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Existence of similarity profiles for diffusion equations and
systems

Alexander Mielke, Stefanie Schindler

Abstract

We study the existence of self-similar profiles for diffusion equations and reaction diffusion
systems on the real line, where the different nontrivial limits are imposed for x → −∞ and
x→ +∞. The theses profiles solve a coupled system of nonlinear ODEs that can be treated by
monotone operator theory.

1 Introduction

Similarity profiles play an important role in the longtime behavior of nonlinear diffusion problems as
well as in certain reaction-diffusion systems, if we consider problems posed on the whole space Ω =
Rd. For simplicity we treat the one-dimensional case Rd = R only and leave the case d > 1 for
subsequent work.

We consider a system of coupled diffusion equations on the real line Ω = R1:

u̇ =
(
A(u)

)
xx

for t > 0, x ∈ R, u(t,±∞) = U± for t > 0, (1.1)

where u̇ = ut and A : Rm → Rm is a smooth monotone mapping. Here U± = u(t,±∞) :=
limx→±∞ u(t, x) are nontrivial boundary conditions, namely U− for x → −∞ and U+ 6= U− for
x→ +∞.

The aim of this paper concerns the existence of self-similar solutions for this system. As u cannot
be scaled because of the fixed boundary conditions, we use the parabolic similarity coordinates τ =
log(t+1) and y = x/(t+1)1/2. Setting ũ(τ, y) = u(t, x), the transformed equation reads

ũτ =
(
A(ũ)

)
yy

+
y

2
ũy for τ > 0, y ∈ R, ũ(τ,±∞) = U±. (1.2)

A stationary solution U ∈ BC2(R;Rm) of this equation is called similarity profile as it gives rise to a
self-similar solution

u(t, x) = U
(
x/(t+1)1/2

)
of the original diffusion system (1.1).

Our main goal is to show that the following boundary value problem for a second order ODE in Rm

has a (unique) solution:(
A(U (y))

)′′
+
y

2
U ′(y) = 0 for y ∈ R, lim

y→±∞
U(y) = U±. (1.3)

This equation is called the profile equation.
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A. Mielke, S. Schindler 2

Our main existence result of self-similar profiles is formulated in Theorem 2.2 and concerns a vector-
valued generalization of the scalar monotonicity result developed in [GaM98, Thm. 3.1]. The advantage
of using monotonicity in contrast to the ODE-type arguments in previous works, see e.g. [Sha76,
vaP77b], is that we can also handle the vector-valued case.

Section 2 provides a careful theory on existence and uniqueness of similarity profiles solving (1.3). In
particular, we show that the solutions and their derivatives can be estimated in a linear way by ∆± :=∣∣U+−U−

∣∣ with prefactors that are given explicitly in terms of the constants δ, alo, aup = Lip(A), see
(2.6), where the crucial assumption is the monotonicity 〈A(u)−A(w),u−w〉 ≥ alo|u−w|2 ≥ 0.

In Section 3 we specialize to the scalar case and improve the estimates significantly. We show mono-
tonicity of the profile U : R → [U−, U+] and exponential decay of the flux Q(y) = A′(U(y))U ′(y),
namely 0 ≤ Q(y) ≤ e−y

2/(4D∗), where D∗ = max
{
A′(u)

∣∣u ∈ [U−, U+]
}

. In particular, we allow
for degenerate cases where A′(U+) = 0 and A′(U−) = 0, which may lead to the case U(y) = U∗
for all y ≥ y∗+ if A′(u) = O(U+−u) for u↗ U+.

In Section 4 we study the stability of the similarity profile U as steady solution of the parabolically
rescaled diffusion equation

uτ =
(
A(u)

)
yy

+
y

2
uy for (t, y) ∈ ]0,∞[×R, u(τ,±∞) = U±. (1.4)

For this, we consider relative entropies of the form

Hφ(u(τ)) =

∫
R
φ(u(τ, y)/U(y))U(y) dy

for suitable convex functions φ with φ(1) = 0 = φ′(1). Theorem 4.1 considers the case of a general
A with |A′′(u)| ≤ CA < ∞ and Theorem 4.2 treats the porous medium equation with A(u) = um.
In both cases we provide conditions on U that allow us to conclude a global decay estimate in the
Hellinger distance

c0

∥∥√u(τ, ·)−
√
U
∥∥2

L2(R)
≤ Hφ(u(τ)) ≤ e−ΛτHφ(u(0)) for all τ > 0,

with Λ = 1
2
− O(|U+−U−|) ≤ 1/2. In particular, for the flat profiles U ≡ U± we always obtain

the trivial decay like e−τ/2 which is induced by the drift term y
2
uy only. We also refer to [vaP77a] for

convergence results to self-similar profiles, but they are quite different and rely on comparison principle
arguments, whereas our entropy approach can be applied to systems as well, see [MHM15, MiM18,
MiS23].

Section 5 can be seen as a preparation for the theory in [MiS23] that is concerned with reaction-
diffusion systems of the type

ċ = Dcxx +R(c), c(t,±∞) = C±,

where we impose nontrivial boundary conditions at x = ±∞. To study the diffusive mixing as intro-
duced in [GaM98], we transform into parabolic similarity coordinates as for (1.2) and obtain

cτ = Dcyy +
y

2
cy + eτ R(c), c(τ,±∞) = C±.

While in [MiS23] the term eτ R(c) is treated in full generality, we look here at the simplified model
where we assume R(c) = 0 as an algebraic constraint and replace the limit “∞ · 0” of “eτ ·R(c)”
for τ → ∞ by a vector-valued Lagrange multiplier λ lying in the span of R(·) (the stoichiometric
subspace, see Section 5.1).
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Existence of similarity profiles for diffusion equations and systems 3

The set of equilibria
{
c ∈ Ri∗

∣∣R(c) = 0
}

is parametrized in the form c = Ψ(u) for u ∈ Rm such
that QΨ(u) = u for a suitable linear stoichiometric mapping Q. This leads to the reduced parabolic
equation

uτ =
(
A(u)

)
yy

+
y

2
u withA(u) = QDΨ(u).

In Section 5 we provide several examples in which we are able to specify conditions on the reactions
and the diffusion constants in D = diag(dj) that guarantee that u 7→ A(u) is indeed monotone
and satisfies the assumptions of the main existence result for self-similar profiles U solving (1.3). In
particular, Section 5.5 considers a case with three species, i.e. c ∈ R3 and one reaction, such that
u ∈ R2 is vector-valued.

Section 6 provides two more systems where self-similar profiles are important to describe the longtime
asymptotics. First, we recall the results in [BrK92, GaM98] which establish diffusive mixing for roll
pattern in the Ginzburg-Landau equation with real coefficients. Secondly, we comment on the recently
established system of degenerate parabolic equations that includes the porous medium equation and
is expected to have a rich structure of self-similar profiles, see [Mie23].

2 Vector-valued self-similar profiles

To provide a suitable functional analytical framework for our existence and uniqueness theory, we set

u±(y) :=

{
U± for ±y > 0,

1
2

(
U−+U+

)
for y = 0.

In the following, we give a weak version of the profile equation (1.3). We say that U ∈ L2
loc(R;Rm)

is a stationary profile for (1.2) if

∃v ∈ H1(R;Rm) : U = u± + v′ and (2.1a)

∀ψ ∈ C2
c(R;Rm) :

∫
R

(
A(U(y)) ·ψ′′(y)−U(y) ·

(y
2
ψ(y)

)′)
dy = 0. (2.1b)

In this formulation U does not need to have any derivative and may be even discontinuous. We
will see that this weak form is important because in degenerate cases the solution u has low reg-
ularity, while we are still able to proof existence of solutions. For instance, in the very degenerate
case A(U+) = A(U−) (which is still consistent with the monotonicity desired below, but gives
DA

(
(1−θ)U−+θU+

)
(U+−U−) = 0 for all θ ∈ [0, 1]), we see that the piecewise constant func-

tionU = u± is a stationary profile solving (2.1).

We will see later in the Sections 3 and 4 that the scalar porous medium equation withA(u) = 1
m
um ∈

R1 and m > 1, leads in the case U− = 0 to profiles U ∈ BC0(R) with U(y) = 0 for all y ≤ y∗ < 0
and U(y) = c(y− y∗)1/(m−1)+h.o.t. for y → y+. Hence, U is not twice differentiable for m ≥ 2 and
U ′ does not lie in H1

loc(R) for m ≥ 3.

Moreover, the requirement (2.1a) is slightly stronger than asking for U − u± ∈ L2(R;Rm). Indeed,
using the embedding H1(R;Rm) ⊂ C0

0(R;Rm) (space of continuous and decaying functions), (2.1a)
implies that the following improper integral exists:∫

R

(
U−u±

)
dy = lim

a,b→∞

∫ b

−a

(
U−u±

)
dy = lim

a,b→∞
(v(b)−v(−a)) = 0. (2.2)
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A. Mielke, S. Schindler 4

In the following example of linear equations we provide explicit solutions in terms of vector-valued error
functions (integrals of Gaussians). We especially address the case of degenerateA(u) = Au, where
A has purely imaginary eigenvalues, in that case U may be discontinuous or may converge to u±
only like O(1/|y|). Moreover, we address the approximation of A by the regular case Aε = A + εI,
which will be done in the proof of the main existence result in Theorem 2.2, see Step 5 there.

Example 2.1 (Linear, vector-valued case) We consider the case A(u) = Au where the matrix
A ∈ Rm×m is monotone, i.e. v · Av ≥ alo|v|2 with alo ≥ 0.

(I) At first, let alo > 0 such that A−1 exists and all its eigenvalues have positive real parts. From
AU ′′ + y

2
U ′ = 0 we easily find U ′(y) = e−y

2(4A)−1
U ′(0). Using

∫
R e−y

2(4A)−1
dy = (4πA)1/2

(here A1/2 is the root with eigenvalues satisfying |arg λ| < π/4), we find the profile connecting U−
andU+ in the form

U(y) = U− +

∫ y

−∞

1√
4π

A−1/2 e−η
2(4A)−1

dη
(
U+−U−

)
. (2.3)

(II) The above formula can also be extended to the case alo = 0, where A−1 may no longer exist. For
this it suffices to replace A by Aε = A+εI and take the limit ε → 0+. Indeed, if A has a single real
eigenvalue λ = 0, then Aε has the eigenvalue λε = ε. Using a suitable basis, it suffices to observe
that

∫ y
−∞

1√
4πλε

e−η
2(4λε)−1

dη = Φ(y/
√
ε) converges to 0 for y < 0 and to 1 for y > 1. Thus,

Uε = U− + Φ(y/
√
ε)(U+−U−) converges to the piecewise constant limit u±.

(III) If A has a single pair of purely imaginary eigenvalues ±iω with ω > 0, then the limit procedure
leads to the linear ODE

AεU
′′
ε +

y

2
U ′ε = 0 with Aε =

(
ε −ω
ω ε

)
.

Turning the vector Uε = (U1
ε , U

2
ε ) into a complex number Uε = U1

ε+iU2
ε ∈ C, we have to solve

2λεU
′′
ε +yU ′ε = 0 with λε = ε+iω. Of course, (2.3) holds again but now in (scalar) complex numbers,

and the integrand in (2.3) (which equals U ′ε up to the factor U+−U−) reads

1√
4πλε

eiη2ω/(4ε2+4ω2) e−η
2ε/(4ε2+4ω2).

Hence, for ε → 0+ the exponential decay of the integrand is lost, but the improper integrals for
η ∈ ]−∞, y[ still have a good limit because of the increasing oscillations as in the Fresnel integrals∫
R eiη2/(4ω) dη =

√
2πω(1+i). We obtain the expansion

U0(y) = U− −
i
√

2ω

y
eiy2/(4ω) + O(1/|y|3) for y → −∞.

Clearly, U0 can be decomposed into U0(y) = u±(y) + v′(y) with v ∈ H1(R;C) where |v(y)| ≤
C/(1+y2) and |v′(y)| ≤ C/(1+|y|). Moreover, the improper integral

∫
R y(U0−u±) dy exists and

equals iω(U−−U+).

For the proof of the following result, we introduce a smoothened version of the function u± by fixing
an interpolating function χ ∈ C∞(R; [−1, 1]) satisfying

χ(y) = ±1 for ± y ≥ 1 and χ(−y) = −χ(y).

DOI 10.20347/WIAS.PREPRINT.3007 Berlin 2023



Existence of similarity profiles for diffusion equations and systems 5

For given U−,U+ ∈ Rm and a parameter aup > 0, which will be specified below, we define the
interpolation functions ũ± ∈ C∞(R;Rm) via

ũ±(y) =
1−χ

(
y/
√

aup

)
2

U− +
1+χ(y/

√
aup)

2
U+ (2.4)

such that ũ±(y) = u±(y) for |y| ≥ 1/
√

aup. In the sequel, Cχ will denote (possibly different)
constants that depend only on χ, and, thus, can be seen as universal constants that are independent
of the dataA andU± of our problem. For example, the L2 norm of ũ′± and ũ′′± scale as follows:

‖yjũ′±‖L2 ≤ Cχ
1 a(2j−1)/4

up ∆± and ‖ũ′′±‖L2 ≤ Cχ
2 a−3/4

up ∆± with ∆± := |U+−U−|. (2.5)

The proof of the following result is based on [GaM98, Thm. 3.1], which exploits monotonicity arguments
to obtain existence and uniqueness. Here we generalize this approach to the vector-valued case and
provide a careful bookkeeping of constants in the a priori estimates.

Theorem 2.2 (Existence of similarity profiles) LetA ∈ C1(Rm;Rm) satisfy

∃ aup > 0 ∀u,w ∈ Rm :
∣∣A(u)−A(w)

∣∣ ≤ aup|u−w|, (2.6a)

∃ alo ≥ 0 ∀u,w ∈ Rm : 〈A(u)−A(w),u−w〉 ≥ alo|u−w|2, (2.6b)

∃ δ ≥ 0 ∀u,v ∈ Rm : 〈v,DA(u)v〉 ≥ δ
∣∣DA(u)v

∣∣2. (2.6c)

If alo+δ > 0, then for each pair (U−,U+) ∈ Rm×Rm there exists a unique stationary profile
U = u± + v′ satisfying (2.1) and the a priori estimate

alo ‖U ′‖2
L2 + ‖U−ũ±‖2

L2 +
1

aup

‖v‖2
H1 ≤ Cχa1/2

up ∆2
±. (2.7)

Moreover, the flux q(y) =
(
A(U (y)

)′
= DA(U(y))U ′(y) satisfies the pointwise estimate

|q(y)| =
∣∣A(U)′

∣∣ ≤ e−δy
2/4Cχ a1/2

up ∆± for all y ∈ R. (2.8)

For δ > 0 we have the integral relations∫
R

(
U(y)− u±(y)

)
dy = 0 ∈ Rm and∫

R
y
(
u±(y)−U(y)

)
dy = A(U+)−A(U−) ∈ Rm.

(2.9)

If DA(u) ∈ Rm×m is invertible (as is always the case for alo > 0), then U ∈ BC0(R;Rm) ∩
H1

loc(R;Rm). IfA additionally satisfies

A ∈ Ck
loc(Rm;Rm) for k ∈ N and ∀ y ∈ R : DA(U(y)) ∈ Rm×m is invertible, (2.10)

then the profileU satisfiesU ∈ BCk(R;Rm).

Before providing the proof we remark that conditions (2.6a) and (2.6b) imply condition (2.6c) with
δ = alo/(aup)2. However, δ � alo/(aup)2 is possible, and interesting cases occur for alo = 0 and
δ = 1/aup > 0, which is the case for the scalar porous medium equation in Section 4.

DOI 10.20347/WIAS.PREPRINT.3007 Berlin 2023



A. Mielke, S. Schindler 6

We emphasize that an important point in the proof is the exploitation of the term 1
2
y·u′, which gener-

ates strict monotonicity and an a priori estimate for ‖U−ũ±‖L2 independent ofA, see (2.7).

Proof. Throughout this proof all constants Cχ only depend on χ, which is kept fixed, whereas the
dependence on ∆± = |U+−U−| andA (via alo, aup, and δ) will be given explicitly.

We first treat the nondegenerate case alo > 0. There we obtain a suitable maximally strictly monotone
operator A that provides existence and uniqueness of solutions. The case alo = 0 is treated by
regularizing A to Aε(u) = A(u) + εu, which gives aloε = ε > 0 and solutions Uε. Using ε-
independent a priori estimates for ‖Uε− ũ±‖L2 we obtain a weak limitU which is the desired profile.

Step 1. Preparations: We proceed as is [GaM98, Thm. 3.1] and search for U in the form U(y) =
ũ±(y) + v′(y) with v ∈ H1(R;Rm). Inserting the ansatz for u into the stationarity equation, we
obtain (in H−2(R;Rm)) the relation

0 = A(ũ±+v′)′′ +
(y

2
(ũ±+v′)

)′ − 1

2
(ũ±+v′).

This equation can be integrated with respect to y yielding the relation (in H−1(R;Rm))

0 = A(ũ±+v′)′ +
y

2
v′ − 1

2
v + g, where g(y) =

∫ y

−∞

η

2
ũ′±(η)dη. (2.11)

By construction, we have g ∈ C∞c (R;Rm) and g(y) = 0 for |y| ≥ 1/
√

aup (use that ũ′± is even,
see (2.4)). Moreover, by the scaling of ũ± via aup one obtains

‖g‖L2(R) ≤ Cχa3/4
up . (2.12)

Step 2. Monotone operator theory for alo > 0: We set H := H1(R;Rm), which gives
H∗ = H−1(R;Rm), and define the monotone operatorA : dom(A) ⊂H →H∗ via

dom(A) :=
{
v ∈ H1(R;Rm)

∣∣ yv′(y) ∈H∗
}

andA(v) := −
(
A(ũ±+v′)

)′ − y

2
v′ +

1

2
v.

Based on the assumptions (2.6) and slightly generalizing the results in [GaM98, Thm. 3.1], we obtain
thatA is a maximal monotone operator which is strongly monotone, namely

∀v1,v2 ∈ dom(A) : 〈A(v1)−A(v2),v1−v2〉H ≥
∫
R

(
alo|v′1−v′2|2 +

1

2
|v1−v2|2

)
dy,

(2.13)
and hence also coercive because of alo > 0. Thus, (2.11), which now takes the form A(v) = g,
has exactly one solution v ∈ H = H1(R;Rm) such that the unique solution U = ũ± + v′ is
constructed.

For the reader’s convenience and for checking that the vector-valued case works exactly the same way,
we repeat the argument. We first observe that v 7→ A1(v) := −

(
A(ũ±+v′)

)′
+ 1

2
v is monotone

and continuous from H to H∗, hence A1 is a maximally monotone operator, cf. [Zei90, Prop. 32.7,
p. 854]. Next, we consider the linear operator v 7→ A2(v) := y

2
v′ with dom(A2) = dom(A).

Hence, A2 is maximally monotone by [Zei90, Thm. 32.L, p. 897]. (A linear operator L is maximally
monotone if and only if L and L∗ are monotone and L has a closed graph.) With this we conclude that
A = A1 +A2 is maximally monotone by [Zei90, Thm. 32.I, p. 897], as both are maximally monotone

DOI 10.20347/WIAS.PREPRINT.3007 Berlin 2023



Existence of similarity profiles for diffusion equations and systems 7

and dom(A2) ∩ int
(

dom(A1)
)

= dom(A) ∩H = dom(A) 6= ∅. Finally, we use (2.13) with
v2 = 0 and conclude thatA is strongly coercive, i.e. 〈A(v), v〉/‖v‖H →∞ for ‖v‖H →∞. Then,
[Zei90, Cor. 32.35, p. 887] implies thatA is surjective.

Step 3. A priori estimates for alo > 0: The first a priori estimate is obtained by testing (2.11) with v
itself and using the monotonicity ofA. Recalling ∆± := |U+−U−| and employing (2.6b) we have

alo‖v′‖2
L2+

3

4
‖v‖2

L2 ≤
∫
R

((
A(ũ±+v′)−A(ũ±)

)
· v′+3

4
|v|2
)

dy

=

∫
R

((y
2
v′ − 1

2
v + g

)
· v −A(ũ±) · v′ + 3

4
|v|2
)

dy =

∫
R

(
g · v −A(ũ±)′ · v

)
dy

≤
(
‖g‖L2 + ‖DA(ũ±)ũ′±‖L2

)
‖v‖L2 ≤ Cχa3/4

up ∆±‖v‖L2 , (2.14)

where the last estimate used (2.5) and (2.12).

A second a priori estimate for alo > 0 uses the monotonicity which implies DA(u)w ·w ≥ alo|w|2
such that alo > 0 gives the invertibility of DA(u) ∈ Rm×m. Thus, (2.11) implies that U = ũ±+v′

lies in H1
loc(R;Rm) and satisfies the strong profile equation

(
DA(U)U ′

)′
+ y

2
U ′ = 0 in H∗. In

particular, we can test this equation withU−ũ± = v′ giving∫
R

DA(U)U ′ ·U ′dy =

∫
R

(
A(U)′ · ũ′± +

y

2
U ′ · (U−ũ±)

)
dy.

With this, (2.6b), and suitable integrations by part we obtain

alo‖U ′‖2
L2 +

1

4
‖U−ũ±‖2

L2 ≤
∫
R

(
DA(U)U ′ ·U ′ + 1

4
|U−ũ±|2

)
dy

=

∫
R

(
A(U)′ · ũ′± +

y

2
U ′ · (U−ũ±) +

1

4
|U−ũ±|2

)
dy

=

∫
R

(
A(ũ±)′ · ũ′± +

(
A(ũ±)−A(U)

)
· ũ′′± +

y

2
ũ′± · (U−ũ±)

)
dy

≤ aup‖ũ′±‖2
L2 + aup‖U−ũ±‖L2‖ũ′′±‖L2 + ‖y

2
ũ′±‖L2‖U−ũ±‖L2

≤ Cχ
(
a1/2

up ∆2
± + (aupa−3/4

up + a1/4
up )∆±‖U−ũ±‖L2

)
.

Together with (2.14) we have established the a priori estimate (2.7).

Step 4. Exponential convergence for alo, δ > 0: Using alo > 0 we have shown that the unique solu-
tion U = ũ± + v′ has the regularity v ∈ H2(R;Rm). Thus, equation (2.11) shows that the flux
q : y 7→ A(U(y))′ = DA(U(y))U ′(y)) lies in H1

loc(R;Rm). Because of alo > 0 the Jacobian
DA(u) ∈ Rm×m is invertible, which shows that q satisfies q′+ y

2
DA(U)−1q = 0. Thus, for y ≥ 0

we find
d

dy
|q|2 = −y q · DA(U)−1q ≤ −yδ |q|2,

where we used (2.6c) with w = DA(U)−1q = U ′. Arguing similarly for y ≤ 0 we arrive at
|q(y)| ≤ e−δy

2/4 |q(0)| for y ∈ R. Evaluating (2.11) at y = 0 gives q(0) = 1
2
v(0) − g(0). Using

v(0) =
∫ 0

−∞ ey/
√

aup
(
v′(y) + v(y)/

√
aup

)
dy together with (2.7) and the scaling properties of g

yields |q(0)| ≤ Cχa
1/2
up ∆±. Hence, the flux estimate (2.8) is established.
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Having q under control, we return to the main equation (2.11) taking now the form q+y
2
v′−1

2
v+g = 0

and find the explicit representation in terms of q:

v(y) =


y
∫∞
y
h(η)dη for y > 0,

2g(0)+2q(0) for y = 0,

−y
∫ y
−∞ h(η)dη for y < 0,

where h(η) =
2

η2

(
g(η)+q(η)

)
. (2.15)

By construction g has support in [−√aup,
√

aup] and satisfies ‖g‖L∞ ≤ Cχa
1/2
up ∆±. Hence, we

obtain |g(y)| ≤ Cχa
1/2
up ∆±e−y

2/aup . Setting γ = min{1/aup, δ/4} > 0 and recalling (2.8) we find

|h(y)| ≤ Cχa
1/2
up ∆±e−γy

2
/y2 and conclude

|v(y)| ≤ Cχa1/2
up ∆±Φ

(√
γ y
)

with Φ(z) := z

∫ ∞
z

2e−r
2

r2
dr ≤ 2e−z

2

.

Note that Φ has a continuous extension at z = 0 with Φ(0) ≤ 2, such that we also have a uniform
bound for v in the case δ = 0.

With yv′(y) = v(y)− 2q(y)− 2g(y) we obtain the pointwise a priori estimate

|v(y)|+ |yv′(y)| ≤ Cχa1/2
up ∆±e−γy

2

for y ∈ R. (2.16)

Step 5. The degenerate case with alo = 0: We study the auxiliary problem where A is replaced by
Aε : u 7→ A(u) + εu for ε ∈ ]0, 1[. Then,Aε satisfies the assumptions (2.6) with aupε = aup + ε,
aloε = ε > 0, and δε = δ/(1+δε). To see the latter, we set B = DA(u) and Bε = B+εI and
observe

δε|Bεw|2 ≤
δ

1+δε

(
|Bw|2+2ε|w||Bw|+ε2|w|2

)
≤ δ

1+δε

(
(1+δε)|Bw|2+(ε2+

ε2

δε

)
|w|2

)
= δ|Bw|2 + ε|w|2

(2.6c)
≤ w ·Bw + ε|w|2 = w ·Bεw,

which is the desired replacement of (2.6c) for ε > 0.

By the previous steps, there are unique solutions Uε = ũ± + v′ε, where (2.7) provides a uniform
bound for vε in H1(R;Rm). Hence, after extracting a subsequence (not relabeled) we may assume

vε ⇀ v0 inH = H1(R;Rm) and vε → v in L2(R;Rm). (2.17)

For the strong convergence, we employ the uniform decay estimate (2.16), where the decay factor
γε = min{1/aupε, δε/4} is uniformly bounded away from 0.

By the global Lipschitz continuity of A we also have boundedness of aε = A(ũ±+v′ε) − b with
b(y) := A(ũ±(y)) and may assume

aε ⇀ a0 in L2(R;Rm).

Clearly, for ε > 0 the function vε solves (2.11) if and only if

0 = a′ε + b′ +
y

2
v′ε −

1

2
vε + g inH∗ = H−1(R;Rm). (2.18)

Using the weak convergences of vε in H1 and aε in L2, we see that this relation holds also for ε = 0.
To show that v0 solves (2.11), or equivalently that the profile U = ũ± + v′0 is a solution of (2.1), it
remains to show that a0(y) = A(ũ±(y)+v′0(y))− b(y) a.e. on R.
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By the monotonicity of B : L2(R;Rm)→ L2(R;Rm); w 7→ A(ũ±+w)−b and Minty’s monotonic-
ity trick (see e.g. [Zei90, Ch. 25(4), p. 474]), it suffices to shows that

∫
R aε · v

′
εdy →

∫
R a0 · v′0 dy for

ε→ 0+. For this, we can exploit (2.18) as follows:∫
R
aε·v′εdy =

∫
R
−a′ε · vεdy

(2.18)
=

∫
R

(
b′+

y

2
v′ε−

1

2
vε+g

)
·vεdy =

∫
R

(
b′·vε−

3

4
|vε|2+g·vε

)
dy

→
∫
R

(
b′·v0−

3

4
|v0|2+g·v0

)
dy

(2.18)
= −

∫
R
a′0 · v0 dy =

∫
R
a0 · v′0 dy,

where “→” uses the strong convergence (2.17). Thus, Minty’s trick givesa0 = B(v′0) = A(ũ±+v′0)−
b and (2.11) and (2.1) are established.

The uniqueness of v0 again follows by strict monotonicity, see (2.13) with alo = 0.

Step 6. Two relations: Using the fast decay of U − ũ± arising from δ > 0 we can evaluate the
indefinite integrals as follows:

0 = 2A(U(y))′
∣∣∞
−∞ =

∫
R

2(A ◦U)′′dy = −
∫ 0

−∞
yU ′dy +

∫ ∞
0

yU ′dy

=
[
y(U−U−)

]0
−∞ −

∫ 0

−∞
(U−U−)dy +

[
y(U−U+)

]∞
0
−
∫ ∞

0

(U−U+)dy

= −
∫
R

(
U(y)− u±(y)

)
dy,

which is the first relation in (2.9). Similarly, we obtain

A(U+)−A(U−) =

∫
R
(A ◦U )′dy =

=
[
y(A◦U)′

]0
−∞−

∫ 0

−∞
y(A◦U)′′dy +

[
y(A◦U)′

]∞
0
−
∫ ∞

0

y(A◦U)′′dy =

∫
R

y2

2
U ′(y)dy

=
[y2

2
(U−U−)

]0
−∞ −

∫ 0

−∞
y(U−U−)dy +

[y2

2
(U−U+)

]∞
0
−
∫ ∞

0

y(U−U+)dy

= −
∫
R
y
(
U(y)− u±(y)

)
dy,

which is the second relation in (2.9).

Step 7. Further regularity: We know v ∈ H1 := H1(R,Rm), which impliesU ∈ L2
loc. From the weak

equation (2.1b) we conclude that H : y 7→ A(U(y)) lies in H1
loc by applying the Lemma of du

Bois-Reymond. Thus, the invertibility of DA(U) allows to apply the implicit function theorem giving
U ∈ H1

loc.

If A satisfies the further smoothness (2.10), then we obtain higher regularity of U by the classical
bootstrap argument applied to the equation

(
DA(U)U ′

)′
= −y

2
U ′.

It is interesting to compare the approximation Aε(u) = A(u) + εu in Step 5 of this proof with the
linear approximation Aε = A+ εI in Example 2.1, where the solutions are given explicitly. Hence one
can see that the approximation is needed for smoothness and exponential decay of the flux.

While (2.7) provides an a priori estimate for U − ũ± in L2(R;Rm), we now show that in the case
alo > 0 one can also obtain a uniform bound, which will be useful in Section 5.5.
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Corollary 2.3 (Uniform bound onU − ũ±) Assume the conditions (2.6) with δ, alo > 0, then the
unique solutionU : R→ Rm obtained in Theorem 2.2 satisfies

∣∣U(y)− ũ±(y)
∣∣ ≤ Cχ

a
1/2
up

δ1/2alo

∆± for all y ∈ R, where ∆± = |U+−U−|. (2.19)

Proof. We set A(y) = DA(U (y)) and observe that (2.6b) implies 〈Av,v〉 ≥ alo|v|2. Inserting
v = A−1w we obtain |A−1w| ≤ |w|/alo. Now exploiting the flux estimate (2.8) yields

|U ′(y)| = |DA(U(y))−1q(y)| ≤ 1

alo

Cχa1/2
up e−δy

2/4 ∆± for all y ∈ R.

UsingU(y)−u±(y) =
∫ y
−∞U

′(z)dz for y < 0 andU(y)−u±(y) = −
∫∞
y
U ′(z)dz for y > 0,

we obtain the desired estimate (2.19) if we take into account |ũ±(y)− u±(y)| ≤ ∆±.

We conclude this section on existence and uniqueness of similarity profiles U solving the weak form
(2.1) of the profile equation (1.3) with the important remark, that our result provides existence also in
the degenerate case with alo = 0. While for alo > 0 the solutions are automatically smooth, see the
statement after (2.10) in Theorem 2.2, the case allows for discontinuous solutionsU or for continuous
solutions whereU ′ has singularities. The latter case will be important in the scalar situation discussed
in the following section.

3 The case of scalar profiles

We now restrict to the scalar case and consider the problem(
D(U)U ′

)′
+
y

2
U ′ = 0 for y ∈ R, U(±∞) = U±, (3.1)

where we always assume that D : R→ R is continuous and nonnegative. We observe that A(u) =∫ u
0
D(s) ds is monotone and C1 with A′(u) = D(u). We have strict monotonicity if D has only

isolated zeros. The global conditions (2.6) are satisfied with

aup = sup
u∈R

D(u), alo = inf
u∈R

D(u), δ = 1/aup = inf
u∈R

1

D(u)
.

However, below we will show that all stationary profiles U : R→ R are monotone, e.g. for U− < U+

the profile is nondecreasing and satisfies U(y) ∈ [U−, U+] for all y ∈ R. Hence, it will be sufficient
to restrict the above infima and supremum to the interval [U−, U+].

Before giving the general existence theory, we look at a few examples with degenerate diffusion, that
is alo = 0.

Example 3.1 (Degenerate profiles)

(I) As a first simple example we have

D(u) = (1−u2)/4 and u(y) =


U− = −1 for y ≤ −1,

y for y ∈ [−1, 1],

U+ = 1 for y ≥ 1.

(3.2)

DOI 10.20347/WIAS.PREPRINT.3007 Berlin 2023



Existence of similarity profiles for diffusion equations and systems 11

(II) A second example can be constructed by setting

ũ(y) =


U− = −1 for y ≤ −1,
3
2
y − 1

2
y3 for y ∈ [−1, 1],

U+ = +1 for y ≥ 1.

By exploiting equation (3.1) for y ∈ ]−1, 1[ we obtain

D̃(u) =
1

8

(
1− Ỹ (u)2

)
, where Ỹ :=

(
ũ|[−1,1]

)−1
: [−1, 1]→ [−1, 1].

We observe that D̃(u) = c|u∓1|1/2 + h.o.t. for 1∓ u→ 0+.

(III) As a third example we set Ŷ : [−1, 1]→ [−1, 1];u 7→ 3
2
u− 1

2
u3 and define

û(y) =


U− = −1 for y ≤ −1,(

Ŷ |[−1,1]

)−1
(y) for y ∈ [−1, 1],

U+ = 1 for y ≥ 1.

A direct calculation shows that (3.1) is satisfied for D(u) = 3
16

(1−u2)2(5−u2).

(IV) More generally, using advanced ODE techniques, one can show that for D satisfying D(u) =
d0 (u−U−)θ with θ > 0 that there exists y∗− < 0 such that the profile U satisfies U(y) = U− for
y ≤ y∗− and U(y) = c0 (y−y∗−)1/θ + h.o.t. Indeed, the three cases (I) to (III) above correspond to
θ = 1, 1/2, and 2, respectively.

Moreover, for θ > 1 this shows that U ′ can only lie in Lploc(R) for p < θ/(θ−1), which is exactly the
restriction in Theorem 3.5 below.

(V) However, if D has an interior zero U0 ∈ ]U−, U+[ of the form D(u) = d0|u−U0|θ + h.o.t.,
then the profile U will behave like U(y) = U0 + c(y−y0)1/(1+θ) + h.o.t. Thus, we find U ′(y) ∼
|y−y0|−θ/(1+θ) + h.o.t., which is a stronger singularity than those that would occur near U±.

The difference between the singularities at the boundaries U0 ∈ {U−, U+} and in the interior U0 ∈
]U−, U+[ is explained as follows: Interior singularities occur at positive continuous flux 0 < q(y0) with
q(y) = D(U(y))U ′(Y ) ≈ q(y0), while at the two end points singularities occur at flux q(U±) = 0.

To derive our subsequent a priori estimates we use the strategy implemented in Step 5 of the proof for
Theorem 2.2. We will derive the estimates for the case that D is bounded from below by alo > 0 and
then we conclude that the same result holds for the case alo = 0 by taking the limit for Dε = ε + D.
For ε ∈ [0, 1] let Uε denote the solution of (3.1) with D replaced by Dε, then we have

Uε−ũ∗ ⇀ U0−ũ∗ in L2(R) and qε = Dε(Uε)U
′
ε ⇀ q0 = D(U0)U ′0 in H−1(R).

Our first result concerns the monotonicity of the profiles, which then will also improve the convergence
by using Helly’s selection principle for sequences of monotone functions.

Lemma 3.2 (Monotonicity of scalar profiles) Assume that (U−, U+) ∈ R2 are given with U− <
U+ and that D ∈ C0(R) is nonnegative. Then, the unique front U provided by Theorem 2.2 is
nondecreasing and hence only depends on D|[U−,U+].
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Proof. We first consider the case alo = min
{
D(u)

∣∣ u ∈ R
}
> 0, then the flux q(y) =

D(U(y))U ′(y) satisfies the ODE q′ + yq/(2D(u)) = 0. Hence, q cannot change its sign. Moreover,

the boundary conditions impose
∫
R q dy =

∫
RD(U)U ′ dy =

∫ U+

U−
D(u) du ≥ α(U+−U−) > 0.

Hence, we find q ≥ 0 and thus U ′(y) ≥ 0.

The general case with alo = 0 follows by approximation.

Restricting to the case U− < U+ we now define the relevant constants

D∗ := min
{
D(u)

∣∣ u ∈ [U−, U+]
}

and D∗ := max
{
D(u)

∣∣ u ∈ [U−, U+]
}
,

which satisfy alo ≤ D∗ < D∗ ≤ aup. Clearly, all estimates on the profile U will only depend on D∗
and D∗. Moreover, when approximating U by Uε as indicated above, we can use the monotonicity
U ′ε(y) ≥ 0 and employ Helly’s selection principle to conclude

Uε(y)→ U(y) at all continuity points y ∈ R of U.

We proceed by supplying further a priori estimates that are essentially contained in [vaP77b, Thm. 5]
and have their origin in [Sha76]. However, here we provide a much shorter direct proof.

Proposition 3.3 (A priori estimates) Assume U− < U+ and that D ∈ C0([U−, U+]) with D∗ =
minD ≥ 0 and D∗ = maxD. Then, the solution U and its associated flux Q(y) = D(U(y))U ′(y)
satisfy the estimates

0 ≤ U+ − U(y) ≤
(
U+ − U(z)

)
e−(y2−z2)/(4D∗) for 0 ≤ z ≤ y,

0 ≤ U(y)− U− ≤
(
U(z)− U−

)
e−(y2−z2)/(4D∗) for 0 ≥ z ≥ y,

0 ≤ Q(±y) ≤ Q(±z) e−(y2−z2)/(4D∗) for 0 ≤ z ≤ y.

(3.3)

Moreover, the values U(0) ∈ ]U−, U+[ and Q(0) > 0 are restricted by the inequalities∫ U(0)

U−

(s−U−)D(s)ds ≤ 2Q(0)2 ≤ (U(0)−U−)

∫ U(0)

U−

D(s)ds,∫ U+

U(0)

(U+−s)D(s)ds ≤ 2Q(0)2 ≤ (U+−U(0))

∫ U+

U(0)

D(s)ds.

(3.4)

Proof. Again we may use D∗ ≥ alo > 0 for deriving the following estimates.

We first show the last estimate in (3.3). For this we observe

Q′(y) = −y
2
U ′(y) =

−y
2D(U(y))

Q(y),

which gives the relationQ(y) = Ψz(y)Q(z) with Ψz(y) = exp
( ∫ y

z
−η

2D(U(η))
dη
)
. Using D(u) ≤ D∗

gives the third estimate in (3.3).

From this bound for Q = D(U)U ′ and the lower bound D ≥ D∗ > 0 we now deduce that U
converges faster than exponential to its limitsU± for y → ±∞. For y ≥ 0 we setw(y) = U+−U(y),
and by integrating (3.1) over y ∈ ]z,∞[ we obtain

D(U(z))w′(z) = −z
2
w(z)− β(z) with β(z) =

1

2

∫ ∞
z

w(y)dy ≥ 0.
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For 0 ≤ z ≤ y Duhamel’s formula gives

U+ − U(y) = w(y) = Ψz(y)w(z)−
∫ y

z

Ψη(y)
β(η)

D(U(η))
dη

β≥0

≤ Ψz(y)w(z) ≤ e−(y2−z2)/(4D∗)(U+−U(0)).

Together with the analogous result for y ≤ 0 the estimates in (3.3) are established.

For (3.4) it suffices to show the second line by integration over y ≥ 0. The first line follows similarly by
integration over y ≤ 0. For the upper estimate we proceed as follows:

4Q(0)2 =
(∫ ∞

0

2Q′(y)dy
)2 (3.1)

=
(∫ ∞

0

y U ′(y)dy
)2

CS
≤
∫ ∞

0

U ′(y)dy

∫ ∞
0

y2U ′(y)dy =
(
U+−U(0)

) ∫ ∞
0

−2yQ′(y)dy

=
(
U+−U(0)

)[
−2yQ(y)

∣∣∣∞
0

+

∫ ∞
0

2Q(y)dy

]
=
(
U+−U(0)

) ∫ ∞
0

2D(U(y))U ′(y)dy

= 2
(
U+−U(0)

) ∫ U+

U(0)

D(s)ds,

where we used the monotonicity U ′(y) ≥ 0. This is the desired upper estimate for Q(0)2.

For the lower estimate we proceed as follows:∫ U+

U(0)

(U+−s)D(s)ds =

∫ U+

U(0)

∫ u

U(0)

D(s)dsdu =

∫ ∞
y=0

∫ U(y)

U(0)

D(s)ds U ′(y)dy

=

∫ ∞
y=0

∫ y

z=0

D(U(z))U ′(z)dz U ′(y)dy =

∫ ∞
y=0

∫ y

z=0

Q(z)dz U ′(y)dy

∗∗
≤
∫ ∞
y=0

y Q(0) U ′(y)dy
(3.1)
= Q(0)

∫ ∞
0

−2Q′(y)dy = 2Q(0)2,

where in
∗∗
≤ we used Q(z) ≤ Q(0) from (3.3). Hence, Proposition 3.3 is established.

As a simple consequence of (3.4) we see that Q(0) > 0 and U(0) ∈ ]U−, U+[ as soon as D ∈
C0([U−, U+]) is nontrivial. In the case of constant D we have D∗ = D∗ and the explicit linear
solution gives U(0) = 1

2
(U−+U+) andQ(0) =

√
D∗/(4π) (U+−U−). Moreover, we obtain upper

and lower bounds for Q(0) and U(0) in the case D∗ > 0. These results are valuable if D∗/D∗ is
close to 1 but deteriorate for D∗/D∗ ≈ 0.

Corollary 3.4 (Simple bounds on Q(0) and U(0)) Assume D∗ ≥ D(u) ≥ D∗ > 0 for all u ∈
[U−, U+] and set γ =

√
D∗/(2D∗) ≤

√
1/2. Then, the unique profile U with U(±∞) = U±

satisfies

U(0) ∈
[U− + γU+

1 + γ
,
γU− + U+

1 + γ

]
and Q(0) ∈

[√
D∗/16 (U+−U−),

√
D∗/8 (U+−U−)

]
.

In particular, we have 0 ≤ U ′(y) ≤ (U+−U−)
√
D∗/(8D2

∗) .
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Proof. We simply insert the upper and lower bound for D into (3.4) and find

1

2
(U(0)−U−)2D∗ ≤ 2Q(0)2 ≤ (U(0)−U−)2D∗ and

1

2
(U+−U(0))2D∗ ≤ 2Q(0)2 ≤ (U+−U(0))2D∗.

From this the first two estimates follow easily.

The derivative satisfies U ′(y) = Q(y)/D(U(y)) ≤ Q(0)/D∗ giving the result.

With this information we can pass to the limit and obtain the following existence result. The conditions
for deriving U ′ ∈ Lp(R) are indeed sharp (but leaving the critical cases open), as can be seen by
comparing with the cases (IV) and (V) in Example 3.1.

Theorem 3.5 (Self-similar fronts in the degenerate case) Assume U− < U+ and that D ∈ C0

([U−, U+]) satisfies

∃ θ ∈ ]0, 1[, p ∈ [1,∞[ : C̃p,θ :=

∫ U+

U−

((U+−u)θ(u−U−)θ

D(u)

)p−1

du <∞. (3.5)

Then, the unique and monotone solution U of (3.1) satisfies U ′ ∈ Lp(R), namely

‖U ′‖pLp(R) ≤ Ĉp−1
θ C̃p,θ with Ĉθ :=

√
2D∗

1−θ
U+ − U−

(U+−U(0))θ(U(0)−U−)θ
. (3.6)

Moreover, if
∫ U+

U(0)
D(s)/(U+−s)ds <∞, then we have

U(y) = U+ for y ≥ y∗+ :=
U+−U(0)

Q(0)

∫ U+

U(0)

D(u)

U+−u
du > 0, (3.7)

and an analogous statement holds for y ≤ y∗− := −U(0)−U−
Q(0)

∫ U(0)

U−

D(u)
u−U− du < 0.

Proof. We again assume D(U) ≥ D∗ > 0 such that U is smooth.

Step 1. Bound for Q in terms of min{U−U−, U+−U)}: We first show that for all θ ∈ [0, 1[ there
exists Cθ such that

∀ y ∈ R : Q(y) ≤
√

2D∗

1−θ

((U+−U(y))(U(y)−U−)

(U+−U(0))(U(0)−U−)

)θ(
U+ − U−

)
. (3.8)

It is sufficient to estimate Q(y) by (U+−U(y))θ for y ≥ 0 and by (U(y)−U−)θ for y ≤ 0. We
concentrate on y > 0, the case y < 0 is similar. From 2Q′ = −yU ′ we obtain

2Q(y) = −
∫ ∞
y

2Q′(z)dz =

∫ ∞
y

z(U ′(z)−U+)dz = y(U+−U(y)) +

∫ ∞
y

(
U+−U(z)

)
dz.

Using the first estimate in (3.3), the last term can be estimated via∫ ∞
y

(
U+−U(z)

)
dz ≤ (U+−U(y))

∫ ∞
y

e−(z2−y2)/(4D∗) dz

≤ (U+−U(y))

∫ ∞
y

e−(z−y)2/(4D∗) dz = (U+−U(y))
√
D∗/π.
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Applying the first estimate in (3.3) once again we find

Q(y) ≤ 1

2

(
y +
√
πD∗

)
(U+−U(y)) ≤

√
2D∗

1−θ
(U+−U(y))θ(U+−U(0))1−θ,

where for y ≥ 0 we estimated 1
2

(
y +
√
πD∗

)
e−(1−θ)y2/(4D∗) ≤

(
(2e(1−θ))−1/2 +

√
π/4
)√

D∗

≤
√

2D∗/(1−θ). Moreover, monotonicity gives U(y) ∈ [U(0), U+] and we conclude

(U+−U(y))θ(U+−U(0))1−θ ≤
((U+−U(y))(U(y)−U−)

(U+−U(0))(U(0)−U−)

)θ(
U+ − U−

)
.

Thus, (3.8) is shown for y ≥ 0 and the result for y ≤ 0 follows analogously.

Step 2. Lp estimate for U ′: We abbreviate δ(y) = D(U(y)) and µ(u) = (U+−u)(u−U−). Recall-
ing Q = δU ′ and writing estimate (3.8) as δU ′ ≤ C∗µ(U(y))θ we obtain∫

R
(U ′)pdy =

∫
R

(δ(y)U ′(y)

µ(U(y))θ
)p−1 (µ(U(y))θ

δ(y)

)p−1
U ′(y)dy ≤ Cp−1

∗

∫ U+

U−

(µ(u)θ

D(u)

)p−1
du <∞,

which is the desired estimate (3.6).

Step 3: Constant values for y ≥ y∗+. To show (3.7) consider y > 0 such that U ′(z) > 0 for z ∈ [0, y].

For this, note that U ′ is continuous on the set ]Y−, Y+[ which is defined by the condition U(y) ∈
]U−, U+[. On [0, Y+[ we define the auxiliary functions

w(y) = U+ − U(y) > 0 and h(y) =
2D(U(y))U ′(y)

U+ − U(y)
=

2Q(y)

w(y)
= y +

1

w(y)

∫ ∞
y

w(z)dz,

where the last identity results from integrating (3.1) over z ∈ [y,∞[. We easily find h′(y) =
−w′(y)

∫∞
y
w dz/w(y)2 > 0 because of U ′ = −w′ > 0 and conclude h(y) ≥ h(0) for all

y ∈ [0, Y+[. With this and U ′ > 0 we obtain

y =
∫ y

0
dz =

∫ y
0

2
h(z)

D(U(z))
U+−U(z)

U ′(z)dz ≤ 2
h(0)

∫ y
0

D(U(z))
U+−U(z)

U ′(z)dz = 2
h(0)

∫ U(y)

U(0)
D(u)
U+−u du.

In the limit y → Y+ − 0 we find U(y) → U+ and conclude Y+ ≤ y∗+ after inserting h(0) =
2Q(0)/w(0). The estimate y∗− ≤ Y− is shown analogously.

4 Stability of profiles in the scalar case

The porous medium equation (see e.g. [Váz07]) is given by ut = ∆A(u), where one is typically
interested in nonnegative solutions and A is defined only for u ≥ 0. The classical choice, which we
will also consider below, is given by A(u) = um for m > 0.

The one-dimensional case in parabolic scaling is given in the form

uτ =
(
A(u)

)
yy

+
y

2
uy =

(
D(u)uy

)
y

+
y

2
uy, u(τ,±∞) = U±. (4.1)

Applying the theory of Section 3 with D(u) = mum−1, we can treat the case m ≥ 1 and obtain
for all 0 ≤ U− ≤ U+ < ∞ a unique monotone profile U : R → [U−, U+] satisfying (3.1). For
m = 1 we obtain the trivial solution (2.3) in terms of the error function. For m > 1 there are two
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cases, namely (i) U− > 0, which implies that U ∈ C∞(R; [U−, U+]), and (ii) U− = 0. In the latter
case we have

∫ u
0
D(s)/s ds = m

∫ u
0
sm−2 ds = m

m−1
um−1 < ∞ which implies U(y) = 0 for all

y ≤ y∗− = Y (m,U+) < 0, see (3.7). It can be shown that U ∈ C1/(m−1)(R; [0, U+]) for m > 1
and m 6= 1 + 1/k for k ∈ N; for m = 1 + 1/k one obtains U ∈ Ck−1,lip(R). Note that (3.6) in
Theorem 3.5 implies U ′ ∈ L∞(R) for m ∈ ]1, 2[ and U ′ ∈ L(m−1)/(m−2)(R) for m > 2.

Having the self-similar profile U satisfying A(U)yy + y
2
Uy = 0 and U(±∞) = U± > 0 we can

also establish convergence of general solutions u of (4.1), at least in some cases. We also refer
to [vaP77a] for convergence results to self-similar profiles, but they are quite different and rely on
comparison principle arguments, whereas we use entropy estimates that may also be extended to
vector-valued cases, see [MHM15, MiM18, MiS23]. For this we introduce the relative entropy

Hφ(u) =

∫
R
φ(u(y)/U(y))U(y)dy, where φ′′(ρ) > 0, φ(1) = φ′(1) = 0.

Typical entropy functions are given by the family Ep : [0,∞[→ [0,∞] via

Ep(ρ) =
1

(p−1)p

(
ρp − pρ+ p− 1

)
for p ∈ R \ {0, 1},

E1(ρ) := ρ log ρ− ρ+ 1, E0(ρ) = − log ρ+ ρ− 1,

which is uniquely determined by the conditions E ′′p (ρ) = ρp−2 for ρ > 0 and Ep(1) = E ′p(1) = 0.
Our entropy functions will be of the form

ϕp,q(ρ) =

{
Ep(ρ) for ρ ∈ [0, 1],

Eq(ρ) for ρ ≥ 1,
(4.2)

with suitable p and q.

Because of the multiplicative ansatz u = ρU and φ(ρ) > 0 for ρ 6= 1 in the definition of H, the
conditionHφ(u) <∞ implies that u has to approach the same limits asU . Moreover,Hφ(u(τ))→ 0
for τ →∞ implies u(τ)→ U in a suitable sense, see below.

A direct calculation, using the shorthand ρ = u/U , gives

d

dτ
Hφ(u(τ)) =

∫
R
φ′(ρ)ρτU dy =

∫
R
φ′(ρ)

(
A(ρU)yy +

y

2
(ρU)y

)
dy

=

∫
R

(
−φ′(ρ)yA(ρU)y + ρyφ

′(ρ)
y

2
U + ρφ′(ρ)

y

2
Uy

)
dy

∗
=

∫
R

(
−φ′′(ρ)ρyA

′(ρU)(ρU)y − φ(ρ)
1

2
U +

(
φ(ρ)−ρφ′(ρ)

)
A(U)yy

)
dy,

where we have used the profile equation to substitute y
2
Uy by −A(U)yy. Integrating the last term by

parts, we arrive at the identity

d

dτ
Hφ(u(τ)) = −1

2
Hφ(u)−

∫
R
φ′′(ρ)

(
A′(ρU)Uρ2

y + ρ
(
A′(ρU)−A′(U)

)
ρyUy

)
dy.

We can estimate the last term by minimizing the integrand with respect to ρy pointwise and obtain

d

dτ
Hφ(u(τ)) ≤ −1

2
Hφ(u) +

∫
R
φ′′(ρ)

ρ2U2
y

(
A′(ρU)−A′(U)

)2

4A′(ρU)U
dy. (4.3)
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In the linear case A(u) = δu the last term vanishes and Hφ(u(τ)) ≤ e−τ/2Hφ(u(0)) follows
immediately. For general A, one can prove exponential convergence if it is possible to estimate the
last term by κHφ(u) = κ

∫
R φ(ρ)U dy for some κ < 1/2.

Before the consider the important special case A(u) = um further down below, we consider the case
where u 7→ A′(u) is globally Lipschitz continuous, namely

∃ alo > 0, CA > 0 ∀u, v ≥ 0 : A′(u) ≥ alo and
∣∣A′(u)− A′(v)

∣∣ ≤ CA|u−v|, (4.4)

and derive an exponential decay estimate. Under a suitable flatness condition on U we obtain a
uniform exponential decay onHφ for all initial conditions.

Theorem 4.1 (Exponential decay if |A′′(u)| ≤ CA) Consider the diffusion equation (4.1) with gen-
eral A ∈ C2(R) satisfying assumption (4.4) and choose φ = ϕ1/2,−1. Assume further that the
stationary profile U ∈ C1(R; [U−, U+]) from (3.1) satisfies

U+ ≥ U− > 0 and ΣU,0 := sup
{
U ′(y)2

∣∣ y ∈ R
}
< alo/C

2
A.

Then, all solutions u of (4.1) with u(0, y) ≥ 0 and Hφ(u(0)) < ∞ satisfy the exponential decay
estimates

Hφ(u(τ)) :=

∫
R
ϕ1/2,−1

(
u(τ, y)/U(y)

)
U(y)dy ≤ e−ΛHφ(u(0)) for all τ > 0,∥∥√u(τ, ·)−

√
U(·)

∥∥2

L2(R)
≤ e−Λτ Hφ(u(0)) for all τ > 0,

where Λ =
1

2

(
1− C2

A ΣU,0/alo

)
.

Proof. We first observe that the choice φ = ϕ1/2,−1 leads to the estimate

φ′′(ρ)ρ2(ρ−1)2 ≤ 2φ(ρ) for all ρ ≥ 0,

see Figure 4.1. Using this and (4.4), the estimate (4.3) takes the form

d

dτ
Hφ(u) = −1

2
Hφ(u) +

∫
R

2φ(ρ)
U ′(y)2C2

AU(y)2

4 alo U(y)
dy ≤ −1

2

(
1− C2

A

alo

ΣU,0

)
Hφ(u).

This proves the first decay estimate, and the second follows by using

(
√
u−
√
U)2 = (

√
ρ− 1)2 U =

1

2
E1/2(ρ)U ≤ ϕ1/2,−1(ρ)U.

Integration over y ∈ R completes the proof.

As a second example we restrict to the case A(u) = um, which leads to a strong simplification
because the integrand in the last term in (4.3) can be factored in the form φ′′(ρ)Bm(ρ)U2

yU
m−2 for

some Bm. Proceeding as for the last result we find the following decay estimates.

Theorem 4.2 (Convergence in the PME A(u) = um) Consider the porous medium equation (4.1)
withA(u) = um form ≥ 1 and let U ∈ C0(R; [U−, U+]) denote the similarity profile satisfying (3.1)
and

U+ ≥ U− > 0 and ΣU,m = sup
{
U ′(y)2U(y)m−2

∣∣ y ∈ R
}
<

1

m(m−1)2
. (4.5)
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1.0 ϕ1/2,−1(ρ)

1
2
E1/2(ρ)

ψ(ρ)

Figure 4.1: The function ψ(ρ) =
1
2
φ′′(ρ)ρ2(ρ−1)2 (full line, green)

is less or equal to φ = ϕ1/2,−1

(dotted orange). Moreover, ϕ1/2,−1

lies above 1
2
E1/2(ρ) = (

√
ρ− 1)2

(dashed, blue).

Then, choosing the entropy density function

φm := ϕpm,qm with pm = max{1/2,m−1} and qm = min{1/2, 2−m},

all solutions of (4.1) with u(0, y) ≥ 0 satisfy the global decay estimates

Hφm(u(τ)) ≤ e−ΛHφm(u(0)) for all τ > 0,∥∥√u(τ, ·)−
√
U(·)

∥∥2

L2(R)
≤ e−Λτ ĈmHφ(u(0)) for all τ > 0,

where Λ =
1

2

(
1−m(m−1)2ΣU,m

)
and Ĉm := sup

{
(
√
r − 1)2/φm(r)

∣∣ 0 < r 6= 1
}
<∞.

Proof. We proceed exactly as in the previous proof. The choice φm = ϕpm,qm yields

φ′′m(ρ)
m(ρm−1−1)2

4 ρm−3
≤ m(m−1)2

2
φm(ρ).

With this and the definition of ΣU,m, we arrive at

d

dτ
Hφm(u(τ)) ≤ −1

2
Hφ(u) +

∫
R

m(m−1)2

2
φm(ρ)ΣU,m U(y)dy = −ΛHφm(u(τ)).

This proves the first estimate, and the second follows by the definition of Ĉm.

Next we show that the second condition on U imposed in (4.5) can be controlled by the estimates
obtained in Section 3. With Q = A′(U)U ′ = mUm−1U ′ we have

ΣU,m = sup
y∈R

(U ′)2Um−2 = sup
y∈R

Q2

m2Um
≤ D∗(U+−U−)2/8

m2Um
−

≤ Um−1
+

8mUm
−

(
U+ − U−

)2
,

where we used the monotonicity U− ≤ U(y) ≤ U+ from Lemma 3.2 and the flux estimates
Q(y) ≤ Q(0) and Q(0)2 ≤ D∗(U+−U−)2/8 from Proposition 3.3 and Corollary 3.4, respectively.
In particular, we see that for the linear case m = 1 there is no restriction at all, whereas for m > 1
there is always a range of 0 < U− < U+ that is allowed including the constant case arising from
U+ = U− > 0.

We now return to the general case of a monotone relation u 7→ A(u) and observe that the integral
relations (2.9) for the similarity profiles U obtained in Theorem 2.2 lead to simple relations for all
solutions u of the diffusion equation (4.1), namely

d

dτ

∫
R

(
u(τ, y)− u±(y)

)
dy = −1

2

∫
R

(
u(τ, y)− u±(y)

)
dy,

d

dτ

∫
R
y
(
u(τ, y)− u±(y)

)
dy = A(U+)− A(U−)−

∫
R
y
(
u(τ, y)− u±(y)

)
dy.
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Moreover, the linearization of the diffusion equation (4.1) around u = U leads to the equation

vτ = LU v :=
(
A′(U)v

)′′
+
y

2
v′, v(±∞) = 0.

It can be easily checked that the linear operator LU has the eigenvalues λ1 = −1
2

and λ2 = −1 with
the corresponding eigenfunctions V1(y) = U ′(y) and V2(y) = yU ′(y), namely

LUU ′ = −
1

2
U ′ and LU(yU ′) = −yU ′.

Finally, the adjoint operator L∗U is given via L∗Uw = A′(U)w′′ −
(
y
2
w
)′

and has the corresponding
eigenfunctions W1(y) = 1 and W2(y) = y.

Based on this, we conjecture that the global stability obtained in Theorem 4.2 can be improved via
a local stability analysis. Without loss of generality we can assume that the initial condition u(0, ·)
satisfies∫

R

(
u(0, y)− u±(y)

)
dy = 0 and

∫
R
y
(
u(0, y)− u±(y)

)
dy = A(U+)− A(U−).

This can always be achieved by a suitable translation and scaling ũ(0, y) = u(0, µ(y−y0)). Then, for
initial conditions u(0) close toU one can expect a decay with a decay rate close to the third eigenvalue
λ3 < λ2 = −1, i.e.

‖u(τ)− U‖Y ≤ Ce−(1+δ)τ‖u(0)−U‖Y for all τ > 0

whenever ‖u(0)−U‖y ≤ δ � 1, where Y is a suitably chosen Banach space.

Such results could then be transformed back into the physical variables t = eτ − 1 and x = eτ/2y for
obtaining algebraic decay, e.g. in L1(Rx), see [vaP77a, Ber82] for related results in this direction.

5 Diffusion systems with reaction constraints

We consider one-dimensional RDS for nonnegative concentration vectors c(t, x) ∈ [0,∞[i∗ with
reaction of mass-action law satisfying the detailed-balance condition

ct =
(
D(c)cx

)
x

+R(c) withR(c) =
r∗∑
r=1

kr
( cαr

wαr −
cβ

r

wβr

)(
βr −αr

)
∈ Ri∗ , (5.1)

wherew = (wi)i ∈ ]0,∞[i∗ denotes the nonnegative equilibrium state. Using parabolic coordinates

y = x/
√
t+1 and τ = log(t+1),

the transformed system takes the form

cτ =
(
D(c)cy

)
y

+
y

2
cy + eτR(c), (5.2)

where now an exponential factor occurs in front of the reaction terms because they do not scale in the
same way as the parabolic terms. We leave the analysis of the model involving the growing term eτ to
the work [MiS23] and restrict here to the simpler case with full invariance.

A scaling invariant problem is obtained by setting eτ formally to +∞, i.e. we assume that the reactions
R are already in equilibrium, whereas the spatial diffusion is much slower and still allows for diffusive
fluxes, see the constrained system (5.4) below.
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5.1 The formally reduced system with reaction constraint

In the parabolic scaling the reactions must be considered very fast. In a first non-rigorous approxi-
mation we can follow the standard argument in chemical modeling and assume that for all τ and y
the concentration vector c(τ, y) is always in equilibrium (i.e. R(c(τ, y)) = 0), but the equilibrium
may still depend on τ and y and will equilibrate spatially by diffusion only. We refer to [Bot03, MPS21,
PeR21, Ste21] for some recent works justifying the limit of infinitely fast reactions in slow-fast systems.

To describe the set of all equilibria, we assume that the dimension γ∗ of the stoichiometric subspace
Γ := span

{
βr − αr

∣∣ r = 1, ..., r∗
}

is less than i∗, which implies that R(c) = 0 has a nontrivial
family of solutions, which contains the equilibrium w. By arguments from standard linear algebra we
can construct a matrix Q ∈ Rm∗×i∗ with m∗ = i∗ − γ∗, such that Γ = kerQ and rangeQ> = Γ⊥.
Thus, by construction we have QR(c) = 0 for all c.

We introduce the so-called slow variables via

u(t, x) = Q c(t, x).

Following [MiS20, MPS21], the detailed-balance condition can be exploited to characterize the set of
all steady states. For this we introduce

C := [0,∞[i∗ , U := QC, E(c) :=
i∗∑
i=1

wiλB(ci/wi) with λB(r) = r log r − r + 1.

The following is shown in [MPS21, Sec. 3.3]:{
c ∈ C

∣∣R(c) = 0
}

= clos
({
c ∈ ]0,∞[i∗

∣∣ ∃µ ∈ Rm∗ :
(

log(ci/wi)
)
i

= Q>µ
})

=
{
c ∈ C

∣∣∣ ∃u ∈ U: c minimizes E subject to Qc = u
}
.

Moreover, it is shown in [MPS21, Prop. 3.6] that there is a continuous map Ψ : U→ C such that

Ψ(u) = argmin
{
E(c)

∣∣∣ Qc = u
}

and u = QΨ(u).

The last relation is a direct consequence from the definition of Ψ.

Returning to the parabolically scaled RDS in (5.2), the exponentially growing prefactor eτ forces the
reactions to equilibrate very fast, see [GaS22] where the rate (1+t)−1/2 = e−τ/2 is established. Thus
we may assume that for τ � 1 we always have c(τ, y) ≈ Ψ(u(τ, y)). Moreover we may apply the
linear operator Q to the equation and, using u = QΨ(u) we obtain the reduces problem

uτ =
(
QD

(
Ψ(u)

)
Ψ(u)y

)
y

+
y

2
uy for u(τ, y) ∈ U ⊂ Rm∗ . (5.3)

Note that the reactions have disappeared completely because of QR ≡ 0, but we also have assumed
that they are equilibrated, i.e. c = Ψ(u). In summary, we are left with a pure diffusion problem in
parabolic scaling variables.

This system can equivalently be formulated in terms of the original concentration vector c as follows:

cτ =
(
D(c)cy

)
y

+
y

2
cy + λ, Qλ = 0, R(c) = 0 for τ > 0, y ∈ R. (5.4)

Here λ ∈ Γ arises via the limit eτR(c) → “∞0” and is, thus, a remainder of the much faster
reactions. Mathematically λ ∈ Γ can be understood as a Lagrange multiplier corresponding to the
algebraic constraintR(c) = 0.
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If D is independent of c, we can define A(u) = QDΨ(u) and observe that steady states of (5.3)
have to satisfy our profile equation

A(U)′′ +
y

2
U ′ = 0 for y ∈ R, U(y)→ U± for y → ±∞.

If we find such a profile U : R → U ⊂ Rm∗ , it gives rise to a stationary profile C : R → C ⊂ Ri∗

via C(y) := Ψ(U(y)) which then is a steady state of the constrained diffusion system (5.4). In
[MiS23] cases are discussed in which it is possible to show that all solutions c(τ, ·) of the full scaled
reaction-diffusion system (5.2) satisfying c(0, y)→ Ψ(U±) for y → ±∞ converge toC for τ →∞.

In this work we restrict the discussion to the existence question for the self-similar profiles U : R →
U ⊂ Rm∗ and hence ofC : R→ C ⊂ Ri∗ . The profilesC provide exact self-similar solutions to the
unscaled constrained system

ċ =
(
D cx

)
x

+ λ, Qλ = 0, R(c) = 0 for t > 0, x ∈ R. (5.5)

Because of the nonlinear constraintR(c) = 0, this is a quasilinear system.

In light of the analysis in [GaS22] and [MiS23], it is to be expected that the solutions of the full reaction-
diffusion system (5.1) with the additional boundary conditions c(t,±∞) = Ψ(U±) behave asymp-
totically self-similar as well. But such results are beyond the scope of this work.

5.2 Linear reaction-diffusion systems

We consider a linear reaction-diffusion system of the form

ct = Dcxx + Bc for c(t, x) ∈ C ⊂ Ri∗ .

Here D = diag(di)i=1,...,i∗ and B is obtained from a detailed-balance system as in (5.1), i.e. all
stoichiometric vectors αr and βr are unit vectors

{
ej
∣∣ j = 1, ..., i∗

}
. It is shown in [MiS20, Sec. 2]

that the operator Q ∈ Rm∗×i∗ can be constructed such that each column is a unit vector and that
Ψ(u) = Nu with N ∈ Ri∗×m∗ have nonnegative entries such that each column sum equals 1. In
particular, one has

QB = 0, QN = Im∗ ∈ Rm∗×m∗ and NQ ∈ Ri∗×i∗ is a projection.

Thus, for this special case the reduced RDS for u = Qc in scaling coordinates takes the form

uτ = Auyy +
y

2
uy with A = QDN.

If D is diagonal, then it can be shown that A is also diagonal, containing the effective diffusion con-
stants for the components um, cf. [Ste21]. However, if D is nondiagonal but still positive semidefinite,
then A may non longer be monotone, i.e. A+A> is no longer positive semidefinite. For instance
consider

D =

 d1 δ 0
δ d2 0
0 0 d3

 , Q =

(
1 0 0
0 1 1

)
, N =

 1 0
0 ν
0 1−ν

 , A =

(
d1 νδ
δ νd2+(1−ν)d3

)

with d1 = d2 = 1, δ = 1/2, ν = d3 = 1/50. Thus, monotonicity is not obtained automatically.
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5.3 Linear diffusion systems without reactions

We consider now linear systems without reactions of the form

ut = Auxx for (t, x) ∈ ]0,∞[×R, u(t,±∞) = U±.

Here A is a monotone matrix, i.e. w · Aw ≥ alo|w|2 ≥ 0. Of course, the parabolically scaled
equation reads

uτ = Auyy +
y

2
uy for (t, y) ∈ ]0,∞[×R, u(t,±∞) = U±. (5.6)

As explained in Example 2.1, there is always a unique similarity profile U for any pair (U−,U+) ∈
Rm×Rm.

By classical energy estimates using the monotonicity of A one obtains convergence towards the sta-
tionary profile by linearity. If u is a general solution of (5.6), then the differencew(τ, y) = u(τ, y)−
U(y) is a solution as well. Hence, we obtain

1

2

d

dτ
‖w‖2

L2 =

∫
R
w ·wτ =

∫
R
w ·

(
Awyy +

y

2
wy

)
dy

=

∫
R

(
−wy · Awy −

1

4
|w|2

)
dy ≤ −1

4
‖w‖2

L2 .

Thus, Gronwall’s estimate yields

‖u(τ)−U‖2
L2 ≤ e−τ/2‖u(0)−U‖2

L2 .

We emphasize that this estimate is even true in the case of the linear Schrödinger equation iψt = ψxx
which can be realized as a real system withu = (Reψ, Imψ) and A =

(
0 −1
1 0

)
, see Example 2.1(III).

5.4 One reaction for two species

In [GaS22, MiS23] the following system of two equations is studied in detail:(
ċ1

ċ2

)
=

(
d1 ∂

2
xc1

d2 ∂2
xc2

)
− κ
(
γ (cγ1 − c

β
2 )

β (cβ2 − c
γ
1)

)
for t > 0 and x ∈ R.

The two concentrations c1, c2 ≥ 0 for the species X1, X2 diffusive with diffusion constants dj and
undergo the reversible mass-action reaction γX1 
 βX2.

The scaled and constrained system (5.4) takes the form

∂τ

(
c1

c2

)
=

(
d1 ∂

2
yc1

d2 ∂2
yc2

)
+
y

2
∂y

(
c1

c2

)
+ λ

(
γ

−β

)
, λ ∈ R, cγ1 = cβ2 .

The set of equilibria forR is a one-parameter family given by{
c ∈ C

∣∣R(c) = 0
}

=
{

(Aβ, Aγ)
∣∣ A ≥ 0

}
.

We consider the stoichiometric mapping Q =
(
β γ

)
∈ R1×2 defining u = βc1 + γc2 ≥ 0. The

function Ψ : [0,∞[→ [0,∞[2 is defined via

c = Ψ(u) =

(
ψ1(u)

ψ2(u)

)
⇐⇒

(
u = Qc = βc1+γc2 and cγ1 = cβ2

)
.
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The case γ = β leads to the simple relation Ψ(u) = 1
β+γ

(
u
u

)
. If β 6= γ, we may assume β < γ

without loss of generality. Then,

ψ1 is concave, ψ1(u) = u/β + h.o.t.u→0+ , ψ1(u) =
(
u/γ

)β/γ
+ l.o.t.u→∞,

ψ2 is convex, ψ2(u) =
(
u/β

)γ/β
+ h.o.t.u→0+ , ψ2(u) = u/γ + l.o.t.u→∞.

ForAΨ(u) := QDΨ(u) =
(
βd1
γd2

)
·Ψ(u) we can use 0 < ψ′1(u) ≤ ψ′1(0) = 1/β and 0 < ψ′2(u) ≤

ψ′2(∞) = 1/γ. This yields

D(u) = A′Ψ(u) ∈ [D∗, D
∗], D(u)→ d1 for u→ 0+, D(u)→ d2 for u→∞,

where D∗ = min{d1, d2} and D∗ = max{d1, d2}.
Thus, the theory of Section 3 applies (simply extend D by D(u) = d1 for u ≤ 0). We are in the
nondegenerate case, where the resulting profiles U solving(

AΨ(U)
)′′

+
y

2
U ′ = 0 on R, U(±∞) = U±,

are smooth, strictly monotone and converge to its two limits like the error function. In addition to
U− ≤ U(y) ≤ U+ the estimate

0 ≤ U ′(y) ≤ e−y
2/(4D∗)

√
D∗

8D2
∗

(
U+ − U−

)
for all y ∈ R (5.7)

holds, even in the caseU− = 0, where asymptotically the concentrations vanish, viz.C− = Ψ(U−) =(
0
0

)
, because the effective diffusion is still bounded from below by D∗ > 0.

Of course, a profile U : R → [U−, U+] for the reduced equation leads to a smooth concentration
profileC : R→ C ⊂ R2 given byC(y) = Ψ(U(y)) and satisfying the profile equation

0 =

(
d1 0
0 d2

)
C ′′(y) +

y

2
C ′(y) + ΛU(y)

(
γ

−β

)
, C1(y)γ = C2(y)β,

C(y)→ Ψ(U±) for y → ±∞.

Remark 5.1 In [MiS23] the convergence to the asymptotic steady state y 7→ C(y) = Ψ(U(y))
for the scaled reaction-diffusion system (5.2) is investigated. For this, it is necessary to bound the
Lagrange multiplier

ΛU(y) := −1

γ

(
d1C

′′
1 (y) +

y

2
C ′1(y)

)
=

1

β

(
d2C

′′
2 (y) +

y

2
C ′2(y)

)
in L∞(R),

where the second identity holds by construction from AΨ(u) = βd1ψ1(u) + γd2ψ2(u). Using the
relation C1(y) = ψ1(U(y)), where ψ1 : ]0,∞[ → ]0,∞[ is C∞, and exploiting the bounds 0 <
U− ≤ U(y) ≤ U+, the identity U ′′ = −

(
A′′(U)(U ′)2 + y

2
U ′
)
/A′(U), and estimate (5.7), we obtain

the following result. Fixing d1, d2 > 0 and γ > β > 0, for every M > 0 there exists a constant
CM > 0 such that

U+, U− ∈ [1/M,M ] implies
∣∣ΛU(y)

∣∣ ≤ CM
∣∣U+ − U−

∣∣ for all y ∈ R.
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5.5 One reaction for three species

We consider the classical binary reaction X3 
 X1+X2 leading to the scaled RDS

∂τc = D∂2
yc+

y

2
∂yc− eτ

(
c1c2−c3

) 1
1
−1

 withD =

(
d1 0 0
0 d2 0
0 0 d3

)
.

The associated profile equation reads

DC ′′(y) +
y

2
C ′(y) + λ(y)

 1
1
−1

= 0, C1(y)C2(y) = C3(y) and C(±∞) = Ψ(U±). (5.8)

The set of equilibria forR is a two-parameter family, namely{
c ∈ C

∣∣R(c) = 0
}

=
{

(A,B,AB)
∣∣ A,B ≥ 0

}
.

We can choose the stoichiometric matrix

Q =

(
1 0 1
0 1 1

)
∈ R2×3

and obtain u =
(
u1
u2

)
= Qc ∈ U := [0,∞[2. The reduction function Ψ : U → C can be calculated

explicitly in the form

Ψ(u1, u2) =
1

2

u1−u2−1 + s(u)
u2−u1−1 + s(u)
u1+u2+1− s(u)

 with s(u) :=
√

(1+u1+u2)2 − 4u1u2.

To extend s to a function s : R2 → R we simply set s(u1, u2) = 1 + u1 + u2 whenever u1 ≤ 0
or u2 ≤ 0 and observe that s is globally Lipschitz continuous. Moreover, sj(u) = ∂ujs(u) satisfies
s1(u) ≤ 1, s2(u) ≤ 1 and s1(u) + s2(u) ≥ 0 for all u ∈ R2.

From this we can calculate the functionA(u) = QDΨ(u) withD = diag(dj):

A(u) =
1

2

(
(d1+d3)u1 + (d3−d1)(1+u2−s(u))

(d2+d3)u2 + (d3−d2)(1+u1−s(u))

)
.

For general C1 functionsA we have the equivalence

∀u, ũ : 〈A(u)−A(ũ),u−ũ〉 ≥ alo|u−ũ|2 ⇐⇒ ∀u :
1

2

(
DA(u)+DA(u)>

)
≥ aloIm×m.

Abbreviating sj = ∂ujs(u) and δj = 1−dj/d3 for j = 1, 2 we find

1

2

(
DA(u)+DA(u)>

)
=
d3

2

(
2− δ1 − δ1s1

1
2

(
δ1+δ2−δ1s2−δ2s1

)
1
2

(
δ1+δ2−δ1s2−δ2s1

)
2− δ2 − δ2s2

)
=: G.

For d1 = d2 = d3 we have δ1 = δ2 = 0 and obtain G = d3I2×2 giving monotonicity with alo =
d3 > 0. Using sj ∈ [−1, 1] it is also easy to show that |δ1|, |δ2| < 1/2 is sufficient for showing that
G is positive definite. More precisely, we have the following result.
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Lemma 5.2 (Monotonicity) The function A : R2 → R2 is strictly monotone (∃ alo > 0 ∀u,w ∈
R2: 〈A(w)−A(u),w−u〉 ≥ alo|w−u|2) if and only if

(3−
√

8 )d3 < dj < (3+
√

8 )d3 for j = 1, 2.

Proof. We keep δ1 and δ2 fixed and observe that µ(s1, s2) := detG is a quadratic polynomial in
(s1, s2) which is concave, as the quadratic terms can be combined to−(δ2s1−δ1s2)2. As all (s1, s2)
lie in the triangle S :=

{
(s1, s2)

∣∣s1 ≤ 1, s2 ≤ 1, s1+s2 ≥ 0
}

the assertion follows if we can show
that min

{
µ(s1, s2)

∣∣ (s1, s2) ∈ S
}

is positive. By concavity the minimum is attained in one of the
three corners because they are the extremal points.

We have µ(1, 1) > 0 whenever δ1 < 1 and δ2 < 1. Moreover, µ(1,−1) > 0 holds for |δ1+2| <
√

8
and µ(−1, 1) > 0 holds for |δ2+2| <

√
8. Inserting δj = 1− dj/d3, the desired result follows.

Under the assumptions of the above monotonicity result, our existence theory in Theorem 2.2 provides
unique similarity profilesU : R→ R2 connectingU− andU+. These solutions give rise to similarity
profilesC = Ψ◦U connecting Ψ(U+) and Ψ(U+) if and only ifU(y) ∈ U = [0,∞[2 for all y ∈ R,
thus providingC(y) = Ψ(U(y)) ∈ C = [0,∞[3. In general we cannot guarantee this condition, but
Corollary 2.3 provides an estimate of the form∣∣U(y)− ũ±(y)

∣∣ ≤ C∗|U+−U−| = C∗∆±,

where C∗ only depends on d1, d2, and d3, but not onU±. As ũ±(y) takes values on the straight line
connecting U− and U+, we conclude that our abstract theory is applicable if (3−

√
8)d3 < d1, d2 <

(3+
√

8)d3 and |U+−U−| is sufficiently small compared to the distance of U+ and U− from the
boundary of U. Then similarity profilesC : R→ R3 solving (5.8) exist and are unique.

In the present example we obtain nonmonotone profiles C : R → C ⊂ R3. For this, consider the
case d1 = d2 and the limits

C− = (A,B,AB)> and C+ = (B,A,AB)> with A 6= B.

Our uniqueness result and the reflection symmetries x→ −x and (c1, c2)→ (c2, c1) imply that the
stationary profileC satisfies C1(y) = C2(−y) and C3(y) = C3(−y). Using C1(y)C2(y) = C3(y)
for all y ∈ R we see that C3 cannot be constant, hence it must be nonmonotone. In Figure 5.1 we
show an example.

An interesting open question is whether there is a stationary profileC connecting the limiting cases

C− = Ψ(1, 0) = (1, 0, 0)> and C− = Ψ(0, 1) = (0, 1, 0)>.

The profile would see only one of the species X1 or X2 in the limits to ±∞, however in the middle
region all three species must be present to allow the generation of the other species.

5.6 Two reactions for three species

Consider the two reactions 2X1 
 X2 and X2 
 X3 giving

∂τc = D∂2
yc− k1

(
c2

1 − c2

) 2
−1
0

− k2

(
c2 − c3

) 0
1
−1

. (5.9)
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-10 -5 5 10

1

2

3

4

5C1(y) C2(y)

C3(y)

Figure 5.1: Solution C = (C1(y), C2(y), C3(y)) of (5.8) for d1 = d2 = 2 and d3 = 10 with limiting
values C− ≈ (5.3, 0.3, 1.6) and C+ ≈ (0.3, 5.3, 1.6). This symmetric solution was obtained by
starting withC(0) = (1.5, 1.5, 2.25) andC ′(y) = (−1, 1, 0).

The set of equilibria is the one-parameter family given by{
c ∈ C

∣∣R(c) = 0
}

=
{

(A,A2, A2)
∣∣ A ≥ 0

}
.

Note that the RDS system has invariant regions of the form Σ := [b, B]×[b2, B2]×[b2, B2] for
arbitrary 0 ≤ b < B < ∞, see [Smo94, Chap. 14 §B]. This means that any solution satisfying
c(0, x) ∈ Σ for all x ∈ R also satisfies c(t, x) ∈ Σ for all t > 0 and x ∈ R. Thus, a similarity profile
connectingC− = (b, b2, b2) andC+ = (B,B2, B2) is expected to lie in the invariant region Σ.

The stoichiometric matrix is Q = (1 2 2) ∈ R1×3 and

u = Qc = c1 + 2c2 + 2c3 yields Ψ(u) =

 σ(u)
(u−σ(u))/4
(u−σ(u))/4

 with σ(u) = (
√

1+16u− 1)/8.

With σ′(u) = 1/
√

1+16u ∈ [0, 1] we easily see that all mappings u 7→ Ψj(u) are monotonously
increasing. Moreover, the function A(u) = QDΨ(u) satisfies

A(u) = d2+d3
2

u+
(
d1−d2+d3

2

)
σ(u) and min

{
d1,

d2+d3
2

}
≤ A′(u) ≤ max

{
d1,

d2+d3
2

}
.

Thus, the scalar theory of Section 3 is applicable and for 0 ≤ U− ≤ U+ < ∞ there exists a unique
similarity profile U ∈ C∞(R; [U−, U+]) that is monotonously increasing.

As a consequence, the profile equation

DC ′′(y) +
y

2
C ′(y)+λ1(y)

 2
−1
0

+ λ2(y)

 0
1
−1

= 0,

C1(y)2 = C2(y) = C3(y) and C(±∞) =

B±B2
±

B2
±

 (5.10)

has for all B− ≤ B+ a unique solution C and each component Cj is monotonously increasing, and
hence lying in the invariant region Σ = [B−, B+]×[B2

−, B
2
+]×[B2

−, B
2
+].
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6 Various systems with similarity profiles

In this section we mention the connection of our theory to two more systems in which similarity profiles
play a nontrivial role. The first example concerns the diffusive mixing between role patterns in the real
Ginzburg-Landau equation as studied in [BrK92, GaM98]. The second example is a system of two
degenerate parabolic equations that are coupled to satisfy a thermodynamical conservation law.

6.1 Profiles connecting roles in the Ginzburg-Landau equation

For a complex-valued amplitude Z(t, x) ∈ C the real Ginzburg-Landau equation (i.e. the coefficients
are real)

Ż = Zxx + Z − |Z|2Z (6.1)

is an important model in bifurcation theory and pattern formation. It has an explicit two-parameter
family of steady state pattern in form of the role solutions Z(x) = Uη,ϕ(x) :=

√
1−η2 ei(ηx+ϕ) with

wave number η ∈ [−1, 1] and phase ϕ ∈ [0, 2π].

Starting from [BrK92, CoE92], it was shown in [GaM98] that asymptotically self-similar profiles exist
that connect two different role solutions Uη−,ϕ− at x → −∞ and Uη+,ϕ+ at x → ∞. Indeed, the
monotone operator approach used in Theorem 2.2 for solving the profile equation was initiated in
[GaM98, Thm. 3.1].

Writing Z = reiu and assuming r(t, x) > 0, the real Ginzburg-Landau equation can be rewritten as
the coupled system ṙ = rxx + r

(
1−r2−u2

x

)
, u̇ = uxx + 2 rx

r
ux. Assuming r2 + u2

x ≈ 1 for t� 1,
one is lead to the so-called phase diffusion equation

u̇ =
(
A(ux)

)
x

= A′(ux)uxx, where A′(η) =
1−3η2

1−η2
.

Introducing the local wave number η(t, x) = ux(t, x) one finds the quasilinear equation

η̇ =
(
A(η)

)
xx

with A′(η) > 0 for η ∈
]−1√

3
,

1√
3

[
.

The existence of self-similar profiles η : R → [η−, η+] connecting η− and η+ (where −1/
√

3 <
η− ≤ η+ < 1/

√
3) as well as the local convergence of the full solutions Z(t, x) of (6.1) to the

corresponding asymptotic profile
√

1− η(x/t1/2) ei t1/2H(x/t1/2) with H ′(y) = η(y) is established
in [GaM98] using suitable weighted Sobolev norms.

6.2 A coupled system motivated by thermodynamics

The following degenerate parabolic system couples a velocity-like variable v to an energy-like variable
w such that the total momentum V(v) =

∫
Rd v(x) dx and the total energy E(v, w) =∫

Rd

(
1
2
v(x)2+w(x)

)
dx are conserved along solutions of

v̇ = div
(
η(w)∇v

)
, for (t, x) ∈ ]0,∞[×Rd, (6.2a)

ẇ = div
(
κ(w)∇w

)
+ η(w)|∇v|2 for (t, x) ∈ ]0,∞[×Rd, (6.2b)
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see [Mie23] for more motivation. Because of the full invariance under the parabolic scaling, the
parabolically scaled equation is independent of τ :

∂τ ṽ −
1

2
y·∇ṽ = div

(
η(w̃)∇ṽ

)
, ∂τ w̃ −

1

2
y·∇w̃ = div

(
κ(w̃)∇w̃

)
+ η(w̃)

∣∣∇ṽ∣∣2. (6.3)

As the system contains the porous medium equation (4.1) with A(w) = 1
β+1

wβ+1 (by simply setting
v ≡ 0) there are the classical Barenblatt solutions as a steady state (V,W ) = (0, BM) where
M ≥ 0 is the mass M =

∫
Rd BM(y) dy. As studied in Section 3, there are also similarity profiles

of the form (v, w) = (0,W ), however, we expect that it is also possible to show that for each pair
(V±,W±) with V−, V+ ∈ R and W−,W+ ≥ 0 there is a unique similarity profile. However, it seems
that our monotonicity approach developed in Section 2 cannot be used here.

Nevertheless, a nontrivial explicit self-similar solution can be given in the case η(w) = κ(w) = w
with the limits (V±,W±) = (±

√
2B, 0) (cf. [Mie23, Ex. 2.2]), namely(

V (y),W (y)
)

=

{ (
y/
√

2 , B2−y2/4
)

for |y| ≤ 2B,(
±
√

2B , 0
)

for ± y ≥ 2B,
(6.4)
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