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Optimal temperature distribution for a nonisothermal
Cahn–Hilliard system in two dimensions with source term and

double obstacle potential
Pierluigi Colli, Gianni Gilardi, Andrea Signori, Jürgen Sprekels

Abstract

In this note, we study the optimal control of a nonisothermal phase field system of Cahn–
Hilliard type that constitutes an extension of the classical Caginalp model for nonisothermal phase
transitions with a conserved order parameter. It couples a Cahn–Hilliard type equation with source
term for the order parameter with the universal balance law of internal energy. In place of the stan-
dard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory
developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution.
This has the consequence that the balance law of internal energy becomes a second-order in time
equation for the thermal displacement or freezing index, that is, a primitive with respect to time of
the temperature. Another particular feature of our system is the presence of the source term in the
equation for the order parameter, which entails further mathematical difficulties because the mass
conservation of the order parameter is no longer satisfied. In this paper, we study the case that the
double-well potential driving the evolution of the phase transition is given by the nondifferentiable
double obstacle potential, thereby complementing recent results obtained for the differentiable
cases of regular and logarithmic potentials. Besides existence results, we derive first-order nec-
essary optimality conditions for the control problem. The analysis is carried out by employing the
so-called deep quench approximation in which the nondifferentiable double obstacle potential is
approximated by a family of potentials of logarithmic structure for which meaningful first-order
necessary optimality conditions in terms of suitable adjoint systems and variational inequalities
are available. Since the results for the logarithmic potentials crucially depend on the validity of
the so-called strict separation property which is only available in the spatially two-dimensional
situation, our whole analysis is restricted to the two-dimensional case.

1 Introduction

Let Ω ⊂ R2 be some open, bounded, and connected set having a smooth boundary Γ := ∂Ω and
the outward unit normal field n. Denoting by ∂n the directional derivative in the direction of n, and
putting, with a fixed final time T > 0,

Qt := Ω× (0, t) and Σt := Γ× (0, t) for t ∈ (0, T ], Q := QT , Σ := ΣT ,
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 2

we study in this paper as state system the following initial-boundary value problem:

∂tϕ−∆µ+ γϕ = f in Q, (1)

µ = −∆ϕ+ ξ + F ′(ϕ) + a− b∂tw, ξ ∈ ∂I[−1,1](ϕ), in Q, (2)

∂ttw −∆(κ1∂tw + κ2w) + λ∂tϕ = u in Q, (3)

∂nϕ = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ, (4)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = w1, in Ω. (5)

The cost functional under consideration is given by

J ((ϕ,w), u) :=
β1

2

∫
Q

|ϕ− ϕQ|2 +
β2

2

∫
Ω

|ϕ(T )− ϕΩ|2

+
β3

2

∫
Q

|w − wQ|2 +
β4

2

∫
Ω

|w(T )− wΩ|2

+
β5

2

∫
Q

|∂tw − w′Q|2 +
β6

2

∫
Ω

|∂tw(T )− w′Ω|2 +
ν

2

∫
Q

|u|2, (6)

with nonnegative constants βi, 1 ≤ i ≤ 6, and ν, which are not all zero, and where ϕΩ, wΩ, w
′
Ω ∈

L2(Ω) and ϕQ, wQ, w′Q ∈ L2(Q) denote given target functions.

For the distributed control variable u, we choose as control space

U := L∞(Q), (7)

and the related set of admissible controls is given by

Uad :=
{
u ∈ U : umin ≤ u ≤ umax a.e. in Q

}
, (8)

where we generally assume throughout the paper that

umin, umax ∈ L∞(Q) and umin ≤ umax a.e. in Q. (9)

In particular, Uad is bounded in L∞(Q).

In summary, the control problem under investigation can be reformulated as follows:

(P) minu∈Uad J ((ϕ,w), u) subject to the constraint that (ϕ, µ, ξ, w) solves the state system (1)–
(5).

Let us now spend some comments on the state system (1)–(5), which is a formal extension of the
nonisothermal Cahn–Hilliard system introduced by Caginalp in [3] to model the phenomenon of non-
isothermal phase segregation in binary mixtures (see also [2, 4] and the derivation in [1, Ex. 4.4.2,
(4.44), (4.46)]); it corresponds to the Allen–Cahn counterpart analyzed in [18]. The unknowns in the
state system have the following physical meaning: ϕ is a normalized difference between the volume
fractions of pure phases in the binary mixture (the dimensionless order parameter of the phase trans-
formation, which should attain its values in the physical interval [−1, 1], where the extremes represent
the pure phases of the mixture), µ is the associated chemical potential, and w is the so-called thermal
displacement (or freezing index), which is directly connected to the temperature ϑ (which in the case
of the Caginalp model is actually a temperature difference) through the relation

w(·, t) = w0 +

∫ t

0

ϑ(·, s) ds, t ∈ [0, T ]. (10)
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Optimal control of a nonisothermal Cahn–Hilliard type model 3

Moreover, κ1 and κ2 in (3) stand for prescribed positive coefficients related to the heat flux, which is
here assumed in the Green–Naghdi form (see [21, 22, 23, 24])

q = −κ1∇(∂tw)− κ2∇w, (11)

which accounts for a possible previous thermal history of the phenomenon. Moreover, γ is a positive
physical constant related to the intensity of the mass absorption/production of the source, where the
source term in (1) is S := f − γϕ. This term reflects the fact that the system may not be isolated
and a loss or production of mass is possible, which happens, e.g., in numerous liquid-liquid phase
segregation problems that arise in cell biology [19] and in tumor growth models [20]. Notice that the
presence of the source term entails that the property of mass conservation of the order parameter is
no longer valid; in fact, from (1) it directly follows that the mass balance has the form

d

dt

( 1

|Ω|

∫
Ω

ϕ(t)
)

=
1

|Ω|

∫
Ω

S(t), for a.e. t ∈ (0, T ), (12)

where |Ω| denotes the Lebesgue measure of Ω.

In addition to the quantities already introduced, λ stands for the latent heat of the phase transformation,
a, b are physical constants, and the control variable u is a distributed heat source/sink. Besides,
ϕ0, w0, andw1 indicate some given initial values. Moreover, the function F , whose derivative appears
in (2), is assumed to be concave, typically of the form F (r) = c1 − c2r

2 with c1 ∈ R, c2 > 0, while
∂I[−1,1] denotes the subdifferential of the indicator function I[−1,1] of the real interval [−1, 1], which
is given by

I[−1,1](r) = 0 if |r| ≤ 1 and I[−1,1](r) = +∞ if |r| > 1 . (13)

The potential
F2obs(r) = I[−1,1](r) + F (r), (14)

with F given as above, is then the typical double obstacle potential.

The state system (1)–(5) was recently analyzed in [9] concerning well-posedness and regularity (see
the results cited below in Section 2); in [10] the corresponding optimal control problem (P) has been
analyzed for the simpler differentiable case when the indicator function I[−1,1] occurring in (2) is re-
placed by either a regular function or by a logarithmic expression of the form

hα(r) := αh(r), (15)

with α > 0, where

h(r) =


(1 + r) ln(1 + r) + (1− r) ln(1− r) if |r| < 1
2 ln(2) if r ∈ {−1, 1}
+∞ if |r| > 1

. (16)

Clearly, in this case the subdifferential inclusion (2) has to be replaced by the equation

µ = −∆ϕ+ h′α(ϕ) + F ′(ϕ) + a− b∂tw . (17)

For such logarithmic nonlinearities, in [10] results concerning existence of optimal controls, Fréchet
differentiability of the control-to-state operator, and meaningful first-order necessary optimality condi-
tions (in terms of the associated adjoint state problem and variational inequality) have been derived,
at least in the spatially two-dimensional situation. In this paper, we complement the results of [10] by
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 4

investigating the optimal control problem for the nondifferentiable double obstacle case. While the ex-
istence of optimal controls is not too difficult to show, the derivation of first-order necessary optimality
conditions is a much more challenging task, since the existence of appropriate Lagrange multipliers
cannot be derived from the standard theory. We therefore employ the so-called deep quench approx-
imation, which has been successfully applied in a number of Allen–Cahn or Cahn–Hilliard systems
(see, e.g., [6, 8, 12, 14, 15, 16, 17, 25]). The general strategy of this approach is the following. At first,
we observe the following facts: it is readily seen that

lim
α↘0

hα(r) = I[−1,1](r) ∀ r ∈ R. (18)

Moreover, h′(r) = ln(1+r
1−r ) and h′′(r) = 2

1−r2 , and thus

lim
α↘0

h′α(r) = 0 for all r ∈ (−1, 1),

lim
α↘0

(
lim
r↘−1

h′α(r)
)

= −∞, lim
α↘0

(
lim
r↗1

h′α(r)
)

= +∞. (19)

Hence, we may regard the graphs of the single-valued α-dependent functions h′α over the interval
(−1, 1) as approximations to the graph of the subdifferential ∂I[−1,1] from the interior of (−1, 1) (in
contrast to the exterior approximation obtained via the Moreau–Yosida approach).

In view of the convergence properties (18) and (19), it is to be expected that the solutions to the
approximating system (1), (17), (3)–(5) converge in a suitable topology to the solution of the state
system (1)–(5) as α ↘ 0, and a similar behavior ought to be true for the corresponding minimizers
of the associated optimal control problems. It is then hoped that it is possible to pass to the limit as
α ↘ 0 in the first-order necessary optimality conditions for the approximating control problems in
order to establish first-order conditions also for the double obstacle case. It turns out that this general
strategy works with suitable modifications. Let us stress at this point that our approach makes use
of the results obtained for the logarithmic case investigated in [10]; since in that case the derivation
of differentiability properties of the associated control-to-state operator was only possible under the
premise that the order parameter ϕ satisfies the so-called strict separation property (meaning that
ϕ attains its values in a compact subset of (−1, 1)), and since this property could only be shown in
the spatially two-dimensional case, our analysis does not apply to three-dimensional domains Ω.

The plan of the paper is as follows. The next section is devoted to collect previous results concerning
the well-posedness of the state system. Then, in Section 3 and Section 4, we investigate the conver-
gence properties of the deep quench approximations and of the associated optimal controls. The final
section brings the derivation of first-order necessary conditions of optimality for the problem (P) by
employing the strategy explained above.

Prior to this, let us fix some notation. For any Banach space X , we denote by ‖ · ‖X , X∗, and
〈 · , · 〉X , the corresponding norm, its dual space, and the related duality pairing between X∗ and X .
For two Banach spaces X and Y that are both continuously embedded in some topological vector
space Z , we introduce the linear space X ∩ Y , which becomes a Banach space when equipped with
its natural norm ‖v‖X∩Y := ‖v‖X+‖v‖Y , for v ∈ X∩Y . A special notation is used for the standard
Lebesgue and Sobolev spaces defined on Ω. For every 1 ≤ p ≤ ∞ and k ≥ 0, they are denoted by
Lp(Ω) and W k,p(Ω), with the associated norms ‖ · ‖Lp(Ω) = ‖ · ‖p and ‖ · ‖Wk,p(Ω), respectively.
If p = 2, they become Hilbert spaces, and we employ the standard convention Hk(Ω) := W k,2(Ω).
For convenience, we also set

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}.

DOI 10.20347/WIAS.PREPRINT.3003 Berlin 2023



Optimal control of a nonisothermal Cahn–Hilliard type model 5

For simplicity, we use the symbol ‖ · ‖ for the norm in H and in any power thereof, and we denote by
( · , · ) and 〈 · , ·〉 the inner product in H and the dual pairing between V ∗ and V . Observe that the
embeddings W ⊂ V ⊂ H ⊂ V ∗ are dense and compact. As usual, H is identified with a subspace
of V ∗ to have the Hilbert triplet (V,H, V ∗) along with the identity

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .

Next, for a generic element v ∈ V ∗, we define its generalized mean value v by

v :=
1

|Ω|
〈v,1〉, (20)

where 1 stands for the constant function that takes the value 1 in Ω. It is clear that v reduces to the
usual mean value if v ∈ H . The same notation v is employed also if v is a time-dependent function.

To conclude, for normed spaces X and v ∈ L1(0, T ;X), we define the convolution products

(1 ∗ v)(t) :=

∫ t

0

v(s) ds, (1~ v)(t) :=

∫ T

t

v(s) ds, t ∈ [0, T ]. (21)

2 General assumptions and the state system

For the remainder of this paper, we make the following general assumptions besides (8) and (9).

(A1) The structural constants γ, a, b, κ1, κ2, and λ are positive.

(A2) It holds F ∈ C3(R), and F ′ is Lipschitz continuous on R.

(A3) f ∈ H1(0, T ;H) ∩ L∞(Q), w0 ∈ V , w1 ∈ W .

(A4) ϕ0 ∈ H4(Ω) ∩W satisfies ∆ϕ0 ∈ W , and, with ρ := 1
γ
‖f‖L∞(Q), we assume that all of the

quantities
inf
x∈Ω

ϕ0(x), sup
x∈Ω

ϕ0(x), −ρ− (ϕ0)− , ρ+ (ϕ0)+

belong to the interior of (−1, 1), where (·)+ and (·)− denote the positive and negative part
functions, respectively.

The analysis of the systems (1)–(5) and (1), (17), (3)–(5) has been the subject of investigation in [9].
As a special case of [9, Thm. 2.2], we have the following result for the initial-boundary value problem
(1)–(5).

Theorem 1 Suppose that (8), (9) and (A1)–(A4) are fulfilled. Then the state system (1)–(5) has for
every u ∈ Uad a weak solution (ϕ, µ, ξ, w) in the following sense: it holds

ϕ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ L∞(0, T ;W 2,σ(Ω)), (22)

µ ∈ L∞(0, T ;V ), (23)

ξ ∈ L∞(0, T ;H) ∩ L∞(0, T ;Lσ(Ω)), (24)

w ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ), (25)

DOI 10.20347/WIAS.PREPRINT.3003 Berlin 2023
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where σ is arbitrary in (2,∞), and we have the variational identities∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v + γ

∫
Ω

ϕv =

∫
Ω

fv

for every v ∈ V and a.e. t ∈ (0, T ) , (26)∫
Ω

µv =

∫
Ω

∇ϕ · ∇v +

∫
Ω

ξv +

∫
Ω

(F ′(ϕ) + a− b∂tw)v for every v ∈ V

and a.e. t ∈ (0, T ) , with ξ ∈ ∂I[−1,1](ϕ) a.e. in Q , (27)∫
Ω

∂ttw v +

∫
Ω

∇(κ1∂tw + κ2w) · ∇v + λ

∫
Ω

∂tϕv =

∫
Ω

uv

for every v ∈ V and a.e. t ∈ (0, T ) , (28)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = w1 . (29)

Moreover, the solution components ϕ and w are uniquely determined, that is, whenever (ϕi, µi, ξi, wi),
i = 1, 2, are two such solutions, then ϕ1 = ϕ2 and w1 = w2.

Remark 1 By continuous embedding, we have ϕ,w, ∂tw ∈ C0([0, T ];H) so that the evaluations
ϕ(0), w(0), ∂tw(0) and ϕ(T ), w(T ), ∂tw(T ) are meaningful. Moreover, since the solution compo-
nents ϕ and w are uniquely determined, the cost functional (6) is well defined on Uad. Besides, let
us remark that the exponent σ appearing above is more general than σ = 6 which was stated in
[9, Thm. 2.2]. This is due to the fact that here we only focus on the two-dimensional case, where the
continuous embedding V ⊂ Lσ(Ω) is true for any σ ∈ (2,∞) (the case σ ∈ [1, 2] is already en-
sured by the regularities ϕ ∈ L∞(0, T ;W ) and ξ ∈ L∞(0, T ;H)) instead of the three-dimensional
embedding V ⊂ L6(Ω).

For the deep quench approximations, we have the following stronger result.

Theorem 2 Suppose that (8), (9) and (A1)–(A4) are satisfied. Then the system (1), (17), (3)–(5) has
for every u ∈ Uad and every α > 0 a unique solution (ϕα, µα, wα) such that

ϕα ∈ W 1,∞(0, T ;H) ∩H1(0, T ;W ) ∩ L∞(0, T ;W 2,σ(Ω)), (30)

µα ∈ L∞(0, T ;V ) ∩ L∞(Q), (31)

h′α(ϕα) ∈ L∞(Q), (32)

wα ∈ H2(0, T ;H) ∩ C1([0, T ];V ), (33)

for arbitrary σ ∈ (1,∞). Moreover, there exists a constant K1(σ) > 0, which depends only on the
structure of the system, Ω, T , the norms of the data, and the choice of σ ∈ [2,∞), such that

‖ϕα‖H1(0,T ;V )∩L∞(0,T ;W 2,σ(Ω)) + ‖µα‖L∞(0,T ;V )

+ ‖h′α(ϕα)‖L∞(0,T ;Lσ(Ω)) + ‖wα‖H2(0,T ;H)∩C1([0,T ];V ) ≤ K1(σ) , (34)

whenever α ∈ (0, 1] and u ∈ Uad. In addition, for every α > 0 there holds the strict separation
property, i.e., there exist constants −1 < r∗(α) < r∗(α) < 1, which depend only on the structure
of the system, Ω, T , and the norms of the data, such that for every u ∈ Uad it holds

r∗(α) ≤ ϕα(x, t) ≤ r∗(α) ∀ (x, t) ∈ Q. (35)

DOI 10.20347/WIAS.PREPRINT.3003 Berlin 2023



Optimal control of a nonisothermal Cahn–Hilliard type model 7

Proof. Existence, uniqueness and the regularity properties (30)–(33) of the solution follow directly
from [10, Thms. 2.1 and 2.4]. Moreover, [10, Thm. 2.4] also yields the existence of constants −1 <
r∗(α) ≤ r∗(α) < 1 such that the inequality in (35) holds true at least for almost every (x, t) ∈ Q. But
sinceH1(0, T ;W ) is continuously embedded inC0(Q), we have ϕα ∈ C0(Q), so that the pointwise
condition (35) is in fact valid.

It remains to show the existence of a constantK1(σ) satisfying (34). To this end, we recall the proof of
[9, Thm. 2.5] (cf. also [10, Thm. 2.1 and Rem. 2.3]). The strategy employed there was to approximate
the system (1), (17), (3)–(5) by replacing the nonlinearities hα by their Moreau–Yosida approximations
hα,ε at the level ε > 0. For sufficiently small ε > 0, existence, uniqueness, and uniform estimates
could be shown for the approximating system at the level ε > 0. Now observe that we have, for every
α ∈ (0, 1] and every ε > 0,

0 ≤ hα,ε(r) ≤ hα(r) ≤ h(r) ∀ r ∈ R,
|h′α,ε(r)| ≤ |h′α(r)| ≤ |h′(r)| ∀ r ∈ (−1, 1).

A closer inspection of the estimates performed in the cited proofs now reveals that the above uniform
estimates, combined with the boundedness of Uad and the fact that α ∈ (0, 1], have the consequence
that all of the bounds derived in the cited proofs for the approximations at the level ε > 0 can in fact
be made uniformly with respect to the choice of α ∈ (0, 1]. Since all these estimates are also uniform
with respect to sufficiently small ε > 0, they persist under the passage to the limit as ε ↘ 0, thanks
to the semicontinuity of norms. This concludes the proof. �

Remark 2 The above well-posedness result in fact refers to the natural variational form (26) of the
homogeneous Neumann problem for equation (1), due to the low regularity of µα specified in (31).
However, thanks to (30), (A3), and the elliptic regularity theory, it is clear that µα ∈ L∞(0, T ;W ) as
well, so that we actually can write (1) in its strong form.

Let us conclude this section by collecting some useful tools that will be employed later on. We make
frequent use of the Young, Poincaré–Wirtinger and compactness inequalities:

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0, (36)

‖v‖V ≤ CΩ

(
‖∇v‖+ |v|

)
for every v ∈ V , (37)

‖v‖ ≤ δ ‖∇v‖+ CΩ,δ ‖v‖∗ for every v ∈ V and δ > 0, (38)

where CΩ depends only on Ω, CΩ,δ depends on δ, in addition, and ‖ · ‖∗ is the norm in V ∗ to be
introduced below (see (41)).

Next, we recall an important tool which is commonly used when working with problems connected
to the Cahn–Hilliard equation. Consider the weak formulation of the Poisson equation −∆z = ψ
with homogeneous Neumann boundary conditions. Namely, for a given ψ ∈ V ∗ (and not necessarily
in H), we consider the problem:

Find z ∈ V such that

∫
Ω

∇z · ∇v = 〈ψ, v〉 for every v ∈ V . (39)

Since Ω is connected and regular, it is well known that the above problem admits a family of solutions
z if and only if ψ has zero mean value; among the solutions z there is only one with zero mean value.

DOI 10.20347/WIAS.PREPRINT.3003 Berlin 2023
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Hence, we can introduce the associated solution operator N , which turns out to be an isomorphism
between the following spaces, by

N : dom(N ) := {ψ ∈ V ∗ : ψ = 0} → {z ∈ V : z = 0}, N : ψ 7→ z, (40)

where z is the unique solution to (39) satisfying z = 0. Moreover, it follows that the formula

‖ψ‖2
∗ := ‖∇N (ψ − ψ)‖2 + |ψ|2 for every ψ ∈ V ∗ (41)

defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm of V ∗. From the above
properties, one can obtain the following identities:∫

Ω

∇Nψ · ∇v = 〈ψ, v〉 for every ψ ∈ dom(N ), v ∈ V , (42)

〈ψ,N ζ〉 = 〈ζ,Nψ〉 for every ψ, ζ ∈ dom(N ), (43)

〈ψ,Nψ〉 =

∫
Ω

|∇Nψ|2 = ‖ψ‖2
∗ for every ψ ∈ dom(N ), (44)

as well as ∫ t2

t1

〈∂tv(s),N v(s)〉ds =

∫ t2

t1

〈v(s),N (∂tv(s))〉ds

=
1

2
‖v(t2)‖2

∗ −
1

2
‖v(t1)‖2

∗ , (45)

which holds for all t1, t2 ∈ [0, T ] with t1 ≤ t2 and every v ∈ H1(0, T ;V ∗) having zero mean value.

Finally, without further reference later on, we are going to employ the following convention: the capital-
case symbol C is used to denote every constant that depends only on the structural data of the
problem such as Ω, T , a, b, κ1, κ2, γ, λ, the shape of the nonlinearities, and the norms of the
involved functions. Therefore, its meaning may vary from line to line and even within the same line. In
addition, when a positive constant δ enters the computation, then the related symbol Cδ, in place of a
general C , denotes constants that depend on δ, in addition.

3 Deep quench approximation of states and optimal controls

We begin our analysis by proving a result that provides a qualitative comparison between the deep
quench approximations associated with different values of α > 0.

Theorem 3 Suppose that (8), (9) and (A1)–(A4) are fulfilled, and let, for given u ∈ Uad and 0 <
α1 < α2 ≤ 1, the solutions to the deep quench system (1), (17), (3)–(5) given by Theorem 2 be
denoted by (ϕαi , µαi , wαi), i = 1, 2. Then there is a constant K2 > 0, which depends only on the
data of the system, such that

‖ϕα1 − ϕα2‖C0([0,T ];V ∗)∩L2(0,T ;V ) + ‖wα1 − wα2‖H1(0,T ;H)∩C0([0,T ];V )

≤ K2 (α2 − α1)1/2 . (46)

DOI 10.20347/WIAS.PREPRINT.3003 Berlin 2023



Optimal control of a nonisothermal Cahn–Hilliard type model 9

Proof. We set, for convenience,

ϕ := ϕα1 − ϕα2 , µ := µα1 − µα2 , w := wα1 − wα2 ,

ρi := F ′(ϕαi) for i = 1, 2, ρ := ρ1 − ρ2 .

Then (ϕ, µ, w) is a solution to the system which in its strong formulation reads as follows:

∂tϕ−∆µ+ γϕ = 0 in Q, (47)

µ = −∆ϕ+ h′α1
(ϕα1)− h′α2

(ϕα2) + ρ− b∂tw in Q, (48)

∂ttw −∆(κ1∂tw + κ2w) + λ∂tϕ = 0 in Q, (49)

∂nϕ(0) = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ, (50)

ϕ(0) = w(0) = ∂tw(0) = 0 in Ω. (51)

We first observe that the mean values of ϕ and ∂tϕ vanish on [0, T ]. Indeed, testing (47) by the
constant function 1/|Ω| yields that

d

dt
ϕ(t) + γϕ(t) = 0 ∀ t ∈ (0, T ], ϕ(0) = 0 , (52)

whence the claim readily follows. Therefore, the expression Nϕ is meaningful as an element of V .
We now test (47) by Nϕ, (48) by ϕ, and we integrate (49) with respect time over [0, t] and test
the resulting identity by b

λ
∂tw. Then we add the three resulting equations to each other. Using the

properties (42)–(45), we find that four terms cancel, and it follows the identity

1

2
‖ϕ(t)‖2

∗ + γ

∫ t

0

‖ϕ(s)‖2
∗ds+

∫
Qt

|∇ϕ|2 +
b

λ

∫
Qt

|∂tw|2

+
bκ1

2λ

∫
Ω

|∇w(t)|2 +

∫
Qt

(
h′α1

(ϕα1)− h′α1
(ϕα2)

)
ϕ

= −
∫
Qt

(
h′α1

(ϕα2)− h′α2
(ϕα2)

)
ϕ −

∫
Qt

ρϕ − bκ2

λ

∫
Qt

(1 ∗ ∇w) · ∇∂tw

=: I1 + I2 + I3 , (53)

with obvious meaning. Owing to the monotonicity of h′α1
, the last term on the left-hand side is non-

negative. Moreover, thanks to the fact that ϕα1 and ϕα2 attain their values in (−1, 1), it follows from
the convexity of h that

−
(
h′α1

(ϕα2)− h′α2
(ϕα2)

)
ϕ = (α2 − α1)h′(ϕα2)ϕ

≤ (α2 − α1)(h(ϕα1)− h(ϕα2)) ≤ (α2 − α1) 2 ln(2) ,

so that
I1 ≤ (α2 − α1) 2 ln(2) |Ω|T . (54)

Moreover, invoking the Lipschitz continuity of F ′, as well as the compactness inequality (38), we
conclude that

|I2| ≤
∫
Qt

|F ′(ϕα1)− F ′(ϕα2)| |ϕ| ≤ C

∫
Qt

|ϕ|2

≤ 1

2

∫
Qt

|∇ϕ|2 + C

∫ t

0

‖ϕ(s)‖2
∗ds . (55)
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It remains to estimate I3. To this end, using the identity∫
Qt

(1 ∗ ∇w) · ∇(∂tw) =

∫
Ω

(1 ∗ ∇w(t)) · ∇w(t)−
∫
Qt

|∇w|2,

the fact that ‖1∗∇w(t)‖2 ≤
( ∫ t

0
‖∇w(s)‖ds

)2

≤ T
∫
Qt
|∇w|2, as well as Young’s inequality, we

infer that

I3 ≤
bκ1

4λ
‖∇w(t)‖2 + C

∫
Qt

|∇w|2. (56)

Combining (53)–(56), and invoking Gronwall’s lemma, we have thus shown that

‖ϕ‖2
L∞(0,T ;V ∗) + ‖∇ϕ‖2

L2(0,T ;H) + ‖w‖2
H1(0,T ;H)∩L∞(0,T ;V ) ≤ C (α2 − α1) .

The assertion now follows from the fact that the L2(Q) norm of ϕ can be estimated via the compact-
ness inequality (38). �

Theorem 4 Suppose that (8), (9) and (A1)–(A4) are fulfilled, and let sequences {αn} ⊂ (0, 1] and
{uαn} ⊂ Uad be given such that αn ↘ 0 and uαn → u weakly star in L∞(Q) for some u ∈ Uad.
Moreover, let (ϕαn , µαn , wαn) be the solution in the sense of Theorem 2 to the problem (1), (17),
(3)–(5) with the control uαn and the convex function hαn , for n ∈ N. Then there exist a subsequence
{αnk} and a solution (ϕ0, µ0, ξ0, w0) to the state system (1)–(5) such that, as k →∞,

ϕαnk → ϕ0 weakly star in H1(0, T ;V ) ∩ L∞(0, T ;W 2,σ(Ω))

and strongly in C0(Q), (57)

µαnk → µ0 weakly star in L∞(0, T ;V ), (58)

h′αnk
(ϕαnk )→ ξ0 weakly star in L∞(0, T ;Lσ(Ω)), (59)

wαnk → w0 weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V )

and strongly in C1([0, T ];H), (60)

with σ arbitrary in [2,∞).

Proof. By virtue of the global estimate (34), it follows the existence of the subsequence and of limits
(ϕ0, µ0, ξ0, w0) such that (57)–(60) hold true. In this connection, the strong convergence result in (57)
follows from standard compactness results (see, e.g., [26, Sect. 8, Cor. 4]). Observe that the strong
convergence in (57) and the Lipschitz continuity of F ′ imply that F ′(ϕαnk ) → F ′(ϕ0) strongly in

C0(Q) as k →∞.

We then need to show that (ϕ0, µ0, ξ0, w0) is a solution to (1)–(5). Owing to the convergence prop-
erties (57)–(60), it is easily verified by passage to the limit as k → ∞ that (ϕ0, µ0, ξ0, w0) satisfies
the (equivalent) time-integrated version of the variational equalities in (26)–(28) with test functions
v ∈ L2(0, T ;V ) for the control u. Also, the initial conditions in (29) follow easily from the weak con-
vergences in (57) and (60). It remains to show that ξ0 ∈ ∂I[−1,1](ϕ

0) almost everywhere in Q. For
this purpose, we define on L2(Q) the convex functional

Φ(v) =

∫
Q

I[−1,1](v), if I[−1,1](v) ∈ L1(Q), and Φ(v) = +∞, otherwise.
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It then suffices to show that ξ0 belongs to the subdifferential of Φ at ϕ0, i.e., that

Φ(v)− Φ(ϕ0) ≥
∫
Q

ξ0(v − ϕ0) ∀ v ∈ L2(Q). (61)

At this point, recall that ϕαnk (x, t) ∈ [−1, 1], and thus also ϕ0(x, t) ∈ [−1, 1] in Q. Consequently,
Φ(ϕ0) = 0. Now observe that in the case that I[−1,1](v) 6∈ L1(Q) the inequality (61) holds true
since its left-hand side is infinite. If, however, I[−1,1](v) ∈ L1(Q), then obviously v ∈ [−1, 1] almost
everywhere in Q, and it follows from (18) and Lebesgue’s theorem of dominated convergence that

lim
k→∞

∫
Q

hαnk (v) = Φ(v) = 0.

Now, by the convexity of hαnk , and since hαnk (ϕαnk ) is nonnegative, we have for all v ∈ L2(Q) that

h′αnk
(ϕαnk )(v − ϕαnk ) ≤ hαnk (v)− hαnk (ϕαnk ) ≤ hαnk (v) a.e. in Q.

Using (57) and (59), we thus obtain the following chain of (in)equalities:∫
Q

ξ0(v − ϕ0) = lim
k→∞

∫
Q

h′αnk
(ϕαnk )(v − ϕαnk )

≤ lim sup
k→∞

∫
Q

(
hαnk (v)− hαnk (ϕαnk )

)
≤ lim

k→∞

∫
Q

hαnk (v) = Φ(v) = Φ(v)− Φ(ϕ0),

which shows the validity of (61). This concludes the proof. �

Remark 3 Since, according to Theorem 1, the solution variables ϕ0 and w0 are uniquely determined,
the convergence properties (57) and (60) actually hold for the entire sequences and not just for a
subsequence.

Corollary 1 Suppose that (8), (9) and (A1)–(A4) are fulfilled, let (ϕ0, µ0, ξ0, w0) be a solution to (1)–
(5) and (ϕα, µα, wα) be the solution to (1), (17), (3)–(5) associated with some α ∈ (0, 1]. Then, with
the constant K2 > 0 introduced in Theorem 3, we have

‖ϕα − ϕ0‖C0([0,T ];V ∗)∩L2(0,T ;V ) + ‖wα − w0‖H1(0,T ;H)∩C0([0,T ];V )

≤ K2 α
1/2 . (62)

Proof. This is an immediate consequence of the uniqueness of w0 and ϕ0, if we put in (46) α2 = α
and pass to the limit as α1 ↘ 0. �

4 Existence and approximation of optimal controls

Beginning with this section, we study the optimal control problem (P) of minimizing the cost functional
(6) subject to the state system (1)–(5) and the control constraint u ∈ Uad, where (8) and (9) are
generally assumed to be valid. In addition to (A1)–(A4), we impose the following general assumptions:
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(A5) The coeffients β1, . . . , β6, ν are nonnegative and not all equal to zero.

(A6) ϕΩ, wΩ, w
′
Ω ∈ L2(Ω) and ϕQ, wQ, w′Q ∈ L2(Q).

We compare the problem (P) with the following family of optimal control problems for α > 0:

(Pα) Minimize the cost functional (6) subject to the state system (1), (17), (3)–(5) and the control
constraint u ∈ Uad.

We expect that the minimizers of the control problems (P) and (Pα) are closely related. Before giving
an affirmative answer to this conjecture, we introduce for convenience the following control-to-state
operators:

S :Uad 3 u 7→ (ϕ,w), where ϕ,w are the first and fourth components

of any solution to (1)–(5), (63)

Sα :Uad 3 u 7→ (ϕα, wα), where ϕα, wα are the first and third components

of the solution to (1), (17), (3)–(5). (64)

We then have the following result.

Proposition 1 Suppose that (8), (9) and (A1)–(A6) are fulfilled, and let sequences {αn} ⊂ (0, 1]
and {un} ⊂ Uad be given such that αn ↘ 0 and un → u weakly star in L∞(Q) for some u ∈ Uad

as n→∞. Then we have

J (S(u), u) ≤ lim inf
n→∞

J (Sαn(un), un), (65)

J (S(v), v) = lim
n→∞

J (Sαn(v), v) ∀ v ∈ Uad. (66)

Proof. According to Theorem 4 and Remark 3, we have Sαn(uαn) → S(u) in the sense of (57)
and (60), respectively. Then (65) follows from the semicontinuity properties of the cost functional.
Now let v ∈ Uad be arbitrarily chosen. Applying Theorem 4 and Remark 3 to the constant sequence
vn = v, n ∈ N, we infer that Sαn(v)→ S(v) in the sense of (57) and (60). In particular, this implies
strong convergence of the sequences {ϕαn}, {wαn} and {∂twαn} in C0([0, T ];H), by compact
embedding. Since the first six summands of the cost functional are continuous with respect to the
strong topology of C0([0, T ];H), the validity of (66) follows. �

We are now in a position to show the existence of minimizers for the control problem (P). We have the
following result.

Corollary 2 Suppose that (8), (9), and (A1)–(A6) are fulfilled. Then the problem (P) admits at least
one solution in Uad.

Proof. We pick an arbitrary sequence {αn} ⊂ (0, 1] such that αn ↘ 0 as n → ∞. By virtue of
[9, Thm. 4.1], the problem (Pαn) has a solution uαn ∈ Uad with associated state (ϕαn , µαn , wαn)
and ξαn := h′αn(ϕαn) for n ∈ N. Since Uad is bounded in L∞(Q), we may without loss of generality
assume that uαn → u weakly star inL∞(Q) for some u ∈ Uad. Then, in view of Theorem 4, there are
a subsequence {αnk} and a solution (ϕ0, µ0, ξ0, w0) to the system (1)–(5) such that the convergence
properties (57)–(60) hold true. Now observe that (ϕ0, w0) = S(u) and (ϕαn , wαn) = Sαn(un) for
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n ∈ N. We then obtain from the optimality of ((ϕαn , wαn), uαn) for (Pαn), using Proposition 1, the
following chain of (in)equalities:

J (S(u), u) ≤ lim inf
k→∞

J (Sαnk (uαnk ), uαnk ) ≤ lim inf
k→∞

J (Sαnk (v), v)

= J (S(v), v) .

This shows that (S(u), u) is an optimal pair of the control problem (P), which concludes the proof of
the assertion. �

The proof of Corollary 2 suggests that optimal controls of (Pα) are “close” to optimal controls of (P)
as α approaches zero. However, they do not yield any information on whether every optimal control
of (P) can be approximated in this way. In fact, such a global result cannot be expected to hold true.
Nevertheless, a local answer can be given by employing a well-known trick. To this end, let u∗ ∈ Uad

be an optimal control for (P) and (ϕ∗, µ∗, ξ∗, w∗) be a solution to the associated state system (1)–(5)
so that (ϕ∗, w∗) = S(u∗). We associate with this optimal control the adapted cost functional

J̃ ((ϕ,w), u) := J ((ϕ,w), u) +
1

2
‖u− u∗‖2

L2(Q) (67)

and a corresponding adapted optimal control problem for α > 0, namely:

(P̃α) Minimize J̃ ((ϕ,w), u) for u ∈ Uad subject to (ϕ,w) = Sα(u).

With essentially the same proof as that of [10, Thm. 4.1] (which needs no repetition here), we can
show that the adapted optimal control problem (P̃α) has for every α > 0 at least one solution. The
following result gives a partial answer to the question raised above concerning the approximation of
optimal controls for (P) by the approximating problem (P̃α).

Theorem 5 Suppose that (8), (9) and (A1)–(A6) are fulfilled, assume that u∗ ∈ Uad is an arbitrary op-
timal control of (P) with associated state (ϕ∗, µ∗, ξ∗, w∗), and let {αk}k∈N ⊂ (0, 1] be any sequence
such that αk ↘ 0 as k → ∞. Then, for any k ∈ N, there exists an optimal control uαk ∈ Uad of

the adapted problem (P̃αk ) with associated state (ϕαk , µαk , wαk) such that, as k →∞,

uαk → u∗ strongly in L2(Q), (68)

and such that (57)–(60) hold true with some (ϕ0, µ0, ξ0, w0) satisfying ϕ0 = ϕ∗ and w0 = w∗.
Moreover, we have

lim
k→∞

J̃ (Sαk(uαk), uαk) = J (S(u∗), u∗). (69)

Proof. For any k ∈ N, we pick an optimal control uαk ∈ Uad for the adapted problem (P̃αk ) and
denote by (ϕαk , µαk , wαk) the associated strong solution to the approximating state system (1), (17),
(3)–(5). By the boundedness of Uad in L∞(Q), there is some subsequence {αn} of {αk} such that

uαn → u weakly star in L∞(Q) as n→∞, (70)

for some u ∈ Uad. Thanks to Theorem 4, the convergence properties (57)–(60) hold true corre-
spondingly for some solution (ϕ0, µ0, ξ0, w0) to the state system (1)–(5), and the pair (S(u), u) =
((ϕ0, w0), u) is admissible for (P).

DOI 10.20347/WIAS.PREPRINT.3003 Berlin 2023



P. Colli, G. Gilardi, A. Signori, J. Sprekels 14

We now aim at showing that u = u∗. Once this is shown, it follows from the uniqueness of the first
and fourth components of the solutions to the state system (1)–(5) that also (ϕ0, w0) = (ϕ∗, w∗).
Now observe that, owing to the weak sequential lower semicontinuity properties of J̃ , and in view of
the optimality property of (S(u∗), u∗) for problem (P),

lim inf
n→∞

J̃ (Sαn(uαn), uαn) ≥ J (S(u), u) +
1

2
‖u− u∗‖2

L2(Q)

≥ J (S(u∗), u∗) +
1

2
‖u− u∗‖2

L2(Q) . (71)

On the other hand, the optimality property of (Sαn(uαn), uαn) for problem (P̃αn) yields that for any
n ∈ N we have

J̃ (Sαn(uαn), uαn) ≤ J̃ (Sαn(u∗), u∗) = J (Sαn(u∗), u∗) , (72)

whence, taking the limit superior as n→∞ on both sides and invoking (66) in Proposition 1,

lim sup
n→∞

J̃ (Sαn(uαn), uαn) ≤ lim sup
n→∞

J̃ (Sαn(u∗), u∗)

= lim sup
n→∞

J (Sαn(u∗), u∗) = J (S(u∗), u∗) . (73)

Combining (71) with (73), we have thus shown that 1
2
‖u− u∗‖2

L2(Q) = 0 , so that u = u∗ and thus

also (ϕ∗, w∗) = (ϕ0, w0). Moreover, (71) and (73) also imply that

J (S(u∗), u∗) = J̃ (S(u∗), u∗) = lim inf
n→∞

J̃ (Sαn(uαn), uαn)

= lim sup
n→∞

J̃ (Sαn(uαn), uαn) = lim
n→∞

J̃ (Sαn(uαn), uαn) ,

which proves the validity of (69). Moreover, the convergence properties (57)–(60) are satisfied with
ϕ0 = ϕ∗ and w0 = w∗. On the other hand, we have that

J (S(u∗), u∗) ≤ lim inf
n→∞

J (Sαn(uαn), uαn) ≤ lim sup
n→∞

J (Sαn(uαn), uαn)

≤ lim sup
n→∞

J̃ (Sαn(uαn), uαn) = J (S(u∗), u∗),

so that also J (Sαn(uαn), uαn) converges to J (S(u∗), u∗) as n → ∞, and the relation in (67)
enables us to infer the strong convergence in (68) for the subsequence {uαn}.
We now claim that (68) and (69) hold true even for the entire sequence, due to the complete identifi-
cation of the limit u as u∗. We only prove this claim for (68); for (69) a similar reasoning may be used.
Assume that (68) were not true. Then there exist some ε > 0 and a subsequence {αj} of {αk} such
that

‖uαj − u∗‖L2(Q) ≥ ε ∀ j ∈ N. (74)

However, by the boundedness of Uad, there is some subsequence {αjn} of {αj} such that, with some
ũ ∈ Uad,

uαjn → ũ weakly star in L∞(Q) as n→∞ .

Arguing as above, it then turns out that ũ = u∗ and that (68) holds for the subsequence {uαjn} as
well, which contradicts the fact that (74) obviously implies that {uαj} cannot have a subsequence that
converges strongly to u∗ in L2(Q). �
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5 First-order necessary optimality conditions

We now derive first-order necessary optimality conditions for the control problem (P), using the corre-
sponding conditions for (P̃α) as approximations. To this end, we generally assume that the conditions
(8), (9), and (A1)–(A6) are fulfilled. Moreover, we need an additional assumption:

(A7) It holds that β2 ϕΩ ∈ V and β6w
′
Ω ∈ V .

Notice that this assumption essentially requires a better regularity for the target data ϕΩ and w′Ω that
in the cost functional give the endpoint tracking for the variables ϕ and ∂tw. On the other hand, the
assumption (A7) is trivially satisfied if β2 = β6 = 0.

Now let u∗ ∈ Uad be any fixed optimal control for (P) with associated state (ϕ∗, µ∗, ξ∗, w∗) (where
onlyϕ∗ andw∗ are uniquely determined), and assume that α ∈ (0, 1] is fixed. Moreover, suppose that
u∗α ∈ Uad is an optimal control for (P̃α) with corresponding state (ϕ∗α, µ

∗
α, w

∗
α). The corresponding

adjoint problem is given, in its strong form for simplicity, by

− ∂tpα −∆qα + γpα + h′′α(ϕ∗α)qα + F ′′(ϕ∗α)qα − λ∂trα
= β1(ϕ∗α − ϕQ) in Q, (75)

qα = −∆pα in Q, (76)

− ∂trα −∆(κ1rα − κ2(1~ rα))− bqα
= β3(1~ (w∗α − wQ)) + β4(w∗α(T )− wΩ) + β5(∂tw

∗
α − w′Q) in Q, (77)

∂npα = ∂nqα = ∂n(κ1rα − κ2(1~ rα)) = 0 on Σ, (78)

pα(T ) = β2(ϕ∗α(T )− ϕΩ)− λβ6(∂tw
∗
α(T )− w′Ω)

and rα(T ) = β6(∂tw
∗
α(T )− w′Ω) in Ω, (79)

with the convolution product~ defined in (21). Concerning this product, please note that ∂t(1~ r) =
−r. Let us, for convenience, introduce the abbreviations

fα := β3(1~ (w∗α − wQ)) + β5(∂tw
∗
α − w′Q) + β4(w∗α(T )− wΩ), (80)

gα := β1(ϕ∗α − ϕQ), (81)

ρα := β6(∂tw
∗
α(T )− w′Ω), (82)

πα := β2(ϕ∗α(T )− ϕΩ)− λρα. (83)

Observe that the last summand of fα is independent of time. By virtue of (34), (A6), and (A7), we
have, for every α ∈ (0, 1],

‖fα‖L2(0,T ;H) + ‖gα‖L2(0,T ;H) + ‖ρα‖V + ‖πα‖V
≤ C

(
‖ϕ∗α‖C0([0,T ];V ) + ‖w∗α‖C1([0,T ];V ) + 1

)
≤ C, (84)

where in the following we denote by C positive constants that may depend on the data of the system
but not on α ∈ (0, 1].

According to [10, Thm. 4.5], the adjoint system has under the assumptions (8), (9) and (A1)–(A7) a
unique weak solution with the regularity

pα ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (85)

qα ∈ L2(0, T ;V ), (86)

rα ∈ H1(0, T ;H) ∩ L∞(0, T ;V ). (87)
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Moreover, by virtue of [10, Thm. 4.7], we know that the first-order optimality condition for the optimal
control u∗α is characterized by the variational inequality∫

Q

(rα + νu∗α + (u∗α − u∗)) (v − u∗α) ≥ 0 ∀ v ∈ Uad . (88)

The next step consists in passing to the limit as α ↘ 0 in both the adjoint system (75)–(79) and
the variational inequality (88). To this end, uniform (with respect to α ∈ (0, 1]) estimates for the ad-
joint variables (pα, qα, rα) must be shown. A closer look at the system (75)–(79) reveals that there
is an inherent difficulty. To this end, observe that (76) and (78) imply that qα(t) = 0 for almost ev-
ery t ∈ (0, T ). Therefore, testing of (75) with the constant function v = 1/|Ω|, integration with
respect to time over [t, T ], and application of the well-known integration-by-parts rule for functions in
H1(0, T ;V ∗) ∩ L2(0, T ;V ), using the endpoint conditions (79) along with the abbreviations (81)–
(83), yield the identity

pα(t) = πα + λρα − λ rα(t) +
1

|Ω|

∫
Qt
gα

− 1

|Ω|

∫
Qt

[
γpα + h′′α(ϕ∗α)qα + F ′′(ϕ∗α)qα

]
. (89)

Here, and for the remainder of this paper, we put

Qt := Ω× (t, T ) whenever t ∈ [0, T ).

Apparently, the term h′′α(ϕ∗α)qα cannot be controlled. Indeed, although ϕ∗α satisfies the strict separa-
tion condition (35) for any fixed α > 0, a uniform bound cannot be expected, since it may well happen
that the constants in (35) satisfy r∗(α) ↘ −1 or r∗(α) ↗ 1 as α ↘ 0, in which case h′′α(ϕ∗α)
may become unbounded. Consequently, we cannot hope to pass to the limit as α ↘ 0 in the system
(75)–(79) as it stands, not even in its weak form with test functions v ∈ V . In order to overcome
this difficulty, we employ an idea that goes back to [11]. To this end, recall that the mean value of qα
vanishes almost everywhere in (0, T ). Therefore, we deduce from (76) and (78) the identity

pα(t)− pα(t) = N qα(t), (90)

with the operatorN introduced in (40). Notice that pα ∈ H1(0, T ;V ∗) and pα ∈ H1(0, T ), whence
we conclude that alsoN qα ∈ H1(0, T ;V ∗).

The identity (90) enables us to eliminate pα from the problem. For this purpose, we introduce the
spaces

H0 := {v ∈ H : v = 0} and V0 := {v ∈ V : v = 0} = V ∩H0 . (91)

Now observe that the subspace span{1} of spatially constant functions is the orthogonal complement
of H0 with respect to the inner product of H ; moreover, H0 is a closed subspace of H and therefore
a Hilbert space itself when equipped with the standard inner product in H . In addition, owing to the
Poincaré–Wirtinger inequality (37), the expression

(v, w)0 :=

∫
Ω

∇v · ∇w for v, w ∈ V0 (92)

defines an inner product on V0 whose associated norm is equivalent to the standard norm of V . Obvi-
ously, V0 becomes a Hilbert space when endowed with the inner product ( · , · )0, and since, according
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to [11, Cor. 5.3], V0 is densely embedded in H0, we can construct the Hilbert triple (V0, H0, V
∗

0 ) with
the dense and compact embeddings V0 ⊂ H0 ⊂ V ∗0 and the usual identification that

〈v, w〉V0 = (v, w) for all v ∈ H0 and w ∈ V0. (93)

The idea now is to change the standard variational version of the system (75)–(79) by not admitting
every v ∈ V as test function in (75), but only those having zero mean value. In this way, we eliminate
pα from the problem; indeed, we easily find that the pair (qα, rα) solves the reduced system

〈−∂tN qα, v〉V0 +

∫
Ω

∇qα · ∇v + γ

∫
Ω

N qα v − λ

∫
Ω

∂trα v

= −
∫

Ω

(
h′′α(ϕ∗α)qα + F ′′(ϕ∗α)qα

)
v +

∫
Ω

gα v

for all v ∈ V0 and a.e. in (0, T ), (94)

−
∫

Ω

∂trα v +

∫
Ω

∇(κ1rα − κ2(1~ rα)) · ∇v − b

∫
Ω

qα v =

∫
Ω

fαv

for all v ∈ V and a.e. in (0, T ), (95)

N qα(T ) = πα − πα , rα(T ) = ρα. (96)

At this point, it is worth observing that, because of the zero mean value condition, the space V0 does
not contain the space C∞0 (Ω), and therefore the variational equality with test functions v ∈ V0 cannot
be interpreted as an equation in the sense of distributions.

In the following, we deduce some a priori estimates for the reduced system (94)–(96). Here we argue
formally, where we note that all of the following calculations can be performed rigorously on the level of
an approximating Faedo–Galerkin system using as basis functions the eigenfunctions ej , normalized
by ‖ej‖ = 1, for j ∈ N, of the Laplace operator with homogeneous Neumann conditions. That is, we
have

−∆ej = λjej in Ω, ∂nej = 0 on Γ, for all j ∈ N,
0 = λ1 < λ2 ≤ . . . , lim

j→∞
λj = +∞, (ei, ej) = δij for all i, j ∈ N.

In this connection, observe that {ej}j∈N forms a complete orthonormal system inH , while {ej}j≥2 is
obviously a complete orthonormal system in the space H0 of functions having zero mean value, and
the eigenspace associated with the eigenvalue λ1 = 0 is just the space of constant functions.

FIRST ESTIMATE. We now insert v = qα(t) (which belongs to V0) in (94), and v = −λ
b
∂trα(t) in

(95) (this is only formal), and add the resulting equations, whence a cancellation of two terms occurs.
Then we integrate with respect to time over (t, T ) for arbitrary t ∈ [0, T ), taking (96) into account.
Using the properties (42)–(45) of the operatorN , and rearranging terms, we obtain the identity

1

2
‖qα(t)‖2

∗ +

∫
Qt
|∇qα|2 + γ

∫ T

t

‖qα(s)‖2
∗ ds +

∫
Qt
h′′α(ϕ∗α) |qα|2

+
λ

b

∫
Qt
|∂trα|2 +

λκ1

2b
‖∇rα(t)‖2 − 1

2
‖∇πα‖2 − λκ1

2b
‖∇ρα‖2

= −
∫
Qt
F ′′(ϕ∗α) |qα|2 +

∫
Qt
gα qα −

λ

b

∫
Qt
fα ∂trα

+
λκ2

b

∫
Qt
∇(1~ rα) · ∂t∇rα =: I1 + I2 + I3 + I4 , (97)
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with natural meaning. Observe that the fourth summand on the left-hand side is nonnegative. The last
two terms on the left-hand side are uniformly bounded due to (84). Moreover, by virtue of (35) and
(A2), we have that ‖F ′′(ϕ∗α)‖L∞(Q) ≤ C , and therefore it follows from Young’s inequality, using (84)
and the compactness inequality (38), that

I1 + I2 ≤ C + C

∫
Qt
|qα|2 ≤

1

2

∫
Qt
|∇qα|2 + C

∫ T

t

‖qα(s)‖2
∗ ds + C . (98)

Moreover, by Young’s inequality and (84),

I3 ≤
λ

2b

∫
Qt
|∂trα|2 + C . (99)

Finally, integration by parts with respect to time and Young’s inequality yield the estimate

I4 = − λκ2

b

∫
Ω

∇(1~ rα)(t) · ∇rα(t) +
λκ2

b

∫
Qt
|∇rα|2

≤ λκ1

2b
‖∇rα(t)‖2 + C ‖∇(1~ rα)(t)‖2 +

λκ2

b

∫
Qt
|∇rα|2

≤ λκ1

2b
‖∇rα(t)‖2 + C

∫ T

t

‖∇rα(s)‖2 ds . (100)

Combining (97)–(100), and applying Gronwall’s lemma backwards in time, we have thus shown the
estimate

‖qα‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖rα‖H1(0,T ;H)∩L∞(0,T ;V )

+

∫
Q

h′′α(ϕ∗α) |qα|2 ≤ C ∀α ∈ (0, 1], (101)

whence it obviously follows that

‖1~ rα‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ C ∀α ∈ (0, 1]. (102)

In addition, since it is known that the mapping N is a topological isomorphism between V ∗0 and V0

and, for any s ≥ 0, betweenHs(Ω)∩H0 andHs+2(Ω)∩H0, we also haveN qα ∈ L∞(0, T ;V0)∩
L2(0, T ;H3(Ω)) and

‖N qα‖L∞(0,T ;V )∩L2(0,T ;H3(Ω)) ≤ C ∀α ∈ (0, 1]. (103)

SECOND ESTIMATE. As a preparation for the next estimate, we introduce the space

Z := {v ∈ H1(0, T ;V ∗0 ) ∩ L2(0, T ;V0) : v(0) = 0}, (104)

which, as a closed subspace, becomes a Hilbert space itself when endowed with the standard inner
product and norm ofH1(0, T ;V ∗0 )∩L2(0, T ;V0). Notice thatZ ⊂ C0([0, T ];H0) which makes the
initial condition v(0) = 0 meaningful; we also have the dense and compact embeddings

Z ⊂ L2(0, T ;H0) ⊂ Z∗.
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Moreover, Z is dense in L2(0, T ;V0) since it contains the dense subspace H1
0 (0, T ;V0). Therefore,

the dual space L2(0, T ;V ∗0 )∼=(L2(0, T ;V0))∗ can be identified with a subspace of the dual space
Z∗ in the usual way, i.e., such that

〈v, w〉Z =

∫ T

0

〈v(t), w(t)〉V0 dt for all v ∈ L2(0, T ;V ∗0 ) and w ∈ Z . (105)

Now, we take an arbitrary v ∈ Z as test function in (94) and integrate over (0, T ). We obtain∫ T

0

〈−∂tN qα(t), v(t)〉V0dt +

∫
Q

∇qα · ∇v +

∫
Q

h′′α(ϕ∗α)qα v

=

∫
Q

(
−γN qα + λ ∂trα − F ′′(ϕ∗α)qα + gα

)
v . (106)

Next, we observe thatN qα ∈ H1(0, T ;V ∗0 )∩L2(0, T ;V0) and integrate by parts in the first term of
(106). With the help of (84), (96), and (103), we infer that∫ T

0

〈−∂tN qα(t), v(t)〉V0 dt = −(πα, v(T )) +

∫ T

0

〈∂tv(t),N qα(t)〉V0 dt, (107)

and, consequently, for every v ∈ Z it holds∣∣∣ ∫ T

0

〈−∂tN qα(t), v(t)〉V0 dt
∣∣∣

≤ ‖πα‖ ‖v‖C0([0,T ];H0) +

∫ T

0

‖N qα(t)‖V0 ‖∂tv(t)‖V ∗0 dt

≤ C ‖v‖Z + C ‖N qα‖L2(0,T ;V ) ‖∂tv‖L2(0,T ;V ∗0 ) ≤ C ‖v‖Z . (108)

Hence, in view of the estimates (101) and (108), we easily find from a comparison of terms in (106)
that the linear functional

Λα : Z → R, 〈Λα, v〉Z :=

∫
Q

h′′α(ϕ∗α) qα v for v ∈ Z,

satisfies
‖Λα‖Z∗ ≤ C ∀α ∈ (0, 1]. (109)

By the estimates shown above, there exist a sequence {αn}n∈N ⊂ (0, 1] and limit points q∗, r∗,Λ∗

such that αn ↘ 0 and

qαn → q∗ weakly star in L∞(0, T ;V ∗) ∩ L2(0, T ;V ), (110)

rαn → r∗ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ), (111)

1~ rαn → 1~ r∗ weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V ), (112)

N qαn → N q∗ weakly star in L∞(0, T ;V0) ∩ L2(0, T ;H3(Ω)), (113)

Λαn → Λ∗ weakly in Z∗. (114)

Moreover, in view of Theorem 4 and Theorem 5, we may without loss of generality assume that u∗αn →
u∗ strongly in L2(Q) and that the convergence properties (57) and (60) for the state components ϕ∗αn
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and w∗αn are satisfied correspondingly with (ϕ0, w0) = (ϕ∗, w∗). Consequently, we have for n→∞
that

F ′′(ϕ∗αn)qαn → F ′′(ϕ∗)q∗ weakly in L2(Q)

and that

fαn → f ∗ := β3(1~ (w∗ − wQ)) + β4(w∗(T )− wΩ) + β5(∂tw
∗ − w′Q),

gαn → g∗ := β1(ϕ∗ − ϕQ),

ραn → ρ∗ := β6(∂tw
∗(T )− w′Ω),

παn → π∗ := β2(ϕ∗(T )− ϕΩ)− λρ∗,

for suitable convergence properties as from (57) and (60).

Now we consider the system (94)–(96) for α = αn, where we replace (94) (and the first final condition
in (96)) with the time-integrated version (106)–(107), with test functions v ∈ Z . Passage to the limit
as n→∞, using the above convergence properties, then yields that

〈Λ∗, v〉Z = (π∗, v(T ))−
∫ T

0

〈∂tv(t),N q∗(t)〉V0 dt−
∫
Q

∇q∗ · ∇v

+

∫
Q

[
− γN q∗ + λ∂tr

∗ − F ′′(ϕ∗)q∗ + g∗
]
v for all v ∈ Z, (115)

−
∫

Ω

∂tr
∗ v +

∫
Ω

∇(κ1r
∗ − κ2(1~ r∗)) · ∇v − b

∫
Ω

q∗ v =

∫
Ω

f ∗v

for all v ∈ V and a.e. in (0, T ), (116)

r∗(T ) = ρ∗ . (117)

Finally, we consider the variational inequality (88) for α = αn, n ∈ N. By passing to the limit as
n→∞, we find that ∫

Q

(r∗ + ν u∗)(v − u∗) ≥ 0 ∀ v ∈ Uad. (118)

Summarizing the above considerations, we have proved the following first-order necessary optimality
conditions for the optimal control problem (P).

Theorem 6 Suppose that the conditions (A1)–(A7), (8) and (9) are fulfilled, and let u∗ ∈ Uad be a
minimizer of the optimal control problem (P) with the associated uniquely determined state compo-
nents ϕ∗, w∗. Then there exist q∗, r∗, and Λ∗ such that the following holds true:

(i) q∗ ∈ L∞(0, T ;V ∗0 )∩L2(0, T ;V ), N q∗ ∈ L∞(0, T ;V0)∩L2(0, T ;H3(Ω)), r∗ ∈ H1(0, T ;H)∩
L∞(0, T ;V ), 1~ r∗ ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ), Λ∗ ∈ Z∗.

(ii) The adjoint system (115)–(117) and the variational inequality (118) are satisfied.
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Remark 4 (i) Observe that the adjoint state variables (q∗, r∗) and the Lagrange multiplier Λ∗ are not
uniquely determined. However, all possible choices satisfy (118), i.e., u∗ is for ν > 0 the L2(Q)-
orthogonal projection of −ν−1r∗ onto the closed and convex set Uad, and for a.e. (x, t) ∈ Q it
holds

u∗(x, t) = max
{
umin(x, t),min{umax(x, t),−ν−1r∗(x, t)}

}
.

(ii) We have, for every n ∈ N, the complementarity slackness condition

〈Λαn , qαn〉Z =

∫
Q

h′′αn(ϕ∗αn) |qαn|2 =

∫
Q

2αn
1− (ϕ∗αn)2

|qαn|2 ≥ 0.

Unfortunately, our convergence properties for {ϕ∗αn} and {qαn} do not permit a passage to the limit
in this inequality to derive a corresponding result for (P).
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