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Optimality conditions in control problems with random state
constraints in probabilistic or almost-sure form

Caroline Geiersbach, René Henrion

Abstract

In this paper, we discuss optimality conditions for optimization problems subject to random
state constraints, which are modeled in probabilistic or almost sure form. While the latter can
be understood as the limiting case of the former, the derivation of optimality conditions requires
substantially different approaches. We apply them to a linear elliptic partial differential equation
(PDE) with random inputs. In the probabilistic case, we rely on the spherical-radial decomposition
of Gaussian random vectors in order to formulate fully explicit optimality conditions involving a
spherical integral. In the almost sure case, we derive optimality conditions and compare them to a
model based on robust constraints with respect to the (compact) support of the given distribution.

1 Introduction

Uncertainty appears in many applications in optimization, from finance to medicine to engineering,
due to unknown inputs or parameters in underlying systems. Ignoring uncertainty can lead to solutions
that poorly reflect how the system behaves with high probability. This fact holds true no matter if the
space of decisions is finite-dimensional as in operations research or infinite-dimensional as in PDE-
constrained optimization. The present work concerns itself with the second context. For an introductory
monograph on PDE-constrained optimization under uncertainty, we refer to [26]. One way to classify
different approaches in this field consists in considering the degree of risk involved in decision making:
on the one end of the spectrum, one deals with risk-neutral (expectation-based) models, e.g., [8, 12,
27]. On the other end, one is rather interested in absolutely safe decisions and addresses uncertainty
via almost sure constraints [13, 14]. In between these two extremes, reasonable compromises can be
made based on several risk-averse approaches such as conditional value-at-risk (CVaR), value-at-risk
(VaR), stochastic dominance, or robust constraints [1, 9, 22, 23, 26]. Besides modeling, numerical
solution, and structural analysis, there have been efforts in the past few years to derive optimality
conditions for problems involving random PDEs, see [23] (without state constraints, meaning additional
constraints on the solution of the PDE) or [12, 13, 14] (with almost sure state constraints).

In this paper, we consider optimality conditions for problems of the form

min
u∈U

F (u) subject to (s.t.) P(g(u, ξ) ≤ 0) ≥ p (p ∈ (0, 1]), (1)

where U is a Banach space, ξ is some random vector on a probability space (Ω,F ,P), g is a (ran-
dom) constraint function, and p is some given probability level. Constraints like those appearing in
(1) are referred to as probabilistic or chance constraints. They express the condition that a feasible
decision u has to guarantee the satisfaction of the random inequality constraint g ≤ 0 at least with
probability p. This can be equivalently formulated by a value-at-risk constraint as mentioned above.
Probabilistic constraints have been introduced in the context of operations research problems more
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than 60 years ago by Charnes et al. [6]. Their algorithmical treatment and theoretical understanding
have been fundamentally advanced by Prékopa, whose monograph [32] is still a fundamental refer-
ence on this topic in finite-dimensional optimization. Modern presentations can be found in [38] or
[40], respectively. In recent years, there has been growing interest in considering probabilistic con-
straints in the framework of optimal control in general or PDE-constrained optimization in particular,
e.g., [5, 10, 11, 15, 16, 24, 29, 39]. These works include proposals for numerical approaches as well
as structural investigations.

The abstract problem (1) encompasses PDE-constrained optimization subject to probabilistic state
constraints. The contribution of the present work will consist in deriving explicit optimality conditions
for problems of this type, where the state is the solution of a random linear elliptic PDE. The challenge
here lies first in providing the optimality conditions for the problem as is (i.e., without an approxima-
tion and without the use of asymptotic arguments). As a second challenge, the random state con-
straints involved are uniform with respect to the domain. This leads to probabilistic constraints that are
joint with respect to an infinite number of random inequalities. For such constraints, the name “pro-
bust"(probabilistic/robust) was coined. Their theoretical analysis [10, 42] and algorithmic treatment [3]
is still in its infancy and Section 2 of the present work makes a contribution to these investigations
as well. Our workhorse for the derivation of optimality conditions will be the so-called spherical-radial
decomposition of Gaussian random vectors (which actually generalizes to any elliptically-symmetric
distribution). This tool has proven to be useful in many applications involving the numerical treatment
of probabilistic constraints (e.g., [3, 11]) as well as for the analytic derivation of (sub-) gradients of
the decision-dependent probability function (e.g., [18, 41]). As a typical outcome, these (sub-) gra-
dients are represented as spherical integrals, which makes them—contrary to derivative formulae in
which the domain of integration is decision-dependent—amenable to numerical approximation and
theoretical manipulation.

It is noteworthy that admitting a probability level of p = 1 in (1) allows one (at least formally) to observe
almost sure constraints of the type “g(u, ξ) ≤ 0 P-a.s.” in the model. We shall see, however, that the
derivation of optimality conditions in Section 2 requires a restriction of probability levels to values
strictly smaller than one. It does not make sense either to consider optimality conditions in the limit
when driving p towards one because then the Lagrange multiplier tends to infinity; see Example 3.1.
Therefore, in order to arrive at optimality conditions for almost sure constraints, one has to rather use
functional-analytic approaches originally developed for two-stage stochastic programming [33, 34, 35,
36] and further for problems in PDE-constrained optimization in [13, 14]. On the other hand, almost
sure constraints are closely tied with robust constraints of the type “g(u, z) ≤ 0” for all z belonging
to the support of the random vector. This opens yet another perspective to the derivation of optimality
conditions in case one is interested in absolute safety. In Section 3, we will shed some light on various
approaches to optimality conditions in such models and their comparison in the context of the PDE
mentioned above.

1.1 Notation

The dual space of a Banach spaceX is denoted byX∗. Throughout, the duality pairing 〈·, ·〉X∗,X will
be written as 〈·, ·〉 since the underlying spaces can be easily guessed by the elements used in the
pairing. Weak convergence is denoted by ⇀. A norm on a Banach space X is denoted by ‖·‖X and
the Euclidean norm is denoted by ‖·‖2.

Given a set D ⊂ Rd, the space Lp(D) denotes the usual Lebesgue space with the Lebesgue
measure on D. For q ∈ [1,∞], the Sobolev space W 1,q(D) is given by the set of Lq(D) functions
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Optimality conditions in control problems with random state constraints 3

with weak derivatives in Lq(D); the set W 1,q
0 (D) is the set of W 1,q(D) functions that vanish on the

boundary ∂D. We have H1(D) = W 1,2(D) and the dual space W−1,q(D) := (W 1,q′(D))∗ with
1
q

+ 1
q′

= 1.

Given a probability space (Ω,F ,P) and a Banach space X , the Bochner space LrP(Ω, X) :=
Lr(Ω,F ,P;X) is the set of all (equivalence classes of) strongly measurable functions y : Ω → X
having finite norm, where the norm is given by

‖y‖Lr
P(Ω,X) :=

{
(
∫

Ω
‖y(ω)‖rX dP(ω))1/r, r <∞

ess supω∈Ω‖y(ω)‖X , r =∞
.

Given a compact topological space K and a Banach space X , the set C(K,X) is the set of con-
tinuous functions from K into X , where the norm is given by ‖f‖C(K,X) := supz∈K ‖f(z)‖X . If

X = R, we write C(K) as a shorthand for C(K,R). The set C0,α(K) denotes the space of α-Hölder
continuous functions on D for α ∈ (0, 1).

Given Banach spaces Y and Z , the set of bounded linear operators from Y to Z is denoted by
L(Y, Z). The Fréchet derivative of F : X → R is denoted by DF : X → L(X,R) = X∗. For
appropriate functions f defined on X , we denote by ∂f, ∂Cf, ∂Ff, ∂Mf the classical subdifferen-
tial of convex analysis, the Clarke subdifferential, the Fréchet subdifferential, and the Mordukhovich
subdifferential, respectively. For the definition of these objects, we refer the reader to the standard
monographs [7, 28, 30]. Partial subdifferentials are understood as subdifferentials of partial functions.
For a locally Lipschitzian function f : X → R, we denote by

f 0(x;h) := lim sup
x′→x,t↓0

f(x′ + th)− f(x′)

h

its Clarke directional derivative at x ∈ X in direction h ∈ X . We recall that a locally Lipschitzian
function is called Clarke regular at some point if for all directions its ordinary directional derivative
exists at that point and coincides with its Clarke directional derivative.

1.2 A model PDE

As mentioned in the introduction, we will focus on the derivation of optimality conditions for a problem
involving a random linear elliptic PDE. In this section, we will introduce this PDE and provide regularity
results that will be of use later. We first consider the following parametrized elliptic PDE

−∆ŷ(x, z) = u(x) + f(x, z), (x, z) ∈ D × Ξ,

ŷ(x, z) = 0, (x, z) ∈ ∂D × Ξ.
(2)

Here, D is an open bounded subset of Rd with the boundary ∂D and Ξ is a (possibly unbounded)
subset of Rm. The Laplacian ∆y =

∑d
i=1

∂2

∂x2i
y acts only on the variable x. For the first result, we will

require the domain to be of class S, meaning that there exist constants γ ∈ (0, 1) and r0 > 0 such
that meas(Br(x)\D) ≥ γmeas(Br(x)) for all x ∈ ∂D and for all r < r0. This classical definition
from [21] prevents inward cusps of D, and is a mild requirement that covers many domains of interest
from the literature, such as Lipschitz and convex domains. We impose the following assumptions on
problem (2).
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C. Geiersbach, R. Henrion 4

Assumption 1.1. The open and bounded set D ⊆ Rd (d = 1, 2, 3) is of class S. Additionally,
u ∈ L2(D) and the function f : Rd × Rm → R is defined by

f(x, z) := f0(x) +
m∑
i=1

ziφi(x) (3)

for some given f0, φi ∈ L2(D).

The choice (3) will be motivated later in Remark 1.3. First, we establish well-posedness of (2) under
this assumption.

Lemma 1.2. Suppose Assumption 1.1 holds. Then for any u, f0, φi ∈ L2(D) (i = 1, . . . ,m) and
every z ∈ Ξ, there exists a unique solution ŷ(·, z) ∈ H1

0 (D)∩ C(D̄) of (2). Moreover, there exists a
constant C > 0 such that

‖ŷ(·, z)‖C(D̄) ≤ C(‖z‖2 + ‖u+ f0‖L2(D)). (4)

Proof. By the Lax–Milgram lemma, the operator −∆ defines an isomorphism between H1
0 (D) and

H−1(D). In particular, problem (2) has a unique solution ŷ(·, z) ∈ H1
0 (D) for every z ∈ Ξ and every

u, f0, φi ∈ L2(D) (i = 1, . . . ,m). For d = 1, (4) follows trivially. For d = 2, 3, the result follows by
[21, Chapter II, Appendix B and C].

It is worth mentioning that [21] gives an even stronger result than we need here, namely Hölder
continuity of solutions as well as continuity of the operator A−1

q : W−1,q(D) → C0,α(D̄) for some
α ∈ (0, 1), Aq being the part of−∆ in W−1,q(D) (q = 4). Such regularity can be obtained for more
general elliptic PDEs than presented here; see [17] and the references therein. Due to the continuity of
the embeddings ι1 : L2(D) → W−1,q(D) (for d = 1, 2, 3) and ι2 : C0,α(D̄) → C(D̄), the operator
A : L2(D) → C(D̄) defined by A := ι2 ◦ Aq ◦ ι1 has a continuous inverse. With this operator, we
can define the parametrized control-to-state operator S : L2(D)× Rm → C(D̄) by

S(u, z) := A−1(u+ f(·, z)) =: P (u, z) + y0. (5)

Here, P (u, z) = A−1u+
∑m

i=1 ziA
−1φi and y0 = A−1f0. Due to (4), we have

‖S(u, z)‖C(D̄) ≤ C(‖z‖2 + ‖u+ f0‖L2(D)), (6)

making S a continuous operator. Applying (6) to the special case f0 = 0, we also have

‖P (u, z)‖C(D̄) ≤ C(‖z‖2 + ‖u‖L2(D)) (7)

so that P is a continuous linear operator.

Now, suppose ξ = (ξ1, . . . , ξm) : Ω→ Rm is a random vector. We will consider the following elliptic
PDE with a random right-hand side generated by ξ:

−∆y(x, ω) = u(x) + f(x, ξ(ω)), x ∈ D P-a.s.,

y(x, ω) = 0, x ∈ ∂D P-a.s.
(8)

Remark 1.3. The random source term from (8) in combination with the structure given by (3) might
result, for instance, from the truncation of a Karhunen–Loève expansion of a random field onD. Since
the random vector ξ has images in Rm, the source term also satisfies the finite-dimensional noise
assumption frequently employed in numerical simulations. It is worth mentioning that, for the purpose
of this work, we exclude the case of random diffusion terms and that this, in combination with the
structure afforded by (3), will be needed to prove convexity of the probability function in Section 2.2.
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Optimality conditions in control problems with random state constraints 5

Finally, the following measurability statement holds true and thus justifies the setting of (8).

Lemma 1.4. For each x ∈ D̄ the mapping ω 7→ y(x, ω) is measurable.

Proof. Thanks to y(x, ω) = [S(u, ξ(ω))](x) and to ξ being measurable as a random vector, the
claim follows by the continuity of the mappings z 7→ [S(u, z)](x) for each x ∈ D̄. To see this, let
zn → z and observe that, by linearity of P and by (7),

|[S(u, z)](x)− [S(u, zn)](x)| = |[P (0, z − zn)](x)| ≤ C ‖z − zn‖2 → 0 ∀x ∈ D̄.

2 Probabilistic constraints in optimal control

Before dealing with probabilistic state constraints in the application, we collect some general results
on probabilistic constraints.

2.1 General framework

We consider the following general optimization problem with probabilistic constraints:

min
u∈U

F (u) s.t. ϕ(u) ≥ p (p ∈ (0, 1]). (9)

Here,U is a reflexive and separable Banach space,F : U → R is some convex, Fréchet differentiable
cost function, and ϕ : U → R denotes a probability function defined by

ϕ(u) := P(ω | g(u, ξ(ω)) ≤ 0).

In the definition above, ξ is an m-dimensional Gaussian random vector defined on the probability
space (Ω,F ,P) and having a centered Gaussian distributionN (0,Σ) with covariance matrix Σ, and
g : U × Rm → R is some constraint function. As ϕ is not analytically given, it is important to derive
some analytical properties (Lipschitz continuity, convexity) from the given data (g, ξ). To this end, we
make the following general assumption on g:

g is locally Lipschitzian and g(u, ·) is convex for all u ∈ U. (GA)

In the following, we will fix a point of interest ū ∈ U and require two additional assumptions at that
point. The first one requires that the mean zero of the distribution of ξ is a Slater point of the convex
inequality g(ū, z) ≤ 0:

g(ū, 0) < 0. (10)

We note that this assumption is not restrictive. Indeed, requiring a Slater point is necessary in order to
guarantee that the probability function ϕ is at least continuous. But, if some Slater point exists at all,
then the mean zero will be a Slater point too whenever ϕ(ū) ≥ 0.5, see [41, Proposition 3.11]. On
the other hand, ϕ(ū) is typically close to one in probabilistic programming.

Our general assumptions (GA) along with (10) guarantee that ϕ is (strongly) continuous at ū (see,
e.g., [18, Theorem 1]). However, the fact that g is even locally Lipschitzian does not yet imply the
same property for ϕ despite the nice probability distribution (multivariate Gaussian), see [18, Example
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1]. Similarly, Fréchet differentiability of g does not imply the same property of ϕ, see [41, Proposition
2.2]. These counterexamples are based on the fact that at the point of interest ū ∈ U , the set

M := {z ∈ Rm | g(ū, z) ≤ 0} (11)

of feasible realizations of the random vector may be unbounded. In order to derive the local Lipschitz
continuity of ϕ in our setting and then to estimate its Clarke subdifferential, we need the following
condition of moderate growth to be satisfied at ū:

∃l > 0 ∀h ∈ U : g◦(·, z)(u;h) ≤ l ‖z‖−m2 exp

(
‖z‖2

2

2 ‖Σ1/2‖2

)
‖h‖U

∀u ∈ B1/l (ū) ,∀z : ‖z‖2 ≥ l.

(12)

Here, g◦(·, z)(u;h) refers to the Clarke directional derivative of the locally Lipschitzian (by (GA))
partial function g(·, z) at the argument u in direction h. Moreover, Σ1/2 denotes a root of Σ.

Next, we introduce a radial probability function e : U × Sm−1 → R defined by

e(u, v) := µη{r ≥ 0 | g(u, rΣ1/2v) ≤ 0}, (13)

where µη is the one-dimensional chi distribution with m degrees of freedom. The following represen-
tation of the total probability function ϕ as a spherical integral over the radial probability function e is a
consequence of the well-known spherical radial decomposition of Gaussian random vectors:

ϕ(u) =

∫
Sm−1

e(u, v) dµζ(v) (u ∈ U). (14)

The following result on subdifferentiation under the integral sign holds true:

Theorem 2.1 ([18], Theorem 5, Corollary 2 and Proposition 6). In addition to the basic assumptions
(GA) let (10) and (12) be satisfied at some ū ∈ U (instead of (12), we may alternatively assume
that the set M in (11) is bounded). Then, the partial radial probability functions e(·, v), v ∈ Sm−1,
are uniformly locally Lipschitzian around ū with a Lipschitz constant independent of v. Moreover, the
(total) probability function ϕ is locally Lipschitzian around ū and its Clarke subdifferential at ū can be
estimated from above by

∂Cϕ(ū) ⊆
∫

Sm−1

∂Cu e(ū, v) dµζ(v). (15)

Here, µζ refers to the uniform distribution on Sm−1, ∂C is the Clarke subdifferential, and ∂Cu to the
partial Clarke subdifferential with respect to u. If, in addition, the condition

µζ{v ∈ Sm−1 | #∂Cu e(ū, v) ≥ 2} = 0 (16)

is satisfied, then the Clarke subdifferential of ϕ at ū reduces to a singleton and equality holds in (15).
As a consequence, ϕ is strictly differentiable at ū in the Hadamard sense [7, p. 30].

The integral above is to be understood in the sense of Aumann. In particular, the asserted inclusion
means that for each x∗ ∈ ∂Cϕ(ū) there exists a measurable selection x̂∗v ∈ ∂Cu e(ū, v) (for µζ -a.e.
v ∈ Sm−1) such that

x∗(h) =

∫
Sm−1

x̂∗v(h) dµζ(v) ∀h ∈ U.
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Optimality conditions in control problems with random state constraints 7

At this point one might wonder why the inclusion in Theorem 2.1 is not sharp apart from the differ-
entiable situation under condition (16). The reason lies in Clarke’s theorem on subdifferentiation of
integral functionals [7, Theorem 2.7.2], which provides a sharp estimate only in case that the inte-
grand is Clarke regular. It is easily seen that the radial probability function fails to be Clarke regular
in general. However, at this point one may pick up a remark by Clarke [7, Remark 2.3.5] pointing to
the fact that sharp results may be shown also for functions being the negative of a Clarke regular one.
This observation allows us in the following, by slightly strengthening our assumptions, to derive an
identity rather than upper estimate in the formula of Theorem 2.1. In order to prepare this argument,
we observe that by continuity, (10) holds locally, i.e., there exists some neighborhood N (ū) of ū with
g(u, 0) < 0 for all u ∈ N (ū). Then, thanks to the convexity assumption in (GA), for each u ∈ N (ū)
and each v ∈ Sm−1, there exists a unique (possibly infinite) ρ(u, v) such that

{r ≥ 0 | g(u, rΣ1/2v) ≤ 0} = [0, ρ(u, v)]. (17)

If, in particular, ρ(u, v) <∞, then this value is the unique solution in r of the equation

g(u, rΣ1/2v) = 0. (18)

In other words, we have defined a “radius function"ρ : N (ū)×Sm−1 → R∪{∞} such that the radial
probability function e from (13) may be represented locally around ū by

e(u, v) =

{
Fη(ρ(u, v)) if ρ(u, v) <∞
1 if ρ(u, v) =∞ ∀u ∈ N (ū) ∀v ∈ Sm−1, (19)

where Fη refers to the cumulative distribution function of the (one-dimensional) chi distribution with m
degrees of freedom. We are now in a position to establish the Clarke regularity of the negative radial
probability function.

Lemma 2.2. In addition to the general assumptions (GA), suppose that the constraint function g is
jointly convex in both variables. Consider some ū ∈ U with (10) and assume that the set M in (11) is
bounded. Then, for each v ∈ Sm−1, the function−e(·, v) is Clarke regular on the open neighborhood
N (ū) introduced above.

Proof. By our assumptions and by (19), the radial probability function has the representation

e(u, v) = Fη(ρ(u, v)) ∀u ∈ N (ū) ∀v ∈ Sm−1.

We observe first that for each fixed v ∈ Sm−1, the partial radius function ρ(·, v) : N (ū) → R is
concave. Indeed, let u1, u2 ∈ N (ū) and λ ∈ [0, 1] be arbitrary. Then, by (18),

g(u1, ρ(u1, v)Σ1/2v) = g(u2, ρ(u2, v)Σ1/2v) = 0

and thus, by convexity of g,

g(λu1 + (1− λ)u2, λρ(u1, v)Σ1/2v + (1− λ)ρ(u2, v)Σ1/2v) ≤ 0.

Now, (17) yields that

λρ(u1, v) + (1− λ)ρ(u2, v) ≤ ρ(λu1 + (1− λ)u2, v).

This shows the asserted concavity statement. Next, we extend the cumulative distribution function for
the chi distribution from R+ to R via

F ∗η (t) :=

{
Fη(t) t ≥ 0,

−Fη(−t) t < 0.

DOI 10.20347/WIAS.PREPRINT.3021 Berlin 2023



C. Geiersbach, R. Henrion 8

Since for t > 0, the derivative of Fη equals the probability density function for the chi distribution,
which for arbitrary degrees of freedom is a continuous function, it follows readily by construction that
F ∗η is continuously differentiable. Moreover, F ′η(t) ≥ 0 for all t ≥ 0 because Fη is a distribution
function. This implies that (F ∗η )′(t) ≥ 0 for all t ∈ R. We now have that

−e(u, v) = −Fη(ρ(u, v)) = F ∗η (−ρ(u, v)) ∀u ∈ N (ū) ∀v ∈ Sm−1.

Let us fix an arbitrary v ∈ Sm−1. As we have shown that −ρ(·, v) : N (ū)→ R is convex, the same
function is Clarke regular [7, Proposition 2.3.6]. Therefore, −e(u, v) is the composition of a contin-
uously differentiable, hence Clarke regular (see [7, Proposition 2.3.6]) function having non-negative
derivative everywhere with another Clarke regular function and is therefore itself Clarke regular [7,
Theorem 2.3.9 (i)].

Theorem 2.3. Under the assumptions of Lemma 2.2, one has the exact formula

∂Cϕ(ū) =

∫
Sm−1

∂Cu e(ū, v) dµζ(v).

Proof. Under the assumptions we made, the function e is continuous onN (ū)×Sm−1 [18, Proposition
1]. In particular, −e(u, ·) : Sm−1 → R is measurable for each u ∈ N (ū). Moreover, according
to Theorem 2.1, the functions e(·, v) and, hence, −e(·, v) with v ∈ Sm−1, are uniformly locally
Lipschitzian around ū with a Lipschitz constant independent of v. Since constants are integrable with
respect to the uniform measure on the sphere, all assumptions of Theorem 2.72 in [7] are satisfied for
the relation

−ϕ(u) =

∫
Sm−1

−e(u, v) dµζ(v) (u ∈ U),

which is equivalent to (14). Accordingly, the mentioned theorem ensures the inclusion

∂C(−ϕ)(ū) ⊆
∫

Sm−1

∂Cu (−e)(ū, v) dµζ(v).

By the Clarke regularity of the functions −e(·, v) on N for each v ∈ Sm−1 (shown in Lemma 2.2),
the same theorem even guarantees that this inclusion reduces to an equality. Then, however, we may
exploit the linearity of Clarke’s subdifferential in order to show that

∂Cϕ(ū) = −∂C(−ϕ)(ū) = −
∫

Sm−1

∂Cu (−e)(ū, v) dµζ(v) =

∫
Sm−1

∂Cu e(ū, v) dµζ(v).

Apart from Lipschitz continuity or even differentiability of the constraint, it would be interesting to know
what convexity properties are inherent to problem (9). Given the assumed convexity of the objective,
it is tempting to verify the concavity of ϕ in order to arrive at a fully convex problem. Unfortunately,
being bounded by zero and one, probability functions are hardly ever concave (they would have to be
constant then which is extremely untypical). Nonetheless, some generalized concavity, so-called log-
concavity, may hold true, which allows one to reformulate the problem as a convex one. Indeed, one
may derive (e.g., [10, Proposition 4]) from well-known results by Prékopa (see [32, Theorem 10.2.1]),
the following statement:

If g is quasi-convex (jointly) in both variables and if the density of ξ is log-concave, then the probability
function ϕ is log-concave too, i.e., logϕ is concave under the convention log 0 :=∞.
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Lemma 2.4. If g is quasi-convex (jointly) in both variables, then the optimization problem (9) can be
reformulated as the convex optimization problem

min
u∈U
{F (u) | ϕ̃(u) ≤ 0} (p ∈ (0, 1]), (20)

where ϕ̃ : U → R ∪ {∞} is an extended-valued convex function defined by ϕ̃(u) := − logϕ(u) +
log p for u ∈ U under the convention − log 0 := ∞. Moreover, the function ϕ̃ is lower semicontinu-
ous.

Proof. Our conventions on the log along with the assumption that p > 0 yield the equivalence

ϕ(u) ≥ p⇐⇒ − logϕ(u) + log p ≤ 0 ∀u ∈ U.

Consequently, (9) and (20) are equivalent optimization problems. Since the density of our Gaus-
sian random vector ξ is log-concave, the statement preceding this lemma yields that ϕ̃ is (possibly
extended-valued) convex and, hence, (20) is a convex optimization problem. As mentioned above,
our general assumptions (GA) along with (10) guarantee that the probability function ϕ is strongly
continuous. As a consequence, for each t ∈ R, the upper level sets

{u ∈ U | ϕ(u) ≥ t}

are (strongly) closed in U . Now, let τ ∈ R be arbitrarily given. Then, the identity (again thanks to
p > 0)

{u ∈ U | ϕ̃(u) ≤ τ} = {u ∈ U | ϕ(u) ≥ pe−τ}

yields the closedness of the left-hand side set thanks to the closedness of the right-hand side upper
level set (with respect to the level t := pe−τ ). Since τ was arbitrary, we have shown that all lower level
sets of ϕ̃ are (strongly) closed, which is the same as saying that ϕ̃ is (strongly) lower semicontinuous
on U .

Now, we are in a position to formulate necessary and sufficient optimality conditions for the originally
nonconvex problem (9).

Proposition 2.5. We strengthen the general assumptions (GA) by assuming that the constraint func-
tion g is jointly convex in both variables. Let there exist some û ∈ U with ϕ(û) > p (generalized
Slater point). Consider some u∗ ∈ U that is feasible in (9) and satisfies assumptions (10) and (12)
(instead of (12), we may alternatively assume that the set M in (11) is bounded). Then, for u∗ to be a
solution to (9), it is necessary and sufficient that there exists some λ ≥ 0 with

DF (u∗) ∈ λ∂Cϕ(u∗), λ(ϕ(u∗)− p) = 0. (21)

In particular, for u∗ to be a solution to (9), it is necessary that there exists some λ ≥ 0 such that

DF (u∗) ∈ λ
∫

Sm−1

∂Cu e(u
∗, v) dµζ(v), λ(ϕ(u∗)− p) = 0, (22)

where e refers to the radial probability function introduced in Theorem 2.1. If, moreover, (16) or the
conditions of Lemma 2.2 are satisfied, then (22) is also sufficient for u∗ to be a solution to (9).
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Proof. The point u∗ being a solution to (9) is equivalent to it being a solution to the convex prob-
lem (20). Due to ϕ̃(û) = − logϕ(û) + log p < 0, û is a Slater point for (20). Hence, by Lemma
2.4, ϕ̃ is a lower semicontinuous, convex and proper function. Now, it follows from classical convex
analysis (admitting extended-valued inequality constraints, e.g., [30, Theorem 3.66, Remark 3.67])
that u∗ being a solution to (20) (and (9)) is equivalent to the existence of some λ ≥ 0 such that
−DF (u∗) ∈ λ∂ϕ̃(u∗) and λϕ̃(u∗) = 0, where “∂” refers to the subdifferential in the sense of con-
vex analysis. Now, the feasibility of u∗ implies that ϕ(u∗) ≥ p > 0. With ϕ being locally Lipschitzian
around u∗ (by Theorem 2.1)) and log being locally Lipschitzian around the positive number ϕ(u∗), the
function ϕ̃ is locally Lipschitzian around u∗. Since ϕ̃ is also convex, it follows that ∂ϕ̃(u∗) = ∂Cϕ̃(u∗),
see [7, Proposition 2.2.7]. On the other hand, the chain rule for Clarke’s subdifferential from [7, Theo-
rem 2.3.9 (ii)] yields that

∂ϕ̃(u∗) = ∂Cϕ̃(u∗) = − 1

ϕ(u∗)
∂Cϕ(u∗).

Owing to ϕ(u∗) > 0, we have shown that the existence of some λ ≥ 0 with −DF (u∗) ∈ λ∂ϕ̃(u∗)
and λϕ̃(u∗) = 0 is equivalent with the existence of some λ̃ ≥ 0 with DF (u∗) ∈ λ̃∂Cϕ(u∗)
and λ̃(ϕ(u∗) − p) = 0. Altogether, this yields the first statement of this Proposition. The remaining
statements on necessity and sufficiency of (22) are immediate consequences of (21) and of Theorems
2.1 and 2.3, respectively.

Remark 2.6. The existence of some û with ϕ(û) > p as required in Proposition 2.5 implicitly neces-
sitates that p < 1, which means that the “almost sure” case is excluded. Without this requirement, the
lack of a Slater point in the convex problem (20) would not allow the derivation of optimality conditions
and simple examples show that they do not apply then, indeed. The case p = 1 will be addressed in
Section 3 in an independent manner.

2.2 Probabilistic state constraints in the concrete PDE

In this section, we are going to apply the general results obtained before to the specific optimization
problem

min
u∈L2(D)

F (u) (23a)

s.t. −∆y(x, ω) = u(x) + f(x, ξ(ω)), x ∈ D P-a.s., (23b)

y(x, ω) = 0, x ∈ ∂D P-a.s., (23c)

P(y(x, ω) ≤ α ∀x ∈ D) ≥ p. (23d)

We recall the setting introduced in Section 1.2 under Assumption 1.1. This setting provides the con-
tinuity of the solution operator and the measurability of the functions ω 7→ y(x, ω) for each x ∈ D̄
via Lemma 1.4. This justifies relations (23b) and (23c). As for (23d), a corresponding measurability
statement will be made in Lemma 2.7 below. Here, U = L2(D) and F : U → R is a convex, Fréchet
differentiable cost function, ξ ∼ N (0,Σ) is a centered m-dimensional Gaussian random vector de-
fined on the probability space (Ω,F ,P), p ∈ (0, 1] is some given probability level, and α ∈ R is
some upper threshold for the random state y(·, ω). Note that Ef(·, ξ) = f0 on account of ξ being
centered (see (3)).

Recall the operators defined in (5), allowing us to reformulate problem (23) as

min
u∈L2(D)

F (u) s.t. ϕ(u) ≥ p, (24)

DOI 10.20347/WIAS.PREPRINT.3021 Berlin 2023



Optimality conditions in control problems with random state constraints 11

where

ϕ(u) := P(ω | g(u, ξ(ω)) ≤ 0) (u ∈ L2(D));

g(u, z) := sup
x∈D

[S(u, z)](x)− α ((u, z) ∈ L2(D)× Rm).

Problem (24) falls into the setting of the general problem (9) with introduced before. In order to apply
the results from Section 2.1 to problem (24), one has to verify first that the assumptions made there
are satisfied. Since by Lemma 1.2, S(u, z) ∈ H1

0 (D)∩ C(D̄) for all (u, z) ∈ L2(D)×Rm, we may
write g as a maximum over D̄ rather than a supremum over D:

g(u, z) = max
x∈D̄

[S(u, z)](x)− α ≤ 0 ((u, z) ∈ L2(D)× Rm).

Next, we verify that g satisfies the general assumption (GA) of Section 2.1:

Lemma 2.7. The function g : L2(D) × Rm → R is convex and (globally) Lipschitzian. As a conse-
quence, the (coinciding) events occurring in the probabilities of (23d) and in the definition of ϕ above
are measurable.

Proof. The convexity property follows directly from the fact that g is the maximum of affine linear
functions

(u, z) 7→ [S(u, z)](x) = [P (u, z)](x) + y0(x)− α (x ∈ D̄).

As for Lipschitz continuity, let (u1, z1), (u2, z2) ∈ L2(D)× Rm be arbitrary. Then,

|g(u1, z1)− g(u2, z2)| =
∣∣∣max
x∈D̄

[S(u1, z1)](x)−max
x∈D̄

[S(u2, z2)](x)
∣∣∣

= |[S(u1, z1)](x∗1)− [S(u2, z2)](x∗2)|,

where x∗1, x
∗
2 ∈ D̄ are arguments realizing the respective maxima. Assuming w.l.o.g.S(u1, z1)](x∗1) ≥

S(u2, z2)](x∗2), we may exploit the linearity of P and refer to (7) in order to derive that

|g(u1, z1)− g(u2, z2)| ≤ [S(u1, z1)](x∗1)− [S(u2, z2)](x∗1)

= [P (u1, z1)](x∗1)− [P (u2, z2)](x∗1)

= [P (u1 − u2, z1 − z2)](x∗1) ≤ ‖P (u1 − u2, z1 − z2)‖C(D̄)

≤ C(‖u1 − u2‖L2(D) + ‖z1 − z2‖2).

This proves the (global) Lipschitz continuity of g and in particular the remaining measurability state-
ment.

The application of Theorem 2.1 requires, in particular, that the growth condition (12) is satisfied or,
alternatively, that the set M in (11) is bounded. The latter condition may not hold in general as can be
seen from Examples 2.15 and 2.16 below, where the radius function ρ from (17) becomes infinite for
certain directions. This observation urges us to verify the general validity of the growth condition (12)
before applying Theorem 2.1.

Lemma 2.8. Let ū ∈ L2(D) be arbitrary. Then, g satisfies the condition of moderate growth (12).

Proof. By definition of Clarke’s directional derivative, we have that

g◦(·, z)(u;h) = lim sup
t↓0,u′→u

g(u′ + th, z)− g(u′, z)

t
∀u, h ∈ L2(D)∀z ∈ Rm.
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Exploiting Lemma 2.7 with the Lipschitz constant C derived there, we may continue as

g◦(·, z)(u;h) ≤ C ‖h‖L2(D) ∀u, h ∈ L2(D)∀z ∈ Rm. (25)

Define L > 0 such that

‖z‖−m2 exp

(
‖z‖2

2

2 ‖Σ1/2‖2

)
≥ C ∀z ∈ Rm : ‖z‖2 ≥ L

(note that the left-hand side expression tends to infinity if ‖z‖ does so). Then, (12) is satisfied with
l := max{1, L}.

Corollary 2.9. Fix some point of interest ū ∈ L2(D). Denote by ȳ := S(ū, 0) the unique solution of
the PDE (8) associated with ū and z := 0 (expectation of ξ). If for this expected state, it holds that

ȳ(x) < α ∀x ∈ D̄, (26)

then the conclusions of Theorem 2.1 hold true.

Proof. The assumption implies that

g(ū, 0) = max
x∈D̄

[S(ū, 0)](x)− α = max
x∈D̄

ȳ(x)− α < 0.

This, however, is (10). Since all the remaining assumptions of Theorem 2.1 are satisfied by Lemmas
2.7 and 2.8, the result follows.

Corollary 2.10. In the setting of Corollary 2.9 assume in addition to (26) (a Slater condition in Rm)
the existence of some û ∈ U with ϕ(û) > p (generalized Slater point in U ). Then, the results of
Proposition 2.5 hold true in the concrete optimization problem (24).

Proof. Since the function g associated with the probability function ϕ in (24) is convex (in both vari-
ables simultaneously) by Lemma 2.7 and all other needed assumptions are satisfied as already stated
in the proof of Corollary 2.9, the assertion follows from Proposition 2.5.

In Section 2.4, we will provide a more explicit representation of the optimality conditions for problem
(24). First, we will work on formulas of the radial probability function.

2.3 Explicit formulae for the subdifferential of the radial probability function

The general results of Theorem 2.1 and Proposition 2.5 on the subdifferential of the (total) probability
function ϕ and on optimality conditions for problem (9) are formulated in terms of the radial probability
function e and in this sense not very explicit yet. In this section we provide two lemmas that charac-
terize the (partial) Clarke subdifferential of e in terms of the original data of our concrete problem (23)
(or (24)). In both lemmas we will impose the Slater condition (26) at the point ū, which implies the
Slater condition (10) in the general setting. Accordingly, we will consider the neighborhoodN (ū) and
the radius function ρ : N (ū) × Sm−1 → R ∪ {∞} introduced at the end of section 2.1. We have
to distinguish two cases, namely, whether at the fixed point ū the value ρ(ū, v) is finite or infinite for
a given direction v ∈ Sm−1. In the latter case, the associated ray in (17) is unbounded, hence the
radial probability e realizes its maximum, which is one. Consequently, the (sub-) derivative at this ray
reduces to zero. This is made more precise in the following lemma.

For the remainder of Section 2, we will identify the dual of U = L2(D) with itself and work with the
inner product defined by (·, ·)L2(D) = 〈·, ·〉L2(D)∗,L2(D).

DOI 10.20347/WIAS.PREPRINT.3021 Berlin 2023



Optimality conditions in control problems with random state constraints 13

Lemma 2.11. As in Corollary 2.9, fix some ū ∈ L2(D) with associated expected state ȳ satisfying
(26). If v ∈ Sm−1 is such that ρ(ū, v) =∞, then ∂Cu e(ū, v) = {0} for e defined in (13).

Proof. Fix v as indicated. As observed in the proof of Corollary 2.9, relation (26) yields (10). Accord-
ingly, we may find a neighborhood N (ū) of ū with g(u, 0) ≤ 1

2
g(ū, 0) < 0 for all u ∈ N (ū). Then,

by [18, Corollary 1 (ii)], one has that

∂Fu e(u, v
′) ⊆ {0} ∀u ∈ N (ū) ∀v′ ∈ Sm−1 : ρ(u, v′) =∞, (27)

where ∂Fu denotes the partial Fréchet subdifferential with respect to u. Now, let u ∈ N (ū), h ∈
L2(D), v′ ∈ Sm−1 with ρ(u, v′) <∞ and y∗ ∈ ∂Fu e(u, v′) be arbitrarily given. By [18, Theorem 2],
there exists

(u∗, z∗) ∈ ∂Cu g(u, ρ(u, v′)Σ1/2v′)× ∂Cz g(u, ρ(u, v′)Σ1/2v′)

such that

(y∗, h)L2(D) ≤
χ(ρ(u, v′))

〈z∗,Σ1/2v′〉
(u∗,−h)L2(D),

where χ(t) := Ktm−1e−t
2/2 (t ≥ 0) is the density of the one-dimensional chi distribution with m

degrees of freedom and K is some normalizing factor. Moreover, by [18, Lemma 3],

〈z∗,Σ1/2v′〉 ≥ −g(u, 0)

ρ(u, v′)
=
|g(u, 0)|
ρ(u, v′)

> 0.

By virtue of the definition of Clarke’s generalized (partial) directional derivative and by (25), we may
continue with

(y∗, h)L2(D) ≤
χ(ρ(u, v′))

〈z∗,Σ1/2v′〉
g0(·, ρ(u, v′)Σ1/2v′)(u;−h)

≤ χ(ρ(u, v′))

〈z∗,Σ1/2v′〉
C ‖h‖L2(D)

≤ χ(ρ(u, v′))ρ(u, v′)

|g(u, 0)|
C ‖h‖L2(D)

≤ 2χ(ρ(u, v′))ρ(u, v′)

|g(ū, 0)|
C ‖h‖L2(D) .

Since h ∈ L2(D) was arbitrary, it follows that

‖y∗‖L2(D) ≤
2χ(ρ(u, v′))ρ(u, v′)C

|g(ū, 0)|
∀u ∈ N (ū) ∀v′ ∈ Sm−1 : ρ(u, v′) <∞ ∀y∗ ∈ ∂Fu e(u, v′).

(28)

In order to prove our claim, it will be sufficient to show that ∂Mu e(ū, v) = {0}, where ∂Mu refers to the
(partial) Mordukhovich subdifferential. Indeed, recalling that e(·, v) is locally Lipschitzian around ū by
Theorem 2.1 and referring to a well-known relation between the Mordukhovich and Clarke subdiffer-
entials [28, Theorem 3.57], we infer that

∂Cu e(ū, v) = clco{∂Mu e(ū, v)} = {0},

where “clco"denotes the weak closure in L2(D). Since the Mordukhovich subdifferential is nonempty
for locally Lipschitzian functions on Hilbert spaces (in general: Asplund spaces, see [28, Corollary
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1.81]), it will be sufficient to prove the inclusion ∂Mu e(ū, v) ⊆ {0}. In order to do so, choose an
arbitrary ȳ∗ ∈ ∂Mu e(ū, v). We have to show that ȳ∗ = 0. By definition of the Mordukhovich sub-
differential, there exist a strongly convergent sequence uk → ū and a weakly (weak-star in general
Asplund spaces) convergent sequence y∗k ⇀ ȳ∗ with y∗k ∈ ∂Fu e(uk, v). Now, define the subsequence
ukl satisfying the condition ρ(ukl , v) <∞. Then, it follows from [18, Lemma 1] that, ρ(ukl , v)→∞.
On the other hand, lim

t→∞
t · χ(t) = 0. Along with (28), this yields that

∥∥y∗kl∥∥L2(D)
→ 0 for this sub-

sequence. The remaining elements of the original sequence, however, satisfy ρ(uk, v) = ∞ which
implies by (27) that y∗k = 0 for those k. Altogether we have shown that the original sequence satisfies
‖y∗k‖L2(D) → 0. Then, the weak sequential lower semicontinuity of the norm provides the desired
result ȳ∗ = 0.

The following lemma addresses the alternative case, where the radius function takes a finite value
and—contrary to the previous situation—substantial information on the subdifferential of the radial
and, thus, on the total probability function is provided.

Lemma 2.12. As in Corollary 2.9, fix some ū ∈ L2(D) with associated expected state ȳ satisfying
(26). If v ∈ Sm−1 is such that ρ(ū, v) <∞, then

∂Cu e(ū, v) = −χ(ρ(ū, v)) · clco

{
1

[P (0,Σ1/2v)](x)
· ux
∣∣∣∣x ∈M∗(ū, v)

}
M∗(ū, v) := {x ∈ D̄ | [P (0,Σ1/2v)](x) > 0, ȳ(x) + ρ(ū, v)[P (0,Σ1/2v)](x) = α},

where for x ∈ D̄, we denote by ux ∈ L2(D) the continuous linear function defined by

(ux, h)L2(D) := [P (h, 0)](x) = (A−1h)(x) (h ∈ L2(D)).

Proof. Fix v as indicated and let N (ū) be the neighborhood of ū as defined above (17). With the
concrete form of g in our PDE-constrained problem (23) and the affine representation (5), for each
u ∈ N (ū), ρ(u, v) is the unique (possibly infinite) value such (17) holds true, which amounts to{

r ≥ 0

∣∣∣∣max
x∈D̄

[P (u, rΣ1/2v)](x) + y0(x) ≤ α

}
= [0, ρ(u, v)] ∀u ∈ N (ū). (29)

By definition ofN (ū) it holds that g(u, 0) < 0 for all u ∈ N (ū) or, equivalently, that

max
x∈D̄

[P (u, 0)](x) + y0(x) < α ∀u ∈ N (ū). (30)

Taking into account the linearity of P , we may rewrite (29) as{
r ≥ 0

∣∣ r · [P (0,Σ1/2v)](x) ≤ α− y0(x)− [P (u, 0)](x) ∀x ∈ D̄
}

= [0, ρ(u, v)] ∀u ∈ N (ū).
(31)

As a consequence of (30), we have that

α− y0(x)− [P (u, 0)](x) > 0 ∀x ∈ D̄ ∀u ∈ N (ū). (32)

Introduce an open subset of D̄ by

O := {x ∈ D̄ | [P (0,Σ1/2v)](x) > 0}.
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Note that O 6= ∅ because otherwise the left-hand side of (31) would be equal to R+ thanks to
(32). Then, on the right-hand side of (31) we would end up at the contradiction ρ(u, v) = ∞ for all
u ∈ N (ū) with our assumption ρ(ū, v) < ∞. Now, again by virtue of (32), equation (31) can be
reformulated as{

r ≥ 0
∣∣ r · [P (0,Σ1/2v)](x) ≤ α− y0(x)− [P (u, 0)](x) ∀x ∈ O

}
= [0, ρ(u, v)] ∀u ∈ N (ū).

(33)

This implies that
ρ(u, v) = inf

x∈O
γ(u, x) ∀u ∈ N (ū), (34)

where γ : L2(D)×O → R is a continuous function defined by

γ(u, x) :=
α− y0(x)− [P (u, 0)](x)

[P (0,Σ1/2v)](x)
∀x ∈ O ∀u ∈ L2(D).

In order to verify the continuity of γ, let (un, xn) → (u, x) in L2(D) × O. Then, |γ(u, x) −
γ(u, xn)| → 0 by definition of the operators S and P and by the fact that S(u′, z′) ∈ C(D̄) for
all (u′, z′) (see (5)). It remains to verify that |γ(u, xn)− γ(un, xn)| → 0, which amounts to showing
that ∣∣∣∣ [P (u− un, 0)](xn)

[P (0,Σ1/2v)](xn)

∣∣∣∣→ 0.

Since [P (0,Σ1/2v)](xn)→ [P (0,Σ1/2v)](x) > 0 by definition ofO, it suffices to show that [P (u−
un, 0)](xn)→ 0. This, however, follows readily from (7).

Our aim is to represent ρ not just as an infimum over an open set but as a minimum over a compact
set. We introduce the multifunction

M(u) := {x ∈ O | ρ(u, v) = γ(u, x)} (u ∈ N (ū)). (35)

We show first that M has nonempty images. For this purpose, fix an arbitrary u ∈ N (ū) and let
{xn} ⊆ O be a sequence with γ(u, xn) → ρ(u, v). Without loss of generality, xn → x̄ ∈ D̄.
Assume that x̄ /∈ O. Then, [P (0,Σ1/2v)](x̄) = 0 because of xn ∈ O. At the same time,

α− y0(x̄)− [P (u, 0)](x̄) > 0

by virtue of (32). It follows that γ(u, xn) → ∞, whence the contradiction ρ(u, v) = ∞ with the
already mentioned fact thatO 6= ∅. Therefore, x̄ ∈ O. Now, the continuity of γ on L2(D)×O yields
that

γ(u, xn)→ γ(u, x̄) = ρ(u, v).

Hence, x̄ ∈M(u) 6= ∅ as was to be shown.

Next, we see that M(ū) is closed, hence compact as a subset of D̄. Indeed, let xn ∈ M(ū) be a
sequence with xn → x̄. Since xn ∈ O, the same reasoning as before allows us to verify that x̄ ∈ O.
Then, again by continuity of γ,

ρ(ū, v) = γ(ū, xn)→ γ(ū, x̄),

providing that ρ(ū, v) = γ(ū, x̄) and, thus, x̄ ∈M(ū).

Knowing thatM(ū) is a nonempty and compact subset ofO, there must exist another compact subset
K ⊆ O such that M(ū) ⊆ intK. We claim that

ρ(u, v) = min
x∈K

γ(u, x) ∀u ∈ N (ū), (36)
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which would be our desired representation of ρ as a minimum over a compact set. For (36) to hold
true it would be sufficient to verify that

M(u) ⊆ K ∀u ∈ N (ū). (37)

Indeed, assuming this holds true, we may fix an arbitrary u ∈ N (ū) and select some x̂ ∈M(u) which
is possible since this latter set is nonempty, as we have shown before. Then, by (37), x̂ ∈ K ⊆ O,
and so, by definition of M(u),

ρ(u, v) ≤ min
x∈K

γ(u, x) ≤ γ(u, x̂) = ρ(u, v),

where the first inequality relies on (34). This is (36) and it remains to verify (37). If this relation was
false, then there would exist sequences un → ū and xn ∈ M(un) \ K. Without loss of generality,
xn → x̄ ∈ D̄. Then x̄ /∈ intK ⊆ O and, by definition of the set K, x̄ /∈ M(ū). Select some
x̂ ∈M(ū) ⊆ O (recalling that M(ū) 6= ∅). Then,

γ(ū, x̄) = lim
n
γ(un, xn) = lim

n
ρ(un, v) ≤ lim

n
γ(un, x̂) = γ(ū, x̂) = ρ(ū, v) < γ(ū, x̄),

where the strict inequality comes as a consequence of x̄ ∈ O \M(ū). This contradiction establishes
(37).

Now, defining a function κ : L2(D)→ R by

κ(u) := max
x∈K

−γ(u, x) u ∈ L2(D),

we derive from (36) that
ρ(u, v) = −κ(u) ∀u ∈ N (ū) (38)

Since κ is the maximum of continuous, affine linear functions−γ(·, x) over a compact set, it is convex
and finite-valued. Therefore, and taking into account the continuity of γ, the Ioffe–Tikhomirov Theorem
[20, Section 4.2, Theorem 3] allows us to represent the convex subdifferential of κ at ū as

∂κ(ū) = clco

{
∂(−γ)

∂u
(ū, x)

∣∣∣x ∈ M̃(ū, v)

}
, M̃(ū, v) := {x ∈ K | −γ(ū, x) = κ(ū)}.

With ux ∈ L2(D) as introduced in the statement of this lemma, we arrive at

∂(−γ)

∂u
(ū, x) =

1

[P (0,Σ1/2v)](x)
· ux ∀x ∈ O.

The continuity of γ along with the compactness ofK imply via (36) that κ is continuous. Hence, being
also convex, κ is even locally Lipschitz continuous (cf. [4, Prop. 2.107]) and so, its subdifferential in the
sense of convex analysis coincides with its Clarke subdifferential [7, Proposition 2.2.7]. Applying now
a well-known calculus rule for the latter [7, Proposition 2.3.1] and taking into account (38), we derive
that

∂Cu ρ(ū, v) = ∂C(−κ(ū)) = −∂Cκ(ū) = −∂κ(ū)

= −clco

{
1

[P (0,Σ1/2v)](x)
· ux

∣∣∣x ∈ M̃(ū, v)

}
.

(39)

Since ρ(·, v) is finite-valued on N (ū) (see (36)), the representation (19) of the radial probability
function yields that e(u, v) = Fη(ρ(u, v)) locally around ū. With the one-dimensional function Fη
being continuously differentiable and having derivative χ (the density of the chi distribution with m
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Optimality conditions in control problems with random state constraints 17

degrees of freedom), the chain rule for Clarke’s subdifferential [7, Theorem 2.3.9 (ii)] provides the
identity

∂Cu e(ū, v) = F ′η(ρ(ū, v)) · ∂Cu ρ(ū, v) = χ(ρ(ū, v)) · ∂Cu ρ(ū, v).

From here, the assertion of our lemma will follow along with (39), once we can show that M̃(ū, v) =
M∗(ū, v), where the latter set has been introduced in the statement of this lemma. Indeed, if x ∈
M̃(ū, v), then x ∈ K ⊆ O and γ(ū, x) = ρ(ū, v) by (38). Then, x ∈ M∗(ū, v) by definition of γ
and of the expected state ȳ. Conversely, let x ∈M∗(ū, v). Then, x ∈ O and ρ(ū, v) = γ(ū, x) again
by definition of γ. Hence, x ∈ M(ū) by (35). Now, (37) yields that x ∈ K and, hence, x ∈ M̃(ū, v)
by (38).

2.4 Subdifferential of the probability function and optimality conditions in the
concrete PDE setting

The technical results of the previous section allows us now to formulate a fully explicit (in terms of
the problem data) upper estimate for the subdifferential of the probability function in problem (23) and
explicit necessary optimality conditions for that same problem. Combining Corollary 2.9 with Lemmas
2.11 and 2.12, we end up with

Theorem 2.13. Fix some ū ∈ L2(D) with associated expected state ȳ satisfying (26). Then, ϕ is
locally Lipschitzian around ū and, with the notation introduced in Lemma 2.12, the subdifferential of
the probability function at ū can be estimated from above by

∂Cϕ(ū) ⊆ −
∫

{v∈Sm−1|ρ(ū,v)<∞}

χ(ρ(ū, v))

· clco

{
1

[P (0,Σ1/2v)](x)
· ux

∣∣∣x ∈M∗(ū, v)

}
dµζ(v).

(40)

Here, we use the notation M∗(u, v) introduced in Lemma 2.12. The inclusion holds as an equality
provided that M∗(ū, v) is a singleton for µζ a.e. v ∈ Sm−1 with ρ(ū, v) < ∞ (implying condition
(16) thanks to Lemmas 2.11 and 2.12 and, hence, strict differentiability of ϕ) or that the set (11) is
bounded (implying the assumptions of Lemma 2.2).

Likewise, Corollary 2.10 yields the following necessary optimality conditions:

Theorem 2.14. In the optimization problem (23), let there exist some control û ∈ L2(D) such that
the associated random state ŷ solving (23b)–(23c) satisfies the probabilistic constraint (23d) strictly,
i.e.,

ϕ(û) = P(ŷ(x, ω) ≤ α ∀x ∈ D) > p. (41)

Consider some u∗ ∈ L2(D) that is feasible in (23). Assume that the associated expected state
ỹ := S(u∗, 0) satisfies

ỹ(x) < α ∀x ∈ D̄. (42)

Then, for u∗ to be a solution to (9), it is necessary that there exists some λ ≥ 0 with

DF (u∗) ∈ −λ
∫

{v∈Sm−1|ρ(u∗,v)<∞}

χ(ρ(u∗, v))

· clco

{
1

[P (0,Σ1/2v)](x)
· ux

∣∣∣x ∈M∗(u∗, v)

}
dµζ(v)

(43)
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C. Geiersbach, R. Henrion 18

and
λ(P(y∗(x, ω) ≤ α ∀x ∈ D)− p) = 0, (44)

where y∗(·, ω) = S(u∗, ξ(ω)) is the random state associated with the control u∗ and random event
ω ∈ Ω. Moreover, this inclusion also becomes sufficient for u∗ to be a solution to (9), if the conditions
from Theorem 2.13 for (40) to hold as an equality are satisfied.

The following example shall illustrate Theorems 2.1 and 2.13, respectively. The data will be chosen in
such as way so that (26) is satisfied and, hence, to apply both results. As a consequence, the prob-
ability function will be locally Lipschitzian. However, it will fail to be differentiable despite the fact that
all problem data are smooth. This underlines why it is necessary to employ tools from generalized dif-
ferential calculus in the analysis of the optimization problem (23). Moreover, we are going to calculate
explicitly the upper estimate (40) for the subdifferential of the probability function provided in Theorem
2.13.

Example 2.15. In our problem (23), let m := 1, D := (0, 2π)2, α := 1, f0 := 0, ξ ∼ N (0, 1) and

φ1(x1, x2) := 2 sin2 x1(sin2 x2 − cos2 x2) + 2 sin2 x2(sin2 x1 − cos2 x1).

Fix a control û(x1, x2) := sin x1 sinx2. Then, for each τ ∈ R and each z1 ∈ R,

yτ,z1(x1, x2) := τ sinx1 sinx2 + z1 sin2 x1 sin2 x2

is the solution to the PDE

−∆y(x) = 2τ û(x) + f(x, z1) (x ∈ D), y(x) = 0 (x ∈ ∂D).

For the purpose of illustration, we consider the restriction of the probability function ϕ to the one-
dimensional subspace R+{û}, i.e., the probability function ϕ̃ : R→ R defined by

ϕ̃(τ) := ϕ(2τ û) = P(ω | yτ,ξ(ω)(x) ≤ 1 ∀x ∈ (0, 2π)2).

One easily checks that (26) is satisfied at 2τ û for all τ ∈ (−1, 1). Accordingly, Corollary 2.9 (via
Theorem 2.1) yields that, at all 2τ ū with τ ∈ (−1, 1), ϕ is locally Lipschitzian (hence ϕ̃ is locally
Lipschitzian at all τ ∈ (−1, 1)) and the upper estimate of Theorem 2.13 holds true. We will derive an
explicit formula for ϕ̃. Since yτ,z1(x1, x2) = 0 whenever sinx1 sinx2 = 0, one gets that

{z1 | yτ,z1(x) ≤ α} =

{
z1

∣∣∣∣z1 ≤
1− τ sinx1 sinx2

sin2 x1 sin2 x2

∀x ∈ (0, 2π)2 : sinx1 sinx2 6= 0

}
.

If 0 ≤ τ < 1, then the fraction on the right-hand side is minimized whenever sinx1 sinx2 = 1 (e.g.,
by choosing x := (π/2, π/2)). The achieved minimum equals 1 − τ . Likewise, if −1 < τ ≤ 0 then
this fraction is minimized whenever sinx1 sinx2 = −1 (e.g., by choosing x := (π/2, 3π/2)). The
achieved minimum equals 1 + τ . Accordingly,

ϕ̃(τ) =

{
P(ω | ξ(ω) ≤ 1 + τ) = Φ(1 + τ) if −1 < τ ≤ 0
P(ω | ξ(ω) ≤ 1− τ) = Φ(1− τ) if 0 ≤ τ < 1

Here, Φ denotes the distribution function of the one-dimensional standard Gaussian distributionN (0, 1).
It is locally Lipschitzian as expected, but it fails to be differentiable at zero because the derivatives at
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Optimality conditions in control problems with random state constraints 19

zero of the two pieces become F (1) > 0 and −F (1) < 0, respectively, where F = Φ′ refers to the
standard Gaussian density.

Next, we are going to calculate explicitly the upper estimate (40) from Theorem 2.13 at the reference
point ū = 0. First, we note that Σ1/2 = 1 due to ξ ∼ N (0, 1) and Sm−1 = S0 = {−1, 1}. By
definition of the operator P and of the state yτ,z1 , we have that (for all (x1, x2) ∈ (0, 2π)2):

[P (0, 1)](x) = y0,1(x1, x2) = sin2 x1 sin2 x2; [P (0,−1)](x) = y0,−1(x1, x2) = − sin2 x1 sin2 x2.

Since y0 = 0 by our data assumption f0 = 0, we infer from (29) that{
r ≥ 0

∣∣∣∣max
x∈D̄

[P (ū, rΣ1/2 · (−1))](x) + y0(x) ≤ α

}
=

{
r ≥ 0

∣∣∣∣ max
x∈[0,2π]2

[P (0,−r)](x) ≤ 1

}
=

{
r ≥ 0

∣∣∣∣ max
x∈[0,2π]2

−r sin2 x1 sin2 x2 ≤ 1

}
= [0,∞),

hence ρ(ū,−1) =∞ by definition of ρ. Therefore, v = −1 does not contribute to the integral in (40).
Likewise,{
r ≥ 0

∣∣∣∣max
x∈D̄

[P (ū, rΣ1/2 · 1)](x) + y0(x) ≤ α

}
=

{
r ≥ 0

∣∣∣∣ max
x∈[0,2π]2

r sin2 x1 sin2 x2 ≤ 1

}
= [0, 1],

hence ρ(ū, 1) = 1 < ∞ and so v = 1 does contribute to the integral in (40). Since the uniform
distribution on S0 can be represented as µζ = 1

2
δ−1 + 1

2
δ1, where δt is the Dirac measure at t ∈ R,

the negative value of this integral appearing in (40) reduces to

− 1

2
χ(ρ(0, 1)) · clco

{
1

[P (0, 1)](x)
· ux | x ∈M∗(0, 1)

}
= −1

2
χ(1) · clco

{
1

sin2 x1 sin2 x2

· ux | x ∈M∗(0, 1)

}
.

It remains to determine the index set M∗(0, 1). First note that ȳ = 0 holds true for the expected state
(associated with control ū = 0 and z1 = 0) by our data assumption f0 = 0. By definition of M∗ in
Lemma 2.12 we arrive at

M∗(0, 1) = {x ∈ [0, 2π]2 | sin2 x1 sin2 x2 = 1}
= {(π/2, π/2), (3π/2, π/2), (π/2, 3π/2), (3π/2, 3π/2)}.

This yields the final explicit upper estimate for the subdifferential of the probability function

∂Cϕ(0) ⊆ −1

2
χ(1) · co

{
u(π/2,π/2), u(3π/2,π/2), u(π/2,3π/2), u(3π/2,3π/2)

}
,

where the ux ∈ L2((0, 2π)2) have been introduced in the statement of Lemma 2.12 and where the
closure operation in the convex hull can be omitted due to the set being finite.

We want to illustrate Theorem 2.14 in an example.

Example 2.16. In our problem (23), let (with Φ being the distribution function ofN (0, 1))

D := (0, 1)2,m := 1, α := 1/16, f0 := 0, ξ ∼ N (0, 1),

φ1(x1, x2) := 2(x1(1− x1) + x2(1− x2)), p := Φ(1) ≈ 0.841.
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Fix a control ũ ∈ L2(D) defined by the relation

(ũ, h)L2(D) = [P (h, 0)](1/2, 1/2) = [A−1h](1/2, 1/2) ∀h ∈ L2(D). (45)

We define the objective in (23a) by F (u) := ‖u− ũ‖2
L2(D) and claim that u∗ := 0 is a solution of the

optimization problem. Evidently, for each z1 ∈ R, the function y(x1, x2) := z1x1(1− x1)x2(1− x2)
is a solution to the PDE

−∆y(x) = z1φ1(x) (x ∈ D), y(x) = 0 (x ∈ ∂D), (46)

which is (8) with u = 0. It follows from (5) that

[S(0, z1)](x) = [P (0, z1)](x) = [P (z1φ1, 0)](x) = z1x1(1− x1)x2(1− x2) ∀z1 ∈ R. (47)

In particular, S[(u∗, 0)](x) = 0 for all x ∈ D̄ so that (42) is satisfied. Moreover,

ϕ(u∗) = ϕ(0) = P(ω | ξ(ω)x1(1− x1)x2(1− x2) ≤ 1/16 ∀x ∈ (0, 1)2)

= P(ω | ξ(ω) ∈ (−∞, 1]) = Φ(1) = p.

This means that u∗ = 0 is a feasible control in problem (23) at which the probabilistic constraint is
active. Next, we calculate the Clarke subdifferential ∂Cϕ(u∗). Recalling that, due to the assumptions
on our data, Σ = 1 and Sm−1 = S0 = {−1, 1}, we identify the two radii ρ(0, 1), ρ(0,−1) via (29)
from the relations

[0, ρ(0, 1)] =

{
r ≥ 0

∣∣∣∣ max
x∈[0,1]2

[P (0, r)](x) ≤ 1/16

}
= [0, 1],

[0, ρ(0,−1)] =

{
r ≥ 0

∣∣∣∣ max
x∈[0,1]2

[P (0,−r)](x) ≤ 1/16

}
= [0,∞).

Accordingly, ρ(0, 1) = 1 and ρ(0,−1) =∞. By definition and by virtue of (47),

M∗(0, 1) = {x ∈ [0, 1]2 | [P (0, 1)](x) > 0, [P (0, 1)](x) = 1/16} = {(1/2, 1/2)}.

Consequently, #M∗(0, 1) = 1 and, hence, Theorem 2.13 yields that

∂Cϕ(u∗) = −
∫
v=1

χ(ρ(0, 1))

[P (0, 1)](1/2, 1/2)
· u(1/2,1/2)dµζ(v)

=

{
−1

2

χ(1)

[P (0, 1)](1/2, 1/2)
· u(1/2,1/2)

}
= {−8χ(1)ũ},

(48)

where ũ has been introduced above. In particular, ϕ is strictly differentiable with derivative∇ϕ(u∗) =
−8χ(1)ũ.

Finally, we want to apply the optimality conditions of Theorem 2.14. In order to do so, it remains first
to check condition (41). Thanks to (47) we have that [P (φ1, 0)](1/2, 1/2) = 1/16 > 0. This implies
that ũ 6= 0 because otherwise a contradiction with (45) would occur. Now, assuming that condition (41)
is violated, it would follow that ϕ(u) ≤ p for all u ∈ L2((0, 1)2). Owing to ϕ(u∗) = p (see above),
it would follow that u∗ is a (global) maximum of ϕ. By Clarke’s necessary optimality condition [7,
Proposition 2.3.2] and by (48) we would end up at the contradiction 0 ∈ ∂C(ϕ)(u∗) = {−8χ(1)ũ}
with ũ 6= 0 (see above). Summarizing, conditions (41), (42), and #M∗(0, 1) = 1 (while ρ(0,−1) =
∞) are satisfied, which allows us to apply Theorem 2.14. In order to prove our claim that u∗ := 0 is a
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solution of (23), it remains to verify (43) and (44). We define a multiplier λ := −1
4χ(1)

< 0. As for the

complementarity relation, it is satisfied thanks to the already stated equality ϕ(0) = p. On the other
hand, (48) yields that

∇F (0) = −2ũ = λ8χ(1)ũ = λ∂Cϕ(u∗) = λ

∫
v=1

χ(ρ(0, 1))

[P (0, 1)](1/2, 1/2)
· u(1/2,1/2)dµζ(v)

= λ

∫
{v∈S0|ρ(u∗,v)<∞}

χ(ρ(u∗, v)) · clco

{
1

[P (0,Σ1/2v)](x)
· ux

∣∣∣x ∈M∗(u∗, v)

}
dµζ(v)

where we recall that ρ(0,−1) = ∞ and M∗(0, 1) = {(1/2, 1/2)}. Now, (43) as a sufficient condi-
tion proves that u∗ = 0 is a solution of the formulated optimization problem.

3 Almost sure and robust constraints

In Section 2, we considered optimization problems with chance constraints of the formP(g(u, ξ(ω)) ≤
0) ≥ p. In this section, we will consider two closely related models:

g(u, ξ(ω)) ≤ 0 P-almost surely (almost sure),

g(u, z) ≤ 0 ∀z ∈ supp ξ (robust).

Optimality conditions for PDE-constrained optimization problems with almost sure state constraints
were recently been derived in [13, 14] and robust formulations have also been seen in the literature;
see, e.g., [22]. We will show optimality conditions for the almost sure and robust cases (Section 3.1
and Section 3.2, respectively) using our model PDE. First, we will discuss some nuances in the various
models.

The probabilistic model from Section 2 is equivalent to the the almost sure model if p = 1. However,
as mentioned in Remark 2.6, the optimality conditions obtained there exclude the case p = 1. One
might hope that optimality conditions for the probability level p = 1 could be obtained in the limit
p→ 1, but this is not the case, as demonstrated in the following example.

Example 3.1. Let ξ be a one-dimensional random variable with density f(x) := 2(1 − x)χ[0,1] and
consider the problem

min
u∈R
{F (u) := u} s.t. ϕ(u) := P(g(u, ξ(ω)) ≤ 0) ≥ p, (49)

where g(u, z) := z − u for z, u ∈ R. Then, the probability function is given by

ϕ(u) =


0 u < 0,

2u− u2 u ∈ [0, 1],

1 u > 1.

At u > 0, ϕ is continuously differentiable. For p > 0, the constraint set ϕ(u) ≥ p is identified as the
interval [u∗p,∞) with u∗p := 1 −

√
1− p ∈ (0, 1] necessarily being the solution of (49). Note that

ϕ(u∗p) = p, so the inequality constraint is binding at u∗p. If p = 1, then ϕ′(u∗p) = ϕ′(1) = 0. Hence,
the basic constraint qualification is violated at the solution u∗1 = 1 of problem (49) and no optimality
condition can be established. If p < 1, then

ϕ′(u∗p) = 2− 2(1−
√

1− p) > 0
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and the basic constraint qualification for necessary optimality conditions is satisfied. It follows that the
Lagrange multiplier of the KKT conditions is uniquely determined by the relation

1 = F ′(u∗p) = λpϕ
′(u∗p)

yielding λp = 1/(2
√

1− p). Now, for p→ 1, we get F ′(u∗p)→ 1 on the one hand, but ϕ′(u∗p)→ 0
and λp →∞ on the other hand, so that the limit of KKT conditions does not provide any information.

The negative observations made in the previous example result from the fact that setting p = 1 in
the probabilistic version provides a degenerate problem description. In contrast, the almost sure and
robust perspective (which are equivalent in this example) both work well:

Example 3.2. We reconsider problem (49) but in its equivalent robust description

min
u∈R
{F (u) := u} s.t. ϕ̃(u) := sup

z∈[0,1]

g(u, z) ≤ 0 (50)

(note that [0, 1] is the support of ξ in Example 3.1). The fact that this problem is equivalent to (49)
will follow from Lemma 3.4 below, because g is continuous in z, and hence the robust description is
equivalent to the almost-sure description, which in turn is always equivalent with the probabilistic one.
Clearly, the sup-function is given by

ϕ̃(u) = sup
z∈[0,1]

z − u = 1− u.

Then, ϕ̃(2) < 0, so that û = 2 is a Slater point of the problem and equivalent optimality conditions
can be formulated. The feasible set equals the interval [1,∞) and at the solution u∗ = 1 of the
problem, one has the KKT relation

1 = F ′(1) = (−1)(ϕ̃)′(1) = (−1)(−1).

The following example shows that generally, an almost sure model is not equivalent to a robust one.

Example 3.3. Consider the one-dimensional control problem

min
u∈L2(0,1)

‖u‖2
L2(0,1) s.t. y(x, ω) ≤ 1 ∀x ∈ [0, 1] P-a.s.,

where y(x, ω) is the solution to

−∆y(x, ω) = u(x) + 2f(ξ(ω)) x ∈ (0, 1) P-a.s.; y(x, ω) = 0 x ∈ {0, 1} P-a.s.,

ξ is a one-dimensional random variable uniformly distributed on [0, 1], and

f(z) :=

{
4 z 6= 0.5,

5 z = 0.5.

Then, u := 0 is a feasible control of the problem. Indeed, the random states associated with this
control are given by

y(x, ω) = f(ξ(ω))x(1− x) ∀x ∈ [0, 1], ∀ω ∈ Ω.

It follows that

y(x, ω) ≤ 1

4
f(ξ(ω)) ≤ 1 ∀ω : ξ(ω) 6= 0.5.
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Since ξ(ω) 6= 0.5 P-almost surely, feasibility of u = 0 follows. In particular, this control is optimal in
the given problem. Now, adopting the robust perspective, we observe that [0, 1] is the support of the
random variable and formulate the problem

min ‖u‖2
L2(0,1) s.t. y(x, z) ≤ 1 ∀x ∈ [0, 1] ∀z ∈ [0, 1],

where y(x, z) is the solution to

−∆y(x, z) = u(x) + 2f(z) x ∈ (0, 1), z ∈ [0, 1]; y(x, z) = 0 x ∈ {0, 1}, z ∈ [0, 1].

Then, the parameterized state y(x, z) = f(z)x(1−x) solving the PDE under the control u = 0 fails
to be feasible because of y(0.5, 0.5) = 5/4 > 1. Consequently, u = 0 is not feasible, so cannot be
optimal for the robust problem.

The reason for the difference between the robust and almost sure perspectives in the example above
is that the state fails to be lower semicontinuous with respect to the parameter z, which is generated
by the same deficiency of the function f . We have the following relation between the two models.

Lemma 3.4. Let ξ be an m-dimensional random vector on a probability space (Ω,F ,P) and denote
by Ξ ⊆ Rm the support of its law P ◦ ξ−1. Furthermore, let h : Rm → R be a lower semicontinuous
function. Then,

h(ξ(ω)) ≤ 0 P-a.s. ⇐⇒ h(z) ≤ 0 ∀z ∈ Ξ.

Proof. (=⇒): Assume there exists z ∈ Ξ with h(z) > 0. Since h is lower semicontinuous, there
exists some r > 0 such that h(z′) > 0 for all z′ in the ball B(z, r) ∈ Rm of radius r centered around
the point z. From here and from z ∈ Ξ, we get the contradiction

P{ω | h(ξ(ω)) > 0} ≥ P{ω | ξ(ω) ∈ B(z, r)} > 0.

(⇐=): The reverse direction follows readily from

1 = P{ω | ξ(ω) ∈ Ξ} ≤ P{ω | h(ξ(ω)) ≤ 0}.

3.1 Almost sure state constraints

In this section, we will derive optimality conditions for a model problem with almost sure state con-
straints. As mentioned in the introduction, the functional-analytic techniques applied here largely come
from traditional approaches developed by Rockafellar and Wets for two-stage problems in stochastic
programming [33, 34, 35, 36]. Much of the analysis there hinged on an assumption of relatively com-
plete recourse, a requirement that every control u must result in a feasible state y. This assumption
is too strong for our model problem (51) below, since this would make the state constraint redundant
for any choice of u. In [33] and in [14], this assumption was lifted, resulting in singular Lagrange mul-
tipliers. Unlike in the previous section, there is little hope for a more explicit representation and these
elements do not provide a structure that is amenable to numerical approximation. In practice, a regu-
larization as in [14] can be used so that the singular terms only appear in the limit. Here, however, we
study the unregularized problem, which also shares structural similarities to that of its robust counter-
part, as we will see in Section 3.2. As a main result, we will see that we can more efficiently arrive at
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the conditions provided by [13, 14] by first applying standard optimality theory and then refining the
Lagrange multipliers using a Yosida–Hewitt-type decomposition.

Consider the problem

min
u∈L2(D)

F (u) (51a)

s.t. −∆y(x, ω) = u(x) + f̃(x, ω), x ∈ D P-a.s., (51b)

y(x, ω) = 0, x ∈ ∂D P-a.s., (51c)

y(x, ω) ≤ α x ∈ D P-a.s. (51d)

We have replaced the structured source term f with a random field f̃ ; while more general differential
operators would be possible using the results from [13, 14], we choose the simple model here for the
sake of comparison with the model introduced in Section 2.2. Now, we will assume the following.

Assumption 3.5. The open and bounded set D ⊆ Rd (d = 1, 2, 3) is of class S. Additionally,
u ∈ L2(D) and f̃ ∈ L∞P (Ω, L2(D)).

We recall the continuous linear operator A−1 : L2(D)→ C(D̄) defined after Lemma 1.2.

Lemma 3.6. Suppose Assumption 3.5 holds. Then for any u, f̃(·, ω) ∈ L2(D), and P-almost ev-
ery ω ∈ Ω, there a unique solution y(·, ω) ∈ H1

0 (D) ∩ C(D̄) to (51b)–(51c). Moreover, y ∈
L∞P (Ω, C(D̄)) and there exists a constant C > 0 such that

‖y‖L∞P (Ω,C(D̄)) ≤ C(‖u‖L2(D) + ‖f̃‖L∞P (Ω,L2(D))). (52)

Proof. Following the proof of Lemma 1.2, we obtain the existence of a unique solution y(·, ω) ∈
H1

0 (D) ∩ C(D̄) and a C > 0 such that

‖y(·, ω)‖C(D̄) ≤ C‖u+ f̃(·, ω)‖L2(D) ≤ C(‖u‖L2(D) + ‖f̃‖L∞P (Ω,L2(D))),

which shows (52) due to our assumption on f̃ . Moreover, ω 7→ y(·, ω) is measurable since f̃ is
measurable and the operator A−1 : L2(D)→ C(D̄) is continuous.

Analogously to (5), we will define a control-to-state operator S : L2(D)→ L∞P (Ω, C(D̄)) by

S(u) = A−1(Bu+ f̃).

Here, A−1 : L∞P (Ω, L2(D)) → L∞P (Ω, C(D̄)) is defined by [A−1y](ω) = A−1y(·, ω) a.s. The
operator B is the continuous injection that maps each element of L2(D) to itself in L∞P (Ω, L2(D)).
For the state constraint, let ψ denote the constant counterpart to α in C(D̄) and define

G : L2(D)→ L∞P (Ω, C(D̄)), u 7→ S(u)− ψ.

Additionally, we define the (convex and closed) cone K := {y ∈ L∞P (Ω, C(D̄)) : y(x, ω) ≤
0 a.e. in D P-a.s.} and its polar cone K− := {y∗ ∈ (L∞P (Ω, C(D̄)))∗ : 〈y∗, y〉 ≤ 0 ∀y ∈ K}. It
is straightforward to verify the (−K)-convexity of G, i.e.,

λG(u) + (1− λ)G(v)− G(λu+ (1− λ)v) ∈ −K ∀u, v ∈ L2(D),∀λ ∈ [0, 1],

using the affine linearity of G. First, we present optimality conditions obtained using standard convex
analysis.
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Lemma 3.7. Suppose Assumption 3.5 holds and F is convex and continuously Fréchet differentiable
on L2(D). Assume the constraint qualification 0 ∈ int{G(L2(D)) − K} holds. Then, for u∗ to be a
solution to (51), it is necessary and sufficient that there exists some multiplier λ∗ ∈ (L∞P (Ω, C(D̄)))∗

with

〈DF (u∗), h〉+ 〈λ∗,A−1Bh〉 = 0 ∀h ∈ L2(D), (53a)

G(u∗) ∈ K, λ∗ ∈ K−, 〈λ∗,G(u∗)〉 = 0. (53b)

Proof. Let L(u, λ) := F (u) + 〈λ,G(u)〉. Since F is convex and G is (−K)-convex, the problem
(51) is convex. The constraint qualification implies that the set of Lagrange multipliers is nonempty
(see [4, Theorem 3.6]). In particular, we have that there exists λ∗ ∈ (L∞P (Ω, C(D̄)))∗ such that

0 ∈ ∂uL(u∗, λ∗) and λ∗ ∈ NK(G(u∗)), (54)

where ∂u denotes the partial subdifferential with respect to u in the sense of convex analysis. The
operator G : L2(D) → L∞P (Ω, C(D̄)) is affine linear and is bounded thanks to (52). Therefore, it is
Fréchet differentiable with DG(u)[h] = A−1Bh for all h ∈ L2(D). This means the first condition
in (54) simplifies to (53a). The conditions (53b) follow from the fact that K is a convex cone; see [4,
p. 150]. Conditions (53) are necessary and sufficient by [4, Proposition 3.3].

Remark 3.8. The constraint qualification 0 ∈ int{G(L2(D)) − K} means that for every w in a
neighborhood of zero in L∞P (Ω, C(D̄)) there exists a u ∈ L2(D) satisfying G(u) + w ∈ K. In
particular, there exists a u such that G(u)(x, ω) < 0 a.e. in D P-a.s. If y = S(u), we obtain the
existence of a state that is strictly feasible, i.e., y(x, ω) < α a.e. in D P-a.s. Consider now the value
function v(w) := inf{F (u) | u ∈ L2(D),G(u) + w ∈ K}. Then 0 ∈ int{G(L2(D)) − K} is
equivalent to continuity of v at 0 ∈ L∞P (Ω, C(D̄)), i.e., 0 ∈ int dom v. This provides the connection to
[13, Assumption 3.5 (ii)]. Note that [13, Assumption 3.5 (i)] ensures that a minimizer exists, something
we do not require here.

It is possible to refine these optimality conditions by taking advantage of the following Yosida–Hewitt-
type decomposition result from [19, Appendix 1, Theorem 3] and [25]. Let X be a separable Banach
space. A continuous linear functional v ∈ (L∞P (Ω, X))∗ of the form

〈v, x〉 =

∫
Ω

〈x∗(ω), x(ω)〉 dP(ω) (55)

for some x∗ ∈ L1
P(Ω, X∗) is called absolutely continuous. We call v◦ ∈ (L∞P (Ω, X))∗ singular

(relative to P) if there exists a sequence {Fn} ⊂ F with Fn+1 ⊂ Fn for all n and P(Fn) → 0 as
n→∞ such that v◦ is concentrated on {Fn}, i.e., 〈v◦, x〉 = 0 for all x ∈ L∞P (Ω, X), that vanish on
some Fn. The set of all absolutely continuous functionals form a closed subspace of (L∞P (Ω, X))∗

that is isometric to L1
P(Ω, X∗), meaning that for any element x ∈ L∞P (Ω, X), we have

〈r∗, x〉 = 〈r◦, x〉+ 〈ra, x〉 = 〈r◦, x〉+ E[〈r(·), x(·)〉],

where r is the element in L1
P(Ω, X∗) corresponding to ra.

Theorem 3.9 (Ioffe and Levin). Each functional v∗ ∈ (L∞P (Ω, X))∗ has a unique decomposition

v∗ = v + v◦,

where v is absolutely continuous, v◦ is singular relative to P, and

‖v∗‖(L∞P (Ω,X))∗ = ‖v‖(L∞P (Ω,X))∗ + ‖v◦‖(L∞P (Ω,X))∗ .
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We now have the following result.

Theorem 3.10. With the assumptions from Lemma 3.7, for u∗ to be a solution to (51), it is necessary
and sufficient that there exist multipliers λ ∈ L1

P(Ω, C(D̄)∗) and λ◦ ∈ (L∞P (Ω, C(D̄)))∗ with

DF (u∗) + E[A−∗λ] + B∗A−∗λ◦ = 0, (56a)

Ay∗(·, ω)− u∗ − f̃(·, ω) = 0, (56b)

y∗(·, ω) ≤ α a.e. in D, λ(·, ω) ≥ 0 a.e. in D , 〈λ(·, ω), y∗(·, ω)− ψ〉 = 0, (56c)

λ◦ ∈ K−, 〈λ◦, y∗ − ψ〉 = 0, (56d)

with pointwise conditions (in ω) holding P-a.s.

Proof. Fix h ∈ L2(D) and let the unique decomposition of λ∗ be given by λ∗ = λa + λ◦. Note first
that 〈λ∗,A−1Bh〉 = 〈λ◦,A−1Bh〉 + 〈λa,A−1Bh〉. Letting λ ∈ L1

P(Ω, C(D̄)∗) be the integrable
element identified with λa, and recalling that B is the identity in L2(D) for every ω, we have

〈λ∗,A−1Bh〉 = E[〈λ,A−1h〉] + 〈λ◦,A−1Bh〉 = E[〈A−∗λ, h〉] + 〈B∗A−∗λ◦, h〉.

Therefore, (53a) is equivalent to (56a). Condition (56b) is equivalent to setting y∗ = S(u∗) and the
first inequality in (56c) is evidently equivalent to G(u∗) ∈ K.
We now observe the decomposition of the condition λ∗ ∈ K− and claim that since 〈λ∗, y〉 = 〈λ◦ +
λa, y〉 ≤ 0 for all y ∈ K, we must have both

〈λ◦, y〉 ≤ 0 and 〈λa, y〉 = E[〈λ, y〉] ≤ 0 ∀y ∈ K. (57)

To show this, we take the sequence of sets {Fn} on which λ◦ is concentrated and construct the
functions

yn(·, ω) :=

{
y(·, ω), ω ∈ Fn,
0, ω ∈ Ω\Fn

(y ∈ K). (58)

Since y ≤ 0 a.e. P-a.s., yn also has this property, so it belongs to K, too. We have 〈λ◦, yn − y〉 = 0
since yn = y in Fn for every n, and moreover (since the following integrand is bounded and P(Fn)→
0),

〈λa, yn〉 =

∫
Fn

〈λ(·, ω), y(·, ω)〉 dP(ω)→ 0 as n→∞.

We conclude that for any y ∈ K, we have

〈λ◦, y〉 = lim
n→∞
〈λ◦ + λa, yn〉 ≤ 0.

The inequality E[〈λ, y〉] ≤ 0 can evidently be shown by reversing the roles of 0 and y in (58). We
have shown that (57) is true.

To conclude, the first inequality is equivalent to λ◦ ∈ K−; the inequality E[〈λ, y〉] ≤ 0 for any y ∈ K
implies λ(·, ω) ≥ 0 a.e. in D P-a.s. Due to (57), the condition

〈λ∗,G(u∗)〉 = 〈λ◦ + λa, y∗ − ψ〉 = 0

implies that both

〈λ◦, y∗ − ψ〉 = 0 and 〈λa, y∗ − ψ〉 = E[〈λ, y∗ − ψ〉] = 0 (59)

must be satisfied. Finally, since 〈λ(·, ω), y∗(·, ω) − ψ〉 ≤ 0 P-a.s., the second condition in (59) can
only be satisfied if 〈λ(·, ω), y∗(·, ω)− ψ〉 = 0 P-a.s.
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Remark 3.11. The arguments used in the proof of Theorem 3.10 greatly simplify the derivation of
optimality conditions when compared to [13, 33]. The crucial observation used here is that one can
start from the standard result (Lemma 3.7) and directly use the structure of the decomposition to derive
the more explicit conditions. Additionally, unlike in [13, 14], we did not need to require the reflexivity
of X in the state space L∞P (Ω, X). This suggests that it may be generally possible to relax the
assumption of reflexivity in other applications in PDE-constrained optimization under uncertainty.

The equations (56) are not yet in the form frequently used in PDE-constrained optimization. We can
introduce the adjoint variable in (56a) by defining p(·, ω) := A−∗λ(·, ω) and p◦ := A−∗λ◦, from
which we obtain the adjoint equations

A∗p◦ = λ◦ in (L∞P (Ω, C(D̄)))∗ and A∗p = λ in L1
P(Ω, C(D̄)∗). (60)

Therefore, (53a) can be expressed in the equivalent form

DF (u∗) + E[p] + B∗p◦ = 0 in (L2(D))∗ (61)

where p◦ and p satisfy the respective conditions in (60). This allows us to recover conditions analogous
to [13, Lemma 3.9]:

Proposition 3.12. Under the same assumptions as Lemma 3.7, u∗ is a solution to (51) if and only
if there exist multipliers λ ∈ L1

P(Ω, C(D̄)∗) and λ◦ ∈ (L∞P (Ω, C(D̄)))∗ as well as adjoint variables
p ∈ L1

P(Ω, L2(D)∗) and p◦ ∈ (L∞P (Ω, L2(D))∗ such that

DF (u∗) + E[p] + B∗p◦ = 0, (62a)

A∗p◦ − λ◦ = 0, (62b)

A∗p(·, ω)− λ(·, ω) = 0, (62c)

Ay∗(·, ω)− u∗ − f̃(·, ω) = 0, (62d)

λ(·, ω) ≥ 0 a.e. in D, 〈λ(·, ω), y∗(·, ω)− ψ〉 = 0, (62e)

y∗(·, ω) ≤ α a.e. in D, λ◦ ∈ K−, 〈λ◦, y∗ − ψ〉 = 0, (62f)

with pointwise conditions (in ω) holding P-a.s.

As mentioned at the beginning of this section, the appearance of singular terms in the system (62) is
inconvenient for numerical approximations. These are typically handled by regularization, even in the
deterministic setting (since the corresponding multipliers there are generally only measures). Should
additional structure (see Lemma 3.4) be available so that the almost sure and robust formulations
are equivalent, the KKT conditions derived for the latter case may be helpful in some settings for the
design of numerical methods. The KKT conditions for the robust problem will be the subject of the
following section.

3.2 Robust state constraints

In this section, we analyze the following robust counterpart of problem (51):

min
u∈L2(D)

F (u) (63a)

s.t. −∆ŷ(x, z) = u(x) + f(x, z), (x, z) ∈ D × Ξ, (63b)

ŷ(x, z) = 0, (x, z) ∈ ∂D × Ξ, (63c)

ŷ(x, z) ≤ α (x, z) ∈ D × Ξ. (63d)
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We start with a robust version of Lemma 3.6.

Lemma 3.13. Suppose Assumption 1.1 holds and suppose Ξ ⊂ Rm is a compact set. Then for any
u ∈ L2(D), there exists a unique solution ŷ ∈ C(D̄ × Ξ) of (63b)–(63c). Moreover, there exists a
constant C > 0 such that

‖ŷ‖C(D̄×Ξ) ≤ C(max
z∈Ξ
‖z‖2 + ‖u+ f0‖L2(D)). (64)

Proof. From Lemma 1.2, we have

‖ŷ‖C(Ξ,C(D̄)) = sup
z∈Ξ
‖ŷ(·, z)‖C(D̄) ≤ C(sup

z∈Ξ
‖z‖2 + ‖u+ f0‖L2(D)) <∞

and the continuity of the mapping z 7→ ŷ(·, z), meaning ŷ ∈ C(Ξ, C(D̄)). After identifying C(Ξ, C(D̄))
with C(D̄ × Ξ), which is justified since Ξ and D̄ are compact sets (cf. [37, p. 50]), we have shown
(64).

Lemma 3.13 justifies the definition of a new control-to-state operator Ŝ : L2(D)→ C(D̄ × Ξ) by

Ŝ(u) = Â−1(B̂u+ f),

where f ∈ C(Ξ, L2(D)), B̂ is the continuous injection that maps each element of L2(D) to itself
in C(Ξ, L2(D)), and Â−1 : C(Ξ, L2(D)) → C(D̄ × Ξ) is defined by (Â−1y)(·, z) = A−1y(·, z).
Analogously to the previous section, we introduce Ĝ : L2(D) → C(D̄ × Ξ) by [Ĝ(u)](x, z) =
[Ŝ(u)](x, z) − α, the (convex and closed) cone K̂ := {y ∈ C(D̄ × Ξ) : y(x, z) ≤ 0 in D × Ξ},
and the polar cone K̂− := {y∗ ∈ C(D̄ × Ξ)∗ : 〈y∗, y〉 ≤ 0 ∀y ∈ K̂}.

Lemma 3.14. With the same assumptions as in Lemma 3.13, let F be convex and continuously
Fréchet differentiable on L2(D). Assume the constraint qualification 0 ∈ int{Ĝ(L2(D))− K̂} holds.
Then, for u∗ to be a solution to (63), it is necessary and sufficient that there exists some multiplier
λ∗ ∈ C(D̄ × Ξ)∗ with

〈DF (u∗), h〉+ 〈λ∗, Â−1B̂h〉 = 0 ∀h ∈ L2(D), (65a)

Ĝ(u∗) ∈ K̂, λ∗ ∈ K̂−, 〈λ∗, Ĝ(u∗)〉 = 0. (65b)

Proof. The proof follows identical arguments to those used in Lemma 3.7.

The dual space C(D̄ × Ξ)∗ can be identified with the setM(D̄ × Ξ) of all regular Borel measures1

µ supported on D̄ × Ξ by means of

〈r∗, r〉 =

∫
D̄×Ξ

r(x, z) dµ(x, z).

This means that there exists a measure µ∗ such that

〈λ∗, Â−1B̂h〉 =

∫
D̄×Ξ

[Â−1B̂h](x, z) dµ∗(x, z) =

∫
D̄×Ξ

[A−1h](x) dµ∗(x, z).

1A regular Borel measure is in this context the same as a Radon measure due to the compactness of D̄ × Ξ; see [2,
p. 152].
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Moreover, λ∗ ∈ K̂− implies for the associated measure µ∗ that
∫
D̄×Ξ

r(x, z) dµ∗(x, z) ≤ 0 for all

r ∈ C(D̄×Ξ) such that r ≤ 0 a.e. in D̄×Ξ. This implies the nonnegativity of µ∗. Using y∗ := Ŝ(u∗)
and the definition of Ĝ, (65) can be refined to the conditions

〈DF (u∗), h〉+

∫
D̄×Ξ

[A−1h](x) dµ∗(x, z) = 0 ∀h ∈ L2(D), (66a)

y∗(x, z) ≤ α ∀(x, z) ∈ D̄ × Ξ,

∫
D̄×Ξ

(y∗(x, z)− α) dµ∗(x, z) = 0, (66b)

µ∗ ∈M(D̄ × Ξ) nonnegative. (66c)

Connection to semi-infinite programming. Up until now in Section 3, we have used a functional-
analytic approach to derive optimality conditions. It is worth mentioning, however, that one can use
arguments from semi-infinite programming to arrive at the equivalent conditions for the problem

min
u∈L2(D)

F (u) s.t. g(u) := max
(x,z)∈D×Ξ

[Ŝ(u)](x, z)− α ≤ 0.

We define the Lagrange function L̂(u, λ) := F (u) + λg(u) with λ ∈ R. If there exists a u such that
g(u) < 0, then the set of Lagrange multipliers is nonempty. Then a feasible point u∗ is a solution if
and only if there exists λ∗ ≥ 0 such that

0 ∈ ∂uL(u∗, λ∗) = DF (u∗) + λ∗∂g(u∗) and λ∗g(u∗) = 0.

We will give a couple of equivalent characterizations of ∂g(u∗). Let gx,z(u) := [Ŝ(u)](x, z)−α. First,
we consider the viewpoint of Clarke [7, Section 2.8], where this subdifferential can be represented by
the set

∂g(u∗) =

{∫
D̄×Ξ

∂gx,z(u
∗) dµ(x, z)

∣∣∣µ is a Radon probability measure supported on M(u∗)

}
,

and
M(u) := {(x, z) ∈ D̄ × Ξ : [Ŝ(u)](x, z) = max

(x′,z′)∈D̄×Ξ
[Ŝ(u)](x′, z′)}.

Since ∂gx,z(u) = Dgx,z(u) = [Â−1B̂(·)](x, z) = [A−1(·)](x), we have that there exists a Radon
probability measure µ̃ supported on M(u∗) such that

〈DF (u∗), h〉+ λ∗
∫
D̄×Ξ

[A−1h](x) dµ̃(x, z) = 0 ∀h ∈ L2(D), (67a)

λ∗ ≥ 0, max
(x,z)∈D̄×Ξ

y∗(x, z) ≤ α, λ∗
(

max
(x,z)∈D̄×Ξ

y∗(x, z)− α
)

= 0, (67b)

Lemma 3.15. The conditions (66) are equivalent to those in (67).

Proof. Let us assume we have (66) and we set µ∗ =: λ∗µ̃ such that µ̃ = (µ∗(D̄ × Ξ))−1µ∗ and
λ∗ = µ∗(D̄ × Ξ). Evidently, we have µ̃(D̄ × Ξ) = 1, making µ̃ is a Radon probability measure
and λ∗ ≥ 0 since µ∗ is nonnegative. This construction immediately yields (67a). Now, the integral
condition in (66b) becomes λ∗

∫
D̄×Ξ

(y∗(x, z) − α) dµ̃(x, z) = 0. On account of the nonnegativity
of µ̃, the integrand can only be equal to zero if y∗(x, z) = α on a set of positive measure, and this

DOI 10.20347/WIAS.PREPRINT.3021 Berlin 2023



C. Geiersbach, R. Henrion 30

in turn only occurs on those points satisfying y∗(x, z) = max(x′,z′)∈D̄×Ξ y
∗(x′, z′). In particular, this

means that µ̃ is supported on M(u∗) and we obtain the final condition in (67b) due to

λ∗
∫
D̄×Ξ

(y∗(x, z)− α) dµ̃(x, z) = λ∗
∫
D̄×Ξ

(
max

(x′,z′)∈D̄×Ξ
y∗(x′, z′)− α

)
dµ̃(x, z)

= λ∗
(

max
(x′,z′)∈D̄×Ξ

y∗(x′, z′)− α
)

= 0.

On the other hand, suppose we have (67). It is clear that µ∗ := λ∗µ̃ is a nonnegative Radon measure
(and hence a nonnegative regular Borel measure). One can use identical arguments to those above
to reconstruct the conditions (66).

We move on to another representation of the optimality conditions. The Ioffe-Tikhomirov Theorem [20,
Theorem 4.2.3] yields the following representation of the convex subdifferential of g:

∂g(u∗) = clco{∂gx,z(u∗) | (x, z) ∈M(u∗)},

where “clco” denotes the weak closure (weak-star closure in general Banach spaces) in U . Recall that
∂gx,z(u

∗) = [A−1(·)](x). Then we have the optimality conditions (67b) with

〈DF (u∗), h〉+ λ∗co{[A−1h](x) | (x, z) ∈M(u∗)} 3 0 ∀h ∈ L2(D). (68)

Here, “clco” could be replaced by “co” since the (finite-dimensional) set {[A−1h](x) | (x, z) ∈
M(u∗)} is compact by the compactness of M(u∗) and Â−1B̂h ∈ C(D̄ × Ξ). We have the fol-
lowing:

Lemma 3.16. The condition (68) is equivalent to the existence of a Radon probability measure µ̃ such
that (67a) holds.

Proof. Let S := {[A−1h](x) | (x, z) ∈ M(u∗)}. From [31, Proposition 1.2] we have that a point s
is an element of clco(S) if and only if there is a Radon probability measure on S (i.e., µ is supported
on M(u∗)) representing s, meaning in this case that we have

f(s) =

∫
D̄×Ξ

f(x, z) dµ(x, z) ∀f ∈ C(Rd+m).

Choosing f = A−1h, we obtain the equivalence of the formulations (68) and (67a).
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