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Stochastic augmented Lagrangian method in shape spaces
Caroline Geiersbach, Tim Suchan, Kathrin Welker

Abstract

In this paper, we present a stochastic Augmented Lagrangian approach on (possibly infinite-
dimensional) Riemannian manifolds to solve stochastic optimization problems with a finite number
of deterministic constraints. We investigate the convergence of the method, which is based on a
stochastic approximation approach with random stopping combined with an iterative procedure
for updating Lagrange multipliers. The algorithm is applied to a multi-shape optimization problem
with geometric constraints and demonstrated numerically.

1 Introduction

In this paper, we concentrate on stochastic optimization problems of the form

min
u∈UN

{j(u) := E[J(u, ξ)] =

∫
Ω

J(u, ξ(ω)) dP(ω)}

subject to (s.t.) hi(u) = 0 i ∈ E , hi(u) ≤ 0 i ∈ I.
(P)

Here, UN is a Riemannian manifold and ξ : Ω → Ξ ⊂ Rm is a random vector defined on a given
probability space. We assume that we have deterministic constraints of the form h : UN → Rn,
u 7→ h(u) = (h1(u), . . . , hn(u))>, where we distinguish between the index set E of equality
constraints and the index set I of inequality constraints.

Our investigations are motivated by applications in shape optimization, where an objective function
is supposed to be minimized with respect to a shape, or a subset of Rd. Finding a correct model to
describe the set of shapes is one of the main challenges in shape optimization. From a theoretical
and computational point of view, it is attractive to optimize in Riemannian manifolds because algorith-
mic ideas from [1] can be combined with approaches from differential geometry as outlined in [11].
Often more than one shape needs to be considered, which leads to so-called multi-shape optimiza-
tion problems. As applications, we can mention electrical impedance tomography, where the material
distribution of electrical properties such as electric conductivity and permittivity inside the body is ex-
amined [8, 21, 22], and the optimization of biological cell composites in the human skin [27, 28]. In
[11], a shape is seen as a point on an abstract manifold so that a collection of shapes can be viewed
as a vector of points u = (u1, . . . , uN) in a product manifold UN = U1 × · · · × UN .

A central difficulty in (P) is that the constraints lead to a nonsmooth stochastic optimization problem
that cannot be handled using standard techniques such as gradient descent or Newton’s method;
additionally, the numerical solution of the problem may be intractable on account of the expectation. In
this work, we propose a stochastic augmented Lagrangian method to solve problems of the form (P).
The proposed method combines the smoothing properties of the augmented Lagrangian method with
a reduction in complexity granted by stochastic approximation.

The augmented Lagrangian method has been extensively studied; see [5, 6] for an introduction to
the method in finite dimensions. Substantial theory can be found in the literature for PDE-constrained
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optimization, where convergence has been studied in function spaces; see [19, 29, 16, 18, 17]. This
theory does not apply even for deterministic counterparts of (P) since the control variable u belongs
to a Riemannian manifold, not a Banach space. Stochastic approximation is a class of algorithms that
originated from the paper [24] and has developed in recent decades due to its applicability to high-
dimensional stochastic optimization problems. The most basic algorithm is the stochastic gradient
method, which can be used to solve an unconstrained version of (P), i.e., the problem of minimizing
the expectation. Recently, the stochastic gradient method was proposed to handle PDE-constrained
shape optimization problems [11, 10]. In [10], asymptotic convergence was proven for optimization
variables belonging to a Riemannian manifold and the connection was made to shape optimization
following the ideas in [30]. However, the stochastic gradient method cannot solve nonsmooth problems
of the form (P).

While both augmented Lagrangian and stochastic approximation methods are well-developed, the
combined method—what we call the stochastic augmented Lagrangian method—is not. In the context
of training neural networks, a combined stochastic gradient/augmented Lagrangian approach in the
same spirit as ours can be found in the paper [9]. Our method, however, involves a novel use of
the randomized multi-batch stochastic gradient method from [14, 15], where a random number of
stochastic gradient steps are chosen. We use this strategy to solve the inner loop optimization problem
for fixed Lagrange multipliers and penalty parameters. A central consequence of the random stopping
rule from [14, 15] is that convergence rates of the expected value of the norm of the gradient can be
obtained, even in the nonconvex case. The random stopping rule in combination with an outer loop
procedure can be used to adaptively adjust step sizes and batch sizes for a tractable algorithm where
asymptotic convergence to stationary points of the original nonsmooth problem is guaranteed.

The paper is structured as follows. In Section 2, we present the stochastic augmented Lagrangian
method for optimization on Riemannian manifolds and analyze its convergence. Then, an application
for our method is introduced and results of numerical tests are presented in Section 3.

2 Optimization approach

In this section, we introduce the stochastic augmented Lagrangian method for Riemannian manifolds.
In view of our later application to shape optimization, where convexity of the objective function j cannot
be expected, we focus on providing results for the nonconvex case. First, in Section 2.1, we will provide
background material that will be of use in our analysis. The algorithm is presented in Section 2.2.
Convergence of the method is proven in two parts: in Section 2.3, we provide an efficiency estimate
for the inner loop procedure, corresponding to a randomized multi-batch stochastic gradient method.
Then, in Section 2.4, convergence rates with respect to the outer loop procedure, which corresponds
to a stochastic augmented Lagrangian method, are given.

2.1 Background and notation

For a differentiable Riemannian manifold (M, g), g = (gu)u∈M denotes the Riemannian metric. The
induced norm is denoted by ‖·‖g :=

√
g(·, ·). The derivative of a mapping f : M → S between two

differentiable manifolds M and S is defined using the pushforward. In a point u ∈ M , it is defined
by (f∗)u : TuM → Tf(u)S with (f∗)u(c) := d

dtf(c(t))|t=0 = (f ◦ c)′(0), where c′(t) ∈ TuM and
c : I ⊂ R → M is a differentiable curve. In particular, f : M → S is called Ck if ψβ ◦ f ◦ φ−1

α is
k-times continuously differentiable for all charts (Uα, φα) of M and (Vβ, ψβ) of S with f(Uα) ⊂ Vβ .

DOI 10.20347/WIAS.PREPRINT.3010 Berlin 2023



Stochastic augmented Lagrangian method in shape spaces 3

The pullback by f in u is the mapping f ∗u : T ∗f(u)S → T ∗uM. In the case S = R, a Riemannian
gradient∇f(u) ∈ TuM is defined by the relation

(f∗)uw = gu(∇f(u), w) ∀w ∈ TuM. (1)

We denote the exponential mapping at u by expu : TuM → M, v 7→ expu(v), which assigns to
every tangent vector v the value γ(1) of the geodesic γ : [0, 1] → M satisfying γ(0) = u and
γ′(0) = v. Let the length of a C1-curve c : [0, 1] → M be denoted by L(c) =

∫ 1

0
‖c′(t)‖g dt. Then

the distance d: M ×M → R between points u, q ∈M is given by

d(u, q) = inf{L(c) : c : [0, 1]→M is a piecewise smooth curve

with c(0) = u and c(1) = q}.

The injectivity radius iu at a point u ∈M is defined as

iu := sup{r > 0: expu |Br(0u) is a diffeomorphism},

where 0u denotes the zero element of TuM and Br(0u) ⊂ TuM is a ball centered at 0u ∈ TuM
with radius r. The injectivity radius of the manifold M is the number i(M) := infu∈M iu.

As mentioned in the introduction, in this paper we will work with a (possibly infinite-dimensional) con-
nected Riemannian product manifold (M, g) = (UN ,GN) equipped with the family of inner products
GN = (GNu )u∈UN . As described in [11], the tangent space TUN can be identified with the product of
tangent spaces TU1 × · · · × TUN via TuUN ∼= Tu1U1 × · · · × TuNUN . Additionally, the product
metric GN to the corresponding product shape space UN can be defined via GN =

∑N
i=1 π

∗
i Gi,

where

GNu (v,w) =
N∑
i=1

Giπi(u)(πi∗v, πi∗w) ∀v,w ∈ TuUN , (2)

and πi : UN → Ui, i = 1, . . . , N , correspond to canonical projections. The multi-exponential map is
denoted by

expNu : TuUN → UN , v = (v1, . . . , vN) 7→ (expu1 v1, . . . , expuN vN)

for the vector u = (u1, . . . , uN), where expui : TuiUi → Ui, vi 7→ expui(vi) for all i = 1, . . . , N .

The triple (Ω,F ,P) denotes a (complete) probability space, whereF ⊂ 2Ω is the σ-algebra of events
and P : Ω → [0, 1] is a probability measure. The expectation of a random variable X : Ω → R is
defined by E[X] =

∫
Ω
X(ω) dP(ω). A filtration is a sequence {Fn} of sub-σ-algebras of F such

that F1 ⊂ F2 ⊂ · · · ⊂ F . If for an event F ∈ F it holds that P(F ) = 1, then we say F occurs
almost surely (a.s.). Given an integrable random variable X : Ω → R and a sub-σ-algebra Fn, the
conditional expectation is denoted by E[X|Fn], which is a random variable that is Fn-measurable
and satisfies

∫
A
E[X|Fn](ω) dP(ω) =

∫
A
X(ω) dP(ω) for all A ∈ Fn.

We will frequently use the convention ξ ∈ Ξ to denote a realization (i.e., the deterministic value
ξ(ω) ∈ Ξ for some ω) of the vector ξ : Ω → Ξ ⊂ Rm; based on the context, there should be
no confusion as to whether a realization or a random vector is meant. Let J : UN × Rm → R be
a parametrized objective as in problem (P) and define Jξ := J(·, ξ). The gradient ∇uJ(u, ξ) :=
∇Jξ(u) of J with respect to u is defined by the relation

((Jξ)∗)uw = GNu (∇uJ(u, ξ),w) ∀w ∈ TuUN . (3)
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Following [10], if ∇uJ : UN × Rm → TuUN is P-integrable, equation (3) is fulfilled for all u almost
surely, and E[∇uJ(u, ξ)] = ∇j(u), we call∇uJ a stochastic gradient.

Let the Lagrangian for problem (P) be the mapping L : UN × Rn → R defined by

L(u,λ) := j(u) + λ>h(u).

The gradient∇hi(u) ∈ TuUN of hi : UN → R is defined by the relation

((hi)∗)uw = GN(∇hi(u),w)

for all w ∈ TuUN . The gradient of the corresponding vector h : UN → Rn is the vector ∇h(u) =
(∇h1(u), . . . ,∇hn(u))>.

In the following, we define a Karush–Kuhn–Tucker (KKT) point. In order for the following KKT condi-
tions to be necessary optimality conditions for problem (P), we need additional regularity conditions;
we refer to [31, 4] for their treatment in manifolds.

Definition 2.1. The pair (û, λ̂) ∈ UN × Rn is called a KKT point for problem (P) if it satisfies the
following conditions:

∇j(û) +
n∑
i=1

λ̂i∇hi(û) = 0û, (4a)

hi(û) = 0, ∀i ∈ E , (4b)

hi(û) ≤ 0, λ̂i ≥ 0, λ̂ihi(û) = 0, ∀i ∈ I. (4c)

The closed cone corresponding to the geometric constraints, the distance to the cone, and the projec-
tion are defined, respectively, by

K := {y ∈ Rn : yi = 0 ∀i ∈ E , yi ≤ 0 ∀i ∈ I},
distK(y) := inf

k∈K
‖y − k‖2, πK(y) := argmink∈K‖y − k‖2.

The ith component of K is denoted by Ki. For y ∈ R, the projection has the formula πKi
(y) = 0 if

i ∈ E , and πKi
(y) = min(0, y) if i ∈ I . We have πK(y) = (πK1(y1), . . . , πKn(yn))>. The normal

cone of K in a point s ∈ K is defined by NK(s) = {v ∈ Rn : v>(s − y) ≥ 0 ∀y ∈ K}; the
normal cone is the empty set if s is not contained inK. To define the augmented Lagrangian, we first
introduce a slack variable s ∈K to obtain the equivalent, equality-constrained problem

min
(u,s)∈UN×K

{j(u) = E[J(u, ξ)]} s.t. h(u)− s = 0.

The corresponding augmented Lagrangian for a fixed parameter µ is the mapping LsA : UN × Rn ×
Rn → R defined by

LsA(u, s,λ;µ) = j(u) + λ>(h(u)− s) +
µ

2
‖h(u)− s‖2

2

= j(u) +
µ

2

∥∥∥h(u) +
λ

µ
− s
∥∥∥2

2
− ‖λ‖

2
2

2µ
.

Notice that mins∈K‖h(u) + λ
µ
− s‖2

2 = distK(h(u) + λ
µ

)2. Hence, it is possible to eliminate the

slack variable to obtain, again for fixed µ, the augmented Lagrangian LA : UN ×Rn → R defined by

LA(u,λ;µ) = j(u) +
µ

2
distK

(
h(u) +

λ

µ

)2

− ‖λ‖
2
2

2µ
. (5)
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Stochastic augmented Lagrangian method in shape spaces 5

2.2 Augmented Lagrangian method on Riemannian manifolds

In this section, we present Algorithm 1, which relies on stochastic approximation. For this, we need
the function LA : UN × Rn × Ξ→ R defined by

LA(u,λ, ξ;µ) := J(u, ξ) +
µ

2
distK

(
h(u) +

λ

µ

)2

− ‖λ‖
2
2

2µ
.

Additionally, it will be convenient to define a feasibility measure and its induced sequence by

H(u,λ;µ) :=

∥∥∥∥h(u)− πK
(
h(u) +

λ

µ

)∥∥∥∥
2

, Hk := H(uk,wk−1;µk−1). (6)

The stochastic augmented Lagrangian (AL) method is shown in Algorithm 1. The inner loop is an
adaptation of the randomized mini-batch stochastic gradient (RSG) method from [15]. In deterministic
AL methods, the inner loop is in practice only solved up to a given error tolerance, leading to an inexact
augmented Lagrangian method. Deterministic termination conditions for the inner loop typically rely
on conditions of the following type: uk+1 is chosen as the first point of the corresponding iterative
procedure satisfying

∇uLA(uk+1,wk;µk) = εk

with the error disappearing asymptotically, i.e., εk → 0 as k →∞. Stochastic methods like the kind
used here can only provide probabilistic error bounds; termination conditions are based on a priori
estimates and result in stochastic errors. The outer loop corresponds to the augmented Lagrangian
(AL) method with a safeguarding procedure as described in [16]; see also [29]. A feature of this proce-
dure is that instead of using the Lagrange multiplier in the subproblem in line 4, one chooses a proxy
function from a bounded set B, which is essential for achieving global convergence. In practice, this
should be chosen in such a way so that the projection is easy to compute, i.e., box constraints are
appropriate. A natural choice iswk := πB(λk).

Algorithm 1 Stochastic Augmented Lagrangian Method

1: Input: Initial point u1 = (u1
1, . . . , u

1
N) ∈ UN , AL parameters γ > 1, τ ∈ (0, 1), B ⊂ Rn

2: Initialization: µ1 > 0, λ1 ∈ Rn, k := 1
3: while uk, λk not converged do
4: Choosewk ∈ B, step size tk, iteration limit Nk, and batch size mk

5: zk,1 := uk

6: Take a sample Rk from the uniform distribution on {1, . . . , Nk}
7: for j = 1, . . . , Rk do
8: Take i.i.d. samples {ξk,j,1, . . . , ξk,j,mk} according to probability distribution P
9: zk,j+1 := expN

zk,j
(− tk

mk

∑mk

s=1∇uLA(zk,j,wk, ξk,j,s;µk))

10: uk+1 := zk,j+1

11: λk+1 := µk

(
h(uk+1) + wk

µk
− πK

(
h(uk+1) + wk

µk

))
12: If Hk+1 ≤ τHk or k = 1 satisfied, set µk+1 = µk. Otherwise, set µk+1 := γµk.
13: k := k + 1

2.3 Convergence of inner loop

To prove convergence of the RSG procedure in Algorithm 1, we make the following assumptions about
the manifold, which are adapted from [10].
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Assumption 1. We assume that (i) the distance d(·, ·) is non-degenerate,
(ii) the manifold (UN ,GN) has a positive injectivity radius i(UN), and
(iii) for all u ∈ UN and all ũ ∈ Biu(0u), the minimizing geodesic between u and ũ is completely
contained in Biu(0u).

As pointed out in [10], the conditions in Assumption 1 are strong for infinite-dimensional manifolds.
In infinite dimensions, Riemannian metrics are generally weak, so that gradients may not exist; in the
stochastic setting, we need additional assumptions to ensure integrability. In the following, a function
g : UN → R is called Lg-Lipschitz continuously differentiable if the function is C1 and there exists a
constant Lg > 0 such that for all u, ũ ∈ UN with d(u, ũ) < i(UN), we have

‖P1,0∇j(ũ)−∇j(u)‖GN ≤ Ljd(u, ũ)

where P1,0 : Tγ(1)UN → Tγ(0)UN is the parallel transport along the unique geodesic such that
γ(0) = u and γ(1) = ũ.

Assumption 2. (i) The functions j and hi (i = 1, . . . , n) are Lj-Lipschitz and Lhi-Lipschitz
continuously differentiable and the gradients∇j and∇hi (i = 1, . . . , n) exist for all u ∈ UN .

(ii) The stochastic gradient∇uJ defined by (3) exists and there exists M > 0 such that:

E[‖∇uJ(u, ξ)−∇j(u)‖2
GN ] ≤M2 ∀u ∈ UN . (7)

We begin our investigations with the following useful property.

Lemma 2.1. Under Assumption 1 and assuming the gradients∇j and∇hi (i = 1, . . . , n) exist, the
iterates of Algorithm 1 satisfy

∇uLA(uk+1,wk;µk) = ∇uL(uk+1,λk+1) for all k.

Proof. We have∇dist2K = 2(IdRn−πK); see [3, Corollary 12.31]. Let f(u) := LA(u,w;µ). Then,
the chain rule yields

(f∗)uv = (j∗)uv + µ
n∑
i=1

(
hi(u) +

wi
µ
− πKi

(
hi(u) +

wi
µ

))
((hi)∗)uv.

From this, thanks to the identity (1), we can follow that

∇f(u) = ∇j(u) + µ∇h(u)>
(
h(u) +

w

µ
− πK

(
h(u) +

w

µ

))
,

and using the definition of λk+1 from Algorithm 1, we obtain

∇uLA(uk+1,wk;µk) = ∇j(uk+1) +∇h(uk+1)>λk+1.

Using the fact that∇uL(u,λ) = ∇j(u) +∇h(u)>λ, we have proven the claim.

Now, we turn to an efficiency estimate for the inner loop. First, we define the functions

Fk(u, ξ) := LA(u,wk, ξ;µk), fk(u) := E[LA(u,wk, ξ;µk)] = LA(u,wk;µk).

Recall the convention ξ ∈ Ξ being used in the definition of Fk and ξ : Ω → Ξ being used in the
definition of fk.
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Lemma 2.2. Suppose that Assumption 1 and Assumption 2 are satisfied and let B̂k ⊂ UN be a
bounded set such that d(ũ,u) ≤ i(UN) for all ũ,u ∈ B̂k. Then, fk is Lk-Lipschitz continuously
differentiable with Lk depending on Lj, Lh1 , . . . , Lhn , and B̂k. Moreover, for all ũ,u ∈ B̂k with
v := exp−1

u (ũ), we have

fk(ũ)− fk(u) ≤ GN(∇fk(u),v) +
Lk
2
‖v‖2

GN . (8)

Proof. Let P1,0 denote the parallel transport as defined directly before Assumption 2 and set gi(u) :=

hi(u) +
wk

i

µk
− πKi

(hi(u) +
wk

i

µk
). Since hi is Lhi-Lipschitz continuously differentiable and B̂k is

bounded, there exists Ci,k > 0 such that ‖∇hi(u)‖GN ≤ Ci,k. Now, we have∥∥∥ n∑
i=1

P1,0∇hi(ũ)gi(ũ)−∇hi(u)gi(u)
∥∥∥
GN

≤
n∑
i=1

‖P1,0∇hi(ũ)−∇hi(u)‖GN |gi(u)|+ ‖∇hi(u)‖GN |gi(ũ)− gi(u)|

≤
n∑
i=1

Lhid(u, ũ)|gi(u)|+ Ci,k|gi(ũ)− gi(u)|

≤
n∑
i=1

Lhid(u, ũ)|gi(u)|+ 2Ci,k|hi(ũ)− hi(u)|,

(9)

where in the last step, we used the contraction property of the projection operator. Notice that

|hi(ũ)− hi(u)| ≤ C ′id(ũ,u) (10)

for some C ′i > 0 since hi is C1. Additionally, we have

|gi(u)| ≤
∣∣∣hi(u) +

wki
µk

∣∣∣ (i ∈ E) (11)

and

|gi(u)| =

{
hi(u) +

wk
i

µk
if hi(u) +

wk
i

µk
≥ 0,

0 else
(i ∈ I). (12)

Since B̂k is bounded, (11) and (12) together imply that there existsC ′′i,k > 0 such that |gi(u)| ≤ C ′′i,k.
As a consequence of (9) and (10), we have∥∥∥ n∑

i=1

P1,0∇hi(ũ)gi(ũ)−∇hi(u)gi(u)
∥∥∥
GN
≤ d(u, ũ)

n∑
i=1

LhiC
′′
i,k + 2Ci,kC

′
i.

Setting L̃h,k :=
∑n

i=1 LhiC
′′
i,k + 2Ci,kC

′
i, we have

‖P1,0∇fk(ũ)−∇fk(u)‖GN

≤ ‖P1,0∇j(ũ)−∇j(u)‖GN + µk

∥∥∥ n∑
i=1

P1,0∇hi(ũ)gi(ũ)−∇hi(u)gi(u)
∥∥∥
GN

≤ (Lj + µkL̃h,k)d(ũ,u)

Therefore, fk is Lk-Lipschitz with Lk := Lj +µkL̃h,k. Applying [10, Theorem 2.6], we obtain (8).
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Remark. In the previous lemma, we introduced a bounded set B̂k. For the following results, we will
need the existence of these sets containing the iterates almost surely within each k. Conditions en-
suring boundedness can, e.g., be guaranteed by including constraints of the form u ∈ C ⊂ UN for
some bounded set C , or growth conditions on the gradient in combination with a regularizer; see [12].

Our first result concerning the convergence of Algorithm 1 handles the efficiency of the inner loop pro-
cess, which corresponds to a stochastic gradient method that is randomly stopped after Rk iterations.
We follow the arguments in [15, Corollary 3]. It is possible to choose non-constant step sizes tkj ; see
[15, Theorem 2], but for the sake of clarity we observe step sizes that are constant in the inner loop
here.

To handle the analysis, we interpret Rk as a realization of a stopping time τk : Ω → {1, . . . , Nk}.
Let ξk,j := (ξk,j,1, . . . , ξk,j,mk) be the batch associated with iteration j for a given outer loop k and
let Fk,n = σ(ξ`,i : ` ∈ {1, . . . , k}, i ∈ {1, . . . , n}) define the corresponding natural filtration. We
define the filtration associated with the randomly stopped stochastic process by F τk = {F`,n∧τk :
` ∈ {1, . . . , k}, n ∈ {1, . . . , Nk}}.

Theorem 2.1. Suppose Assumption 1 and Assumption 2 are satisfied. Observe a fixed iteration k
from Algorithm 1. Suppose the iterates {zk,j} are a.s. contained in a bounded set B̂k ⊂ UN , where
d(u, ũ) ≤ i(UN) for all u, ũ ∈ B̂k. Then, if the step sizes {tk} satisfy tk = αk/Lk for αk ∈ (0, 2),
we have

E[‖∇fk(uk+1)‖2
GN |F

τk ] ≤ 2Lk(fk(u
k)− f ∗k )

(2αk − α2
k)Nk

+
αkM

2

(2− αk)mk

, (13)

where f ∗k := infu∈B̂k
fk(u). Moreover, if B̂∞ := ∪∞k=1B̂k is bounded, d(u, ũ) ≤ i(UN) for all

u, ũ ∈ B̂∞, the maximum iterations {Nk} are chosen such that Nk = βkLk for βk > 0, and

∞∑
k=1

1

(2αk − α2
k)βk

+
αk

(2− αk)mk

<∞, (14)

then we have ‖∇fk(uk+1)‖GN → 0 a.s. as k →∞.

Proof. Let k be fixed. We define δj := 1
mk

∑mk

i=1∇uFk(zk,j, ξ
k,j,i) − ∇fk(zk,j). With vj :=

exp−1
zk,j

(zk,j+1) = − 1
Lkmk

∑mk

i=1∇uFk(zk,j, ξ
k,j,i), Lemma 2.2 yields

fk(z
k,j+1)− fk(zk,j)

≤ −tkGN
(
∇fk(zk,j),

1

mk

mk∑
i=1

∇uFk(zk,j, ξk,j,i)

)

+
Lkt

2
k

2

∥∥∥∥∥ 1

mk

mk∑
i=1

∇uFk(zk,j, ξk,j,i)

∥∥∥∥∥
2

GN

= −αk
Lk
‖∇fk(zk,j)‖2

GN −
αk
Lk
GN(∇fk(zk,j), δj)

+
α2
k

2Lk

(
‖∇fk(zk,j)‖2

GN + 2GN(∇fk(zk,j), δj) + ‖δj‖2
GN
)

=

(
−αk
Lk

+
α2
k

2Lk

)
‖∇fk(zk,j)‖2

GN +

(
−αk
Lk

+
α2
k

Lk

)
GN(∇fk(zk,j), δj)

+
α2
k

2Lk
‖δj‖2

GN .
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Stochastic augmented Lagrangian method in shape spaces 9

Taking the sum with respect to j on both sides and rearranging, we obtain

Nk∑
`=1

‖∇fk(zk,`)‖2
GN ≤

2Lk
2αk − α2

k

(fk(z
k,1)− f ∗k )

+
2(αk − 1)

2− αk

Nk∑
`=1

GN(∇fk(zk,`), δ`) +
αk

2− αk

Nk∑
`=1

‖δ`‖2
GN

(15)

since f ∗k ≤ fk(z
k,Nk+1) and 0 < αk < 2. Since∇uFk is a stochastic gradient, we have

E[GN(∇fk(zk,j), δj)|Fk,j] = GN(∇fk(zk,j),E[δj|Fk,j]) = 0.

Notice that due to (7), we have

E
[
‖∇uFk(zk,j, ξk,j,i)−∇fk(zk,j)‖2

GN |Fk,j
]

= E
[
‖∇uJ(zk,j, ξk,j,i)−∇j(zk,j)‖2

GN |Fk,j
]

= E
[
‖∇uJ(zk,j, ξ)−∇j(zk,j)‖2

GN
]
≤M2.

(16)

With (16), we obtain

E[‖δj‖2
GN |Fk,j] =

1

m2
k

E

[∥∥∥ mk∑
i=1

(
∇uF (zk,j, ξk,j,i)−∇fk(zk,j)

) ∥∥∥2

GN

∣∣∣Fk,j]

≤ 1

m2
k

mk∑
i=1

E
[
‖∇uF (zk,j, ξk,j,i)−∇fk(zk,j)‖2

GN |Fk,j
]
≤ M2

mk

,

(17)

where we used Jensen’s inequality, the linearity of the expectation, and (16). Taking the expectation
on both sides of (17), using (15), and using the tower property, we get the inequality

Nk∑
`=1

E[‖∇fk(zk,`)‖2
GN ] ≤ 2Lk(fk(z

k,1)− f ∗k )

2αk − α2
k

+
αk

2− αk
M2Nk

mk

. (18)

Due to the law of total expectation, we have

E[‖∇fk(zk,Rk)‖2
GN |F

τk ] = E[‖∇fk(zk,τk)‖2
GN |F

τk ]

=

Nk∑
`=1

E[‖∇f(zk,`)‖2
GN |Fk,`]P{τk = `}

=
1

Nk

Nk∑
`=1

E[‖∇f(zk,`)‖2
GN ].

Note that fk(zk,Rk) = fk(u
k+1) and fk(zk,1) = fk(u

k). Returning to (18), we obtain

E[‖∇fk(uk+1)‖2
GN |F

τk ] ≤ 2Lk(fk(u
k)− f ∗k )

(2αk − α2
k)Nk

+
αkM

2

(2− αk)mk

,

so we have shown (13).

Now, to prove almost sure convergence, we first observe that if all iterates are contained in B̂∞, we
have

fk(u
k)− f ∗k ≤ 2 sup

u∈B̂∞
|fk(u)| ≤ C
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C. Geiersbach, T. Suchan, K. Welker 10

for some C > 0 due to the assumed smoothness of fk on UN . Taking the total expectation of (13),
Markov’s inequality in combination with Jensen’s inequality gives

P{‖∇fk(uk+1)‖GN ≥ ε} ≤ ε−2E[‖∇fk(uk+1)‖2
GN ]

≤ ε−2

(
2LkC

(2αk − α2
k)Nk

+
αkM

2

(2− αk)mk

)
.

Since Nk = βkLk and (14) holds, the infinite sum of the right-hand side is finite for every ε > 0,
implying the almost sure convergence of {‖∇fk(uk+1)‖GN} to zero.

For the choice tk = 1/Lk, the efficiency estimate (13) evidently simplifies to E[‖∇fk(uk+1)‖2
GN ] ≤

2Lk(fk(uk)−f∗k )

Nk
+ M2

mk
. In the next section, we will investigate optimality of the solution in the limit as

k is taken to infinity. Since the Lipschitz constant Lk has a potential to be unbounded due to the
penalty term µk, the maximal number of iterations Nk needs to be balanced appropriately in this
case. To obtain almost sure convergence, we required Nk = βkLk for βk > 0. Alternatively, if it can
be guaranteed that Lk is bounded for all k (for instance by bounding µk), then one could (asymp-
totically) choose tk = αk/L with L = supk Lk. Regarding complexity, it is possible to establish
the inner loop’s complexity as argued in [15, Section 4.2]. We define a (εk, ηk)-solution to the prob-
lem minu∈UN {fk(u) = E[Fk(u, ξ)]} as the point û that satisfies P{‖∇fk(û)‖2

GN ≤ εk} ≥
1 − ηk. Ignoring some constants, for the choice tk = 1/Lk, the complexity can be bounded by
O
(
(ηkεk)

−1 +M2η−2
k ε−2

k

)
.

2.4 Convergence of outer loop

In the final part of this section, we analyze the behavior of the outer loop of Algorithm 1 adapting
arguments from [29, 18]. We define an optimality measure and its induced sequence by

r(u,λ) = ‖∇uL(u,λ)‖GN + ‖h(u)− πK(h(u) + λ)‖2, rk := r(uk,λk)

and make the following assumptions on iterates induced by Algorithm 1.

Assumption 3. We assume that (i) the sequence {uk} is a.s. contained in a bounded set B̂∞ such
that d(u, ũ) ≤ i(UN) for all u, ũ ∈ B̂∞,
(ii) ‖∇uLA(uk+1,wk;µk)‖GN → 0 a.s. as k →∞,
(iii) {(uk,λk)} converges a.s. to the set of KKT points,
(iv) for k sufficiently large, we havewk = λk.

Note that Theorem 2.1 implies Assumption 3(ii). In the absence of constraint qualifications, one can still
work with asymptotic KKT (AKKT) conditions; under certain conditions, it can even be shown that they
are necessary conditions (see, e.g., [18, Theorem 5.3]). We will say that a feasible point û satisfies
the AKKT conditions if there exists a sequence {uk} such that d(uk, û)→ 0 and a sequence {λk}
contained in the dual coneK⊕ := {y ∈ Rn : y>k ≥ 0 ∀k ∈K} such that

‖∇j(uk) +∇h(uk)>λk‖GN → 0 and πK(−h(uk))>λk → 0 (19)

as k →∞.
A fundamental difference in the stochastic variant of the augmented Lagrangian method is that limit
points, as limits of the stochastic process (uk,λk), are random. In the following, we will consider a
fixed limit point (û, λ̂) and the corresponding set of paths converging to it. This motivates the definition
of the set

Eû,λ̂ := {ω : (uk(ω),λk(ω))→ (û, λ̂) a.s. on a subsequence}. (20)
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Stochastic augmented Lagrangian method in shape spaces 11

Theorem 2.2. Suppose Assumption 1–Assumption 3(i)-(ii) are satisfied. Let E := {ω ∈ Ω :
µk(ω) is a.s. bounded}. Then, {λk(ω)} is a.s. bounded on E and any limit point (û, λ̂) of the ran-
dom sequence {(uk(ω),λk(ω)) : ω ∈ E, k ∈ N} is a KKT point. On the set Ω\E, if a limit point û
is feasible, then it is a AKKT point.

Proof. We will make arguments in several parts.
Part 1: Bounded µk. We first show that the sequence {λk} is a.s. bounded. Let vk+1 := h(uk+1)+
wk

µk
and yk+1 := πK(vk+1). By definition of λk, we have

h(uk+1) =
1

µk
(λk+1 −wk) + yk+1. (21)

Now, observe that the boundedness of {µk} on E implies that there exists a maximal iterate k̄ in
Algorithm 1 such that Hk+1 ≤ τHk ≤ τM is satisfied for every k ≥ k̄ and some M > 0. This
M exists since h is C1 and uk, wk, and µk are all bounded by assumption. In particular, Hk → 0
as k → ∞ on E. In turn, (21) combined with the definition of Hk implies the a.s. convergence of
‖λk+1−wk‖2/µk to zero, in turn implying ‖λk+1−wk‖2 → 0 for k → 0. The boundedness ofwk

guaranteed by Algorithm 1 means therefore that {λk} is bounded on E.

Now, we prove that for any y ∈ K, there exists a nonnegative sequence γk converging to zero and
such that

(y − h(uk))>λk ≤ γk, ω ∈ E, k ∈ N. (22)

With [3, Theorem 3.14], the projection formula

(vk+1 − yk+1)>(yk+1 − y) ≥ 0

holds for all y ∈ K, implying that λk+1 = µk+1(vk+1 − yk+1) ∈ NK(yk+1). Now, using λk+1 ∈
NK(yk+1) and (21), we have

(y − h(uk+1))>λk+1 =

(
y − 1

µk
(λk+1 −wk)− yk+1

)>
λk+1

≤ 1

µk
((wk)>λk+1 − ‖λk+1‖2

2)

= (yk+1 − h(uk+1))>λk+1 =: γk+1.

We have shown (22). That {γk} is a.s. a null sequence follows from the fact that ‖λk+1 −wk‖2/µk
a.s. converges to zero.

Consider a subsequence of {(uk(ω),λk(ω))} that converge to a limit point (û, λ̂) for a fixed ω ∈
Eû,λ̂. We will prove that the limit point satisfies the KKT conditions (4). Continuity of ∇uL gives

limk→∞∇uL(uk(ω),λk(ω)) = ∇uL(û, λ̂) and ‖∇uL(û, λ̂)‖Gn = 0 due to Assumption 3(ii).
By definition, ∇uL(û, λ̂) ∈ TûUN , and the only element in TûUN having norm zero is 0û, thus
(4a) is fulfilled. Since αk → 0 a.s., we have that (y − h(û))>λ̂ ≤ 0 for all y ∈ K, implying that
λ̂ ∈ NK(h(û)). This immediately implies (4b)–(4c).
Part 2: Unbounded µk. Consider a fixed ω ∈ Ω\E and a sequence {uk(ω)} such that (possibly on
a subsequence that we do not relabel) d(uk(ω), û)→ 0 as k →∞. Assumption 3(ii) gives the first
AKKT condition in (19). It remains to prove that πK(−h(uk(ω)))>λk(ω)→ 0. Now, we define

pk(ω) := (µk(ω)h(uk+1(ω)) +wk(ω))>πK(−h(uk+1(ω))).
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C. Geiersbach, T. Suchan, K. Welker 12

For readability, we will suppress the dependence on ω. Since

λk+1 = µk

(
h(uk+1) +

wk

µk
− πK

(
h(uk+1) +

wk

µk

))
it is evidently enough to prove pk → 0, since due to the contraction property of the projection, we
have πK(ak)>bk → 0 implies πK(ak)>πK(bk) → 0 for any ak, bk ∈ Rn. Note that at least on a
subsequence, we have h(uk+1)→ h(û) and |h(uk)| is bounded.

Consider first the case that hi(û) < 0. Then h(uk+1)→ h(û) implies that wki + µkhi(u
k+1) < 0

for k sufficiently large, implying pk → 0.

Consider now the case that hi(û) = 0. For a fixed k, if hi(uk+1) ≥ 0 then pk = 0. Else if
hi(u

k+1) < 0, then pki = (µkhi(u
k+1) + wki )πK(−hi(uk+1)) ≤ wki |hi(uk+1)|. If hi(uk+1) < 0

infinitely many times, then wki |hi(uk+1)| → 0, meaning pk → 0.

Since pk in both cases converges to zero and ω ∈ Ω\E was arbitrary, we have proven the claim.

We now turn to local convergence statements. In the spirit of a local argument, we restrict our investi-
gations to the study around a limit point for only those realizations converging to it. Again, we consider
the set Eû,λ̂ defined in (20).

Lemma 2.3. Suppose Assumptions 1–3 hold. Let (û, λ̂) be a limit point satisfying for some c1, c2 > 0

c1r(u,λ) ≤ d(u, û) + ‖λ− λ̂‖2 ≤ c2r(u,λ) (23)

for all (u,λ) with u near û and r(u,λ) sufficiently small. Then we have for sufficiently large k(
1− c2

µk

)
rk+1 ≤ ‖∇uLA(uk+1,wk;µk)‖GN +

c2

µk
rk a.s. on Eû,λ̂.

Proof. We have using Lemma 2.1 andwk = λk that

rk+1 = ‖∇uLA(uk+1,λk;µk)‖GN + ‖h(uk+1)− πK(h(uk+1) + λk+1)‖2. (24)

Let vk+1 := h(uk+1) + wk

µk
and yk+1 := πK(vk+1). Then it follows that

‖yk+1 − πK(yk+1 + λk+1)‖2 = 0 (25)

since λk+1 ∈ NK(yk+1) as argued in Part 1 of the proof of Theorem 2.2. Note that IdRn − πK is
(firmly) nonexpansive (cf. [3, Prop. 12.27]). It is an easy exercise to deduce that the mapping y 7→
y − πK(y + λk+1) is nonexpansive as well, from which we can conclude∣∣∣‖h(uk+1)− πK(h(uk+1) + λk+1)‖2 − ‖yk+1 − πK(yk+1 + λk+1)‖2

∣∣∣
≤ ‖h(uk+1)− πK(h(uk+1) + λk+1)− yk+1 + πK(yk+1 + λk+1)‖2

≤ ‖h(uk+1)− yk+1‖2.

(26)

Using the definition of yk+1 andwk = λk, notice that

‖h(uk+1)− πK(h(uk+1) + λk+1)‖2

≤ ‖h(uk+1)− πK(h(uk+1) + λk/µk)‖2

=
1

µk
‖µkh(uk+1) + λk − µkπK(h(uk+1) + λk/µk)− λk‖2

=
1

µk
‖λk+1 − λk‖2.
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Stochastic augmented Lagrangian method in shape spaces 13

Returning to (24), we obtain

rk+1 ≤ ‖∇uLA(uk+1,λk;µk)‖GN +
1

µk

(
‖λk+1 − λ̂‖2 + ‖λk − λ̂‖2

)
. (27)

Since limk→∞ d(uk, û) = 0 a.s. on Eû,λ̂, then for any ε > 0 there exists k̄ such that d(uk, û) < ε

for all k ≥ k̄ a.s. Possibly choosing k̄ even larger, Assumption 3 combined with the positive injectivity
radius further implies ‖λk(ω) − λ̂‖2 ≤ c2rk for almost all ω ∈ Eû,λ̂. Using (27), we conclude that
for almost all ω ∈ Eû,λ̂,

rk+1 ≤ ‖∇uLA(uk+1(ω),λk(ω);µk(ω))‖GN +
1

µk
(c2rk+1 + c2rk),

for k large enough. Rearranging terms proves the claim.

We are now ready to show the local rate of convergence.

Theorem 2.3. Under the same assumptions as Lemma 2.3, assume further that

‖∇uLA(uk+1,λk;µk)‖GN = o(rk).

Then

1) If for all q ∈ (0, 1) there exists µ̂q > 0 such that if µk ≥ µ̂q for k sufficiently large, then

(uk,λk)→ (û, λ̂) a.s. on Eû,λ̂ at a linear rate.

2) If µk →∞, then (uk,λk)→ (û, λ̂) a.s. on Eû,λ̂ at a superlinear rate.

Proof. Note that for k large enough, we havewk = λk and Lemma 2.3 gives(
1− c2

µk

)
rk+1 ≤ ‖∇uLA(uk+1,wk;µk)‖GN +

c2

µk
rk = o(rk) +

c2

µk
rk.

Taking µk large enough gives rk+1 ≤ µk
µk−c2

(
o(rk) + c2

µk
rk

)
. This implies

rk+1

rk
≤ µk
µk − c2

(
o(1) +

c2

µk

)
=

c2

µk − c2

+ o(1).

Thanks to the error bound (23), we get the corresponding rates for {(uk,λk)}.

In practice, the assumption ‖∇uLA(uk+1,λk;µk)‖GN = o(rk) is difficult to implement since one
can only work with estimates f̂k ≈ E[LA(uk+1,λk, ξ;µk)] = LA(uk+1,λk;µk). However, we
have a convergence rate guaranteed in expectation by (13), which can be used to choose appropriate
sequences for Nk and mk. A possible heuristic is shown in the following section.
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3 Application and numerical results

In this section, we present an application to a two-dimensional fluid-mechanical problem to demon-
strate the algorithm. We denote the hold-all domain as D = D(u), which is partitioned into N + 1
disjoint subdomains D1, . . . , DN+1, where DN+1 represents the subdomain in which fluid is allowed
to flow, and the other sets are obstacles around which the fluid is supposed to flow. The subdomain
boundaries are defined as ∂D1 = u1, . . ., ∂DN = uN , and ∂DN+1 = Γ∪u1 ∪ · · · ∪uN = Γ∪u,
where Γ is the outer boundary that is fixed and split into two disjoint parts ΓD and ΓN representing
the Dirichlet and Neumann boundary, respectively.

The shape space we consider in the numerical experiments is the product space of plane unpara-
metrized curves, i.e., UN = BN

e (S1,R2). The shape space Be(S
1,R2) is defined as the orbit space

of Emb(S1,R2) under the action by composition from the right by the Lie group Diff(S1), mean-
ing Be(S

1,R2) := Emb(S1,R2)/Diff(S1) (cf., e.g., [23]). Here, Emb(S1,R2) denotes the set
of all embeddings from the unit circle S1 into R2, and Diff(S1) is the set of all diffeomorphisms
from S1 into itself. In [20], it is proven that the shape space Be(S

1,R2) is a smooth manifold; to-
gether with appropriate inner products, it is even a Riemannian manifold. In our numerical exper-
iments, we choose the Steklov–Poincaré metric defined in [25]. Originally, it is defined as a map-
ping from Sobolev spaces. To define a metric on Be(S

1,R2), the Steklov–Poincaré metric is re-
stricted to a mapping from the tangent spaces, i.e., TuBe(S

1,R2) × TuBe(S
1,R2) → R, where

TuBe(S
1,R2) ∼= {h : h = αn, α ∈ C∞(S1)}. Of course, one can choose a different metric on the

shape space to represent the shape gradient. We focus on the Steklov–Poincaré metric due to its
advantages in combination with the computational mesh (cf. [28, 25]).

The physical system onD is described by the Stokes equations under uncertainty. Note that here, flow
is modeled on the domain D instead of DN+1. This is done (in view of the tracking-type functional)
to produce a shape derivative on the entire domain. Let V (D) = {q ∈ H1(D,R2) : q|ΓD∪u = 0}
denote the function space associated to the velocity for a fixed domain D. We neglect volume forces
and consider a deterministic viscosity of the fluid. Inflow g on parts of the Dirichlet boundary is as-
sumed to be uncertain and is modeled as a random field g : D × Ξ → R2 with regularity g ∈
L2
P(Ξ, H1(D,R2)) and depending on ξ : Ω→ Ξ ⊂ Rm. We will use the abbreviation gξ = g(·, ξ).

For each realization ξ, consider Stokes flow in weak form: find qξ ∈ H1(D,R2) and pξ ∈ L2(D)
such that qξ − gξ ∈ V (D) and∫

D

∇qξ : ∇ϕ− pξ divϕ dx = 0 ∀ϕ ∈ V (D), (28a)∫
D

ψ div qξ dx = 0 ∀ψ ∈ L2(D). (28b)

Here, A : B =
∑d

j=1

∑d
k=1 AjkBjk for two matrices A,B ∈ Rd×d. The gradient and divergence

operators∇ and div act with respect to the spatial variable only with ξ acting as a parameter.

For each shape ui, i = 1, . . . , N , we introduce one inequality constraint for a constrained volume,
see equation (30a) and one inequality constraint for a constrained perimeter, see equation (30b).
The volume of the domain Di is given by vol(Di) =

∫
Di

1 dx and the perimeter of ui is given by

peri(ui) =
∫
ui

1 ds. Now, we suppose there is a deterministic target velocity q̄ to be reached on the
domainD. We would like to determine the optimal placement of shapes that come closest on average
to this velocity field. More precisely, we solve the problem

min
u∈BN

e (S1,R2)

{
j(u) =

∫
Ω

∫
D

‖qξ(ω)(x) + gξ(ω)(x)− q̄(x)‖2
2 dx dP(ω)

}
(29)
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Stochastic augmented Lagrangian method in shape spaces 15

subject to (28) and

vol(Di) ≥ V i ∀i = 1, . . . , N, (30a)

peri(ui) ≤ P i ∀i = 1, . . . , N. (30b)

We note that a deterministic model using a tracking-type functional in combination with Stokes flow
has been studied in [7].

KKT conditions. In the following, we formulate the necessary optimality conditions to the model
problem defined by (28)–(30). We define h : U → R2N by

h(u) =

(
hV (u)
hP(u)

)
=

(
[V i − vol(Di)]i∈{1,...,N}[
peri(ui)− P i

]
i∈{1,...,N} ,

)
as well as the set K := {h ∈ R2N : hi ≤ 0 ∀i = 1, . . . , 2N} and the objective J(u, ξ) :=∫
D
‖qξ(x) + gξ(x)− q̄(x)‖2

2 dx. The parametrized augmented Lagrangian is defined by

LA(u,λ, ξ;µ) = J(u, ξ) +

∫
D

∇qξ : ∇ϕξ − pξ divϕξ + ψξ div qξ dx

+
µ

2
distK

(
h(u) +

λ

µ

)2

− ‖λ‖
2
2

2µ
.

(31)

Differentiating the Lagrangian (31) with respect to (q, p) and setting it to zero gives the weak form of
the adjoint equation: find ϕξ ∈ V (D) and ψξ ∈ L2(D) such that∫

D

2ϕ̃>
(
qξ + gξ − q̄

)
+∇ϕξ : ∇ϕ̃+ ψξ div ϕ̃ dx = 0 ∀ϕ̃ ∈ V (D), (32a)∫

D

divϕξ ψ̃ dx = 0 ∀ψ̃ ∈ L2(D). (32b)

We define the spaceW(D) = {W ∈ H1(D,R2) : W |Γ = 0}. We have the shape derivative

duLA(u,λ, ξ;µ) [W ]

=

∫
D

−
(
∇qξ∇W

)
: ∇ϕξ −

(
∇ϕξ∇W

)
: ∇qξ +

(
pξ∇ϕξ> − ψξ∇qξ>

)
: ∇W

+ div (W )
(
‖qξ + gξ − q̄‖2

2 +∇qξ : ∇ϕξ − pξ divϕξ + ψξ div qξ
)

dx

+ µ

((
h(u) +

λ

µ

)
− πK

(
h(u) +

λ

µ

))>


[∫
Di

div (W ) dx
]
i∈{1,...,N}[∫

ui
div (W )− n>∇Wn ds

]
i∈{1,...,N}

 , (33)

where
(
qξ, pξ

)
and

(
ϕξ, ψξ

)
solve the state equation (28) and adjoint equation (32), respectively. The

shape derivative is needed to represent the gradient with respect to the metric under consideration
(cf., e.g., [11]). As described in [11], we can use the multi-shape derivative in an “all-at-once”-approach
to compute the multi-shape gradient with respect to the Steklov–Poincaré metric and the mesh defor-
mation V = V ξ all at once by solving

a(V ,W ) = duLA(u,λ, ξ;µ)[W ] ∀W ∈ W(D) ∩ C∞(D,R2), (34)
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where a is a coercive and symmetric bilinear form. The mesh deformation V calculated from (34) can
be viewed as an extension of the multi-shape gradient v with respect to the Steklov–Poincaré metric
to the hold-all domain D (for details we refer the reader to [11]).

The bilinear form that describes linear elasticity is a common choice for a due to the advantageous
effect on the computational mesh (cf. [28, 30]), and is selected for the following numerical studies. The
Lamé parameters are chosen as λ̂ = 0 and µ̂ smoothly decreasing from 33 on u to 10 on Γ, as
obtained by the solution of Poisson’s equation on D.

To update the shapes according to Algorithm 1, we need to compute the multi-exponential map. This
computation is prohibitively expensive in most applications because a calculus of variations problem
must be solved or the Christoffel symbols need be known. Therefore, we approximate it using a multi-
retraction

RN
zk,j : Tzk,jUN → UN , v = (v1, . . . , vN) 7→ (Rzk,j1

v1, . . . ,Rzk,jN
vN)

to update the shape vector zk,j = (zk,j1 , . . . , zk,jN ) in each pair (j, k). For each shape zk,ji we use
the retraction in [11, 10, 26]:Rzk,ji

: Tzk,ji
U i → U i, vi 7→ zk,ji + vi for all i = 1, . . . , N .

Numerical results. All numerical simulations were performed on the HPC cluster HSUper∗ using
the FEniCS toolbox, version 2019.1.0 [2] and Python 3.9.12. The hold-all domain is chosen as D =
(0, 1)2. We choose N = 3 shapes inside the hold-all domain, which can be seen on the left-hand
side of Figure 1. The computational mesh is generated with Gmsh 4.8.4 [13], which yields 265 line
elements for the outer boundary and the interfaces, and 3803 triangular elements as the discretization
of D. Additionally, a new mesh was automatically generated if the mesh quality† fell below a threshold
of 40%. The target velocity is shown in Figure 1 on the right, together with the shapes to obtain
the target velocity. We used numpy.random from numpy 1.22.4 for the generation of all random
values. The different seeds 964113, 454612, 421507 and 107785 were chosen. Parallelization of
multiple realizations was performed via MPI using mpi4py version 3.1.2. Standard Taylor–Hood
elements are used.

The values of the geometrical constraints were chosen in accordance with the shapes of the target
velocity. The volumes ofD1,D2 andD3 were constrained to be at or above 0.035295, 0.025397 and
0.036967, and the perimeters of u1, u2 and u3 to be at or below 0.72630, 0.56521 and 0.69796,
respectively. The augmented Lagrangian parameters in Algorithm 1 were initialized to λ1 = 0, µ1 =
10, γ = 10, and τ = 0.9. The ball for the projection of Lagrange multipliers was chosen to be
B = [−100, 100]2N .

We chose homogenous Dirichlet boundary conditions for the velocity on the top and bottom boundary
and on u (see Figure 1, left). The inflow profile on the left boundary is modeled as an inhomogenous
Dirichlet boundary with gξ(x) = (κ(x, ξ), 0)>. The horizontal component is given by the truncated
Karhunen-Loève expansion

κ(x, ξ) = −4x2(x2 − 1) +
100∑
`=1

`−η−1/2 sin(2π`(x2 − 1/2))ξ`,

where η = 3.5 and ξ` ∼ U
[
−1

2
, 1

2

]
(U [a, b] being the uniform distribution on the interval [a, b]).

On the right boundary, a homogenous Neumann boundary condition is imposed. The step size is

∗Further information about the technical specifications can be found at
https://www.hsu-hh.de/hpc/en/hsuper/.

†The mesh quality is measured with the FEniCS function MeshQuality.radius_ratio_min_max.
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Figure 1: Shapes u1 (blue), u2 (red) and u3 (green) at the start of the stochastic optimization (left) and
the magnitude of the target fluid velocity |q| together with the shapes (in orange) used to obtain the
target velocity (right).
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Figure 2: Shapes u1 (blue), u2 (red) and u3 (green) at the end of the stochastic optimization with
different seeds.

chosen as tk = 20
µk

, the scaling of which is obtained by tuning (to avoid deterioration of the mesh,
especially in the first steps of the inner loop procedure). The maximum number of inner loop iterations
is initialized to N1 = 5 and is updated using Tk = 1√

k
to Nk = dγNk−1

Tk
e if µk > µk−1, otherwise

Nk = dNk−1

Tk
e. The batch size is increased according to mk = dmk−1

Tk
e with m1 = 25. Each inner

loop k requires mk · Rk solutions of the state equation, the adjoint equation, the Poisson equation
for the Lamé parameter, and the deformation equation, which becomes computationally expensive for
high k and potentially for higher µk.

The obtained shapes for the four different seeds are shown in Figure 2. The red shape u2 looks
basically identical for the four different seeds, however u1 (blue) shows a difference in the bottom-left
and u3 has a different top part. We investigate the optimization with the random seed 421507 further.
The remesher is activated at the stochastic gradient step 6, 13, 18, 25, 40 and 86. In Figure 3, the
numerical results for objective functional estimate ĵ = 1

mk

∑mk

i=1 J(zk,j, ξk,j,i) and the estimate of the

H1 norm of the mesh deformation V̂ = 1
mk

∑mk

i=1 V ξk,j,i over cumulative inner iterations is provided.
Here, even for a comparatively low number of samples per inner iteration, we see a strong decrease
in objective functional values initially. The points where the inner loop is stopped due to reaching Rk

are denoted by the red vertical dashed lines in the right-hand side plot. At the later stages of the
optimization the batch size is increased up to m9 = 15525 for k = 9, which requires over 60000
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Figure 3: Stochastic optimization with seed 421507 (Figure 2c): objective functional (left) andH1 norm
of the mesh deformation (right) as a function of cumulative stochastic gradient steps. The changes of
augmented Lagrange parameters are indicated with a red, dashed, vertical line.

PDE solves per stochastic gradient step. This yields an increasingly accurate approximation of the
mesh deformation and the objective functional value as evidenced by the decreasing variance.

We provide the numerical results at the end of each inner loop for the four different seeds in table 1.
Here, one can clearly see a dependence of the algorithm’s performance based on the seed chosen,
leading to different sequences of RSG iterations and penalty parameters. A further analysis of this
dependence will be the subject of a future study.
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