v, φ′(u))−M(0, φ′(u)).

By definition we have Reff (u, 0) = 0, and the results in [DFM19, Prop. 4.11] show Reff (u, v) =
Reff (u,−v) ≥ 0 and the convexity ofReff (u, · ).

It remains to show the representation

M(v, φ′(u)) = Reff (u, v) +R∗eff

(
u,−DFeff (u)

)
. (5.27)

Using DFeff (u) = φ′(u) we obtain

R∗eff

(
u,−φ′(u)) = sup

v∈R

(
−φ′(u)v −Reff (u, v)

)
= sup

v∈R

(
−φ′(u)v−M(v, φ′(u))+M(0, φ′(u))

)
= sup

v∈R

(
−φ′(u)v−M(v,−φ′(u))

)
+M(0, φ′(u)) = 0 +M(u, φ′(u)).

Using the definition ofReff this implies (5.27), and the desired EDP-convergence for the wiggly-energy

model is established, i.e. we have (R,Fε,R)
EDP−→ (R,Feff ,Reff ).

However, following the argumentation in [DFM19, MMP21] the derived effective dissipation poten-
tial Reff is somehow artificial, because Reff depends on the force ξ = φ′(u) via Reff (u, v) =
M(v, φ′(u)) −M(0, φ′(u)). The notion of contact EDP-convergence appears tilting (see [MMP21,
Def. 2.14]) is more more natural and leads to the effective dissipation potentialReff with

Reff (v) = A2R(v/A) with R(w) =
1

2

(
|w|
√

1+w2 + log
(
|w|+

√
1+w2

))
,

which is independent of u and hence of the force φ′(u). But the limit D0 of the dissipation integrals Dε

coincides with
∫ T

0

(
Reff (u̇)+R∗eff (−φ′(u))

)
dt only along solutions u of the effective gradient-flow

equation u̇ = ∂ξR
∗
eff (u,−DFeff (u)) = ∂ξR∗eff (−DFeff (u)).
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Figure 5.3: The function ξ1 7→ M1(ξ) (blue) from (5.24) is plotted for the case A = 1 together with
ξ 7→ |x| (orange).

Remark 5.24 (Nonuniqueness when using liminf only) Often it is argued that for obtaining the ef-
fective gradient-flow equation it is not necessary to establish any limsup estimate for D0. In particular,
in the Sandier-Serfaty theory [SaS04, Ser11] only the liminf estimates (5.23) are requested. This is
indeed true, but one has to be aware that by this approach we lose the uniqueness of the gradient
structure. If we only impose the liminf estimates we may have two different gradient structures, which
both generate the same effective equation.

As an example consider the wiggly-energy model consider in the previous example. We claim that we
can find R̃ such that R̃(u, v) + R̃∗(u,−DFeff (u)) � M(u, v). Clearly, then the liminf estimate
holds trivially, but the limsup estimate is false. To find an example the ideas is to make R smaller in
some region where it does not increase the slope term R∗(u,−DFeff (u)). To be more precise, we
choose θ ∈ C0(R; [0, 1]) with θ(ξ) = 1 for |ξ| ≥ A and θ(ξ) ∈ ]0, 1[ for |ξ| < A and set

R̃(u, v) = θ(φ′(u))Reff (u, v) +
(
1−θ(φ′(u))

)
|φ′(u)| |v| ≥ |φ′(u)| |v|.

For the last estimate we used Reff (u, v) ≥ M1(φ′(u))|v| and M1(ξ) ≥ |ξ| with M1 defined in
(5.24), see also Figure 5.3.

Using the convexity ofReff (u, ·) we have R̃(u, v) � Reff (u, v). BecauseReff (u, ·) = R̃(u, ·) for
|φ′(u)| ≥ A we also have R̃∗(u,−DFeff (u)) = R∗eff (u,−DFeff (u)) in that range. However, for
|φ′(u)| < A we easily obtain R̃∗(u,−DFeff (u)) = 0 = R∗eff (u,−DFeff (u)).

Thus, we see that D0 generated by Reff⊕R
∗
eff as well as D̃ generated by R̃⊕R̃∗ satisfy the liminf

estimate for the family Dε.

6 Rate-independent systems

6.1 Introduction to rate independence

A very special case of gradient systems is obtained in the so-called rate-independent case. This is a
very degenerate model class where R(u, ·) : X → [0,∞] is positively homogeneous of degree 1
(shortly: one-homogeneous), i.e.

∀λ > 0 ∀u, v ∈ X : R(u, λv) = λR(u, v).

This case is only interesting if the energy depends on t ∈ [0, T ], i.e. we consider F : [0, T ]×X →
R∞ where the dependence t 7→ F(t, u) for fixed u describes an external loading like in a Banach
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space with F(t, u) = E(u)− 〈`(t), u〉. The gradient-flow equation reads

0 ∈ ∂R(u(t), u̇(t)) + ∂FF(t, u(t)) ∈ X∗. (6.1)

The term “rate independence” stems from the fact that for a (smooth and) strictly increasing transfor-
mation φ : [0, S] → [0, T ] of the loading in the form F̃(s, u) = F(φ(s), u) a solution u : [0, T ] →
X for (X,F ,R) transforms to a solution ũ : s 7→ u(φ(s)) for (X, F̃ ,R), and vice versa. The rea-
son for this is that v 7→ ∂R(u, v) is positively 0-homogeneous, i.e. ∂R(u, λv) = ∂R(u, v). Indeed
the following result shows that the subdifferential of a one-homogeneous function has very special
properties.

Lemma 6.1 (Subdifferential of one-homogeneous functionals) Consider a lsc, positively one-
homogeneous functional Ψ : X → R∞, then the subdifferential ∂Ψ satisfies

∀ v ∈ X : ∂Ψ(v) =
{
ξ ∈ ∂Ψ(0) ⊂ X∗

∣∣ 〈ξ, v〉 = Ψ(v)
}
.

This formula shows that rate independence of ∂Ψ(v) in the sense that the subdifferential does not
depend on the length of v but only on the direction.

Of course, we see that our existence theory developed in previous sections does not apply, because
v 7→ R(u, v) is not superlinear. Hence, a special theory needs to be develop but nevertheless many
similarities to the superlinear case remain. In the metric setting the rate-independent case corresponds
to the choice ψ = ψid : r 7→ r.

We refer to the surveys [Mie05, Mie11a] and the monograph [MiR15] for the full theory which was de-
veloped in parallel in the works starting with [MiT99, MTL02, MiT04] using the name “rate-independent
systems” and the works [FrM98, DaT10, FrL03, DFT05] using the name “quasistatic evolution”. In the
following we give a very short introduction into the theory with the single goal to show the connections
of this theory with the general theory of gradient systems.

As a simple example we consider the case M = X = R1 with the energy F(t, u) = a
2
u2 − uλt,

where a > 0 and λ ∈ R, and the dissipation potential R(u, v) = 2|v| + v satisfying ∂R(u, 0) =
[−1, 3]. The differential form (6.1) of the system takes the form

0 ∈ 2 Sign(u̇) + u̇+ au− λt, (6.2)

where v 7→ Sign(v) ⊂ R is the set-valued signum function obtained as subdifferential of v 7→ |v|.
E.g. starting with u(0) = 0 we obtain the solution

u(t) =

{
max

{
0, (λt−3)/a

}
for λ ≥ 0,

min
{

0, (λt+1)/a
}

for λ ≤ 0.

6.2 Energetic solutions

The concept of energetic solutions plays the role of curves of maximal slope in the metric setting,
but there are two major differences. First, the solutions are no longer absolutely continuous, i.e. they
are allowed to have jumps with respect to the time variable t ∈ [0, T ]. Second, we can allow the
dissipation distance D : M×M → [0,∞] to be an extended quasi-distance, i.e. D doesn’t have to
be symmetric and it may take the value∞. Hence, we have to be careful about the order of arguments
when writing the triangle inequality for D. We emphasize that in the following we will always use the
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order “D(uold, unew)”, where ‘old’ and ‘new’ refer to the ordering of the time variable t ∈ [0, T ],
because D is considered to be a dissipation distance which associates with an arrow of time.

To simplify our exposition here, we assume that there is another true metric D : M×M → [0,∞[
satisfying D(u,w) ≤ D(u,w).

Definition 6.2 (Energetic rate-independent system) A triple (M,F ,D) is called an energetic rate-
independent system (ERIS) with metric D : M×M → [0,∞[, if

(E.1) (M,D) is a complete metric space;

(E.2) F : [0, T ]×M → R∞ is lsc on (M,D) with domain domF = [0, T ]×Fdom 6= ∅;
(E.3) ∃ CE, cE > 0 ∀ u ∈ Fdom : F(·, u) ∈ C1([0, T ]) and

|∂tF(t, u)| ≤ CE

(
F(t, u)+cE

)
for all t ∈ [0, T ];

(E.4) D : M×M → [0,∞] is lsc on on (M,D) and D(u,w) ≤ D(u,w) for all u,w ∈M ;

(E.5) ∀ u1, u2, u3 ∈M : D(u1, u3) ≤ D(u1, u2) +D(u2, u3) and D(u1, u1) = 0.

Below we will define energetic solutions (also called quasistatic evolutions) as natural limit of the time-
incremental minimization scheme. We emphasize that the rate-independent case associates with the
scalar dissipation function ψri(r) = r, whence the metric construction

τ ψri

(1

τ
D(uk−1, u)

)
= D(uk−1, u)

in Definition 4.1 simplifies considerably. In particular, the time step τ disappears completely, which can
be seen again as a manifestation of rate independence. Thus, defining a partition 0 = t0 < t1 <
· · · < tN−1 < tN = T we obtain

rate-independent time-incremental minimization scheme (TIMS)

uk minimizes u 7→ D(uk−1, u) + F(tk, u). (6.3)

We again emphasize that the time step τk = tk−tk−1 does not show up because of rate indepen-
dence. This fact can be used in material modeling for the study of microstructures in nonlinear plasticity
[OrR99, CHM02, CoT05], in shape memory alloys [MTL02, BaK11, DeK13], or in crack propagation
[DaT02, DFT05, DaZ07, DR∗21].

The following result shows that one easily obtains useful information from this minimization scheme
even without having a subdifferentials.

Proposition 6.3 (TIMS for ERIS) Assume that (uk)k=1,..,N solve the TIMS for the ERIS (M,F ,D),
then we have, for all k ∈ {1, . . . , N},

(i) F(tk, uk) +D(uk−1, uk) ≤ F(tk, uk−1) = F(tk−1, uk−1) +
∫ tk
tk−1

∂sF(s, uk−1)ds.

(ii) F(T, uN) +
∑N

m=1D(um−1, um) ≤ F(0, u0) +
∫ T

0
∂sF(s, u(s))ds.

(iii) uk minimizes the functional w 7→ D(uk, w) + F(tk, w).

(iv) F(tk, uk) +
∑k

j=1D(uj−1, uj) ≤ eCEtk
(
F(0, u0) + cE

)
− cE.

Assertion (ii) uses the right-continuous interpolant u : [0, T ]→M , see (3.9).

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



An introduction to the analysis of gradients systems 93

Proof. (i) is a simple consequence of (6.3) when comparing with u = uk and u = uk−1.

(ii) then follows by summing over k = 1 to N .

To obtain (iii) we use the triangle inequality for D in
4
≤ and obtain

D(uk, uk) + F(tk, uk) ≤ 0 + F(tk, uk) +D(uk−1, uk)−D(uk−1, uk)

(6.3)
≤ F(tk, w) +D(uk−1, w)−D(uk−1, uk)

4
≤ D(uk, w) + F(tk, w),

which is the desirable result.

For (iv) we abbreviate fk = F(tk, uk) + cE and dk = D(uk−1, uk) and find

fk + dk
(i)
≤ fk−1 +

∫ tk

tk−1

CE

(
F(s, uk−1)+cE

)
ds (6.4)

∗∗
≤ fk−1 +

∫ tk

tk−1

CEeCE(s−tk−1)fk−1 ds = eCE(tk−tk−1)fk−1,

where
∗∗
≤ exploits that (E.3) combined with Grönwall’s lemma leads to the estimate F(s, uk−1)+cE ≤

eCE|t−s|(F(t, uk−1)+cE). Using dk ≥ 0 we first obtain fk ≤ eCEtkf0.

With this we return to (6.4) and estimate as follows:

fN +
N∑
j=1

dN =
N∑
j=1

(fk+dk)−
N−1∑
k=1

fk ≤
N∑
k=1

fk−1 eCE(tk−tk−1) −
N−1∑
k=1

fk

= f0 eCE(t1−t0) +
N∑
k=2

fk−1

(
eCE(tk−tk−1) − 1

)
≤ f0 eCEt1 +

N∑
k=2

f0 eCEtk−1
(
eCE(tk−tk−1) − 1

)
= f0 eCEtN .

Noting that N can be replaced by any k ∈ {1, .., N} assertion (iv) is established.

In the above we recognize that (ii) is a discrete energy balance in the spirit of (3.11) or (4.20); however,
it is unclear whether a term involving R∗ or ψ∗ is missing. We will see that this is not the case,
because of the special structure of ψ = ψid, leading to the dual function ψ∗id(ζ) = 0 for ζ ∈ [0, 1] and
ψ∗id(ζ) =∞ for ζ > 1.

An important observation is the so-called global stability satisfied by uk as is shown in (iii). We define
the set of globally stable states

S(t) :=
{
u ∈M

∣∣ F(t, u) <∞ and ∀ w ∈M : F(t, u) ≤ F(t, w) +D(u,w)
}

and call its elements the (globally) stable states. This stability has the simple interpretation that it is
energetically not favorable to move from u to another pointw if the dissipated energyD(u,w) is taken
into account. In the toy example (6.2) we have S(t) =

[
(λt−3)/a, (λt+1)/a

]
.

To compare this concept with the metric theory we recall the notion of global metric slope (4.5) from
the classical metric theory and introduce the same object also for the extended quasi-metricD, where
we have to be careful about the order of the arguments:

∂gl
0 F(t, ·) D(u) :=


∞ for u 6∈ dom(F(t, ·)),

sup
{ [F(t, u)−F(t, w)

]
+

D(u,w)

∣∣∣ w ∈M }
for u 6∈ dom(F(t, ·)).

(6.5)
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By simply comparing the definitions we clearly obtain the equivalence

u ∈ S(t) ⇐⇒ ∂gl
0 F(t, ·) D(u) ≤ 1. (6.6)

For the dissipated energy we also need an adaptation as follows. For arbitrary curves u : [0, T ]→M
defined pointwise but assuming no continuity or measurability, we define for all s, t ∈ [0, T ] with s < t
the variation dissipation

VarD(u, [s, t]) := sup
{ N∑

k=1

D
(
u(tk−1), u(tk)

) ∣∣∣ N ∈ N, s ≤ t0 < t1 < · · · < tN ≤ t
}
.

By our assumption D ≤ D every curve with VarD(u, [0, T ]) <∞ also satisfies VarD(u, [0, T ]) <
∞ in the complete metric space (M,D). This implies that such a u can have at most countably many
jump points and that left and right limits

u(t−) := lim
h→0+

u(t−h) and u(t+) := lim
h→0+

u(t+h)

exist for all t ∈ [0, T ] (by definition one sets u(0−) = u(0) and u(T+) = u(T )).

We are now ready to give a precise definition of a suitable notion of solutions for ERIS.

Definition 6.4 (Energetic solutions [Mie05, Def. 3.1]) A curve u : [0, T ] → M is called an ener-
getic solution for the ERIS (M,F ,D) if the global stability (S) and the energy equality (E) hold:

(S) u(t) ∈ S(t) for all t ∈ [0, T ],

(E) F(T ;u(T )) + VarD(u, [0, T ]) = F(0, u(0)) +

∫ T

0

∂sF(s, u(s))ds.

We emphasize that the solutions are defined pointwise and that the condition of global stability is
asked for all t ∈ [0, T ]. Moreover, the energy balance (E) is posed only for the whole time interval
[0, T ]. However, using the chain rule from below it follows that it is valid on all subintervals, i.e. for all
r, t ∈ [0, T ] with r < t we have

F(t;u(t)) + VarD(u, [r, t]) = F(r, u(r)) +

∫ t

r

∂sF(s, u(s))ds.

It is even possible to consider the limits r ↗ s and t↘ s to obtain the jump conditions

F(s, u(s+)) +D(u(s), u(s+)) = F(s, u(s)) and F(s, u(s)) +D(u(s−), u(s)) = F(s, u(s−)).

Recall that it is possible that the three states u(s−), u(s), and u(s+) may be mutually different.

Finally, we remark that it is tempting to rewrite (S) and (E) inR⊕R∗ form:

F(T ;u(T ))+

∫ T

0

(
ψid

(
u̇ D(t)

)
+ψ∗id

(
∂gl

0 F(t, ·) D(u)
))

dt = F(0, u(0))+

∫ T

0

∂sF(s, u(s))ds.

Since ψ∗id only takes the value 0 and∞, the finiteness of the left integral encodes the condition (S)
at least almost everywhere. However, the major difficulty is to define the metric speed at jump points
taking care of the possibly three different values u(s−), u(s), and u(s+). Hence, it turns out that it
is much easier and truly necessary to use the exact and pointwise formulation (S)&(E) from Definition
6.4.
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6.3 Existence of energetic solutions

The following existence result follows exactly along the lines of the existence theory for curves of
maximal slope. We will repeat the main arguments to show the analogies as well as the differences.
The first major difference is that we cannot appeal to the Arzelá-Ascoli theorem because of the missing
superlinearity. However, a metric version of Helly’s selection theorem as derived in [MaM05, Thm. 3.2].

A second difference is more formal than mathematical. It was already observed in [MTL02, Thm. 2.5]
that the global stability (S) implies a “lower energy estimate” which is the corresponding version of the
metric chain-rule inequality, see (4.8). We will see that the proof is considerably simpler than that of
Proposition 4.11, because the stability condition is equivalent to the property that the global slope is
bounded by 1, see (6.6).

The essential new condition is the so-called “closedness of the stable sets in (6.7b), which can be
seen as a replacement of the lower semicontinuity of the (global) slope. This condition is nontrivial
here because we allowD to be non-continuous and take the value +∞, see the discussion in Section
6.4.

Theorem 6.5 (Existence of energetic solutions) Let the ERIS (M,F ,D) satisfy the conditions (E.1)
to (E.5). Moreover, assume the following properties:

compactness of sublevels:

∀ E > 0 ∀ t ∈ [0, T ] : S
F(t,·)
E =

{
u ∈M

∣∣ F(t, u) ≤ E
}

is compact, (6.7a)

closedness of the stable sets:

ti → t, ui → u, ui ∈ S(ti) =⇒ u ∈ S(t), (6.7b)

conditional continuity of the power ∂tF :

ti → t, ui → u, sup
i∈N
F(ti, ui) <∞ =⇒ ∂tF(ti, ui)→ ∂tF(t, u). (6.7c)

Then, for all u0 ∈ S(0) there exists an energetic solution u : [0, T ] → M for the ERIS (M,F ,D)
with u(0) = u0. In particular, every accumulation point in the sense of pointwise convergence of a
sequence of piecewise interpolants for the time-incremental minimization scheme (6.3) is an energetic
solution.

Before going into the proof of the existence theorem, we will shortly discuss the version of the met-
ric chain-rule inequality for ERIS. An important point is now that the solutions are not continuous,
hence we can only derive an integrated version. Moreover, we need to generalize the theory to time-
dependent energies. To see the analogy we observe that integrating the differential metric chain-rule
inequality (4.8) over t ∈ [r, s] we find

F(u(s)) +

∫ s

r

u̇ D(t) ∂F D(u(t)) dt ≥ F(u(r))

For stable states we have ∂F D(u(t)) ≤ ∂glF D(u(t)) ≤ 1, such that
∫ s
r
u̇ D(t) dt =

VarD(u, [r, s]) remains, where the last identity holds for absolutely continuous curves. Thus, the
chain-rule inequality (6.8) appears naturally in the context of ERIS. Because of the global slope con-
dition the proof is considerably simpler than that of Proposition 4.11.

DOI 10.20347/WIAS.PREPRINT.3022 Berlin 2023



A. Mielke 96

Proposition 6.6 (Rate-indep. chain-rule inequality) Consider the ERIS (M,F ,D) satisfying the
conditions (E.1)–(E.5) as well as (6.7c). If the curve u : [0, T ] → M satisfies u(t) ∈ S(t) for all
t ∈ [r, s[ and supt∈[r,s]F(t, u(t)) <∞, then we have the chain-rule inequality

F(s, u(s)) + VarD(u, [r, s]) ≥ F(r, u(r)) +

∫ s

r

∂tF(t, u(t))dt. (6.8)

Proof. By assumption t → F(t, u(t)) is bounded. Using (E.3) also the power ∂tF(t, u(t)) is
bounded such that the right-hand side in (6.8) is finite. Hence, the assertion holds if VarD(u, [r, s]) =
∞. Thus, we can assume VarD(u, [r, s]) <∞ from now on.

We choose an arbitrary partition r = t0 < t1 < · · · < tN = s and set uj = u(tj), fj = F(tj, uj)
and dj = D(uj−1, uj). For j = 0, ..., N−1, we have uj ∈ S(tj) which implies fj ≤ F(tj, uj+1) +
dj+1. Hence, we have

fj+1 + dj+1 − fj = fj+1 −F(tj, uj+1) =

∫ tj+1

tj

∂tF(t, uj+1)dt for j = 0, 1, ..., N−1.

Summing of these j and using the left-continuous interpolant u (cf. (3.9)) we find

F(s, u(s)) + VarD(u, [r, s])−F(r, u(r)) ≥ fN +

j−1∑
j=0

dj+1 − f0 ≥
∫ s

r

∂tF(t, u(t))dt. (6.9)

Finally we choose the sequence of partitions by setting τN = (s−r)/N and tNj = r+jτN . This gives
the piecewise constant interpolants uN : [0, T ] → M . As VarD(u, [r, s]) < ∞, we have uN(t) →
u(t) for all t ∈ [r, s] except for the jump points of u, which are at most countable. Moreover, (E.3)
and the boundedness of t 7→ F(t, u(t)) implies |∂F(t, uN(t))| ≤ C . Together with the assumed
continuity of the power (6.7c) we can pass to the limit in the right-hand side of (6.9) and obtain the
desired lower energy estimate.

Proof of Theorem 6.5. We follow the same five steps as in the existence proof for curves of maximal
slope, see Theorem 4.18.

Step 0: Construction of approximants. We choose an arbitrary sequence of partitions 0 = tN0 < tN1 <

· · · < tNN1
< tNN = T whose fineness φN := max

{
tNj −tNj−1

∣∣ j = 1, ..., N
}

tends to 0 for
N →∞.

The time-incremental minimization problem (6.3) is solvable in each step, because D(uNk−1, ·) and
F(tk, ·) are lsc on M and F(tk, ·) has compact sublevels by (6.7a). By Proposition 6.3 the right-
continuous interpolants uN : [0, T ]→M satisfy the discrete a priori estimate

F(T, uN(T )) + VarD(uN , [0, T ]) ≤ F(0, u0) +

∫ T

0

∂tF(t, uN(t))dt, (6.10)

where we use the identity VarD(uN , [0, T ]) =
∑N

j=1D
(
uN(tj−1), uN(tj)

)
which holds for piece-

wise constant interpolants.

Step 1: A priori estimates. Proposition 6.3 provides the a priori estimates

∀N ∈ N ∀ t ∈ [0, T ]: F(t, uN(t)) + VarD(uN , [0, T ]) ≤ eCET
(
F(0, u0)+cE

)
− cE =: C∗.
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Using (E.3) we obtain F(0, uN(t))+cE ≤ eCEt
(
F(t, uN(t))+cE

)
≤ eCETC∗ + cE = C∗∗. Thus,

we have
∀N ∈ N ∀ t ∈ [0, T ]: uN(t) ∈ SF(0,·)

C∗∗
bM,

where we used the compactness of sublevels from (6.7a).

Step 2: Extraction of a converging subsequence. The a priori estimates from Step 1 allows us to apply
the abstract version of Helly’s selection principle (see [MaM05, Thm. 3.2] or [MiR15, Thm. B.5.13]).
This implies that there exists a subsequence

(
uNl
)
l∈N and a limit function u : [0, T ]→M such that

we have the pointwise convergence

∀ t ∈ [0, T ] : uNl(t)→ u(t) in (M,D).

In particular, from uN(0) = u0 we conclude u(0) = u0 as desired.

Step 3: Derivation of the upper energy estimate. To pass to the limit Nl → ∞ in (6.10) we first ob-
serve that the lsc of F(T, ·) gives F(T, u(T )) ≤ lim inf l→∞F(T, uNl(T )). For the second term
on the left-hand side we deduce lsc from the lsc of D as follows. follows.

For arbitrary partitions 0 = t1 < t1 < · · · < tN = T we have

N∑
j=1

D
(
u(tj−1), u(tj)

) D lsc
≤ lim inf

l→∞

N∑
j=1

D
(
uNl(tj−1), uNl(tj)

)
≤ lim inf

l→∞
VarD(uNl , [0, T ]) ≤ C∗.

Taking now the supremum over all partitions on the left-hand side gives VarD(u, [0, T ]) ≤
lim inf l→∞VarD(uNl , [0, T ]) as desired.

For the power integral on the right-hand side in (6.10) we can pass to the limit (not liminf) by the same
arguments as at the end of the proof of Proposition 6.6, i.e. we use (E.3) and (6.7c) once again. In
summary, we have shown that the limiting curve u : [0, T ]→M satisfies the upper energy estimate

F(T, u(T )) + VarD(u, [0, T ]) ≤ F(0, u(0)) +

∫ T

0

∂tF(t, u(t))dt. (6.11)

Step 4: Derivation of energetic solutions. By Proposition 6.3(iii) we have the discrete global stability
uN(tNj ) ∈ S(tNj ). Now fix a t ∈ [0, T ] such that uNl(t)→ u(t). By the construction of the piecewise
constant interpolants we have uN(t) = uN(tNjN (t)) for t − φN < tNjN (t) ≤ t, where φN is the

fineness of the partition. Hence, t̃l = tNljNl (t)
→ t, uNl(t) → u(t), and uNl(t) ∈ S(t), which

implies u(t) ∈ S(t) by the closedness assumption (6.7b). Since t ∈ [0, T ] was arbitrary, we have
established the global stability condition (S).

Moreover, we have shown now all the conditions that are necessary for Proposition 6.6, and we obtain
the the lower energy estimate (6.8). Together with the upper estimate in (6.11), we have established
the energy balance (E), and hence u : [0, T ]→M is an energetic solution.

6.4 Closedness of the stable sets

The crucial and nontrivial condition for showing existence of energetic solutions is the closedness
of the stable sets, namely condition (6.7b). This difficulty is comparable to the difficulty of showing
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closedness of the subdifferentials in rate-dependent gradient system in Banach spaces or to showing
lsc of the metric slope.

The first case is the easiest case, namely when D is continuous.

Lemma 6.7 (Closedness of S via continuity) Assume that the ERIS (M,F ,D) satisfies (E.1)–(E.5)
and that D : M×M → [0,∞[ is continuous, then the closedness condition (6.7b) holds.

Proof. From ui ∈ S(ti) we have

∀ w ∈M : F(ti, ui) ≤ F(ti, w) +D(ui, w).

We simply pass to the limit i → ∞ using ti → t, ui → u, (E.3), and the lsc of F(t, ·). This we
obtain

F(t, u) ≤ lim inf
i→∞

F(ti, ui) ≤ lim
i→∞

(
F(ti, w) +D(ui, w)

)
= F(t, u) +D(u,w),

which is the desired result.

A typical application of this theory are models used for hysteresis in ferromagnetic materials, see
[MiR15, Sec. 4.4]. A simplistic version is given by

M = L1(Ω;Rd), D(u,w) = ρ‖u−w‖L1 , F(t, u) =

∫
Ω

(κ
2
|∇u|2+F (u)−H(t)·u

)
dx,

where u : Ω → Rd plays the role of the magnetization and H(t) : Ω → Rd is a time-dependent,
applied field.

However, in many applications the continuity of D is too strong. In some cases a unidirectionality
condition is desirable, which leads to

Dunidir(u,w) =

{∫
Ω

(
w(x)− u(x)

)
dx if w ≥ u a.e. in Ω,

∞ else.

Typical applications of this idea are in damage processes ([Tho10, KnS12, KRZ13]) or crack propaga-
tion [FrL03, DFT05, DaZ07, DaT10], not allowing for any healing.

In such cases the theory of “mutual recovery sequences” can be helpful. The MRS condition (intro-
duced in [MRS08] as JRS) reads as follows:

for (tj, uj)→ (t∗, u∗) with uj ∈ S(tj) and û ∈M
there exists

(
ûj
)
j∈N such that ûj → û and (6.12)

lim sup
j→∞

(
F(tj, ûj)+D(uj, ûj)−F(tj, uj)

)
≤ F(t∗, û)+D(u∗, û)−F(t∗, u∗).

In the theory of crack propagation this condition is established via the so-called “jump transfer lemma”,
see [FrL03, DFT05].

Lemma 6.8 (Closedness of S via MRS) Assume that the ERIS (M,F ,D) satisfies (E.1)–(E.5) and
(6.12), then the closedness condition (6.7b) holds.
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Proof. We consider tj, t∗, uj , and u∗ as in (6.7b). The closedness is established if we can show
u∗ ∈ S(t∗).

For an arbitrary test state û we choose
(
ûj
)
j∈N as provided in (6.7b). Then, we have

F(t∗, û)+D(u∗, û)−F(t∗, u∗) ≥ lim sup
j→∞

(
F(tj, ûj)+D(uj, ûj)−F(tj, uj)

)
≥ 0

where the last estimate follows via ui ∈ S(ti). Rearranging the terms gives u∗ ∈ S(t∗).

The usefulness of this condition is already seen in classical linearized elastoplasticity, where we have

D(u,w) =
∥∥u−w‖L1(Ω) and F(t, u) =

1

2
〈Au, u〉L2(Ω) − 〈`(t), u〉.

Here A = A∗ is bounded and positive definite operator on L2(Ω). Since L2(Ω) does not compactly
embed into L1(Ω) the construction of solutions has to be based on the weak topology, in L2(Ω), but
D is only lsc but not continuous.

Nevertheless, the construction of a recovery sequence works because we can use cancellations in the
terms appearing in the limsup condition in (6.12). For a sequence uj ⇀ u in L2 and a fixed û ∈ L2

we define
ûj = û+ uj − u.

Clearly, we have D(uj, ûj) = D(u, û), i.e. the two weakly converging sequences cancel each other.
Similarly, using the quadratic structure of F(t, ·) we have

F(tj, ûj)−F(tj, uj) =
1

2
〈A(û−u), û+2uj−u〉 − 〈`(tj), û−u〉

→ 1

2
〈A(û−u), û+u〉 − 〈`(t∗), û−u〉 = F(t∗, û)−F(t∗, u).

This shows that the construction of mutual recovery sequences as in (6.12) works for this case.
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[MRS08] A. Mielke, T. Roubı́ček, and U. Stefanelli: Γ-limits and relaxations for rate-independent evolutionary
problems. Calc. Var. Part. Diff. Eqns. 31 (2008) 387–416.
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