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submitted: May 16, 2023

1 Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: alexander.mielke@wias-berlin.de

2 Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
12489 Berlin
Germany

3 Mathematical Institute
Charles University
Sokolovská 83
186 75 Praha 8
E-Mail: tomas.roubicek@mff.cuni.cz

4 Institute of Thermomechanics
Czech Academy of Sciences
Dolejškova 5
18200 Praha 8
Czech Republic

5 Faculty of Mathematics
University of Vienna
Oskar-Morgenstern-Platz 1
1090 Vienna
E-Mail: ulisse.stefanelli@univie.ac.at

6 Istituto di Matematica Applicata
e Tecnologie Informatiche

E. Magenes - CNR
v. Ferrata 1
27100 Pavia
Italy

No. 3015

Berlin 2023

2020 Mathematics Subject Classification. 35Q49, 35Q74, 65M60, 74A30, 74L10, 76N06, 76T30, 86A17.

Key words and phrases. Self-gravitating viscoelastic media, multi-component fluids, finite strains, Navier–Stokes–Poisson system,
multipolar continua, gravitation, transport equations, Eulerian formulation, Galerkin approximation, weak solutions.

A.M. was partially supported by Deutsche Forschungsgemeinschaft (DFG) through the Berlin Mathematics Research Center MATH+
(EXC-2046/1, project ID 390685689, subproject DistFell). U.S. received partial support from the Austrian Science Fund (FWF) projects
F 65, I 4354, I 5149, P 32788. T.R. was partially supported by the Czech Sci. Foundation (CSF/DFG project GA22-00863K) with the
institutional support RVO:61388998 (ČR).
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A model of gravitational differentiation of
compressible self-gravitating planets

Alexander Mielke, Tomáš Roubíček, Ulisse Stefanelli

Abstract

We present a dynamic model for inhomogeneous viscoelastic media at finite strains. The model features
a Kelvin–Voigt rheology, and includes a self-generated gravitational field in the actual evolving configura-
tion. In particular, a fully Eulerian approach is adopted. We specialize the model to viscoelastic (barotropic)
fluids and prove existence and a certain regularity of global weak solutions by a Faedo–Galerkin semi-
discretization technique. Then, an extension to multi-component chemically reacting viscoelastic fluids based
on a phenomenological approach by Eckart and Prigogine, is advanced and studied. The model is inspired
by planetary geophysics. In particular, it describes gravitational differentiation of inhomogeneous planets
and moons, possibly undergoing volumetric phase transitions.

1 Introduction

Self-gravitating inhomogeneous media provide a rich class of interesting problems in continuum mechanics,
a prominent application being planetary geophysics. A detailed understanding of the processes of planetary
formation and early evolution is currently available. In addition, the dynamics of the interiors of planets and
their moons is relatively well understood, in particular in relation with the Solar planetary system and the planet
Earth, cf. [BaW15,Con16,Ger19,GeY07,STO04].

After a relatively short time (tens or hundreds of millions of years) of accretion from a rather homogeneous stellar
disc of dust, meteoroids, and asteroids, on a much longer period (billions of years) planets differentiate. Self-
gravitation drives the dynamics inside the mantle, eventually leading to the formation of a core-mantle structure.
This occurs as effect of the different densities of the mantle constituents, i.e., the heavier media (metals), which
are strongly attracted towards the planet core, and the lighter ones (silicates and volatile elements forming liquid
oceans or gaseous atmospheres), which are subjected to buoyancy. The onset of so-called Rayleigh-Taylor
instability of interfaces between media with different densities can be observed. A similar evolution happens
also in the development of big moons of planets.

Self-gravitation also governs the subsequent evolution of planets and moons interiors. In particular, gravity is
responsible for the formation of plumes and slabs in the mantle, which are accompanied by various volumet-
ric phase transitions and related buoyancy effects. Silicates in the Earth mantle undergo several quite sharp
volumetric transitions. This happens at pressures of about 14 GPa (olivine transforms to wadsleyite) and 23
GPa (spinel transforms to perovskite and magnesiowüstite), which in Earth’s mantle occur at a depth of 410 km
and 660 km, respectively, cf., e.g., [Chr95,Con16,Ger19,HeW01,TS∗94]. These volumetric transformations are
related with the loss of strict convexity (or, accounting for hysteresis, non-convexity of the stored energy φref as
a function of the determinant J = detF of the deformation gradient (i.e., loss of polyconvexity in terms of F
itself).
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The aim of this paper is to present and analyze a dynamic model able to capture the basic features of planets
and moons differentiation under self-gravitation. In particular, we model an inhomogeneous viscoelastic medium
at finite strains by assuming the so-called Kelvin-Voigt rheology and including the effects of the self-generated
gravitational field. A crucial aspect of our approach is that it is formulated in the actual evolving configuration,
making it fully Eulerian. Mainly for analytical reasons (but see Remarks 3.3 and 4.1 for a discussion), we restrict
ourselves to the discussion of the isothermal case. Note nonetheless that thermal effects and temperature de-
pendence of material parameters play a vital role in the evolution of planets’ and moons’ interiors. We refrain
however to discuss thermal effects here, as these would require a much longer tractate. We specifically study
the case of barotropic fluids, as well as the multicomponent case. Both in the single component and in the mul-
ticomponent case, we are able to prove the existence of weak solutions by means of a Galerkin approximation
technique.

Before starting our discussion of the evolutionary model, let us mention some available contributions on the
equilibrium of self-gravitating systems. By assuming spherical symmetry, a collection of results, together with
an historical account, are provided in the monograph [MüW16]. Existence of equilibria of a hyperelastic solid
under self-gravitation has been investigated in [CaL15]. Some alternative Eulerian analysis in case of spheres
and multiple and stratified spherical shells is in [AlC19,AlC20]. Again in the spherical setting, the phenomenon
of gravitational collapse and the possible existence of multiple equilibria are discussed in [JK∗19], together with
the ensuing bifurcation dynamics.

The case of nonlinear elastic models for polytropic fluids are considered in [Cal22] both in the Lagrangian and
the Eulerian setting. In the case of the stationary Navier-Stokes under barotropic pressure with p(ρ) ≈ aργ

for γ > 4/3, existence of equilibria has been established in [Sec94], and the stability of radially symmetric
solutions and their free boundary have been studied in [StZ99]. In addition, a number of contributions explore
the relativistic setting, again in the spherical case, see [AlC17,AnC14] among many others.

In the dynamic case, the reference setting is that of Navier-Stokes-Poisson systems. Note that these are parted
into two distinct classes, depending on the repulsive versus attractive nature of the Poisson subsystem. These
indeed correspond to the modeling of electrically charged versus self-gravitating fluids. The literature in the
repulsive case is extensive, see, for instance [CD∗21,Don03,DoM08,HeT20,LMZ10a,TaZ10,LMZ10b,Zhe12].
Concerning the attractive case, which is the case of our interest, we start by mentioning the local existence
result in [StZ99], as well as the global existence result for weak solutions on bounded domains with pressure
law p(ρ) = aργ , γ > 3/2, in [KoS08]. Existence in an external domain is tackled in [DuF04,DF∗01,JiT09a] for
p(ρ) = aργ , γ > 3/2, and in [DF∗04] for p(·) non-monotone. Global existence in Rn for 4/3 < γ ≤ 3/2 and
for radially symmetric initial data has been proved in [JiT10]. The stability and stabilization of spherical solutions
in an external domain is treated in [DuZ05]. Eventually, a result on strong-weak uniqueness is in [Bas22], and
the existence of an absorbing set for large times has been obtained in [JiT09b] for γ > 5/3 and later in [GJY12]
for γ > 3/2. Local existence for self-gravitating inviscid liquid bodies with varying shape was shown in [StZ99]
and, in the degenerate (inviscid) case of the Euler-Poisson system, in [GLL20].

The novelty of our paper relies on the treatment of general inhomogeneous, as well multicomponent materials.
Note that the discussion of inhomogeneous or multicomponent materials is instrumental to the description of
differentiation dynamics in planets’ mantle. Our way of modeling the inhomogeneity of the material relies on the
use of the reference mapping ξ(t, ·) mapping the Eulerian or spatial point x ∈ y(t,Ω) back into the reference
domain configuration Ω. By studying the transport of ξ along with the velocity field v(t,x) we can trace the
inhomogeneities that are imprinted into the material at the reference point ξ(t,x). Using a suitable hypervis-
cosity (cf., 3.4), we are able to derive the necessary regularity properties for ξ to treat quite general material
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laws, see (5.2). In particular, our analysis covers the case of a general non-monotone barotropic pressure with
growth ∼ ργ with γ > 6/5; cf., assumption (5.2b) with Remark 4.2 below.

The plan of the paper is as follows. Section 2 recalls basic notations and standard concepts from kinematic
of finite-strain continuum mechanics. In Section 3, we introduce the model for self-gravitating inhomogeneous
viscoelastic bodies, and its energetics is discussed. Section 4 then specifies the model to visco-elastic Navier-
Stokes fluids with Kelvin-Voigt rheology in the volumetric part. In Section 5, we present a result on existence
and regularity of weak solutions to an initial-boundary-value problem for the inhomogeneous self-gravitating
system. In order to achieve this goal, we perform an approximation and Galerkin discretization of (most of) the
equations. Eventually, in Section 6, we present and analyze a multi-component version of the previous model,
employing the Eckart-Prigogine approach.

2 Kinematics at finite strains

Let us start by recalling some basic notion from the general theory of large (or finite) deformations in continuum
mechanics, cf., e.g., [GFA10,Mar19].

The basic quantity describing the time-dependent evolution of a deformable body is the (referential) deformation
or motion y : I×Ω→ R3, where I = [0, T ] and T > 0 is some given final time. For all time instants t ∈ I , the
deformation y(t, ·) maps the reference configuration Ω ⊂ R3 of the deformable body to its actual configuration
y(t,Ω), a subset of the physical space R3. In what follows, we indicate referential coordinates byX ∈ Ω and
actual coordinates by x ∈ R3. By assuming y(t, ·) to be globally invertible, we indicate its inverse by ξ(t, ·) =
y−1(t, ·) : y(t,Ω) → Ω. Such ξ is usually referred to as return or reference mapping, or sometimes inverse
motion. Two basic kinematic quantities are the Lagrangian velocity vR = ∂

∂t
y and the Lagrangian deformation

gradient F R = ∇Xy. Starting from these, one defines the Eulerian velocity v(t,x) = vR(t, ξ(t,x)) and the
Eulerian deformation gradient F (t,x) = F R(t, ξ(t,x)). Here and throughout the article, having the Eulerian
velocity at disposal, we use the dot-notation (·). = ∂

∂t
+v·∇x to indicate the convective time derivative applied

to scalars or, componentwise, to vectors or tensors. The velocity gradient ∇v fulfills ∇v = ∇Xv∇xX =.
FF−1, where we used the chain-rule and the fact that F−1 = (∇Xx)−1 = ∇xX . This gives the evolution-
and-transport equation for the deformation gradient

.
F = (∇v)F . (2.1)

From this, we also obtain the evolution-and-transport equation for Jacobian detF and its reciprocal 1/ detF ,
namely,

.
detF = (detF )div v and

.(
1

detF

)
= − div v

detF
. (2.2)

The return mapping ξ satisfies the transport equation

.
ξ = 0 (2.3)

which simply expresses the fact that the material properties encoded in the material point X = ξ(t,x) move
along with the particles in the flow. Moreover, one has that F = (∇ξ)−1.
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As F depends on x, equalities (2.1)–(2.3) will be assumed to hold for almost all x ∈ y(t,Ω). Here, we take
advantage of the boundary condition v·n = 0 imposed below, with n being the outward unit normal to the
boundary of the actual domain. This boundary condition implies that the actual domain Ω = y(t,Ω) does not
evolve in time, i.e., Ω = Ω. The stress T and the pressure p defined in (3.5a) and (4.3a) are also functions of
x. In particular, all models under consideration in the following will be fully Eulerian.

3 Self-gravitating inhomogeneous viscoelastic media

We consider a simple model for a self-gravitating bounded body with a fixed shape. Planets and moons are
typically composed by many components. By referring to the Earth, as well as to other planets and moons of
the solar system, one should minimally consider three components, namely, metals, silicates, and a gaseous
atmosphere. The latter is often adopted for the so-called sticky-air approach (cf. [Cra12]) to allow for a fixed and
smooth domainΩ. We are thus led to consider here a spatially inhomogeneous material with a given referential
mass density ρref = ρref(X) > 0 at some initial time t = 0 and stored energy ϕref(X, ·) : R3×3 → R acting
onF . We preliminarily assume that the body follows the Kelvin-Voigt rheology, which is the simplest viscoelastic
solid-type rheology. In the following, two inhomogeneous viscosity coefficients ν1 and ν2 will be introduced.

We will use the shorthand notation (·)ξ in order to indicate the composition with ξ within a referential quantify
when substituting X by ξ(t,x). In particular, F = F ξR and v = vξR . This notation is meant to emphasize the
spatial inhomogeneity of the material.

The referential density %R = %R(X) in the deformed configuration is %R = ρref/detF R while the actual
Eulerian mass density % = %(t,x) is %ξR = ρξref/detF ξR , i.e.,

% =
ρξref

detF
= det(∇ξ)ρξref . (3.1)

Likewise, the referential stored energy reads ϕR = ϕR(X,F R) = ϕref(X,F R)/detF R and the actual Eule-
rian stored energy is ϕ = ϕ(t,x,F ) = ϕξref(t,x,F )/detF . Note that now ϕ is dependent on time t. In what
follows, we will often simply write ϕξref(F ) instead of ϕξref(t,x,F ).

Given equation (2.1), relation (3.1) is equivalent to the evolution-and-transport equation for the actual mass
density

.
% = −% div v with the initial condition %|t=0 =

ρξref |t=0

detF |t=0

. (3.2)

A distinct advantage of working in a fully Eulerian setting is the simplicity with which one can incorporate in the
model interactions with actual fields. Relevant to our endeavor is in particular the gravitational acceleration field
g = −∇V ensuing from the gravitational potential V . We introduce a simplification of the model by posing the
system in a bounded and smooth albeit possibly large domain U ⊂ R3, which plays the role of universe. In
addition, we assume that the gravitational potential V takes the constant value VB outside U . The rationale of
this choice is that, by possibly taking U large enough, the effect of assuming the universe U to be bounded on
the dynamic of the planet is expected to be negligible. Note that our system will be completely independent of
the constant VB. This is particularly relevant in connection with the choice of U . Note that well-known that the
actual value of the gravitational potential on the Earth surface depends on whether one considers only a single
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planet, the whole Solar System, or the whole galaxy Milky Way, and is given roughly by 60 MJ/kg, 900 MJ/kg,
or more than 130 GJ/kg, respectively. Fixing a specific value VB in (3.6) will in fact be shown to be immaterial in
our framework, see (3.10) below.

The gravitational potential V is governed by the Poisson equation

∆V =

{
G% with % = det(∇ξ)ρξref on Ω ,

G%ext on U \Ω,
(3.3)

where G is the gravitational constant and %ext = %ext(t,x) is a given external, possibly time-dependent mass
density distributed around Ω, which may model tidal effects. In fact, we will introduce a further simplification by
assuming that the mass %ext does not feel the presence of the mass %. In what follows, we will consider both %
and %ext to be defined on the whole U by extending them to 0 outside Ω and U \Ω, respectively.

The geometric setting of the model is illustrated in Figure 1.

Fig. 1: The schematic geometry of the fixed bounded domain Ω ⊂ U where the
self-gravitating medium is evolving with velocity v. The universeU , where
the external mass density %ext = %ext(t,x) outside Ω is prescribed, is
considered to be very large, so that the gravitational potential V can be
assumed to be constant out of it. The boundary conditions on ∂Ω and
∂U are depicted too, with n denoting the unit normal to the boundary
∂Ω.

The conservative and the dissipative parts of the Cauchy stress acting on the body are defined standardly
(cf. Remark 3.2) as

T =

[
ϕξref

]′
F

(F )F>

detF
=
[
ϕξref

]′
F

((∇ξ)−1)Cof(∇ξ) and (3.4a)

D = νξ1e(v)− div
(
νξ2 |∇e(v)|q−2∇e(v)

)
. (3.4b)

The Kelvin-Voigt rheology corresponds to considering the total stress as T + D. Note that D contains a
standard Newtonian term νξ1e(v) and the hyperviscous stress −div

(
νξ2 |∇e(v)|q−2∇e(v)

)
, see Remark 3.2

for a discussion.
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The full model system is formulated in the unknowns (v, ξ, V ) and results from the momentum equilibrium,
(2.1), namely,

%
.
v = div

(
T+D

)
− %∇V on Ω with T andD from (3.4) and % from (3.1), (3.5a)

.
ξ = 0 on Ω , (3.5b)

∆V = G
(
%+%ext

)
on U . (3.5c)

We complement this system by the boundary conditions

v·n = 0 ,
(
(T+D)n− divS(ν

ξ
2 |∇e(v)|q−2∇e(v)n)

)
T

= 0 , ∇e(v):(n⊗n) = 0 on ∂Ω, (3.6a)

V = VB on ∂U . (3.6b)

Here, (·)T indicates the tangential component of a vector at ∂Ω and VB is the above mentioned arbitrary constant
for the value of the gravitational field outside U . The (d−1)-dimensional surface divergence is defined as

divS = tr(∇S) with ∇S • = ∇ • − ∂ •
∂n
n , (3.7)

where tr(·) is the trace of a (d−1)×(d−1)-matrix and ∇S denotes the surface gradient. Let us again remark
the crucial role of the impenetrability boundary condition v·n = 0, indeed allowing system (3.5a,b) to be
formulated in the fixed domain Ω.

The energetics of system (3.5) can be revealed by testing (3.5a) by v and (3.5c) by ∂
∂t
V . The former test

quite standardly employs the Green formula over Ω (for the ν2 term one uses the formula twice, combined
with a surface Green formula on ∂Ω) in view of the first and the second boundary conditions in (3.6a). In fact,
following [Rou22a, Sec. 3] we start from position (3.4a) and compute

T =

[
ϕξref

]′
F

(F )F>

detF
=

[
ϕξref

]′
F

(F )− ϕξref(F )F−>

detF
F> +

ϕξref(F )

detF
I

=

([
ϕξref

]′
F

(F )

detF
− ϕξref(F )CofF

(detF )2

)
F> +

ϕξref(F )

detF
I =

[
ϕξref(F )

detF

]′
F

F>+
ϕξref(F )

detF
I. (3.8)

where I denotes the identity matrix. Moreover, we have that

∂

∂t

(
ϕξref(F )

detF

)
=

[
[ϕref ]

′
X

]ξ
detF

·∂ξ
∂t

+

[
ϕref(F )

detF

]′
F

:
∂F

∂t
and (3.9a)

∇
(
ϕξref(F )

detF

)
=

[
[ϕref ]

′
X

]ξ
detF

·(v·∇)ξ +

[
ϕref(F )

detF

]′
F

:(v·∇)F . (3.9b)

By testing the force −div(T +D) by the velocity v and using the boundary conditions (3.6a) we hence get

−
∫
Ω

div(T+D)·v dx
(3.6a)
=

∫
Ω

(T+D):∇v dx

=
(3.8)

∫
Ω

[
ϕref(F )

detF

]′
F

F>:∇v +
ϕref(F )I

detF
:∇v +D:∇v dx
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=

∫
Ω

[
ϕref(F )

detF

]′
F

:∇vF +
ϕref(F )

detF
div v +D:∇v dx

(2.1)
=

∫
Ω

[
ϕref(F )

detF

]′
F

:
.
F +

ϕref(F )

detF
div v +D:∇v dx

(3.9)
=

∫
Ω

∂

∂t

(
ϕξref(F )

detF

)
+∇

(
ϕξref(F )

detF

)
·v +

ϕref(F )

detF
div v dx

−
∫
Ω

[
[ϕref ]

′
X

]ξ
detF

:

(
∂ξ

∂t
+ v·∇ξ

)
+D:∇v dx

(2.3)
=

d

dt

∫
Ω

ϕξref(F )

detF
dx+

∫
Ω

div

(
ϕξref(F )

detF
v

)
dx+

∫
Ω

D:∇v dx

(2.3)
=

d

dt

∫
Ω

ϕξref(F )

detF
dx+

∫
∂Ω

ϕξref(F )

detF
(v·n) dS +

∫
Ω

D:∇v dx

=
d

dt

∫
Ω

ϕξref(F )

detF
dx+

∫
Ω

νξ1 |e(v)|2 + νξ2 |∇e(v)|qdx.

By testing the inertial force %
.
v by v, it is paramount to use (3.5b) together with (3.1) andF = (∇ξ)−1, inducing

the continuity equation (3.2). In particular, one has

∂

∂t

(
%|v|2

2

)
= %v· ∂

∂t
v − 1

2
div(%v)|v|2.

Hence, by using again the Green formula and v·n = 0, we obtain

d

dt

∫
Ω

%|v|2

2
dx =

∫
Ω

%
.
v·v dx.

On the other hand, testing (3.5c) on ∂V/∂t we obtain

d

dt

∫
U

|∇V |2

2G
dx =

d

dt

∫
U

|∇(V−VB)|2

2G
dx

(3.6b)
= −

∫
U

∆(V−VB)

G

∂(V−VB)

∂t
dx

(3.5c)
= −

∫
U

(%+%ext)
∂(V−VB)

∂t
dx =

∫
U

(
∂%

∂t
+
∂%ext

∂t

)
(V−VB) dx− d

dt

∫
U

(%+%ext)(V−VB) dx

(3.2)
= −

∫
Ω

div(%v) (V−VB) dx+

∫
U\Ω

∂%ext

∂t
(V−VB) dx− d

dt

∫
U

(%+%ext)(V−VB) dx

=

∫
Ω

%v·∇(V−VB) dx+

∫
U\Ω

∂%ext

∂t
(V−VB) dx− d

dt

∫
U

(%+%ext)(V−VB) dx

=

∫
Ω

%v·∇V dx+

∫
U\Ω

∂%ext

∂t
V dx− d

dt

∫
Ω

%V dx− d

dt

∫
U\Ω

%extV dx (3.10)

with % from (3.1), where we also used the fact that
∫
Ω
% dx is constant. Note that the Green formula on U

used in (3.10) hinges on the boundary condition V = VB on ∂U while the Green formula on Ω used again the
boundary condition v·n = 0. The equality in (3.10) is nonetheless independent of the value VB. By noticing
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that the term %v·∇V = %∇V ·v arises also when testing (3.5a) by v where it is to be substituted from (3.10),
we obtain the mechanical energy-dissipation balance

d

dt

(∫
Ω

%

2
|v|2︸ ︷︷ ︸

kinetic
energy

+
ϕξref(F )

detF︸ ︷︷ ︸
stored
energy

+ %V︸︷︷︸
energy of % in
gravitational

field V

dx +

∫
U

|∇V |2

2G︸ ︷︷ ︸
energy of

gravitational
field

dx+

∫
U\Ω

%extV︸ ︷︷ ︸
energy of %ext
in gravitational

field V

dx

)

+

∫
Ω

νξ1 |e(v)|2 + νξ2 |∇e(v)|q︸ ︷︷ ︸
=: ξ dissipation rate due

to viscosity

dx =

∫
U\Ω

∂%ext

∂t
V︸ ︷︷ ︸

power of
external mass in
gravitational field

dx . (3.11)

Remark 3.1 (Variational structure of (3.5)). To elucidate the variational structure of the system (3.5) requires
some care, because the potential equation (3.3) for V provides a concave contribution to the free energy

(y, V ) 7→
∫

Ω

ϕref(X,∇y) + %ref

(
X, V ◦y

)
dX +

∫
U\Ω
%ext(x)V (x) dx−

∫
U

|∇V (x)|2

2G
dx .

Note that the latter features a mixture of referential and actual terms. By taking the variation of the free energy
with respect to the gravitational potential V and using V ◦y(X) = V (x) we obtain (3.3). On the other hand, the
variation with respect to y produces the first Piola-Kirchhoff stress tensor and the gravitational force %R(∇V ◦y),
which correspond to T and %R∇V = %∇V when written in the Eulerian setting of (3.5a).

Remark 3.2 (Gradient theories in rates). Higher-order theories in solid mechanics are well established and
used for various reasons. By introducing a further length scale into the problem, additional hyperstresses occur,
which in turn usually contribute crucial compactness for the mathematical analysis. Such high-order models
are generally referred to as nonsimple materials. Both the conservative and the dissipative stress can feature
higher gradients. In (3.5) we consider an hyperstress on the dissipative part, an option which is particularly well
tailored to rate formulations, having the advantage to provide additional regularity for the velocity field v. Our
approach follows the theory by E. Fried and M. Gurtin [FrG06], as already considered in the general nonlinear
context of multipolar fluids by J. Nečas at al. [Neč94, NNŠ91, NeR92, NeŠ91] and as originally inspired by
R. A. Toupin [Tou62] and R. D. Mindlin [Min64].

Remark 3.3 (Anisothermal extension). Heat exchange and transfer plays an important role with respect to
the differentiation phenomenon in self-gravitating planets and moons. Although presently neglected in our
model, thermal effects could also be considered. On the one hand, one may let material parameters be de-
pendent on temperature, here denoted by θ. On the other hand, by assuming the (referential) free energy
ψref = ψref(X,F , θ) to be additively decomposed as ψref(X,F , θ) = ϕref(X,F ) + γref(X,F , θ) with
γref(X,F , 0) = 0, the heat equation reads

∂w

∂t
+ div

(
vw+j

)
= ξ +

[γξref ]
′
F (F , θ)

detF
:
.
F with w =

γξref(F , θ)−θ[γ
ξ
ref ]
′
θ(F , θ)

detF
, (3.12)

where the heat production rate ξ is specified in (3.11) and the heat flux j is governed by the Fourier law
j = −kξ∇θ with a heat-conduction coefficient k = k(X, detF , θ). Then, the viscosity coefficients ν1 and
ν2 can be assumed to depend on temperature, as well. The physical meaning of the quantity w is of that
of the thermal part of the (actual) internal energy. By complementing relation (3.12) to the system (3.5), the
ensuing anisothermal coupled model then reproduces the expected energetics. In addition, it complies with the
Clausius-Duhem entropy inequality, cf. [Rou22b] and it is hence thermodynamically consistent.
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4 Kelvin-Voigt/Navier-Stokes viscoelastic fluid

Differentiation by self-gravitation in planets and moons occurs on very long time scales. Within such a time
scale, solid-type rheologies (as the Kelvin-Voigt one from Section 3) have limited relevance and one should
resort to fluid rheologies in the deviatoric components instead. Different options are available. Classical choices
in geophysics are the Andrade and the Jeffreys rheologies, both allowing for the propagation of elastic shear
waves. Such waves are however of relatively low importance on the time scale of planetary evolution. As such,
we resort here to a simpler variant, which goes under the name of Newton or Stokes or, in the current convec-
tive setting, of Navier-Stokes rheology and does not allow for propagation of shear waves. The Navier-Stokes
rheology can be obtained in the frame of the above introduced Kelvin-Voigt model by assuming that the elastic
shear response vanishes, i.e., that ϕref depends only on the volumetric part (detF )1/3I of F . Thus, we let

ϕref(X,F ) = φref(X, J) with J = detF (4.1)

for some φref : Ω× (0,∞)→ R, cf., e.g., [MaH83, p. 10] or also [Rou22a]. By recalling that det′(·) = Cof(·)
and F−1 = CofF>/detF , the conservative part of the Cauchy stress reduces to

T =
[ϕref ]

′
F (X,F )F>

detF
= [φref ]

′
J(X, detF )

det′(F )F>

detF

= [φref ]
′
J(X, detF )

(Cof F )F>

detF
= [φref ]

′
J(X, J)I , (4.2)

(compare with (3.8)), where [φref ]
′
J has a physical interpretation of a (negative) pressure.

Under the fluidic ansatz (4.1), by taking (4.2) and (3.1) into account, system (3.5) reads

%
.
v = div

(
νξ1e(v)− div

(
νξ2 |∇e(v)|q−2∇e(v)

))
−∇p− %∇V

with p = −[φξref ]
′
J

( 1

det(∇ξ)

)
and % = det(∇ξ)ρξref , (4.3a)

.
ξ = 0, on Ω , (4.3b)

∆V = G
(
%+%ext

)
on U . (4.3c)

System (4.3) is usually referred to as the compressible Navier-Stokes-Poisson system. We complement it with
the boundary conditions (3.6).

The energetics for system (4.3) follows along the same lines of that of system (3.5). Let us explicitly show
how to handle the conservative part of the stress, i.e., the term divT ·v, which now reads as ∇p·v with
p = −[φξref ]

′
J(J). The analogous of computations (3.9) in the fluidic setting (4.1) are

∂

∂t

(φξref(J)

J

)
=

[
[φref ]

′
X

]ξ
(J)

J
·∂ξ
∂t

+
[φξref(J)

J

]′
J

∂J

∂t
(4.4a)

∇
(φξref(J)

J

)
·v =

[
[φref ]

′
X

]ξ
(J)

J
·(v·∇)ξ +

[φξref(J)

J

]′
J
v·∇J . (4.4b)

Making use of (2.2) we find∫
Ω

∇p·v dx = −
∫
Ω

∇[φξref ]
′
J(J)·v dx =

∫
Ω

[φξref ]
′
J(J)div v dx−

∫
∂Ω

[φξref ]
′
J(J)v·n︸︷︷︸

= 0

dS
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(2.2)
=

∫
Ω

[φξref ]
′
J(J)

J

.
J dx =

∫
Ω

([φξref(J)

J

]′
J

+
φξref(J)

J2

) .
J dx

(2.2)
=

∫
Ω

[φξref(J)

J

]′
J

∂J

∂t
+
[φξref(J)

J

]′
J
v·∇J +

φξref(J)

J
div v dx

(4.4)
=

∫
Ω

∂

∂t

(φξref(J)

J

)
+∇

(φξref(J)

J

)
·v −

[
[φref ]

′
X

]ξ
(J)

J
·
(∂ξ
∂t

+(v·∇)ξ︸ ︷︷ ︸
= 0 due to (4.3b)

)
+
φξref(J)

J
div v dx

=
d

dt

∫
Ω

φξref(J)

J
dx+

∫
Ω

div
(φξref(J)

J
v
)

dx

=
d

dt

∫
Ω

φξref(J)

J
dx+

∫
∂Ω

φξref(J)

J
v·n︸︷︷︸
= 0

dS =
d

dt

∫
Ω

φξref(J)

J
dx . (4.5)

Note that these computations require sufficient smoothness of φref with respect to X , so that [φref ]
′
X is inte-

grable. On the other hand, from the application point of view, it is desirable to consider sharp interfaces between
different materials, which leads to jumps in φref(·, J) : Ω → R. Such material laws could also be rigorously
accounted for, at the expense of more refined arguments, cf. [Rou22a] and Remark 5.5.

Altogether, under assumptions (4.1) the energy balance now reads

d

dt

(∫
Ω

ρξref

2J
|v|2︸ ︷︷ ︸

kinetic
energy

+
φξref(J)

J︸ ︷︷ ︸
actual
stored
energy

+
ρξref

J
V︸ ︷︷ ︸

energy of % in
gravitational

field V

dx+

∫
U

|∇V |2

2G︸ ︷︷ ︸
energy of

gravitational
field

dx+

∫
U\Ω

%extV︸ ︷︷ ︸
energy of %ext
in gravitational

field V

dx

)

+

∫
Ω

νξ1 |e(v)|2 + νξ2 |∇e(v)|q︸ ︷︷ ︸
=: η dissipation rate

due to viscosity

dx =

∫
U\Ω

∂%ext

∂t
V︸ ︷︷ ︸

power of
external forces

dx . (4.6)

Remark 4.1 (Anisothermal extension). In the spirit of Remark 3.3, also in case of assumption (4.1) the model
can be extended to the anisothermal case by letting the material parameters depend on the temperature θ,
e.g., the (referential) free energy can be taken as ψref = ψref(X, J, θ). Considering the split ψref(X, J, θ) =
φref(X, J)+γref(X, J, θ) with γref(X, J, 0) = 0, the (actual) pressure p in (3.5a) reads p = −[φξref ]

′
J(x, J)

−[γξref ]
′
J(x, J, θ). Hence, the ensuing heat equation is

∂w

∂t
+ div

(
vw+j

)
= η + [γξref ]

′
J(J, θ)div v with w =

γξref(J, θ)−θ[γ
ξ
ref ]
′
θ(J, θ)

J
, (4.7)

where the heat production rate η is defined in (4.6). This anisothermal version of the model again reproduces
the expected energetics and complies with the Clausius-Duhem inequality. In particular, it can be checked to be
thermodynamically consistent.

Remark 4.2 (State equation). In fluid thermomechanics, the state equation relates density, pressure, and tem-
perature. Here, in view of Remark 4.1 and the fact that % = ρref/J , this relation at a current material point
reads as p = −φ′ref(ρref/%) − [γref ]

′
J(ρref/%, θ). In the isothermal situation, where γref ≡ 0, the relation

p = −φ′ref(ρref/%) represents a so-called isentropic state equation while the fluid is said to be barotropic, i.e.,
its density depends only on pressure.
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5 Analysis of the viscoelastic fluid problem

We present here an existence result for weak solutions to system (4.3). Moreover, we prove that such weak
solutions fulfill the energy balance (4.6). Note that in order to obtain (4.6), as well as the corresponding a-priori
estimates, one needs a Poincaré inequality to control the terms

∫
Ω
%V dx,

∫
U
%extV dx, and

∫
U

∂
∂t
%extV dx,

which have no sign, through
∫
R3 |∇V |2 dx. This once again asks U to be budded.

We are interested in an initial-value problem for system (4.3). The initial conditions are prescribed as

v|t=0 = v0 and ξ|t=0 = ξ0 . (5.1)

We will use the standard notation for Lebesgue and Sobolev spaces, namely Lp(Ω;Rn) for Lebesgue mea-
surable functions Ω → Rn whose Euclidean norm has integrable p-power, W k,p(Ω;Rm) for functions from
Lp(Ω;Rm) whose distributional derivatives up to the order k have their Euclidean norm integrable with p-
power, and W k,p

0 (Ω;Rm) for the subspace of W k,p(Ω;Rm) of functions with zero trace on ∂Ω. We also
use Hk = W k,2 and Hk

0 = W k,2
0 . The notation p∗ will denote the optimal exponent for the embedding

W 1,p(Ω) ⊂ Lp
∗
(Ω), i.e., p∗ = dp/(d−p) for p < d while p∗ ≥ 1 arbitrary for p = d or p∗ = +∞ for p > d.

Moreover, for a Banach space X and for I = [0, T ], we will use the notation Lp(I;X) for the Bochner space
of Bochner measurable functions I → X whose norm is in Lp(I) while W 1,p(I;X) indicates the functions
I → X whose distributional derivative is in Lp(I;X). Moreover, C(·) and Ck(·) will denote spaces of con-
tinuous and k-times continuously differentiable functions, respectively. Eventually, Cw(I;X) and BV(I;X)
will denote the Banach space of weakly continuous functions I → X and functions with bounded variations,
respectively, and Cb(·) will stand for continuous bounded functions.

In the following, we use the symbol C to indicate a generic positive constant depending on data and possibly
changing from line to line. We impose the following assumptions on the data:

Ω ⊂⊂ U ⊂ R3 are open, bounded, and C1,1-regular, (5.2a)

φref ∈ C1(Ω×(0,+∞)), ∃ ε > 0, α > 1/5 ∀X ∈Ω, J > 0 : φref(X, J) ≥ ε

Jα
, (5.2b)

ν1, ν2 ∈ C(Ω) , min(ν1, ν2) > 0 , q > 3 (for q occurring in (3.4)) , (5.2c)

ρref ∈ C(Ω) , ρref > 0 , G > 0 , %ext ∈ W 1,1(I;L6/5(U\Ω)) , (5.2d)

v0 ∈ L2(Ω;R3) , ξ0 ∈ W 2,r(Ω;R3) with r > 3 , 1/ det(∇ξ0) > 0 on Ω . (5.2e)

Note that φref(X, ·) need not be convex, hence F 7→ φref(X, detF ) need not be polyconvex. In view of the
problem being independent of the actual value of the constant VB, with no loss of generality we choose VB = 0
in (3.6b) for simplicity.

Definition 5.1 (Weak solutions of system (4.3)). A triplet (v, ξ, V ) with v ∈ Cw(I;L2(Ω;R3)) ∩ L2(I;
W 2,q(Ω;R3)), ξ ∈ Cw(I;W 2,r(Ω;R3)) ∩W 1,1(I×Ω;R3), and V ∈ Cw(I;H2

0 (U)) is a weak solution of
the boundary-value problem (4.3) with the boundary conditions (3.6) and with the initial condition (5.1) if∫ T

0

∫
Ω

((
νξ1e(v)− det(∇ξ)%ξrefv⊗v

)
:e(ṽ) + νξ2 |∇e(v)|q−2∇e(v)...∇e(ṽ)− det(∇ξ)%ξrefv·

∂ṽ

∂t

+ [φξref ]
′
J

( 1

det(∇ξ)

)
div ṽ + det(∇ξ)%ξref∇V ·ṽ

)
dxdt =

∫
Ω

%ξ0refv0

J0

·ṽ(0) dx (5.3)
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holds for all ṽ ∈ C∞(I×Ω;R3) with ṽ·n = 0 and ṽ(T ) = 0, (4.3b) hold a.e. on I×Ω with ξ(0) = ξ0 on Ω,
and (4.3c) holds a.e. on I×U .

Theorem 5.2 (Existence of solutions of (4.3)). Let assumptions (5.2) hold. Then:
(i) there exists a weak solution (v, ξ, V ) of system (4.3).

(ii) Weak solutions of system (4.3) satisfy the energy-dissipation balance (4.6) when integrated over the time
interval [0, t] for all t ∈ I .

Proof. The proof relies on a semi-Galerkin approximation and is divided into four steps.

Step 1: semi-Galerkin approximation. We perform a Galerkin approximation of the momentum equation (4.3a)
for v but leave the Poisson equation (4.3c) for V not discretized, relying on the invertibility of the the Laplacian
operator −∆ : H2

0 (U) → L2(U). Similarly, we do not discretize the transport equation (4.3b) for ξ and rely
on [RoS22, Lemma 3.2] for its weak solvability.

In order to approximate the momentum equation (4.3a), we introduce a family of nested finite-dimensional
subspaces {Vk}∞k=0 whose union is dense in W 2,q(Ω;R3). Without loss of generality, we may assume v0 ∈
V0.

The global existence on the whole time interval [0, T ] of a solution of such regularized and semi-discretized
system, which will be denoted by (vk, ξk, Vk), can be proved to exist by the standard successive-prolongation
argument, on the basis of the uniform-in-time estimates proved below.

Setting Jk := det(∇ξk) and %k := ρξkref/Jk, we can rely on the evolution-and-transport equations

∂Jk
∂t

= (div vk) Jk − vk·∇Jk and
∂%k
∂t

= −div(%kvk) (5.4)

with the initial conditions Jk(0) = 1/ det(∇ξ0) and %k(0) := ρξ0ref/J0, respectively, cf. (2.2) and (3.2). Here,
we crucially used the fact that the transport equation (4.3b) is not discretized.

Step 2: first a-priori estimates. We test the Galerkin approximate versions of (4.3a) and (4.3c) by vk and Vk,
respectively, and use (5.4). The discretized velocity field vk is in L2(I;W 1,∞(Ω;R3)), so that Jk, which fulfills
the non-discretized transport-and-evolution equation (5.4), stays positive on I×Ω; here assumption (5.2e) is
used, cf. [RoS22, Lemma 3.2]. By abbreviating νi = min νi(X) for i = 1, 2, we find∫

Ω

%k
2
|vk|2+

ε

Jα+1
k (t)

dx+

∫
U

|∇Vk(t)|2

2G
dx+

∫ t

0

∫
Ω

ν1|e(vk)|2 + ν2|∇e(vk)|q dxdt

(5.2)
≤
∫
Ω

ρ
ξk(t)
ref

2Jk(t)
|vk(t)|2 +

φ
ξk(t)
ref (Jk(t))

Jk(t)
dx

+

∫
U

|∇Vk(t)|2

2G
dx+

∫ t

0

∫
Ω

νξk1 |e(vk)|2 + νξk2 |∇e(vk)|q dxdt

(4.6)
=

∫ t

0

∫
Ω

∂%ext

∂t
Vk dx dt−

∫
Ω

ρ
ξk(t)
ref

Jk(t)
Vk(t) dx−

∫
U\Ω

%ext(t)Vk(t) dx

+

∫
Ω

ρξ0ref

J0

Vk(0) +
ρξ0ref

J0

|v0|2 +
φξ0ref(J0)

J0

dx+

∫
U\Ω

%ext(0)Vk(0) dx+

∫
U

|∇Vk(0)|2

2G
dx
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≤ Cδ + ‖%ext(t)‖6/5

L6/5(U\Ω)
+ δ
∥∥∥ 1

Jα+1(t)

∥∥∥
L1(Ω)

+ δ‖∇Vk(t)‖2
L2(U ;R3)

+

∫ t

0

∥∥∥∂%ext

∂t

∥∥∥6/5

L6/5(U\Ω)

(
1+‖∇Vk‖2

L2(U ;R3)

)
dt (5.5)

with α from (5.2b), and with Cδ depending on δ > 0 and ‖%ref‖L∞(Ω), where δ > 0 will later be taken to be
small. Here above, we used the Hölder and Young inequalities and the embedding H1(U) ⊂ L6(U) to obtain
the estimate

−
∫
Ω

ρ
ξk(t)
ref

Jk(t)
Vk(t) dx ≤ C‖ρref‖L∞(Ω)

∥∥∥ 1

Jk(t)

∥∥∥
Lα+1(Ω)

‖Vk(t)‖L6(U)

≤ C‖ρref‖L∞(Ω)

∥∥∥ 1

Jk(t)

∥∥∥
Lα+1(Ω)

‖∇Vk(t)‖L2(U ;R3)

≤ Cδ + δ
∥∥∥ 1

Jk(t)

∥∥∥α+1

Lα+1(Ω)
+ δ‖∇Vk(t)‖2

L2(U ;R3) (5.6)

where we have used α > 1/5 from (5.2b) and taken δ > 0 arbitrarily small (not necessarily the same as in
(5.5)).

From this, taking δ > 0 in (5.5) sufficiently small and using the Gronwall inequality, we obtain the a-priori bounds

∥∥√%kvk∥∥L∞(I;L2(Ω;R3))
≤ C , (5.7a)

‖e(vk)‖L2(I;W 1,q(Ω;R3×3)) ≤ C , (5.7b)

‖Vk‖L∞(I;H1(U)) ≤ C . (5.7c)

By using [RoS22, Lemma 3.2], from (5.4) for Jk and assumption (5.2e) we further obtain

‖Jk‖L∞(I;W 1,r(Ω)) ≤ C and min Jk > 1/C . (5.7d)

From (4.3b), i.e., ∂
∂t
ξk = −(vk·∇)ξk and thus also ∂

∂t
∇ξk = −(vk·∇)∇ξk − (∇ξk)∇vk and taking

advantage of the regularity of the initial value ∇ξ0 ∈ W 1,r(Ω;Rd×d), again by [RoS22, Lemma 3.2] we also
obtain

‖ξk‖L∞(I;W 2,r(Ω;R3)) ≤ C . (5.7e)

Since vk = (
√
%kvk) (1/

√
%k) = (

√
%kvk)

√
Jk/
√
%ξkref , from (5.7a) and (5.7d) we eventually obtain

‖vk‖L∞(I;L2(Ω;R3)) ≤
‖Jk‖1/2

L∞(I×Ω)

min %ref(Ω)1/2

∥∥√%kvk∥∥L∞(I;L2(Ω;R3))
≤ C . (5.7f)

From (5.4) for Jk we obtain a bound for ∂
∂t
Jk in Lq(I;Lr(Ω)) and, similarly, from ∂

∂t
ξk = −(vk·∇)ξk, we

obtain a bound for ∂
∂t
ξk in Lq(I;Lr(Ω;R3)). This additionally provides a bound on ∂

∂t
∇ξk, which we will not

use, however. From ∂
∂t
Vk = ∆−1( ∂

∂t
%k + ∂

∂t
%ext) with ∂

∂t
%k ∈ Lq(I;Lr(Ω)) and ∂

∂t
%ext ∈ L1(L6/5(U \Ω)),

we obtain a bound for ∂
∂t
Vk in L1(I;W 2,6/5(U)).
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Step 3: limit passage with k → ∞. By the Banach selection principle, we select a weakly* convergent subse-
quence and (%,v, ξ, J, V ) such that

%k → % weakly* in L∞(I;W 1,r(Ω)) ∩ W 1,q(I;Lr(Ω)) , (5.8a)

vk → v weakly* in L∞(I;L2(Ω;R3)) ∩ L2(I;W 2,q(Ω;R3)) (5.8b)

ξk → ξ weakly* in L∞(I;W 2,r(Ω;R3)) ∩ W 1,q(I;L2(Ω;R3)) , (5.8c)

Jk → J weakly* in L∞(I;W 1,r(Ω)) ∩ W 1,q(I;Lr(Ω)) , (5.8d)

Vk → V weakly* in L∞(I;H2(U)) ∩ BV(I;W 2,6/5(U)) . (5.8e)

Recalling that r > d, by the Aubin-Lions Lemma, the convergences (5.8a,c,d) are also strong

Jk → J strongly in C(I×Ω) , (5.8f)

%k → % = ρξref/J strongly in C(I×Ω) , and (5.8g)

ξk → ξ strongly in C(I×Ω;R3). (5.8h)

Moreover, %kvk → %v and vk → v strongly in Lc(I×Ω;R3) for all 1 ≤ c < 4, cf. [RoS22] for details. From
the mentioned strong convergence of %k and the Poisson equation (4.3c), we further obtain

∇Vk → ∇V strongly in L∞(I;L2(U ;R3)) . (5.8i)

We now use the Galerkin approximation of the momentum equation (4.3a) tested by ṽ = vk − ṽk where ṽk :
I → Vk is an approximation of v such that ṽk → v strongly in L∞(I;L2(Ω;Rd)) and ∇e(ṽk) → ∇e(v)
strongly in Lq(I×Ω;Rd×d×d) for k →∞. Using also inequality (5.7d) and the calculus∫

Ω

%k(T )

2

∣∣vk(T )−v(T )
∣∣2dx =

∫ T

0

∫
Ω

( ∂
∂t

(%kvk) + div(%kvk⊗vk)
)
·vk dxdt

+

∫
Ω

%0

2
|v0|2− %k(T )vk(T )·v(T ) +

%k(T )

2
|v(T )|2dx , (5.9)

we can estimate

min ρref(Ω)

2‖Jk(T )‖L∞(Ω)

∥∥vk(T )−v(T )
∥∥2

L2(Ω;R3)
+ ν̄2 cq ‖∇e(vk−v)‖qLq(I×Ω;R3×3×3)

≤
∫
Ω

%k(T )

2

∣∣vk(T )−v(T )
∣∣2 dx+

∫ T

0

∫
Ω

(
νξk1 e(vk−vε):e(vk−vε)

+ νξk2

(
|∇e(vk)|q−2∇e(vk)− |∇e(v)|q−2∇e(v)

)
...∇e(vk−v)

)
dxdt

=

∫ T

0

∫
Ω

(
pkdiv(vk−ṽk)− %k∇Vk·(vk−ṽk)− νξk1 e(ṽk):e(vk−ṽk)

− νξk2 |∇e(ṽk)|q−2∇e(ṽk)...∇e(vk−ṽk) +
( ∂
∂t

(%kvk) + div(%kvk⊗vk)
)
·ṽk
)

dxdt

+

∫
Ω

(
%0

2
|v0|2 − %k(T )vk(T )·ṽk(T ) +

%k(T )

2
|ṽk(T )|2

)
dx+ Ok

k→∞−→ 0 (5.10)
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with pk = −[φξkref ]
′
J(Jk) converging strongly in C(I×Ω) and with cq > 0 so that the inequality cq|G− G̃|q ≤

(|G|q−2G− |G̃|q−2G̃)...(G− G̃) holds. The remainder term Ok in (5.10) is

Ok =

∫
Ω

%k(T )

2
vk(T )·

(
ṽk(T )−v(T )

)
dx

+

∫ T

0

∫
Ω

νξk1 e(vk):e(ṽk−v) + νξk2 |∇e(vk)|q−2∇e(vk)...∇e(ṽk−v) dxdt

and it converges to zero due to the strong approximation properties of the approximation ṽk of v. Here, we also
used the convergences above. Thus, we obtain the strong convergence

vk → vε strongly in Lq(I;W 2,q(Ω;R3)) (5.11a)

together with vk(T ) → vε(T ) in L2(Ω;Rd). In fact, by performing this computation at a generic time t ∈
(0, T ) instead of T , we obtain

vk(t)→ v(t) strongly in L2(Ω;R3) for any t ∈ I . (5.11b)

Owing to these convergences, the passage to the limit in the semi-discrete system is straightforward. In par-
ticular, the limit is a weak solution of the system in the sense of Definition 5.1. By differentiating (4.3c) in time
and taking into account that ∂

∂t
% ∈ Lp(I;Lr(Ω)), from the assumption ∂

∂t
%ext ∈ L1(I;L6/5(Ω)) we have

that V ∈ W 1,1(I;W
2,6/5
0 (U)) and, in particular, V ∈ Cw(I;W

2,6/5
0 (U)). Here, we used the classical elliptic

W 2,p-regularity theory [ADN64, Gri85] as well as the fact that the right-hand side %ext ∈ W 1,1(I;L6/5(U)) is
fixed, so that the limit time derivative is integrable.

Step 4: energy-dissipation balance. To conclude the proof, we now check that the calculations leading to (3.11)
in the variant (4.6), in particular (4.5), are indeed legitimate. Here, we simply refer to [Rou22a, Sec. 3] or [RoS22,
Sec. 3] where this check has been already performed. With respect to these references, additional care has to
be given here in order to obtain (3.10), since the mechanical load ∇p + %∇V in the momentum equation
(4.3a) has to be shown to be in duality with v ∈ L∞(I;L2(Ω;R3)) ∩ Lq(I;W 2,q(Ω;R3)). This follows
however as p is in L∞(I;W 1,r(Ω)) so that ∇p is in L1(I;L2(Ω;R3)), and the restriction of ∇V to Ω is in
L∞(I;L2(Ω;R3)). Note in addition that ∂

∂t
V needs to be in L1(I;L6(U)) in order to be in duality with the

equation (4.3c). This however follows from ∂
∂t
V ∈ L1(I;W

2,6/5
0 (U)) which has been proved in Step 3.

Remark 5.3 (Long time scales). Having in mind the self-gravitational differentiation of planets during long time
scales, when the initial configuration is successively forgotten, discussing the validity of the above estimates for
T → ∞ is relevant. The constants in the bounds in (5.7d-f) depend on the regularity of the initial conditions
and are possibly (exponentially) increasing in time. On the other hand, estimates (5.7a,c) are controlled by the
material properties and can pass to the limit T → ∞ (at least after neglecting the effect of a moving external
mass %ext). Moreover, from (5.5) we have an estimate of 1/J in L∞(0,+∞;L1+α(Ω)). For α ≥ 3/2, also
the linear momentum %v =

√
%v(ρξref/J)1/2 is bounded, specifically

‖%v‖L∞(0,+∞;L(4α+2)/(2α+5)(Ω;R3))

≤
√

max ρref(Ω)
∥∥√%v∥∥

L∞(0,+∞;L2(Ω;R3))

∥∥∥ 1√
J

∥∥∥
L∞(0,+∞;Lα+1/2(Ω))
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=

√
max ρref(Ω)

∥∥√%v∥∥
L∞(0,+∞;L2(Ω;R3))

∥∥∥ 1

Jα+1

∥∥∥(2α+2)/(2α+1)

L∞(0,+∞;Lα+1(Ω))

and the right-hand side of (5.7a) is bounded.

Remark 5.4 (Pressure dependent viscosities). Often, viscosity coefficients depend (beside temperature, not
considered here) also on the pressure [RSV09] and may vary, in particular during phase transitions in some
materials [SS∗77, SN∗12]. This can be taken into account by letting ν1 = ν1(X, J) and ν2 = ν2(X, J)
depend on J .

Remark 5.5 (Sharp interfaces). In many applications (and in particular in planetary geophysics), the solid is
composed by very different materials. Correspondingly the reference data φref(·, J) and ρref as well as the
viscosities ν1(·, J) and ν2(·, J) are ideally discontinuous with respect to X , as opposed to (5.2). This makes
the substitutions with ξ analytically more complicated, as one cannot use the continuity of the implied Ne-
mytskiı̆ mapping (composition), as actually used in the above proof. Instead, one has to modify the free-slip
boundary condition (3.6) and assume a stick condition v = 0 on ∂Ω. This, together with the local invertibility
det(∇ξ(t)) > 0, would ensure the global invertibility of ξ, eventually allowing to apply a change of variable.
The reader is referred to [Rou22a, Sec. 4] for additional details in a similar setting. Let us just record that this
approach hinges on a bound for the distorsion, which in turn ensures that referential interfaces between the
regions occupied by different materials remain of null measure in the actual deformed configuration.

6 Multicomponent materials

The different regions of planets and moons are actually composed by many distinct materials (cf., e.g., [Con16,
STO04]). These materials, may undergo pressure-dependent chemical reactions, combined with diffusion. In
this section, we extend the model by including the description of the different constituent of the solid by means
of a concentration vector c = (c1, ..., cn). We assume that the viscoelastic response of the solid depends on
the composition, namely, we let ν1 = ν1(X, J, c), ν2 = ν2(X, J, c), as well as φref = φref(X, J, c). On
the other hand, we assume the mass density to be independent of c, so that % is still determined by (3.1),
cf. Remark 6.3 below. Without loss of generality, we take the number n of constituents to be the same in all
regions (hence n is independent of X). Of course, the components of c are to be non-negative and to satisfy∑n

i=1 ci = 1 a.e. in I×Ω. In other words, c takes values in the so-called Gibbs’ simplex

4+
1 := {(c1, ..., cn) ∈ Rn;

n∑
i=1

ci = 1 and ∀i : ci ≥ 0}.

The single-component system (4.3) is then expanded to its multi-component variant as

%
.
v = div

(
νξ1 (c)e(v)− div

(
νξ2 (c)|∇e(v)|q−2∇e(v)

))
−∇p− %∇V

where p = − [φξref ]
′
J(J, c)

J
and % =

ρξref

J
with J =

1

det(∇ξ)
, (6.1a)

.
c = div

(
Mξ(J, c)∇µ

)
− rξ(J, c) (6.1b)

with µ ∈ [φξref ]
′
c(J, c)

J
+N (c) , (6.1c)
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.
ξ = 0, on Ω , (6.1d)

∆V = G
(
%+%ext

)
on U , (6.1e)

where N (c) in (6.1c) denotes the normal cone to the convex set4+
1 at c. In particular, N (·) : Rn ⇒ Rn is

a maximal monotone set-valued mapping. In fact, the termN (c) in (6.1c) contributes a Lagrange multiplier (=
a “pressure”) corresponding to the constraints

∑n
i=1 ci = 1 and ci ≥ 0. Such multiplier ensures the validity of

the constraints throughout the evolution. In this context, the use of such a multiplier dates at least back to E and
Palffy-Muhoray [EP97], who nonetheless generalized an (essentially) 1D-model by De Gennes [dGe80]. We also
refer to [OtE97] for a discussion of local versus a nonlocal mixture models, where our approach corresponds to
the nonlocal model with multiplier λ(t,x)1 ∈ N (c) with 1 = (1, . . . , 1) ∈ Rn associated with the constraint
c(t,x) ∈ 4+

1 , see also Remark 6.4.

Relation (6.1b) features the n×n mobility matrix M = M(X, J, c) and the chemical-reaction rate r =
r(X, J, c). The mobility matrix M(X, J, c) is assumed to be symmetric in order to comply with the Onsager
principle. In addition, it is assumed to be positive semi-definite to comply with the Clausius-Duhem inequality
and thus the 2nd-law of thermodynamics. For analytical reasons, we assume M to be uniformly positive def-
inite, as this allows to control the chemical-potential gradient and, indirectly, also the concentration gradients.
The mass conservation within chemical reactions imposes that the reaction rates r = (r1, . . . , rn) satisfy the
condition

∀(X, J, c) ∈ Ω×R+×4+
1 :

n∑
i=1

ri(X, J, c) = 0 . (6.2)

Note that we are following here the phenomenological approach by Eckart and Prigogine [Eck40, Pri47] by as-
suming that all component have the same velocity v. A less phenomenological, truly rational-thermodynamical
alternative would be to assume that each constituent has its own velocity, as in the Truesdell [Tru68] approach.

The boundary conditions (3.6) are complemented by the boundary condition n·Mξ(J, c)∇µ = 0 on ∂Ω for
(6.1b), expressing that there is no flux of the constituents across ∂Ω. The energetics of the model can be
deduced as in Section 4, now combined with (6.1b) tested by µ, which leads to∫

Ω

.
c·µ dx = −

∫
Ω

rξ(J, c)·µ+∇µ:Mξ(J, c)∇µ dx , (6.3)

and further using (6.1c) tested by
.
c. We modify (4.5) to be merged with a part of (6.1c) tested by

.
c. Specifically,

also using (2.3) similarly as in (4.5), we have∫
Ω

µ·.c+∇p·v dx =

∫
Ω

µ·.c− p·divv =

∫
Ω

[φξref ]
′
c(J, c)

J
·.c+

[φξref ]
′
J(J, c)

J

.
J dx

=

∫
Ω

([φξref(J, c)

J

]′
J

+
φξref(J, c)

J2

) .
J +

[φξref ]
′
c(J, c)

J
·.c dx

=

∫
Ω

∂

∂t

(φξref(J, c)

J

)
+
[φξref(J, c)

J

]′
J
v·∇J +

[φξref(J, c)

J

]′
c
·(v·∇)c+

φξref(J, c)

J
div v

=

∫
Ω

∂

∂t

(φξref(J, c)

J

)
+∇

(φξref(J, c)

J

)
·v +

φξref(J, c)

J
div v dx

=
d

dt

∫
Ω

φξref(J, c)

J
dx+

∫
Ω

div
(φξref(J, c)

J
v
)

dx =
d

dt

∫
Ω

φξref(J, c)

J
dx . (6.4)
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The remaining term arising from N (c) in (6.1c) tested by
.
c can be proved to vanish, provided that c(0,x) ∈

4+
1 . Indeed, let δ4+

1
be the indicator function of4+

1 and η ∈ N (c) a.e. in I×Ω. By comparison from (6.1c)

one will find that η ∈ L2(I×Ω;Rn) (under the assumption (6.9a) below). Hence, the classical chain rule for
convex functions (see, for instance [Vis96, Prop. XI.4.11]) ensures that

η·.c = η·∂c
∂t

+ η·(v·∇)c =
.

δ4+
1

(c) = 0 (6.5)

a.e. in I×Ω, the last equality following from the fact that c ∈ 4+
1 a.e. in I×Ω. In fact, by comparison from

(6.1c) one can see that η ∈ L2(I×Ω;Rn) under the assumption (6.9a) below, as needed in [Vis96] for a
rigorous proof of (6.5).

We hence deduce the energy-dissipation balance

d

dt

(∫
Ω

ρξref

2J
|v|2︸ ︷︷ ︸

kinetic
energy

+
φξref(J, c)

J︸ ︷︷ ︸
actual
stored
energy

+
ρξref

J
V︸ ︷︷ ︸

energy of % in
gravitational

field V

dx+

∫
U

|∇V |2

2G︸ ︷︷ ︸
energy of

gravitational
field

dx+

∫
U\Ω

%extV︸ ︷︷ ︸
energy of %ext
in gravitational

field V

dx

)

+

∫
Ω

νξ1 (c)|e(v)|2 + νξ2 (c)|∇e(v)|q︸ ︷︷ ︸
dissipation rate
due to viscosity

+ Mξ(J, c)∇µ:∇µ︸ ︷︷ ︸
dissipation rate
due to diffusion

+ rξ(J, c)·µ︸ ︷︷ ︸
dissipation rate
due to reactions

dx

=

∫
U\Ω

∂%ext

∂t
V︸ ︷︷ ︸

gravitational power
of external mass

dx . (6.6)

The initial conditions (5.1) now include a prescription for c and read

v|t=0 = v0 , ξ|t=0 = ξ0 , and c|t=0 = c0 ∈ 4+
1 . (6.7)

Definition 6.1 (Weak solutions of the system (6.1)). The quintuple (v, c,µ, ξ, V ) is a weak solution of the
boundary-value problem for the system (6.1) with the boundary conditions (3.6) together with (n·∇)µ = 0 on
∂Ω and with the initial conditions (6.7) if (v, ξ, V ) is as in Definition 5.1 with (5.3) holding with νξ1 = νξ1 (c) and
νξ2 = νξ2 (c) and if c ∈ L2(I;H1(Ω;Rn)) and µ ∈ L2(I;H1(Ω;Rn)) satisfy 0 ≤ ci ≤ 1 and

∑n
i=1 ci = 1

a.e. on I×Ω, the integral identity∫ T

0

∫
Ω

Mξ(J, c)∇µ:∇µ̃+
(
(v·∇)c+ rξ(J, c)

)
·µ̃− c·∂µ̃

∂t
dxdt =

∫
Ω

c0·µ̃(0) dx (6.8)

holds for any µ̃ ∈ H1(I×Ω;Rn) with µ̃(T ) = 0, and the inclusion (6.1c) holds a.e. on I×Ω.

In order to treat the multi-component case, the assumptions on data have to be specified as follows, where we
use the short-hand D := Ω×(0,+∞)×Rn:

φref(X, J, c) = φr,0(X, J) + φr,1(X, J, c), φr,0 ∈ C1(Ω×(0,+∞)) ,

φr,1 ∈ C1(D) with [φr,1]′c ∈ C1(D) and [φr,1]′′cc ∈ Cb(D;Rn×n),
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∃ ε > 0, α > 1/5 , ∀X ∈Ω, J > 0, c ∈ Rn : φr,0(X, J) ≥ ε

Jα
,

φr,1(X, J, c) ≥ 0 ,
∣∣[φr,1]′J(X, J, c)

∣∣ ≤ 1

εJ (α+1)/2
, and [φr,1]′′cc(X, J, c) ≥ ε , (6.9a)

M ∈ Cb(D;R(n×3)2

sym ) , ∀G ∈ Rn×3 : inf(X,J,c)∈DG
>:M(X, J, c):G ≥ ε|G|2 , (6.9b)

r(X, J, c) = K(X, J, c)[φr,1]′c(X, J, c) with some K ∈ Cb(D;Rn×n
sym ), K1 = 0, and

∀µ ∈ Rn,
n∑
i=1

µi = 0 : inf(X,J,c)∈Dµ·K(X, J, c)µ ≥ ε|µ|2, (6.9c)

ν1, ν2 ∈ C(Ω×Rn) , inf
Ω×Rn min(ν1, ν2) > 0 , q > 3 . (6.9d)

Note that (6.9a) in particular implies that φref(X, J, ·) is uniformly convex with respect to c. For the purposes
of the mathematical study, this implies that the diffusion equation defined via (6.1b)-(6.1c) is parabolic. The fact
that the reaction terms r can be written in the form K [φr,1]′c (under the condition of detailed balance) was
observed in [Mie11], see also [MaM20] and Remark 6.5 below. The condition K1 = 0 in (6.9c) guarantees
(6.2). Note also that assumptions are formulated also for c ∈ Rn \ 4+

1 , which is required as we will use an
exterior-penalty technique below.

Theorem 6.2 (Existence of weak solutions of system (6.1)). Let assumptions (5.2a), (5.2d), (5.2e), and (6.9)
hold. Then:
(i) there exists a weak solution of system (6.1).

(ii) Weak solutions of system (6.1) satisfy the energy-dissipation balance (6.6) when integrated over the time
interval [0, t] with any t ∈ I .

Proof. We argue by approximation and subdivide the proof into seven subsequent steps. In addition to a semi-
Galerkin approximation in the spirit of Section 5, now used also for (6.1b), we perform a regularization of the
indicator function δ4+

1
(·) by an exterior penalization.

Step 1: regularized problem. The multivalued mappingN (·) in (6.1c) is regularized by introducing a penalization
Pε of the indicator function of the Gibbs’ simplex4+

1 defined here, for any ε > 0, by

Pε(c) =
1

2ε

n∑
i=1

min(0, ci)
2 +

1

2ε

( n∑
i=1

ci − 1
)2

.

Note that Pε is convex and continuously differentiable. As ε → 0 one has that Pε → δ4+
1

pointwise and
increasing.

The regularized problem is obtained by replacing N in (6.1c) by the derivative P′ε. The inclusion (6.1c) turns
into the equation

µ =
[φξref ]

′
c(J, c)

J
+ P′ε(c) . (6.10)

This choice also regularizes the reaction terms r as

rξε = Kξµ = Kξ
( 1

J
[φξref ]

′
c(J, c) + P′ε(c)

)
. (6.11)
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A. Mielke, T. Roubíček, U. Stefanelli 20

The weak solution of the boundary-value problem for the system (6.1a,b,d,e) and (6.10) with the bound-
ary conditions (3.6) together with (n·∇)µ = 0 on ∂Ω and the initial condition (6.7) will be denoted by
(vε, cε,µε, ξε, Vε). Its existence is proved in Step 4 below.

Step 2: semi-Galerkin approximation. We perform a Galerkin approximation of the momentum equation (6.1) for
v as in Section 5 and of the diffusion equation (6.1b) for c. On the other hand, we do not approximate in space
the transport equation (6.1d) for ξ but rather rely on [RoS22, Lemma 3.2] for its weak solvability. Moreover, we
do not approximate neither the Poisson equation (6.1e) nor the regularized nonlinear equation (6.10).

Specifically, we again use a nested finite-dimensional subspaces {Vk}∞k=0 for the momentum equation (6.1a).
For the Galerkin approximation of the diffusion equation (6.1b) we use a second collection of nested finite-
dimensional subspaces {Zk}∞k=0 whose union is dense in H1(Ω;Rn). Without loss of generality, we may
assume v0 ∈ V0 and c0 ∈ Z0.

We directly substitute µ from (6.10) into (6.1b) to obtain a parabolic equation for cε. It should be emphasized
that the physically motivated tests leading to the discrete energy-dissipation balance (6.6) cannot be performed
at the Galerkin-discretization level because

.
cεk = ∂

∂t
cεk+(vεk·∇)cεk is not a legitimate test for the discretized

equation for µεk. This calls for implementing another estimation strategy. Moving from (6.10) we have that

∇µ =
( [φξref ]

′′
cc(J, c)

J
+ P′′ε(c)

)
∇c

+
( [φξref ]

′′
Jc(J, c)

J
− [φξref ]

′
c(J, c)

J2

)
∇J +

[[φref ]
′′
Xc]

ξ(J, c)

J
∇ξ (6.12)

so that, by substituting (6.10) into (6.1b) we obtain the semilinear parabolic equation for cεk:

∂cεk
∂t
− div

(
Mξεk

ε (Jεk, cεk)∇cεk
)

= div
(
Rξεkε (Jεk, cεk)∇Jεk

+Sξεkε (Jεk, cεk)∇ξεk
)
− (vεk·∇)cεk − rξεk(Jεk, cεk)

with Rε(X, J, c) := Mε(X, J, c)
( [φref ]

′′
Jc(X, J, c)

J
− [φref ]

′
c(X, J, c)

J2

)
,

Sε(X, J, c) := Mε(X, J, c)
[φref ]

′′
Xc(X, J, c)

J
, and

Mε(X, J, c) := M(X, J, c)
( [φref ]

′′
cc(X, J, c)

J
+ P′′ε(c)

)−1

. (6.13)

The global existence on the whole time interval I = [0, T ] of a solution of such regularized and semi-discretized
system, which we denote by

(vεk, cεk, ξεk, Vεk) : I → Vk ×Zk ×W 2,r(Ω;Rd)×H1(U),

results from a standard successive-prolongation argument, on the basis of the uniform-in-time estimates proved
below.

Step 3: first a-priori estimates. We first test (6.1a,e) separately. Specifically, we test the Galerkin discretization of
(6.1a) by vεk and test (6.1e) by Vεk, also using (6.1d). The discretized velocity field vεk is inL2(I;W 1,∞(Ω;Rd))
so that Jεk = 1/det(∇ξεk), which fulfills the non-discretized transport-and-evolution equation (5.4), stays pos-
itive on I×Ω. Here, assumption (5.2e) has been used [RoS22, Lemma 3.2].

DOI 10.20347/WIAS.PREPRINT.3015 Berlin 2023



A model of gravitational differentiation of compressible self-gravitating planets 21

By arguing as in (5.5), abbreviating νi = inf νi(X, c) with i = 1, 2, and using also (4.5) for φr,0 in place of
φref and assumption (6.9a), we obtain∫

Ω

%εk
2
|vεk|2+

ε

Jα+1
εk (t)

dx+

∫
U

|∇Vεk(t)|2

2G
dx+

∫ t

0

∫
Ω

ν1|e(vεk)|2 + ν2|∇e(vεk)|q dxdt

(5.2)
≤
∫
Ω

ρ
ξεk(t)
ref

2Jεk(t)
|vεk(t)|2 +

φ
ξεk(t)
r,0 (Jεk(t))

Jεk(t)
dx

+

∫
U

|∇Vεk(t)|2

2G
dx+

∫ t

0

∫
Ω

νξεk1 (cεk)|e(vεk)|2 + νξεk2 (cεk)|∇e(vεk)|q dxdt

(5.5)
=

∫ t

0

∫
U\Ω

∂%ext

∂t
Vεk +

[
φξr,1(Jεk, cεk)

]′
J
div vεk dx dt−

∫
Ω

ρ
ξεk(t)
ref

Jεk(t)
Vεk(t) dx−

∫
U\Ω

%ext(t)Vεk(t) dx

+

∫
Ω

ρξ0ref

J0

Vεk(0) +
ρξ0ref

J0

|v0|2 +
φξ0r,0(J0)

J0

dx+

∫
U\Ω

%ext(0)Vεk(0) dx+

∫
U

|∇Vεk(0)|2

2G
dx

≤ Cδ + ‖%ext(t)‖6/5

L6/5(U\Ω)
+ δ
∥∥∥ 1

Jα+1
εk (t)

∥∥∥
L1(Ω)

+ δ‖∇Vεk(t)‖2
L2(U ;R3)

+

∫ t

0

(∥∥∥∂%ext

∂t

∥∥∥6/5

L6/5(U\Ω)

(
1+‖∇Vεk‖2

L2(U ;R3)

)
+

1

ε

∥∥∥ 1

εJα+1
εk

∥∥∥
L1(Ω)

+
∥∥div vεk

∥∥2

L2(Ω)

)
dt .

From this, taking δ > 0 sufficiently small and using the Gronwall inequality, we obtain the a-priori bounds

‖vεk‖Lq(I;W 2,q(Ω;R3)) ≤ Cε, (6.14a)

‖Vεk‖L∞(I;H1(U)) ≤ Cε . (6.14b)

From the equations for ξ and J and assumption (5.2e), by using [RoS22, Lemma 3.2] we also obtain

‖ξεk‖L∞(I;W 2,r(Ω;R3)) ≤ Cε , ‖Jεk‖L∞(I;W 1,r(Ω)) ≤ Cε , and min Jεk > 1/Cε . (6.14c)

It should be noted that Cε here depends possibly on ε but is independent of k. From (6.14c), we also obtain a
bound for %εk = ρξεkref /Jεk in L∞(I;W 1,r(Ω)).

Next, we test the parabolic equation (6.13) by cεk. From (6.14), we have that Rξεk is bounded in L∞(I ×
Ω;Rn×3)). Using the Green formula for∫

Ω

((v·∇)c)·c dx = −1

2

∫
Ω

(div v)|c|2dx

and the assumption (6.9c), this test gives∫
Ω

|cεk(t)|2

2
dx+

∫ t

0

∫
Ω

Mξεk
ε (Jεk, cεk)∇cεk:∇cεk dxdt

=

∫ t

0

∫
Ω

Rξεkε (Jεk, cεk)∇Jεk:∇cεk − rξεkε (Jεk, cεk)·cεk −
1

2
(div vεk)|cεk|2dxdt

≤
∫ t

0

(
δ‖∇cεk‖2

L2(Ω;Rn×3) +
1

4δ
‖Rξεkε (Jεk, cεk)∇Jεk‖2

L2(Ω;Rn×3)
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+ Cε
(
|Ω|+ ‖cεk‖2

L2(Ω;Rn)

)
+ ‖div vεk‖L∞(Ω)‖cεk‖2

L2(Ω;Rn)

)
dt . (6.15)

Here we estimated |rξε | =
∣∣Kξ ( 1

Jε
[φr,1]′c + P′ε(c)

)∣∣ ≤ Cε(1+|c|) by using that |K| ≤ C from (6.9c),
|[φr,1]′c| ≤ C(1+|c|) from (6.9a), and |P′ε(c)| ≤ C(1+|c|)/ε and by exploiting estimate (6.14c).

By the uniform positive definiteness of Mε(·, ·), choosing δ > 0 sufficiently small and exploiting the Gronwall
inequality, we also obtain

‖cεk‖L∞(I;L2(Ω;Rn))∩L2(I;H1(Ω;Rn)) ≤ C . (6.16)

From (6.10) and (6.12), we obtain the bound for µεk in L∞(I;L2(Ω;Rn)) ∩ L2(I;H1(Ω;Rn)) uniformly in
k, depending possibly on ε > 0.

Step 4: limit passage for k → ∞. By the Banach selection principle, we select a weakly* convergent subse-
quence and (%ε,vε, ξε, Jε, Vε, cε,µε) such that the convergences (5.8) (still for fixed value

ε > 0) hold, together with

cεk → cε weakly* in L∞(I;L2(Ω;Rn)) ∩ L2(I;H1(Ω;Rn)) , (6.17a)

µεk → µε weakly* in L∞(I;L2(Ω;Rn)) ∩ L2(I;H1(Ω;Rn)) . (6.17b)

From (6.13), we deduce a bound on ∂
∂t
cεk in the respective semi-norms induced by the Faedo-Galerkin dis-

cretization by the finite-dimensional subspaces Zk. By the (generalized) Aubin-Lions theorem, we obtain the
strong convergence cεk → cε in Ls(I×Ω;Rn) for any 1 ≤ s < 10/3. From (6.10), such strong convergence
also holds for µεk → µε.

Adapting the argument leading to (5.8)–(5.11) towards the weak formulation of (6.1b) with (6.10) is then easy.

Step 5: “physically motivated” a-priori estimates. As cε is not discretized, we can test (6.10) by
.
cε = ∂

∂t
cε +

(vε·∇)cε. Together with the other tests, we thus obtain the analogous energy-dissipation balance to (6.6), now
for the ε-solution and with the additional left-hand-side term d

dt

∫
Ω
Pε(cε) dx. This delivers a-priori estimates,

similarly as those obtained in (5.5), with the additional energy estimate∫
Ω

Pε
(
cε(t,x)

)
dx ≤ C for all t ∈ I. (6.18)

Let us introduce now the orthogonal projection P : Rn → Rn to the subspace {µ ∈ Rn |
∑n

1 µi = 0},
namely,

(Pµ)i = µi −
1

n

n∑
j=1

µj =
1

n

n∑
j=1

(µi − µj) for i = 1, . . . , j,

so that

Pµ = µ−
( 1

n

n∑
j=1

µj

)
1 = µ− 1

n
(µ·1)1.

Taking into account (6.9c) so that specifically K1 = 0, the reaction term in the estimate gives∫ T

0

∫
Ω

rξεε (Jε, cε)·µε dx dt =

∫ T

0

∫
Ω

µε·Kµε dxdt =

∫ T

0

∫
Ω

Pµε·KPµε dxdt ≥ ε

∫ T

0

∫
Ω

|Pµε|2 dx dt.

DOI 10.20347/WIAS.PREPRINT.3015 Berlin 2023



A model of gravitational differentiation of compressible self-gravitating planets 23

We thus obtain estimates as in (6.14), but for ε-solution, together with additional estimates

‖Pµε‖L2(I×Ω;Rn) + ‖∇µε‖L2(I×Ω;Rn×3) ≤ C , ‖cε‖L∞(I;L2(Ω;Rn)) ≤ C , (6.19a)∥∥∥ n∑
i=1

ci,ε − 1
∥∥∥
L∞(I;L2(Ω))

≤ C
√
ε , and (6.19b)

‖min(0, ci,ε)‖L∞(I;L2(Ω)) ≤ C
√
ε for any i = 1, ..., n , (6.19c)

where the constantsC are independent of ε. Note in addition that the projection P commutes with differentiation,
namely∇Pµε = P∇µε, where the latter projection is intended column-wise. This fact and (6.19a) in particular
ensure that

‖Pµε‖L2(I;H1(Ω;Rn)) ≤ C , (6.19d)

Moreover, using (6.12) written in the equivalent form

∇cε =
( [φξref ]

′′
cc(Jε, cε)

J
+ P′′ε(cε)

)−1
(
∇µε

−Jε[φ
ξ
ref ]
′′
Jc(Jε, cε)−[φξref ]

′
c(Jε, cε)

J2
∇Jε −

[[φref ]
′′
Xc]

ξ(Jε, cε)

Jε
∇ξ
)
,

we obtain the estimate

‖∇cε‖L2(I×Ω;Rn×3) ≤ C (6.19e)

independently of ε > 0. In addition, (6.19a) allow for using (6.1b) written for ε-solution to obtain the estimate∥∥∥∂cε
∂t

∥∥∥
L2(I;H1(Ω;Rn)∗)

≤ C . (6.19f)

Here, the bound on∇µε from (6.19a) is used.

Step 6: convergence for ε → 0. As in Step 4, we select a weakly* convergent subsequence and find (%,v, ξ,
V, c,µ) such that

%ε → % weakly* in L∞(I;W 1,r(Ω)) ∩ W 1,p(I;Lr(Ω)) , (6.20a)

vε → v weakly* in L∞(I;W 2,r(Ω;R3)) ∩ W 1,p(I;L2(Ω;R3)) , (6.20b)

ξε → ξ weakly* in L∞(I;W 2,r(Ω;R3)) ∩ W 1,p(I;L2(Ω;R3)) , (6.20c)

Vε → V weakly* in L∞(I;H2(U)) ∩ BV (I;W 2,6/5(U)) , (6.20d)

cε → c weakly in L2(I;H1(Ω;Rn)) ∩ H1(I;H1(Ω;Rn)∗) , (6.20e)

Qµε → µ weakly in L2(I;H1(Ω;Rn)) , (6.20f)

where µ(t, ·) = Qµ(t, ·) and the projection Q : L2(Ω;Rn)→ L2(Ω;Rn) is defined via

(
Qµ
)
(x) = µ(x)−

(
1

n|Ω|

∫
Ω

µ(y)·1 dy

)
1.
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To justify convergence (6.20f) we observe that
∫
Ω

(
|∇µ|2+|Pµ|2

)
dx = 0 implies first, by using∇µ = 0 that

µ(x) = η for a constant vector η ∈ Rn. Second, using Pη = 0 we have η = α1 for a constant α ∈ R.
Hence, we have Qµ = 0. Thus, by repeating the classical compactness argument for showing Poincaré’s
inequality, we find a constant cQ > 0 such that

∀µ ∈ H1(Ω;Rn) with Qµ = 0 :

∫
Ω

(
|∇µ|2 + |Pµ|2

)
dx ≥ cQ‖µ‖2

H1(Ω;Rn).

Thus, with (6.19a) we obtain the a priori estimate

‖Qµε‖L2(I;H1(Ω;Rn)) ≤ C

and (6.20f) follows. The Aubin-Lions lemma and (6.20c) and (6.20e) yield the strong convergences

ξε → ξ strongly in C(I×Ω;R3) , (6.21a)

Jε → J strongly in C(I×Ω) , (6.21b)

cε → c strongly in Ls(I×Ω;Rn) ∀1 ≤ s < 6 . (6.21c)

In addition to the argument used for proving Theorem 6.2, we need to pass to the limit in the semi-linear
transport-and-diffusion equation (6.1b) formulated weakly. This is however straightforward, so that we omit de-
tails.

The only remaining issue is to pass to the limit in (6.10) written at level ε in the form of the variational inequality∫ T

0

∫
Ω

Pε(cε) +
(
µε −

[φξεref ]
′
c(Jε, cε)

Jε

)
·(c̃ε − cε) dxdt ≤

∫ T

0

∫
Ω

Pε(c̃ε) dxdt (6.22)

for i = 1, ..., n, for all c̃ε ∈ L2(I×Ω;Rn). The bounds (6.19b,c) entail that the limit c is valued in4+
1 almost

everywhere in I ×Ω. We aim at proving that c satisfies∫ T

0

∫
Ω

(
µ− [φξref ]

′
c(J, c)

J

)
·(ĉ− c) dxdt ≤ 0 (6.23)

for all ĉ ∈ L2(I×Ω;Rn) valued in4+
1 a.e. on I×Ω. We first observe that (6.19b) allows to write

cε(t, x) =
1 + αε(t)

n
1 + (Qcε

)
(t, x), where ‖αε‖L∞(I) ≤ C

√
ε.

To construct good test function c̃ε for (6.22) we fix a small δ > 0 and choose ĉ with

ĉ(t, x) ∈ 4+
1 and min ĉi(t, x) ≥ δ and set c̃ε =

αε(t)

n
1 + ĉ.

In particular, we have c̃ε − cε = Q
(
ĉ − cε

)
. By using the weak convergences (6.20e,f) and the strong

convergences (6.21), we obtain∫ T

0

∫
Ω

(
µε −

[φξεref ]
′
c(Jε, cε)

Jε

)
·(c̃ε − cε) dxdt =

∫ T

0

∫
Ω

(
Qµε −Q

[φξεref ]
′
c(Jε, cε)

Jε

)
·(ĉ− cε) dxdt
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−→
∫ T

0

∫
Ω

(
µ−Q

[φξref ]
′
c(J, c)

J

)
·(ĉ− c) dxdt =

∫ T

0

∫
Ω

(
µ− [φξref ]

′
c(J, c)

J

)
·Q(ĉ− c) dxdt

=

∫ T

0

∫
Ω

(
µ− [φξref ]

′
c(J, c)

J

)
·(ĉ− c) dxdt ,

where we have also used Q(ĉ− c) = ĉ− c, coming from the fact that c, ĉ ∈ 4+
1 .

Moreover, our construction guarantees c̃ε,i(t, x) = αε(t)/n+ ĉi(t, x) ≥ −C
√
ε+ δ ≥ 0 for sufficiently small

ε > 0. Hence, we have Pε(c̃ε) =
(
αε+ĉ·1 − 1

)2
/(2ε) = α2

ε/(2ε) since ĉ ∈ 4+
1 . With this, Pε(cε) ≥

(cε·1− 1)2/(2ε), and αε(t) = 1
|Ω|

∫
Ω

(
cε(t, y)·1− 1

)
dy we find∫ T

0

∫
Ω

(
Pε(cε)− Pε(c̃ε)

)
dxdt ≥ 1

2ε

∫ T

0

∫
Ω

((
cε·1− 1

)2 −
(
αε
)2
)

dxdt ≥ 1

2ε

∫ T

0

0 dt = 0.

Hence, by collecting all terms on the left-hand side, we can pass to the lim inf ε → 0 in (6.22) and obtain
(6.23) for all ĉ satisfying min ĉi(t, x) ≥ δ. Since δ > 0 was arbitrary, the desired variational inequality (6.23)
holds for all test functions.

Step 7: energy-dissipation balance. In addition to the argumentation used in the proof of Theorem 5.2(ii), we
now use that ∂

∂t
c+ (v·∇)c ∈ L2(I;H1(Ω;Rn)∗). Note also that (v·∇)c lies in L2(I;L2(Ω;Rn)) and can

be tested by µ and integrated by parts. Here the indeterminacy of µ with respect to spatially constant multiples
of 1 does not matter, because from c(t, x) ∈ 4+

1 we have c(t,x) · 1 = 0 in I×Ω. Thus, the energy balance
follows as for Theorem 5.2(ii).

Remark 6.3 (Composition-dependent mass density). It would be desirable to make the mass density depends
also on composition, cf. e.g. [Ger19, Ch.2]. In our present modeling level, this would mean ρref = ρref(X, c)
and hence, by (3.1) we would have % = ρξref(c)/J . Repeating the calculation in (2.2) and (2.3) continuity
equation (3.2) would be extended to

.
%+ (div v)% =

[%ξref]
′
c(c)

J
·.c . (6.24)

Thus, the principle of mass conservation would be violated, and further mathematical difficulties would arise in
the kinetic energy and the gravitational energy (3.10). Hence, a proper modeling of a concentration-dependent
mass density would need a truly multiphase modeling that exceeds beyond the Eckart-Prigogine approximation
and is left to future research.

Remark 6.4 (An alternative approach). Keeping the sum of diffusion fluxes to 0 can also be achieved with-
out directly constraining

∑n
j=1 cj = 1 by tuning the mobility matrix to satisfy

∑n
j=1 Mij(X, J, c) = 0 ,

which is the “local model” in the sense of [OtE97]. In this case, condition
∑n

i=1 ci = 1 is kept during the
evolution if it holds at the initial time. This can be seen by summing up (6.1b) for i = 1, ..., n, which gives
∂
∂t

(
∑n

i=1 ci) = div
(∑n

i,j=1 M
ξ
ij(J, c)∇µj

)
+
∑n

1 r
ξ
i (J, c)) = div 0 + 0 = 0. This allows to us avoid the

constraint
∑n

i=1 ci = 1 from N (·) in (6.1c). For equal mobilities of each chemical components, possibly de-
pendent on pressure and local composition, denoted by m = m(X, J, c), one usually considers the so-called
Maxwell-Stefan mobility matrix

M(X, J, c) = m(X, J, c)
(
diag(c)− c⊗c

)
, (6.25)
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cf. e.g. [Gio99, BoD23]. This matrix has the kernel 1 and hence is only positive semidefinite; moreover it de-
generates further for ci ≈ 0. This makes its usage analytically more difficult than our simplified model with a
general symmetric positive matrix as imposed in (6.1).

Remark 6.5 (General reaction stoichiometry ). For general reaction systems the assumption that K in (6.9c) is
positive definite on the orthogonal complement of 1 may be too restrictive. In general, one has a stoichiometric
subspace S ⊂ Rn such that r ∈ S. Defining PS : Rn → S ⊂ Rn to be the orthogonal projection and
QS = I − PS the complementing projection, one can then assume that there is a symmetric reaction matrix
K such that µ ·K(X, J, c)µ ≥ ε|PSµ|2. The above analysis can easily be generalized to this case, if we use
that QS

∫
Ω
c(t,x) dx is conserved along solutions, that PSµ is controlled by the dissipation, and that we can

assume QS

∫
Ω
µ(t,x) dx = 0 without loss of generality.
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