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Temporal cavity soliton interaction in passively mode-locked
semiconductor lasers

Andrei G. Vladimirov

Abstract

Weak interaction due to gain saturation and recovery of temporal cavity solitons in a delay
differential model of a long cavity semiconductor laser is studied numerically and analytically
using an asymptotic approach. It is shown that apart from usual soliton repulsion leading to a
harmonic mode-locking regime a soliton attraction is also possible in a laser with nonzero linewidth
enhancement factor. It is shown numerically that the attraction can lead either to a soliton merging
or to a pulse bound state formation.

1 Introduction

Temporal cavity solitons (TCSs) are short nonlinear optical pulses generated by mode-locked lasers
and optical microresonators and preserving their shape in the course of propagation [5, 8, 9]. In mode-
locked lasers, unlike the usual self-starting pulsed regimes generated above the linear laser threshold,
TCSs coexist with stable laser off regime and require a finite perturbation for their excitation. For ex-
ample, when the cavity length of a laser with a semiconductor gain medium is sufficiently large usual
mode-locked pulses can be transformed into TCSs [13] corresponding to a non-self-starting mode-
locking regime. In many practical situations when more than one TCSs are exited in an optical cavity
weak interaction between the TCSs may take place via their exponentially decaying tails. Spatial and
temporal dissipative soliton interaction in lasers with saturable absorbers was studied in many pub-
lications in the case when the gain and absorber populations were adiabatically eliminated and the
interaction took place only via the overlapping electric fields of the pulses [1–3, 12, 22]. Less inves-
tigated is the interaction of mode-locked pulses in the presence of finite relaxation times of the gain
and/or absorber media. In this case the electromagnetic field saturates gain and absorption behind the
pulse and their slow relaxation can affect the position of another pulse traveling in the cavity. This type
of interaction was studied in Ref. [4, 11, 15, 17, 29]. In particular, it was demonstrated theoretically and
verified experimentally with solid state and fiber lasers [11] that the interaction due to gain depletion
and very slow recovery can produce a repulsive force between adjacent pulses leading to the for-
mation of harmonic mode-locking regimes. Similar conclusion was made in Ref. [15] using the delay
differential equation (DDE) model [25–27] of a mode-locked monolithic semiconductor laser, where
similarly to Ref. [11] the gain recovery time was much longer than the cavity round trip time. In this pa-
per using the same DDE model I consider the mode-locked pulse interaction in the TCS regime where
the cavity length is sufficiently large, much greater than the gain recovery time. Basing on asymptotic
approach the equations governing slow evolution of the TCS time separation and phase difference
of the interacting TCSs are derived and analyzed. Asymptotic study of weak TCS interaction in DDE
models of optical systems was already carried out earlier in [14, 16, 20]. However, only in [20] devoted
to the TCS interaction in nonlinear mirror mode-locked laser and here a closed analytical form of the
interaction equations is derived. Using these equations I show that the TCS interaction scenarios can
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be more rich than those described in [11, 15]. Apart from the pulse repulsion resulting in a harmonic
mode-locking regime, TCS attraction leading ether to TCS merging or bound state formation can take
place in a laser with nonzero linewidth enhancement factor. Note, that soliton attraction leading to a
bound state formation was observed earlier in Ref. [17] in a complex Ginzburg-Landau equation type
mode-locking laser model with disppersion and in the DDE model of a nonlinear mirror mode-locked
laser [20]. Note, however, that ulike the present work, in both these papers the Kerr nonlinearity played
a decisive role in the process of the pulse formation. Furthermore, since Ref. [17] considers the limit
of infinitely large gain recovery time, the mechanism of the pulse interaction in this paper is different
and can be attributed to the saturation and slow recovery of the absorption, rather than the gain.

2 Model equations

The DDE model of a passively mode-locked semiconductor laser for the electric field amplitude A (t)
at the entrance of the laser absorber section, saturable gain G (t), and saturable absorption Q (t) in
the gain and absorber sections can be written in the form [25–27]:

γ−1∂tA+ (1 + iω)A = R(t− T )A(t− T ), (1)

∂tG = g0 − γgG− e−Q
(
eG − 1

)
|A|2, (2)

∂tQ = q0 − γqQ− s
(
1− e−Q

)
|A|2, (3)

with
R(t) =

√
κe(1−iαg)G(t)/2−(1−iαq)Q(t)/2+iϕ−iωT .

Here t is the time variable, κ is the attenuation factor describing linear non-resonant intensity losses
per cavity round trip, αg and αq are the linewidth enhancement factors in the gain and absorber
sections, respectively. The time delay parameter T stands for the cold cavity round trip time, γ is the
spectral filtering bandwidth, γg and γq are the normalized carrier relaxation rates in the amplifying and
absorbing sections, and s is the ratio of the saturation intensities in the gain and absorber sections. The
pump parameter g0 depends on the injection current in the gain section, while q0 is the unsaturated
loss parameter, which depends on the inverse voltage applied to the absorber section. The parameter
ϕ is the phase shift describing an the detuning between the central frequency of the spectral filter and
the closest cavity mode and ω is a reference frequency.

It is well known that in a certain parameter domain Eqs. (1)-(3) demonstrate pulsed solutions corre-
sponding to fundamental single pulse and harmonic multipulse mode-locking regimes [25–27]. Fur-
thermore, it was shown in [13] that when the laser cavity is sufficiently long, so that the round trip time
is much larger than the gain relaxation time, these pulses can be transformed into TCSs sitting on
the stable laser off solution. In this situation two well separated mode-locking pulses can interact only
weakly via their exponentially decaying tails. Furthermore, when the pulses are sufficiently far away
from one another, this interaction is mainly due to the gain component G, which usually decays much
slower than the electric field envelope A and the saturable absorption Q. Note, however, that when
the distance between the TCSs becomes small enough the interaction via absorber component also
might come into play and even lead to the pulse bound state formation, see Ref. [17], where the case
of infinitely large gain recovery time was considered.

In order to derive the TCS interaction equations we rewrite the model equations in a more general real
vector form

∂tU = Fω (U) +Hω [U(t− T )] , (4)
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where U =
(
U1 U2 U3 U4

)T
is real column vector with U1 = ReA, U2 = ImA, U3 =

G− g0/γg, U4 = Q− q0/γq,

Fω (U) =


−γ (U1 − ωU2)
−γ (U2 + ωU1)

−γgU3 − e−U4−Q0
(
eU3+G0 − 1

)
(U2

1 + U2
2 )

−γqU4 − s
(
1− e−U4−Q0

)
(U2

1 + U2
2 )

 ,

and

Hω [U(t− T )] =


−ReR(t− T )
− ImR(t− T )

0
0


with

R (t) = γ
√
κe(1−iαg)(U3+g0)/2−(1−iαq)(U4+q0)/2−iωT (U1 + iU2) .

.

3 Temporal cavity soliton

Let us assume that the inequalities

γ−1 < γ−1
q < γ−1

g ≪ T, (5)

for the relaxation rates in the model equations (1)-(3) are satisfied. This means that the multimode
semiconductor laser cavity is sufficiently long, much longer than the gain relaxation time. In this case
the DDE model can have TCS solutions [13]. We will assume that such a solution corresponding to
a narrow mode-locked pulse with the duration τp ∼ γ−1 exists in a certain parameter domain and is

given by ω = ω0 and U = u =
(
u1 u2 u3 u4

)T
in terms of Eq. (4). Here u (t) = u (t+ T0)

is periodic in time with the period T0 close to the delay time T . In terms of the original model equations

(1)-(3) we have u =
[
ReA0 (t) ImA0 (t) G0 (t)− g0/γg Q0 (t)− q0/γq

]T
, where A0 (t),

G0 (t), and Q0 (t) is a T0-periodic TCS solution of these equations.

The decay rates of the TCS tails are determined by the following linearzation [18, 23, 28] of the model
equations (1)-(3), on the trivial solution:

γ−1∂ta+ (1 + iω0) a = R0a (t+ δ) , (6)

∂tv3 = −γgv3. (7)

∂tv4 = −γqv4. (8)

where a = v1 + iv2, v =
(
v1 v2 v2 v4

)T
is a small perturbations vector,

R0 =
√
κe

1−iαg
2

G0−
1−iαq

2
Q0+iϕ+iω0δ

, and the time advance parameter is δ = T0−T . It follows from Eqs. (7) and (8) that the decay rates of
the TCS gain and absorber components at large positive times t are determined by the corresponding
eigenvalues λg,q = −γg,q, while Eq. (6) has an infinite number of eigenvalues defined by

λk = −γ (1 + iω0)− δ−1Wk

[
−γδe−(1+iω0)γδR0

]
. (9)
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A. G. Vladimirov 4

Figure 1: Intensity time trace of the periodic TCS solution of Eqs. (1)-(3) (a). Temporal evolution of the
absolute value of the field envelope (blue), gain (red) and loss (green) components of the TCS solution
in logarithmic scale (b). Parameters are:αg = αq = 0,g0 = 0.5, q0 = 4.0, κ = 0.8, s = 10.0,
γg = 0.2, γq = 1.0, T = 50.0. The solution period is T0 = 50.138425 and ω0 = 0.

where Wk is the Lambert function with the index k = 0,±1,±2 . . . . It follows from Eq. (9) that
Reλ0 = O (γ) is negative, while the remaining eigenvalues with |k| > 0 have positive real parts,
Reλk > 0.

Assuming that the origin of the time coordinate, t = 0, is located at TCS power peak we get from
(7)-(9) that at large positive times the trailing edge of the TCS can be expressed as

u1,2 ∼ b1,2e
−λ0t, u3 ∼ b3e

−γgt, u4 ∼ b4e
−γqt, (10)

where b1,2,3,4 are real constants that can be calculated numerically for a given parameter set of Eqs.
(1)-(3).

Next, let us consider the leading tail of the TCS at large negative times. Since Eqs. (7) and (8) have
no eigenvalues with positive real parts, gain and absorber components of the TCS leading edge, u3

and u4 decay faster than exponentially in negative time [23]. Unlike this the field component u1 + iu2

of the leading tail decays exponentially with the decay rate determined by the eigenvalue λk (k ̸= 0)
having smallest positive real part. Below it will be assumed that in addition to (5) the inequality γg,q <
|Reλk| is satisfied, which means that the field component of the TCS decays faster in both time
diractions than the gain and absorber components in positive time. This means that the interaction via
the electromagnetic field component can be neglected when considering the interaction of two well
separated TCSs. Such type of interaction is typical of lasers with slow gain and absorption and can
be viewed as the long-range interaction [20] unlike the short range interaction via overlapping electric
fields considered in [2, 3, 12, 19, 22]. Furthermore, since gain and absorber components of a TCS
decay faster than exponentially in negative time, the leading tails of the TCSs can be neglected in the
derivation of the interaction equations. Numerically calculated intensity time trace of a TCS solution
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Temporal cavity soliton interaction in passively mode-locked semiconductor lasers 5

is shown in Fig. 1(a). Figure 1(b) shows the time evolution of the absolute values of field envelope√
U2
01 + U2

02, gain |U03|, and absorption |U04| components of this solution in logarithmic scale. It is
seen from this figure that the gain component dominates over the field and bsorption ones during
almost all the time interval between the consequent pulses.

Linear stability of the TCS is determined by linearizing Eq. (4) at the solution U = u and calculating
the spectrum of the resulting linear operator L. Due to the translational and phase shift symmetries
of the model equations (1)-(3), U (t) → U (t− t0) and U1 + iU2 → (U1 + iU2) e

iϕ0 with arbitrary
constants t0 and ϕ0, the operator L has a pair of zero eigenvalues corresponding to the neutral

(Goldstone) modes given by θ = ∂tu and φ =
(
−u2 u1 0 0

)T
, respectively, Lθ = −∂tθ +

B (u)θ + C [u (t− T )]θ† (t− T ) = 0, where B (u) [(C (u)] is the linearization matrix of Fω0 (U)
[Hω0 (U)] at U = u and Lφ = 0. Let us assume that the TCS is stable, which means that the
rest of the spectrum of the operator L lies in the left half of the complex plane. Similarly, the linear
operator L† adjoint to L has a pair of zero eigenvalues associated with the so-called adjoint neutral
modes θ† and φ†, L†θ† = ∂tθ

† + θ†B (u) + θ† (t+ T ) C (u) = 0 and L†φ† = 0. The adjoint
neutral modes are assumed to be biorthogonal to the neutral modes,

〈
θ† ·φ

〉
=
〈
φ† · θ

〉
= 0

and
〈
θ† · θ

〉
=
〈
φ† ·φ

〉
= 1, where

〈
x† · y

〉
=
∫ τ0
0

x† · ydt. Since the adjoint operator L† is
obtained from L by the transformations including the time reversal, t → −t, the asymptotic behavior
of the row vector adjoint neutral modes θ† =

(
θ†1 θ†2 θ†3 θ†4

)
and φ† =

(
φ†
1 φ†

2 φ†
3 φ†

4

)
at sufficiently large negative times t < 0 is given by

θ†1,2 ∼ c1,2e
λ0t, θ†3 ∼ c3e

γgt, θ†4 ∼ c4e
γqt, (11)

φ†
1,2 ∼ d1,2e

λ0t, φ†
3 ∼ d3e

γgt, φ†
4 ∼ d4e

γqt, (12)

where c1,2,3,4 and d1,2,3,4 are real coefficients, which can be calculated numerically. Similarly to the
leading tail of the TCS solution, the trailing tail of the gain and absorber components of the adjoint neu-
tral modes decay faster than exponentially at large t > 0. Therefore, trailing tails of the adjoint neutral
modes will be neglected when deriving the TCS interaction equations. The temporal evolution of the
field, gain, and loss components of the translational adjoint neutral mode θ† =

(
θ†1 θ†2 θ†3 θ†4

)
are shown in Fig. 2. We see that similarly to Fig. 1 the gain component θ†3 of the adjoint neutral
mode dominates almost everywhere between the consequent mode-locked pulses. Therefore, one
can conclude that the pulse interaction via the field and absorber components can be neglected for
the parameter values of these figures.

4 Interaction equations

To derive the equations describing slow evolution of the time coordinates and phases of weakly inter-
acting TCSs we look for the solution of Eq. (4) in the form of a sum of two unperturbed TCS solutions
plus a small correction w = O (ϵ) due to the interaction:

U =
2∑

k=1

uk +w, (13)

where uk =
(
u1k u2k u3k u4k

)T
with u1k + iu2k = [u1 (t− τk) + iu2 (t− τk)] e

−iϕk ,
u3k = u3 (t− τk), and u4k = u4 (t− τk). Coordinates τk and phases ϕk of the interacting TCSs
are assumed to be slow functions of time, ∂tτk, ∂tϕk = O (ϵ), k = 1, 2. The small parameter ϵ char-
acterizes the weak overlap of the TCSs. Similarly to the case of dissipative soliton interaction in partial
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A. G. Vladimirov 6

Figure 2: Field component of the adjoint neutral mode θ† as a function of time (a). Temporal evolution
of the field (blue), gain (red), and loss (green) components of the translational adjoint neutral mode θ†

in logarithmic scale (b). Parameters are the same as in Fig. 1.

differential equation laser models [19, 21, 22, 24], the right hand side of the interaction equations ob-
tained for our DDE model can be expressed in terms of the TCS solutions and their adjoint neutral
modes evaluated at the point between the two TCSs [20]. The details of the calculations are given in
the Appendix A, where it is shown that the interaction equations for the time separation ∆τ = τ2− τ1
and phase difference ∆ϕ = ϕ2 − ϕ1 of a pair of interacting T0-periodic TCS take the form

∂t∆τ ≈ θ†
1 (T0/2)u2 (T0/2)− θ†

2 (0)u1 (0) , (14)

∂t∆ϕ ≈ φ†
1 (T0/2)u2 (T0/2)−φ†

2 (0)u1 (0) , (15)

where θ†
k and φ†

k are the adjoint neutral modes evaluated at the kth TCS (k = 1, 2) and without the
loss of generality one can assume that t = 0 and t = T0/2 correspond, respectively, to the middle
point between the tw interacting o TCSs and the opposite point on a circle with the circumference T0.

Substituting asymptotic expressions (10), (11), and (12) into the interaction equations (14) and (15)
we obtain

∂t∆τ = Kτg

[
e−γg(T0−∆τ) − e−γg∆τ

]
(16)

+ Kτq

[
e−γq(T0−∆τ) − e−γq∆τ

]
, (17)

∂t∆ϕ = Kϕg

[
e−γg(T0−∆τ) − e−γg∆τ

]
(18)

+ Kϕq

[
e−γq(T0−∆τ) − e−γq∆τ

]
(19)

with Kτg = b3c3, Kτq = b4c4, Kϕg = b3d3, and Kϕq = b4d4. Interaction equations (17) and (19)
describe the long-range interaction of two well separated TCS via their gain and absorber components
and do not take into account the short range interaction via weakly overlapping electric field envelopes
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Temporal cavity soliton interaction in passively mode-locked semiconductor lasers 7

of the TCSs. They reflect the fact that in a ring cavity the interaction is twofold. The trailing tail of the first
(second) TCS overlaps with the leading tail of the adjoint neutral mode of the second (first) TCS which
is located by ∆τ (T0 −∆τ ) behind it. This is reflected by the presence of the two exponential terms
in the square brackets of Eqs. (17) and (19). As it was already noted above, due to the inequality
γq > γg typical of semiconductor lasers, the interaction force related to the absorber component
decays much faster than that due to the gain component and the terms proportional to Kτq and Kϕq

can be neglected in the interaction equations. In the case of TCS repulsion (Kτg < 0) such type of
twofold interaction leads to a regime with two equally spaced pulses per cavity round trip corresponding
to a harmonic mode-locking regime.

5 Results of numerical simulations

For the parameter values of Figs. 1 and 2 corresponding to zero linewidth enhancement factors, αg =
αq = 0, numerically we getKτg = −1.120 andKτq = 2.145 in Eq. (17), while the second interaction
equation (19) transforms into ∂t∆ϕ = 0 due to the relation Kϕg = Kϕq = d3 = d4 = 0, which
is the consequence of ω0 = ImA0 = 0. Negative value of Kτg means that the TCS interaction
is repulsive, while positive Kτq corresponds to TCS attraction via the absorber component. For the
parameter values of these figures, however, the interaction via gain component dominates for almost
all sufficiently large soliton separations, as it was discussed above, and the soliton attraction due to
the absorber component is hardly possible to observe. This is illustrated in Fig. 3 where the soliton
repulsion is illustrated by numerical integration of Eqs. (1)-(3) using the RADAR5 code [6]. The initial
condition was taken as a sum of two or more well separated unperturbed TCSs. Figure 3(a) shows
the standard mechanism of the harmonic mode-locking regime formation as a result of the repulsion
of a pair of TCSs due to the interaction via the gain component. Figure 3(b) was obtained for the
same parameter values but with smaller initial separation of the two TCSs. It is seen that during the
first stage of the interaction there is still repulsion between the TCSs, but later the second TCS loses
energy and disappears. The equation ∂t∆ϕ = 0 means that the TCS phase difference remains
almost constant in the course of the interaction. This difference is affected only by a very weak overlap
of the field componetns which are neglected in the derivation of the interaction equations (17) and (19).
Interaction of three and four TCSs leading to the development of harmonic mode-locking regimes with
three and four pulses per cavity round trip as a result of TCS repulsion are illustrated in Fig. 3(c) and
3(d), respectively.

The dependence of the interaction coefficient Kτg on the linewidth enhancement factor αg in the
gain section is shown in Fig. 4(a). It is seen that this dependence is non-monotonous and has a pro-
nounced resonant character. The interaction coefficient is negative (TCS repulsion) when the linewidth
enhancement factor is sufficiently small, and it becomes positive (TCS attraction) with the increase of
αg showing a sharp peak around αg ≈ 0.94. Further increase of the αg leads to a non-monotonous
gradual decrease of the interaction coefficient which becomes negative again at αg ⪆ 2.37. Nu-
merical simulation of the TCS interaction of Eqs. (1)-(3) with αg = 2.0, which corresponds to a
small positive interaction coefficient, is illustrated in Fig. 5. It is seen that the interaction is very as-
symmetric, see Refs. [4, 20, 21] and Appendix A. Figure 5(b) corresponding to q0 = 4.0 and positive
Kτg ≈ 0.854×10−2 shows the TCS attraction leading to the merging of two solitons when one of the
two TCSs is annihilated after the collision. In Fig. 5(a) obtained for q0 = 5.0 and Kτg ≈ 1.076×10−2

the soliton attraction leads to a formation of a pulse bound state. Since for αg ̸= 0 the relation
d3 = d4 = 0 does not hold any more the TCS phases are evolving with round trip number in the
course of interaction. Therefore, the bound state shown in Fig. 5(a) is similar to the “incoherent” bound
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Figure 3: TSC repulsion due to gain depletion leading to a harmonic mode-locking regimes with two
(a) and three (c) and four (d) pulses per cavity round trip. Panel (b) illustrates repulsive interaction
resulting in the annihilation of the second pulse. (a), (b), and (c) - g0 = 0.5. (d) - g0 = 0.8. Other
parameters the same as in Fig. 1.
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Temporal cavity soliton interaction in passively mode-locked semiconductor lasers 9

Figure 4: Interaction coefficient Kτg as a function of αg (a) and pulse time separation as a function of
the round trip number (b). g0 = 0.8. Other parameters are the same as in Fig. 1

state described in [20] with the phase difference ∆ϕ between two pulses growing monotonously in
time, see Fig. 6 illustrating the intensity time trace and the evolution of the TCS phase difference of
the incoherent bound state. It was demonstrated in [20] that due to the electric field overlap of the
interacting TCS such type of bound states is characterized by slightly oscillating time separation ∆τ .
However, since the interaction via electric fields is extremely small for the bound state shown in Fig.
5(a) such oscillation is hardy possible to detect. Figure 4(b) shows the evolution of the inter-soliton
time separation ∆τ as a function of the round trip number obtained by direct numerical simulation of
the laser model (1)-(3). The parameter values are the same as in Fig. 4(a). It is seen that for αg = 0.5
when the interaction coefficient Kτg is negative the TCS interaction is repulsive leading to a harmonic
mode-locking regime. On the contrary, for αg = 1.0, 1.5, 2.0, which correspond to Kτg > 0, the inter-
action results in the formation of a pulse bound states. Furthermore, comparing Fig. 4(b) with Fig. 4(a)
we see that the smaller the interaction coefficient the weaker is the interaction force and, hence, the
longer is the transient time before the equilibrium inter-soliton time separation is achieved. The final
inter-pulse distance in the bound state is, however, only weakly dependent on the αg and Kτg. Note,
that the time separation of the pulses in the incoherent bound state shown in Fig. 5(a) is of the same
order of magnitude as the gain telaxation time. This is why 6(a) the pulses in this bound state have
significantly different peak powers [see Fig. 6(a)] and cannot any more be considered as individual
TCSs. Therefore, the interaction equations (17) and (19) are not valid any more when the pulses are
so close to one another. Indeed, in order the bound state to be formed, the attraction predicted by the
interaction equations should be compensated by a repulsion at sufficiently small inter-pulse distances.
This repulsion acting at small pulse separations might be related to the pulse interaction in a laser with
the cavity round trip time shorter or much shorter than the gain relaxation time. Such type of pulse
interaction was shown to be repulsive in Refs. [11, 15].

6 Conclusion

To conclude, using a DDE model interaction of two well separated TCSs in a long cavity mode-locked
semiconductor laser was studied numerically and analytically. Interaction equations governing the slow
evolution of the time separation and phase difference of the TCSs were derived and analyzed. Ana-
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A. G. Vladimirov 10

Figure 5: TCS interaction resulting in pulse bound state formation at q0 = 5.0 (a) and pulse merging
at q0 = 4.0 (b). g0 = 0.8,αg = 2.0, αq = 0. Other parameters are as in Fig. 3

Figure 6: Intensity time-trace (a) and pulse phase difference (b) of the TCS bound state. Parameters
are the same as in Fig. 5 (a).
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Temporal cavity soliton interaction in passively mode-locked semiconductor lasers 11

lytical results were compared to direct numerical simulations of the DDE mode-locking model. It was
demonstrated that in addition to usual TCS repulsion predicted in [11, 15] an attractive interaction
is also possible in a laser with nonzero linewidth enhancement factor. This attractive interaction can
result either in pulse merging or in a formation of incoherent pulse bound state. In the latter case the
repulsion force counteracting the soliton attraction might be attributed to the standard mechanism of
the mode-locking pulse repulsion described in [11, 15], which acts beyond the TCS limit. Incoherent
bound pulse state discussed here is similar to that observed experimentally [10] and described the-
oretically [20] in a nonlinear mirror mode-locked laser. It also has a similarity to the “type A” pulse
bound states reported in [17]. The mechanism of the latter bound states formation is, however, dif-
ferent from that described here and can be related to the TCS attraction due to the interaction via
absorber compponent of the pulse solution in a laser with infinitely large gain relaxation time.

Appendix A Derivation of the interaction equations

Substituting Eq. (13) into Eq. (4), collecting the first order terms in small parameter ϵ, and applying
solvability conditions [7] to the resulting equation yield

∂tτk = −
〈
θ†
k ·P

〉
, ∂tϕk = −

〈
φ†

k ·P
〉
, (20)

P =− ∂tuΣ + Fω0 (uΣ) +Hω0 [uΣ (t− T )] , (21)

where uΣ = u1 + u2, ⟨·⟩ =
∫ T0

0
·dt, and θ†

k (φ†
k) is the adjoint translational (phase) neutral mode

evaluated the kth TCS, k = 1, 2.

Since uk is the solution of Eq. 4 the equality
∑2

k=1 {−∂tuk + Fω0 (uk) +Hω0 [uk (t− T )]} = 0
is satisfied. Subtracting this equality from (21) we get

P = Fω0 (uΣ)−
2∑

k=1

Fω0 (uk) +Hω0 [uΣ (t− τ)]−
2∑

k=1

Hω0 [uk (t− T )] .

Therefore, the equation for τ2 in (20) is

∂tτ2 = −
〈
θ†
2 ·P

〉
= −

〈
θ†
2 ·

{
Fω0 (uΣ)−

2∑
k=1

Fω0 (uk)

+ Hω0 [uΣ (t− T )]−
2∑

k=1

Hω0 [uk (t− T )]

}〉
. (22)

Using T0−periodicity of θ†
2 and u1,2 Eq. (22) can be rewritten as

∂tτ2 = −

〈
θ†
2 ·

[
Fω0 (uΣ)−

2∑
k=1

Fω0 (uk)

]〉

−

〈
θ†
2 (t+ T ) ·

[
Hω0 (uΣ)−

2∑
k=1

Hω0 (uk)

]〉
. (23)

Next we split the integral ⟨·⟩ =
∫ T0

0
·dt into two parts ⟨·⟩ = ⟨·⟩1 + ⟨·⟩2, where ⟨·⟩1 =

∫ 0

−T0/2
·dt and
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⟨·⟩2 =
∫ T0/2

0
·dt are the integrals over the intervals [−T0/2, 0] and [0, T0/2], respectively:

∂tτ2 = −
2∑

j=1

〈
θ†
2 ·

[
Fω0 (uΣ)−

2∑
k=1

Fω0 (uk)

]〉
j

−
2∑

j=1

〈
θ†
2 (t+ T ) ·

[
Hω0 (uΣ)−

2∑
k=1

Hω0 (uk)

]〉
j

.

On the first interval [−T0/2, 0] where u2 is small one obtains

Fω0 (uΣ)− Fω0 (u1) ≈ B1u2,

Hω0 (uΣ)−Hω0 (u1) ≈ C1u2,

and
Fω0 (u2) ≈ B0u2, Hω0 (u2) ≈ C0u2,

where B1 = B (u1) and C1 = C (u1) [B0 = B (0) and C0 = C (0)] are the linearization matrices of
Fω0 (U) and Hω0 (U) and at U = u1 (U = 0). Similarly, on the second interval [0, T0/2] where u1

is small one gets

Fω0 (uΣ)− Fω0 (u2) ≈ B2u1,

Hω0 (uΣ)−Hω0 (u1) ≈ C2u1,

where B2 = B (u2) and C2 = C (u2) and

Fω0 (u1) ≈ B0u1, Hω0 (u2) ≈ C0u1. (24)

Hence, one obtains

∂tτ2 ≈ −
〈
θ†
2 · (B1 − B0)u2

〉
1

−
〈
θ†
2 (t+ T ) · (C1 − C0)u2

〉
1

−
〈
θ†
2 · {(B2 − B0)u1}

〉
2

−
〈
θ†
2 (t+ T ) · (C2 − C0)u1

〉
2
,

where the first two terms in the right hand side containing the product of two small quantities θ†
2 and

u2 on the first interval [−T0/2, 0] can be neglected. Thus one obtains

∂tτ2 ≈ −
〈
θ†
2 · (B2 − B0)u1

〉
2

−
〈
θ†
2 (t+ T ) · (C2 − C0)u1

〉
2
, (25)

Since u1 is the solution of Eq. (4) it satisfies the equation −∂tu1 +Fω0 (u1) +Hω0 (u2) = 0. Using
the relations (24) valid on the second interval [0, T0/2] it can be rewritten on this interval in the form

−∂tu1 + B0u1 + C0u1 (t− T ) ≈ 0. (26)

The adjoint neutral mode θ†
2 satisfies the equation

∂tθ
†
2 + θ†

2B2 + θ†
2 (t+ T ) C2 = 0 (27)
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Multiplying Eq. (27) by u1, subtracting from the resulting equation θ†
2 multiplied by Eq. (26) and inte-

grating over the second interval [0, T0/2] yields〈
θ†
2 · (B2 − B0)u1

〉
2
≈ −

〈
∂tθ

†
2 · u1 + θ†

2 · ∂tu1

〉
2

−
〈
θ†
2 (t+ T ) C2 · u1 − θ†

2 · C0u1 (t− T )
〉
2
.

Substituting this relation into (25) gives

∂tτ2 ≈
〈
∂tθ

†
2 · u1 + θ†

2 · ∂tu1

〉
2
+
〈
θ†
2 (t+ T ) C2 · u1

− θ†
2 · C0u1 (t− T )2 − θ†

2 (t+ T ) · (C2 − C0)u1

〉
2
.

Finally and integrating the full derivative ∂t

(
θ†
2 · u1

)
over the interval [0, T0/2] leads to

∂tτ2 ≈ θ†
2 (T0/2)u1 (T0/2)− θ†

2 (0)u1 (0)

+
〈
θ†
2 (t+ T ) · C0u1 − θ†

2C0 · u1 (t− T )
〉
2
. (28)

Note that the last term 〈
θ†
2 (t+ T ) · C0u1 − θ†

2C0 · u1 (t− T )
〉
2

= −

(∫ δ

0

+

∫ T/2+δ

T/2

)[
θ†
2 (t+ T ) C0u1

]
dt (29)

in the right hand side of Eq. (28) vanishes in the limit T → ∞ and, therefore, can be neglected.
Since both the integration intervals in the right hand side of (29) are far away from the TCS cores the
soliton solution u1 and the adjoint neutral mode θ2 in the integrand can be replaced by their asymptitic
expressions. Furthermore, one can easily check that the only nonzero elements of the 4 × 4 matrix
C0 are those within the 2 × 2 block with the elements having the indices j, k ≤ 2. This means
that the integals in the right hand side of (29) contain only the asymptotical expressions for the field
components, which are assumed to be small and neglected in this study. Therefore, we can drop the
last term in Eq. (28).

The equation for slow evolution of τ1 is derived in a similar way to Eq. (28):

∂tτ1 ≈ θ†
1 (0)u2 (0)− θ†

1 (T0/2)u2 (T0/2)

+
〈
θ†
1 (t+ T ) · C0u2 − θ†

1C0 · u2 (t− T )
〉
1
. (30)

Note, that the terms θ†
2 (T0/2)u1 (T0/2) [θ†

1 (0)u2 (0)] can be neglected in (28) [(30)] due to the
fast decay of the leading tail of the TCS solution and trailing edge of the adjoint neutral mode. The
remaining terms θ†

2 (0)u1 (0) [θ†
1 (T0/2)u2 (T0/2)] entering the Eq. (28) [(30)] have very different

magnitudes except for the case where the TCSs are close to equidistant in the cavity, ∆τ = τ2−τ1 ≈
τ0/2. This means that except for this case the TCS interaction is strongly asymmetric and does not
satisfy Newton’s third law [4, 20, 21]. Thus, keeping only the second terms in the right hand sides of
Eqs. (28) and (30) one gets for the time evolution TCS separation ∆τ = τ2 − τ1:

∂t∆τ ≈ θ†
1 (T0/2)u2 (T0/2)− θ†

2 (0)u1 (0) . (31)
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Finally, it is easy to see thar the time evolution of the phase difference ∆ϕ = ϕ2 − ϕ1is governed by
a similar equation

∂t∆ϕ ≈ φ†
1 (T0/2)u2 (T0/2)−φ†

2 (0)u1 (0) . (32)
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