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Viscous flow past a translating body with oscillating boundary
Thomas Eiter, Yoshihiro Shibata

Abstract

We study an incompressible viscous flow around an obstacle with an oscillating boundary that
moves by a translational periodic motion, and we show existence of strong time-periodic solutions
for small data in different configurations: If the mean velocity of the body is zero, existence of time-
periodic solutions is provided within a framework of Sobolev functions with isotropic pointwise
decay. If the mean velocity is non-zero, this framework can be adapted, but the spatial behavior
of flow requires a setting of anisotropically weighted spaces. In the latter case, we also establish
existence of solutions within an alternative framework of homogeneous Sobolev spaces. These
results are based on the time-periodic maximal regularity of the associated linearizations, which
is derived from suitable R-bounds for the Stokes and Oseen resolvent problems. The pointwise
estimates are deduced from the associated time-periodic fundamental solutions.

1 Introduction

We consider a body with an oscillating boundary that moves through the three-dimensional space,
which is filled with an incompressible viscous fluid. The fluid motion is described by the Navier–Stokes
equations

∂tu + u · ∇u− µ∆u +∇p = f , divu = 0 in Ωt, u|Γt = h, lim
|x|→∞

u(x, t) = 0, (1.1)

where Ωt is the fluid domain with boundary Γt at time t ∈ R. The velocity field u = (u1, u2, u3)>

and the pressure field p are unknown, while we prescribe the external force f = (f1, f2, f3)> and the
fluid velocity at the boundary h = (h1, h2, h3)>. The constant µ > 0 denotes the kinematic viscosity
of the fluid. Let T > 0 be the time period of the boundary oscillation. The body motion consists of a
prescribed translation with velocity vB(t) ∈ R3 such that the fluid domain after one period is given by

Ωt+T = Ωt +

∫ t+T

t

vB(τ) dτ (1.2)

for all times t ∈ R. The translational velocity vB(t) is assumed to be time-periodic, that is, vB(t +
T ) = vB(t), so that the displacement vector in (1.2) is independent of the time t. Moreover, by
changing the frame of coordinates, we may assume that it is directed along the x1-axis such that the
mean velocity over one period is given by

1

T

∫ t+T

t

vB(τ) dτ =
1

T

∫ T
0

vB(τ) dτ = κe1

for some κ ∈ R, where e1 denotes unit vector in x1-direction. Then κ corresponds to the mean
translational speed of the body. If the data f and h are time-periodic with period T , then the whole
system (1.1) is time periodic in a frame moving with velocity κe1. In this article, we show existence of
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T. Eiter, Y. Shibata 2

time-periodic solutions to this problem in suitable functional frameworks. Observe that a natural choice
of boundary conditions in system (1.1) would be classical no-slip conditions, where h is determined
by the motion of the obstacle and its boundary. In order to handle this choice, it is necessary to keep
track of the dependence on the parameter κ in the final existence result, see also Remark 4.4 below.

A special case of the present situation is when the body does not oscillate and its shape is time
independent. Then the problem reduces to the steady flow around a body that translates with constant
speed κ. It is well known that the physical and mathematical properties of this problem strongly depend
on whether κ = 0 or κ 6= 0. In particular, when κ 6= 0, one observes a wake region behind the moving
body, which is reflected by an anisotropic decay of the velocity field. As was shown recently, the same
behavior can be observed for the time-periodic flow past a rigid body [5]. This observation suggests the
necessity to also distinguish the cases κ = 0 and κ 6= 0 in the presence of an oscillating boundary.

The mathematically rigorous study of time-periodic Navier–Stokes flows was initiated in the works of
Serrin [29], Prodi [25], Yudovich [36] and Prouse [26]. While these articles focus on bounded domains,
the first analytical result on time-periodic solutions to the Navier–Stokes equations in an unbounded
domain was achieved decades later by Maremonti [21], who derived existence of time-periodic solu-
tions in the three-dimensional whole space within an L2 framework. In the case of the presence of
an exterior domain, the first results on existence of time-periodic solutions are due to Salvi [28] and
Maremonti and Padula [22] for κ = 0. The case κ 6= 0 is due to Galdi and Silvestre [16], who con-
sidered the situation of a general time-periodic rigid motion. Existence of time-periodic mild solutions
in so-called weak Lebesgue spaces is due to the fundamental work by Yamazaki [35] for κ = 0,
which was further developed to a general approach to time-periodic problems by Geissert, Hieber and
Nguyen [18], who also treated the case κ 6= 0. However, the classes of solutions studied in these
articles do not give suitable information on the decay of the flow far from the body. This issue was ad-
dressed by Galdi and Sohr [17] for κ = 0, and very recently by Galdi [14] for κ 6= 0, who established
existence of regular solutions with pointwise spatial decay. The asymptotic behavior is also reflected
in the framework of homogeneous Sobolev spaces introduced by Galdi and Kyed [15], who showed
existence of time-periodic strong solutions in the case κ 6= 0 based on a framework of time-periodic
maximal Lp regularity for the corresponding Oseen linearization. As was shown recently by Eiter, Kyed
and Shibata [9] in a more general framework, a combination of this approach with suitable pointwise
estimates leads to the existence of time-periodic solutions for κ = 0.

Nearly all of the previous articles are concerned with Navier–Stokes flows in a domain with a fixed
boundary. Only in [28], the flow in an exterior domain with periodically moving boundary was consid-
ered, and existence of time-periodic weak solutions was shown. While the corresponding problem
in a bounded domain has been addressed by several researchers in a framework of weak solu-
tions [24, 23, 27], time-periodic mild solutions in a bounded domain were recently established by
Farwig, Kozono, Tsuda and Wegmann [10] via a semigroup approach. These solutions were later
shown to be strong [11]. Independently, Eiter, Kyed and Shibata [9] derived existence of strong so-
lutions in a bounded domain from the aforementioned framework of time-periodic maximal regularity
without relying on semigroup theory. This approach was also used to establish time-periodic solutions
in the case of one-phase and two-phase flows [8]. In the present article, we follow this strategy to es-
tablish first results on the existence of time-periodic strong solutions to the Navier–Stokes equations
in an exterior domain with an oscillating boundary.

We begin by transforming (1.1) to a problem in a time-independent reference domain Ω with boundary
Γ. A suitable linearization leads to the system

∂tv − µ∆v − κ∂1v +∇p = f , div v = 0 in Ω× T, v|Γ×T = h. (1.3)

Here T = R/T Z denotes the torus group associated with the given time period T , and it indicates
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Viscous flow past a translating body with oscillating boundary 3

that all functions occurring in (1.3) are time periodic. To treat the full nonlinear problem by a fixed-point
argument, we first derive a result on maximal regularity for this time-periodic linear problem, that is,
the existence of unique solutions to (1.3) that satisfy an a priori estimate of the form

‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖∇2v⊥‖Lp(T,Lq(Ω)) + |κ| ‖∂1vS‖Lp(T,Lq(Ω)) + ‖∇p‖Lp(T,Lq(Ω))

≤ C
(
‖f‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T)

)
for suitable p, q ∈ (1,∞), where Tp,q(Γ× T) is a suitable trace space introduced below.

To derive time-periodic maximal regularity, following the approach from [8, 9], we first investigate the
associated resolvent problems. Note that the Fourier coefficients (v̂k, p̂k) = (FT[v](k),FT[p](k)),
k ∈ Z, of a time-periodic solution (v, p) to (1.3) satisfy

i
2π

T
v̂k − µ∆v̂k − κ∂1v̂k +∇p̂k = f̂k, div v̂k = 0 in Ω, v̂k|Γ = ĥk, (1.4)

and if A(k) is a solution operator for (1.4) such that (v̂k, p̂k) = A(k)(f̂k, ĥk), then a solution (v, p)
to (1.3) is formally given by

(v, p) = F−1
T
[
k 7→ A(k)FT[(f ,h)](k)

]
. (1.5)

This formula reduces the question of maximal regularity to the investigation of an operator-valued
Fourier multiplier, for which we apply an abstract multiplier theorem based one the notion of R-
boundedness. This application is complicated by the fact that the required R-bounds for the family
{A(k)} are only available for large k. Therefore, we proceed as in [9] and decompose the time-
periodic solution into a high-frequency part and a low-frequency part. While the first can then be
treated by means of Fourier multipliers on T, the latter consists of finitely many Fourier modes that
can be handled separately.

As demonstrated in [9], the resulting framework of maximal regularity is suitable to treat the nonlinear
problem (1.1) in the case of a bounded domain. Compared to this, the present setting of an exte-
rior domain comes along with two difficulties: Firstly, for k = 0 the resolvent problem (1.5) is not
uniquely solvable in a framework of classical Sobolev spaces. Therefore, we decompose the time-
periodic linearized problem (1.3) into the associated steady-state problem and a purely oscillatory
problem, which are studied in separate functional frameworks. Secondly, the treatment of the nonlin-
ear problem requires suitable estimates of the nonlinear terms. Those cannot be derived within the
resulting maximal-regularity function class, at least for κ = 0. Therefore, we complement the set-
ting with pointwise estimates that are derived from the time-periodic fundamental solutions to (1.3),
which were introduced by Eiter and Kyed [7]. In the resulting framework, the contraction mapping
principle can be used to derive existence of time-periodic solutions to the full nonlinear problem for
κ = 0, see Theorem 4.1. In the case κ 6= 0, the same method can be employed, which results in
Theorem 4.2, but we have to take into account the anisotropic decay of the flow. However, since the
maximal-regularity framework for κ 6= 0 leads to better integrability properties of solutions, we can
also implement a fixed-point argument without enriching the functional setting with pointwise decay
properties, see Theorem 4.3.

We want to emphasize that our analysis also leads to new existence results in the case of a moving
body with a fixed boundary. In [15], existence of strong time-periodic solutions was established for
κ 6= 0 under the assumption that the translational velocity has the same direction at all times, that
is, vB(t) = vB(t)e1 for some scalar time-periodic function vB with non-zero mean. This assumption
was necessary to work with an Oseen linearization in a frame attached to the body, that is, moving
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T. Eiter, Y. Shibata 4

with the actual translational velocity vB. In contrast, we shall work in a frame moving with the mean
translational velocity κe1. Regarding the remainder vB − κe1 as an oscillation of the boundary, we
can omit the restrictions on vB from [15]. For more details, see Section 3.

The structure of the article is as follows: After introducing the general notation in Section 2, we refor-
mulate the nonlinear system (1.1) as a problem on a fixed domain in Section 3. In Section 4, we then
state our main results on the nonlinear and the linear problems. The proofs for the linear theory for
κ 6= 0 are provided in Section 5, while they were provided in [9] for κ = 0. In Section 6 we conclude
by the proofs of the existence results for the nonlinear problem (1.1).

2 Notation

For topological vector spaces X and Y , we denote the space of continuous linear operators from X
to Y by L (X, Y ). We write X ′ for the dual space of X , and when X is a normed space, then ‖ · ‖X
denotes is norm.

By Ω we denote a three-dimensional exterior C2-domain, that is, a domain that is the complement of
a compact set with connected C2-boundary Γ = ∂Ω. Let b > 0 be a sufficiently large radius such
that Γ ⊂ Bb := {x ∈ R3 | |x| < b}.
We write ∂j := ∂xj for partial derivatives in space, and ∇, div and ∆ denote gradient, divergence
and Laplace operator, which only act in spatial variables. For a sufficiently regular function u and
k ∈ N, we denote the collection of all k-th order derivatives by∇ku.

For classical Lebesgue and Sobolev spaces we write Lq(Ω) and Hk
q(Ω), where q ∈ [1,∞] and

k ∈ N, and Lq,loc(Ω) and Hk
q,loc(Ω) denote their local variants. Homogeneous Sobolev spaces are

defined via
Ĥk
q(Ω) :=

{
u ∈ L1,loc(Ω) | ∇ku ∈ Lq(Ω)

}
When it is clear from the context, we sometimes use the same notation for spaces of vector-valued or
matrix-valued functions. For example, we write Lq(Ω) instead of Lq(Ω)3 or Lq(Ω)3×3.

For a given time period T > 0 we let T := R/T Z denote the corresponding torus group. Functions
on T can then be identified with T -periodic functions on R, which we do tacitly in what follows. We
equip the topological group T with the normalized Haar measure defined via

∀u ∈ C0(T) :

∫
T
u(t) dt =

1

T

∫ T
0

u(τ) dτ.

Bochner–Lebesgue spaces are denoted by Lp(T;X) for p ∈ [1,∞], and we set

H1
p(T, X) := {u ∈ Lp(T, X) | ∂tu ∈ Lp(T, X)}, ‖u‖H1

p(T,X) := ‖u‖Lp(T,X) + ‖∂tu‖Lp(T,X).

The velocity field u of a solution will be identified in the classical parabolic space, at least near the
boundary, that is, u ∈ H1

p(T,Lq(Ωb)
3) ∩ Lp(T,H2

q(Ωb)
3) for some p, q ∈ (1,∞). To shorten

notation, we introduce the corresponding class of boundary traces on Γ× T via

Tp,q(Γ× T) :=
{
h = u|Γ×T

∣∣ u ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3)
}

(2.1)

with corresponding norm

‖h‖Tp,q(Γ×T) := inf
{
‖u‖Lp(T,H2

q(Ω)) + ‖∂tu‖Lp(T,Lq(Ω))

∣∣ h = u|Γ×T
}
.
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Viscous flow past a translating body with oscillating boundary 5

Note that Tp,q(Γ× T) can be identified with a real interpolation space, but we shall not make use of
this property in what follows.

We often decompose time-periodic functions f : Ω×T→ R into a steady-state part fS and a purely
oscillatory part f⊥ defined by

fS(x) =

∫
T
f(x, t) dt, f⊥(x, t) = f(x, t)− fS(x). (2.2)

To quantify decay rates of these two parts, we use the norms

< fS >α= sup
x∈Ω
|fS(x)|(1 + |x|)α, < fS >

w
α,β= sup

x∈Ω
|fS(x)|(1 + |x|)α(1 + |x| − x1)β

for the steady-state parts and

< f⊥ >p,α= sup
x∈Ω
‖f⊥(x, ·)‖Lp(T)(1 + |x|)α

for the purely oscillatory part, where α, β ≥ 0 and p ∈ (1,∞).

We equip Ω×T with the product measure and denote the associated Lebesgue spaces by Lp(Ω×T).
If Ω = R3, then R3 × T is a locally compact abelian group, and we can define generalized Schwartz
spaces and spaces of tempered distributions on T and R3×T and the respective dual groups Z and
Z×R3. see [3, 6]. Moreover, there is an associated notion of Fourier transform, which can be defined
via

FT[u](k) :=

∫
T
u(t) e−i

2π
T kt dt, F−1

T [w](t) :=
∑
k∈Z

w(k) ei
2π
T kt,

and we set FR3×T = FR3 ⊗FT and F−1
R3×T = F−1

R3 ⊗F−1
T , where the Fourier transform in the

Euclidean setting and its inverse are given by

FR3 [u](ξ) :=
1

(2π)3

∫
R3

u(x) e−iξ·x dx, F−1
R3 [w](x) :=

∫
R3

w(ξ) eiξ·x dξ.

To study operator-valued Fourier multipliers, we further need the notion of UMD spaces, which are
Banach spaces X such that the Hilbert transform H , defined by

Hf(t) :=
1

π
lim
ε→0

∫
|x|≥ε

f(t− s)
s

ds,

is a bounded linear operator on Lp(R, X) some p ∈ (1,∞). Moreover, we say that a family of
operators T ⊂ L (X, Y ) is R-bounded in L (X, Y ) if there is C > 0 such that

∥∥ n∑
k=1

rkTkfk
∥∥

L1((0,1),Y )
≤ C

∥∥ n∑
k=1

rkfk
∥∥

L1((0,1),X)
(2.3)

for all n ∈ N, {Tj}nj=1 ∈ T n, and {fj}nj=1 ∈ Xn. Here rk : [0, 1]→ {−1, 1}, t 7→ sign (sin 2kπt),
denote Rademacher functions. Moreover, RL (X,Y )T denotes the smallest constantC such that (2.3)
holds.

For ε ∈ (0, π/2) and δ > 0 we define the perturbed sector

Σε,δ := {λ ∈ C | |λ| > δ, | arg λ| < π − ε}.

Moreover, Hol (Σε,δ, X) denotes the class of X-valued holomorphic functions on Σε,δ.
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3 Formulation on a reference domain

To reformulate the system (1.1) as a problem in a time-independent spatial domain, we describe the
motion of the body and its boundary by suitable functions.

Let Ω be the exterior domain in R3. Let vB ∈ C0(R)3 with vB(t+ T ) = vB(t) for all t ∈ R, and let

φ ∈ C0(R;C3(Ω)3) ∩ C1(R;C1(Ω)3) (3.1)

such that φ(y, 0) = 0 and φ(y, t + T ) = φ(y, t) for each t ∈ R and y ∈ Ω, and such that
φ(y, t) = 0 for y 6∈ B2b. Then the fluid domain Ωt ⊂ R3 shall be given by

Ωt =
{
x = y + φ(y, t) +

∫ t

0

vB(τ) dτ
∣∣∣ y ∈ Ω

}
(t ∈ R). (3.2)

By rotating the coordinate frame, we may assume that the mean velocity over one time period is
directed along the x1-axis such that there is κ ∈ R with

κe1 =
1

T

∫ T
0

vB(τ) dτ.

Then we can redefine φ in such a way that

Ωt =
{
x = y + φ(y, t) + tκe1

∣∣∣ y ∈ Ω
}

(t ∈ R) (3.3)

instead of (3.2). Indeed, since

φ(y, t) +

∫ t

0

vB(τ) dτ =
(
φ(y, t) +

∫ t

0

(vB(τ)− κe1) dτ
)

+ tκe1,

we may assume that vB is constant in time and replace φ with the term in parenthesis, which defines
a time-periodic function. Notice that to preserve the condition φ(y, t) = 0 for |y| > 2b, it might be
necessary to multiply the term by a suitable cut-off function, which would not change the set Ωt.

Given κ and φ, the domain Ωt is the image of the transformation Φt : Ω→ R3, Φt(y) = y+φ(y, t)+
tκe1, for t ∈ R, and the boundary Γt = ∂Ωt is given by Γt = {x = y + φ(y, t) + tκe1 | y ∈ Γ}.
To reduce system (1.1) to a problem in the reference domain Ω = Ω0, we assume that

sup
t∈R
‖φ(·, t)‖H3

∞(Ω) + sup
t∈R
‖∂tφ(·, t)‖H1

∞(Ω) ≤ ε0 (3.4)

with some small number ε0 > 0, and we use the change of variables induced by Φt, namely
x = y + φ(y, t) + tκe1. By the smallness assumption (3.4), we may assume the existence of the
inverse transformation, which has the form y = x + ψ(x, t) − tκe1. The associated Jacobi matrix
∂(t, y)/∂(t, x) is given by the formulas:

∂t

∂t
= 1,

∂t

∂xj
= 0,

∂y`
∂t

=
∂ψ`
∂t
− κe1,

∂y`
∂xj

= δ`j +
∂ψ`
∂xj

for j, ` = 1, 2, 3. Set

a`0(y, t) = (∂ψ`/∂t)(y + φ(y, t) + tκe1, t), a`j(y, t) = (∂ψ`/∂xj)(y + φ(y, t) + tκe1, t).
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Viscous flow past a translating body with oscillating boundary 7

Then partial derivatives transform as

∂f

∂t
=
∂g

∂t
+

3∑
`=1

a`0(y, t)
∂g

∂y`
− κ ∂g

∂y1

,
∂f

∂xj
=

∂g

∂yj
+

3∑
`=1

a`j(y, t)
∂g

∂y`
(3.5)

for f(x, t) = g(y, t). Let J = det(∂x/∂y) = 1 + J0(y, t) be the Jacobian of Φt. From (3.4) we
obtain C > 0 such that

sup
t∈R
‖a`j(·, t)‖H2

∞(Ω) + sup
t∈R
‖∂ta`j(·, t)‖L∞(Ω) + sup

t∈R
‖a0j(·, t)‖L∞(Ω)

+ sup
t∈R
‖J0(·, t)‖H2

∞(Ω) + sup
t∈R
‖∂tJ0(·, t)‖L∞(Ω) ≤ Cε0

(3.6)

for j, ` = 1, 2, 3. For v(y, t) = (v1, v2, v3)> = u(x, t), and q(y, t) = p(x, t) we then have

∂tu = ∂tv +
3∑
`=1

a`0
∂v

∂y`
− κ ∂v

∂y1

, u · ∇u = v · (I + A)∇v,

∆u = ∆v +
3∑
`=1

(a`j+aj`)
∂2v

∂y`∂yj
+

3∑
j,`,m=1

a`jamj
∂2v

∂y`∂ym

+
3∑

`,m=1

(
∂am`
∂y`

+
3∑
j=1

a`j
∂amj
∂y`

)
∂v

∂ym
,

divu = J−1
(

div v + div (J0v) +
3∑

j,`=1

∂

∂y`
(a`jJvj)

)
, ∇p = (I + A)∇q,

where A is a (3×3)-matrix whose (j, k)-th component is ajk. Settingw` = v`+J0v`+
∑3

j=1 a`jJvj ,

we have Jdivu = divw with w = (w1, w2, w3)>. Notice that w = (I + J0I + A>J)v. In view
of (3.6), choosing ε0 > 0 sufficiently small, we see that there exists a (3 × 3)-matrix B−1 such that
(I + J0I + A>J)−1 = I + B−1 and

sup
t∈R
‖B−1(·, t)‖H2

∞(Ω) ≤ Cε0, sup
t∈R
‖∂tB−1(·, t)‖L∞(Ω) ≤ Cε0. (3.7)

We further replace the time axis with the torus group T := R/T Z associated to the period T . In total,
system (1.1) is transformed to

∂tw − µ∆w − κ∂1w +∇q = f + L(w, q) +N (w), divw = 0 in Ω× T, w|Γ×T = h,
(3.8)

where the data f and h are now prescribed with respect to the reference domain Ω, and

L(w, q) = −∂t(B−1w)−
3∑
`=1

a`0
∂

∂y`
((I + B−1)w) + µ∆(B−1w)

+
3∑
`=1

(a`j + a`j)
∂2

∂y`∂yj
((I + B−1)w) +

3∑
j,`,m=1

a`jamj
∂2

∂y`∂ym
((I + B−1)w)

+
3∑

`,m=1

(
∂am`
∂y`

+
3∑
j=1

a`j
∂amj
∂y`

)
∂

∂ym
((I + B−1)w)

− κ{∂1(B−1w) +
3∑
`=1

a1`
∂

∂y`
((I + B−1)w} − A∇q,

N (w) = ((I + B−1)w) · (I + A)∇((I + B−1)w).

(3.9)
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Notice that in (3.8) we omitted that w vanishes at infinity. This condition will later be included in a
suitable sense in the definition of the function spaces.

Remark 3.1. In both formulations (1.1) and (3.8), we consider a general class of boundary data in
the from of an inhomogeneous Dirichlet condition. The most classical choice would be given by no-
slip conditions such that the fluid velocity coincides with the boundary velocity. With the notation from
above, this means to assume that

u(x, t) = v(y, t) = ∂tΦt(y) = ∂tφ(t, y) + κe1

for y ∈ Γ and x = Φt(y) = y + φ(y, t) + tκe1 ∈ Γt. Therefore, no-slip conditions correspond to
the choice

h = (I + J0I + A>J)(∂tφ+ κe1) (3.10)

in system (3.8). In particular, the prescribed boundary data h depend on the translational velocity κ,
which also appears as a parameter in the linearization of (3.8). Therefore, for the treatment of no-slip
conditions, the dependence of smallness conditions on κ has to be taken into account. In Remark 4.4
we clarify in how far no-slip conditions can be handled in the frameworks proposed here.

4 Main results

We first state the results on existence of time-periodic solutions to (3.8). Their proofs will be based on
the study of a suitable linearization, which is given by

∂tv − µ∆v − κ∂1v +∇p = f , div v = 0 in Ω× T, v|Γ×T = h. (4.1)

We obtain a time-periodic Stokes system for κ = 0, and a time-periodic Oseen problem for κ 6= 0,
which have different mathematical properties. The results on unique existence of solutions to the linear
problem (4.1) are collected in Subsection 4.2.

4.1 Solutions to the nonlinear problem

In the theorems on existence of solutions to problem (3.8), we always assume

2 < p <∞, 3 < q <∞, h ∈ Tp,q(Γ× T), φ ∈ C0(R;C3(Ω)3) ∩ C1(R;C1(Ω)3), (4.2)

where Tp,q(Γ× T) is the space from (2.1). We begin with the case without translation, that is, where
κ = 0 in (3.8). To quantify the pointwise decay of functions, we use the weighted norms introduced in
Section 2.

Theorem 4.1. Assume (4.2) and let f = fS + f⊥ with fS = divFS and f⊥ = divF⊥. There exist
constants ε, ε0 > 0 such that if the smallness conditions (3.4) and

< fS >3 + < FS >2 + < f⊥ >p,2 + < F⊥ >p,1 +‖h‖Tp,q(Γ×T) < ε2 (4.3)

are satisfied, then problem (3.8) with κ = 0 admits a unique solution (w, p) with

w ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p ∈ Lp(T, Ĥ1
q(Ω))

satisfying the estimate

< w >p,1 + < ∇w >p,2 +‖w‖Lp(T,H2
q(Ω)) + ‖∂tw‖Lp(T,Lq(Ω)) + ‖∇p‖Lp(T,Lq(Ω)) ≤ ε.
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Viscous flow past a translating body with oscillating boundary 9

In the case with translation, that is, where κ 6= 0 in (3.8), we obtain existence of a time-periodic
solution with anisotropic pointwise decay.

Theorem 4.2. Let κ0 > 0 and δ ∈ (0, 1/4), and assume (4.2). Let f = fS + f⊥ with f⊥ = divF⊥.
Then there exist ε, ε0 > 0 such that if the smallness conditions (3.4) and

< fS >
w
5/2,1/2+2δ + < f⊥ >p,2+δ + < F⊥ >p,1+δ +‖h‖Tp,q(Γ×T) < ε2|κ|2δ (4.4)

are satisfied, then problem (3.8) with κ 6= 0 admits a unique solution (w, p) with

w ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p ∈ Lp(T, Ĥ1
q(Ω))

satisfying the estimate

< wS >
w
1,δ+ < ∇wS >

w
3/2,1/2+δ + < w⊥ >p,1+δ + < ∇w⊥ >p,2+δ

+ ‖w‖Lp(T,H2
q(Ω)) + ‖∂tw‖Lp(T,Lq(Ω)) + ‖∇p‖Lp(T,Lq(Ω)) ≤ ε|κ|2δ.

Alternatively, the case κ 6= 0 allows to avoid spaces of functions with suitable pointwise decay, such
that the spatial asymptotics are merely quantified in terms of integrability. However, the steady-state
part of the velocity field only belongs to suitable homogeneous Sobolev spaces.

Theorem 4.3. Let κ0 > 0 and δ ∈ (0, 1), and assume (4.2). Let f = fS + f⊥ and 1 < s < 4/3.
Then there exist ε, ε0 > 0 such that if the smallness conditions (3.4) and

‖f‖Lp(T,Ls(Ω)) + ‖f‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T) ≤ ε2|κ|1/(1+δ) (4.5)

are satisfied, then problem (3.8) with κ 6= 0 admits a unique solution (w, p) with w = wS +w⊥ and

wS ∈ Ĥ2(Ω)3, w⊥ ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p ∈ Lp(T, Ĥ1
q(Ω))

satisfying the estimate

‖∇2wS‖Ls(Ω) + |κ|1/4‖∇wS‖L4s/(4−s)(Ω) + |κ|1/2‖wS‖L2s/(2−s)(Ω) + |κ| ‖∂1wS‖Ls(Ω)

+ ‖∇2wS‖Lq(Ω) + ‖∂tw⊥‖Lp(T,Ls(Ω)) + ‖w⊥‖Lp(T,H2
s(Ω)) + ‖∇p‖Lp(T,Ls(Ω))

+ ‖∂tw⊥‖Lp(T,Lq(Ω)) + ‖w⊥‖Lp(T,H2
q(Ω)) + ‖∇p‖Lp(T,Lq(Ω)) ≤ ε |κ|1/2.

Theorem 4.1, Theorem 4.2 and Theorem 4.3 will be proved in Section 6.

Remark 4.4. While Theorem 4.1 deals with the case κ = 0 of vanishing translational velocity, The-
orem 4.2 and Theorem 4.3 yield existence of time-periodic solutions for arbitrary large κ 6= 0 if the
data are sufficiently small. However, the treatment of no-slip boundary conditions requires to take |κ|
small. Indeed, as explained in Remark 3.1, no-slip conditions are expressed by boundary data h of
the form (3.10). In virtue of (3.4), (3.6) and (3.7), we can then estimate

‖h‖Tp,q(Γ×T) ≤ C(1 + ε0)(ε0 + |κ|).

Therefore, the smallness conditions (4.4) and (4.5) can be satisfied by fixing κ0 > 0 and choosing |κ|
and ε0 > 0 sufficiently small.
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4.2 The associated linear problems

In the case κ = 0, system (4.1) reduces to the time-periodic Stokes equations in an exterior domain.
The following existence theorem was shown in [9]. We set Lq,3b(Ω) = {f ∈ Lq(Ω) | supp f ⊂ B3b}
to shorten the notation.

Theorem 4.5. Let κ = 0. Let 1 < p <∞, 3 < q <∞ and ` ∈ (0, 3]. For all f = fS + f⊥ such that
fS = divFS + gS and f⊥ = divF⊥ + g⊥ with g = gS + g⊥ ∈ Lp(T,Lq,3b(Ω)3) and

< FS >2 + < divFS >3 + < F⊥ >p,` + < divF⊥ >p,`+1<∞,

and for all h ∈ Tp,q(Γ× T), problem (4.1) with κ = 0 admits a unique solution (v, p) with

v ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p ∈ Lp(T, Ĥ1
q(Ω)),

possessing the estimate

‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω)) + ‖∇p‖Lp(T,Lq(Ω))

+ < vS >1 + < ∇vS >2 + < v⊥ >p,` + < ∇v⊥ >p,`+1

≤ C
(
< divFS >3 + < FS >2 + < divF⊥ >p,`+1 + < F⊥ >p,`

+ ‖g‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T)

)
.

(4.6)

Here the constant C > 0 only depends on Ω, T , µ, p, q, and `.

If κ 6= 0, then (4.1) is a time-periodic Oseen problem, and we have to take into account the anisotropic
spatial behavior of solutions. In this case we shall derive the following result on existence of solutions
with suitable pointwise decay.

Theorem 4.6. Let 0 < |κ| ≤ κ0. Let 1 < p < ∞, 3 < q < ∞, δ ∈ (0, 1
4
) and ` ∈ (0, 3]. For all

f = fS + f⊥ such that fS = f̃S + gS and f⊥ = divF⊥+ g⊥ with g = gS + g⊥ ∈ Lp(T,Lq,3b(Ω)3)
and

< f̃S >
w
5/2,1/2+2δ + < divF⊥ >p,1+` + < F⊥ >p,`<∞,

and for all h ∈ Tp,q(Γ× T), problem (4.1) admits a unique solution (v, p) with

v ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p ∈ Lp(T, Ĥ1
q(Ω)),

possessing the estimate

‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω)) + ‖∇p‖Lp(T,Lq(Ω))

+ |κ|δ < vS >
w
1,δ + |κ|δ < ∇vS >w

3/2,1/2+δ + < v⊥ >p,` + < ∇v⊥ >p,`+1

≤ C
(
< f̃S >

w
5/2,1/2+2δ + < divF⊥ >p,`+1 + < F⊥ >p,`

+ ‖g‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T)

)
.

(4.7)

Here the constant C > 0 only depends on Ω, T , µ, p, q, δ, ` and κ0.

Alternatively, the following well-posedness result for κ 6= 0 does not quantify the decay of the data
and the solutions in a pointwise sense, but merely uses (homogeneous) Sobolev spaces.
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Theorem 4.7. Let 1 < p < ∞, 1 < s < 2. For all f ∈ Lp(T,Ls(Ω)3) and h ∈ Tp,s(Γ × T)
problem (4.1) with κ 6= 0 admits a unique solution (v, p) with v = vS + v⊥ satisfying

vS ∈ Ĥ2
s(Ω)3 ∩ L2s/(2−s)(Ω)3, v⊥ ∈ H1

p(T,Ls(Ω)3) ∩ Lp(T,H2
s(Ω)3), p ∈ Lp(T, Ĥ1

s(Ω)),

possessing the estimate

‖∇2vS‖Ls(Ω) + |κ|1/4‖∇vS‖L4s/(4−s)(Ω) + |κ|1/2‖vS‖L2s/(2−s)(Ω) + |κ| ‖∂1vS‖Ls(Ω)

+ ‖∂tv⊥‖Lp(T,Ls(Ω)) + ‖v⊥‖Lp(T,H2
s(Ω)) + ‖∇p‖Lp(T,Ls(Ω))

≤ C
(
‖f‖Lp(T,Ls(Ω)) + ‖h‖Tp,s(Γ×T)

)
.

(4.8)

If additionally f ∈ Lp(T,Lq(Ω)3) and h ∈ Tp,q(Γ× T) for some q ∈ (1,∞), then

‖∇2vS‖Lq(Ω) + |κ| ‖∂1vS‖Lq(Ω) ≤ C
(
‖f‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T)

)
. (4.9)

If |κ| ≤ κ0 and 1 < s < 3/2, then the constant C > 0 only depends on Ω, T , µ, p, q, s and κ0.

For a proof of Theorem 4.5 we refer to [9, Theorem 5.2]. The derivation of Theorem 4.6 and Theo-
rem 4.7 is the scope of Section 5.

5 The time-periodic Oseen problem

In this section we show existence of solutions to the time-periodic Oseen problem (4.1) for κ 6= 0 with
suitable decay properties as stated in Theorem 4.6. To this end, we decompose all functions into a
steady-state part and a purely oscillatory part according to (2.2). Due to the linearity of the system, this
leads to two problems, which we examine in the case of homogeneous boundary conditions. Firstly,
we obtain the steady-state problem

−µ∆u− κ∂1u +∇p = fS, divu = 0 in Ω, u|Γ = 0, (5.1)

that is, we study time-independent solutions to (4.1). Secondly, we consider purely oscillatory solutions
to (4.1), which leads to the problem

∂tv⊥ − µ∆v⊥ − κ∂1v⊥ +∇p⊥ = f⊥, div v⊥ = 0 in Ω× T, v⊥|Γ×T = 0. (5.2)

Here the subscript ⊥ means that all functions have vanishing time mean. We study these problems
separately. A combination of the results will lead to a proofs of Theorem 4.6 and Theorem 4.7. As
explained in Remark 4.4, it will be important to derive estimates where the constants are independent
of κ for |κ| ≤ κ0.

5.1 Existence of time-independent solutions

For the steady-state Oseen problem (5.1), existence of solutions is guaranteed by the following result.
It characterizes the solution in terms of integrability properties and pointwise decay for suitable forcing
terms.
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Theorem 5.1. Let 3 < q < ∞, 0 < δ < 1/4 and 0 < |κ| ≤ κ0. Let fS = f̃ + g, where
< f̃ >w

5/2,1/2+2δ< ∞ and g ∈ Lq,3b(Ω)3. Then, problem (5.1) admits a unique solution (u, p) ∈
H2
q(Ω)3 × H1

q(Ω) possessing the estimate

‖u‖H2
q(Ω)+|κ|δ < u >w

1,δ +|κ|δ < ∇u >w
3/2,1/2+δ +‖p‖H1

q(Ω) ≤ C
(
< f̃ >w

5/2,1/2+2δ +‖g‖Lq(Ω)

)
(5.3)

for some constant C > 0 depending solely on Ω, µ, q, δ and κ0.

Proof. We first show that fS ∈ L1(Ω)3 ∩ Lq(Ω)3 and

‖f̃‖L1(Ω) + ‖f̃‖Lq(Ω) ≤ Cδ < f̃ >w
5/2,1/2+2δ . (5.4)

In fact, using the polar coordinates x1 = r cos θ, x2 = r sin θ cosϕ, x3 = r sin θ sinϕ for r > 0,
0 ≤ θ < π and 0 ≤ ϕ < 2π and a change of variables, we obtain

‖f̃‖L1(Ω) ≤ < f̃ >w
5/2,1/2+2δ

∫
R3

(1 + |x|)−5/2(1 + |x| − x1)−1/2−2δ dx

≤ 4π < f̃ >w
5/2,1/2+2δ

∫ ∞
0

∫ π/2

0

(1 + r)−5/2 r2 sin θ

(1 + r(1− cos θ))1/2+2δ
dr dθ

= 4π < f̃ >w
5/2,1/2+2δ

∫ ∞
0

∫ 1

0

(1 + r)−5/2r2

(1 + rt)1/2+2δ
drdt

≤ Cδ < f̃ >w
5/2,1/2+2δ

∫ ∞
0

(1 + r)−5/2(1 + r)1/2−2δr dr

≤ Cδ < f̃ >w
5/2,1/2+2δ .

Since we clearly have ‖f̃‖L∞(Ω) ≤ < f̃ >w
5/2,1/2+2δ, we thus conclude (5.4). Now the estimates of

‖u‖H2
q(Ω) and ‖p‖H1

q(Ω) are a direct consequence of [30, Theorem 3.1], and the remaining estimates
follow from [30, Theorem 4.1].

In contrast to the previous framework, where decay is specified in a pointwise sense, one can also
show existence within homogeneous Sobolev spaces.

Theorem 5.2. Let 1 < s < 3/2, 1 < q <∞ and 0 < |κ| ≤ κ0. Let fS ∈ Lq(Ω)3 ∩ Ls(Ω)3. Then,
problem (5.1) admits a unique solution (u, p) ∈ Ĥ2

q(Ω)3 × Ĥ1
q(Ω) possessing the estimate

‖∇2u‖Ls(Ω) + ‖∇2u‖Lq(Ω) + |κ|1/4‖∇u‖L4s/(4−s)(Ω) + |κ|1/2‖u‖L2s/(2−s)(Ω)

+ |κ| ‖∂1u‖Ls(Ω) + ‖∇p‖Ls(Ω) + ‖∇p‖Lq(Ω) + ‖p‖L3s/(3−s)(Ω) ≤ C
(
‖fS‖Ls(Ω) + ‖fS‖Lq(Ω)

)
(5.5)

for some constant C > 0 depending solely on Ω, µ, q, s and κ0.

Proof. Let us assume s ≤ q. Otherwise, we reverse the role of s and q. Then [12, Theorem 2.1]
implies the existence of a unique solution (u, p) satisfying

‖∇2u‖Ls(Ω) + |κ|1/4‖∇u‖L4s/(4−s)(Ω) + |κ|1/2‖u‖L2s/(2−s)(Ω)

+ |κ| ‖∂1u‖Ls(Ω) + ‖∇p‖Ls(Ω) + ‖p‖L3s/(3−s)(Ω) ≤ C‖fS‖Ls(Ω)

(5.6)

with C > 0 independent of κ. We now consider (u, p) as a solution to the Stokes problem

−µ∆u +∇p = fS + κ∂1u, divu = 0 in Ω, u|Γ = 0,
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with right-hand side f + κ∂1u ∈ Lr(Ω) with r = min{q, 4s
4−s} since ∂1u ∈ Ls(Ω) ∩ L4s/(4−s)(Ω)

by the previous estimate. From [13, Theorem V.4.8] we conclude

‖u‖Lr(Ω) + ‖∇p‖Lr(Ω) ≤ C
(
‖fS‖Lr(Ω) + |κ| ‖∂1u‖Lr(Ω)

)
≤ C

(
‖fS‖Lr(Ω) + |κ| ‖∂1u‖Ls(Ω) + |κ| ‖∂1u‖L4s/(4−s)(Ω)

)
≤ C

(
‖fS‖Lr(Ω) + ‖fS‖Ls(Ω)),

where we used estimate (5.6) as well as r ≥ s and |κ| ≤ κ0. If r = q, this completes the proof. If
r < q, then r = 4s/(4−s), and Sobolev’s inequality and classical interpolation implies∇u ∈ Lr̃(Ω)
for r̃ ∈ [r, 3r/(3− r)] if r < 3 and for r̃ ∈ [r,∞) if r > 3. By repeating the above argument with r
replaced with r̃, an iteration will finally lead to the asserted estimate for r = q.

5.2 Existence of purely oscillatory solutions

Existence of solutions to the purely oscillatory problem (5.2) is guaranteed by the following theorem.
Observe that here it is not necessary to distinguish between the cases κ = 0 and κ 6= 0.

Theorem 5.3. Let 1 < p, q <∞ and κ ∈ R with |κ| ≤ κ0. Then, for any f⊥ ∈ Lp(T,Lq(Ω)3) with∫
T f⊥(·, s) ds = 0, problem (5.2) admits a solution (v⊥, p⊥) with

v⊥ ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3),

∫
T
v⊥(·, s) ds = 0,

p⊥ ∈ Lp(T, Ĥ1
q(Ω)),

∫
T
p⊥(·, s) ds = 0,

which satisfies the estimate

‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω)) + ‖∇p⊥‖Lp(T,Lq(Ω)) ≤ C‖f⊥‖Lp(T,Lq(Ω)) (5.7)

for some constant C > 0 only depending on Ω, T , µ, p, q and κ0.

If (ṽ⊥, p̃⊥) is another solution to (5.2) with

ṽ⊥ ∈ H1
r(T,Ls(Ω)3) ∩ Lr(T,H2

s(Ω)3), p̃⊥ ∈ Lr(T, Ĥ1
s(Ω)),

for some 1 < r, s <∞, then v⊥ = ṽ⊥ and∇p⊥ = ∇p̃⊥.

To prove Theorem 5.3, we use the method recently introduced in [9], which is based on the existence
of suitable R-bounds for solution operators to the corresponding resolvent problem

λw − µ∆w − κ∂1w +∇r = f , divw = 0 in Ω, w|Γ = 0. (5.8)

For this problem, we have the following theorem.

Theorem 5.4. Let 1 < q <∞ and 0 ≤ |κ| ≤ κ0. Let

ρ[κ] :=

{
C \ (−∞, 0] if κ = 0,{
λ ∈ C | |κ|Re(λ) + Im(λ)2 > 0

}
if κ 6= 0,

(5.9)
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There are operator families (Sκ(λ)) ⊂ L (Lq(Ω)3,H2
q(Ω)3) and (Pκ(λ)) ⊂ L (Lq(Ω)3, Ĥ1

q(Ω)))
such that for every λ ∈ ρ[κ] and every f ∈ Lq(Ω)3 the pair (w, r) = (Sκ(λ)f ,Pκ(λ)f) is the
unique solution to (5.8) and satisfies the estimate

|λ| ‖Sκ(λ)f‖Lq(Ω) + ‖∇2Sκ(λ)f‖Lq(Ω) + ‖∇Pκ(λ)f‖Lq(Ω) ≤ C‖f‖Lq(Ω). (5.10)

If 0 < ε < π/2 and δ > 0 such that λ ∈ Σε,δ, then C only depends on Ω, q, ε, δ and κ0. Moreover,
there exist constants λ0, r0 > 0, depending on Ω, µ, q, ε and κ0, such that

Sκ ∈ Hol (Σε,λ0 ,L (Lq(Ω)3,H2
q(Ω)3)), Pκ ∈ Hol (Σε,λ0 ,L (Lq(Ω)3, Ĥ1

q(Ω))),

and
RL (Lq(Ω)3,H2−j

q (Ω)3)({(λ∂λ)
`(λj/2Sκ(λ)) | λ ∈ Σε,λ0}) ≤ r0,

RL (Lq(Ω)3,Lq(Ω)3)({(λ∂λ)`(∇Pκ(λ)) | λ ∈ Σε,λ0}) ≤ r0

for ` = 0, 1, j = 0, 1, 2.

Proof. For κ = 0, the result follows mainly from [31, Theorem 1.6] and [32, Theorem 9.1.4] as was
shown in [9, Theorem 4.2]. If κ 6= 0, the existence of the solution operators Sκ(λ) and Pκ(λ)
together with the estimate (5.10) for all λ ∈ Σε \ {0} was derived in [20, Theorem 4.4]. Since the
term κ∂1 can be regarded as a perturbation of the Stokes operator, which is uniform for |κ| ≤ κ0,
the asserted results on the analyticity and the R-bounds follow from those for κ = 0 if λ0 is taken
sufficiently large.

To show existence of solutions to (5.2), we combine the R-bounds from Theorem 5.4 with the following
multiplier theorem.

Theorem 5.5. Let X and Y be UMD spaces, and let M ∈ L∞(R,L (X, Y )) ∩ C1(R,L (X, Y ))
satisfy

RL (X,Y )

{
M(t) | t ∈ R \ {0}

}
≤ r0, RL (X,Y )

{
tM ′(t) | t ∈ R \ {0}

}
≤ r0, (5.11)

for some r0 > 0. Then M |Z is an Lp(T)-multiplier such that

∀f ∈ C∞(T;X) : ‖F−1
T [M |Z FT[f ]]‖Lp(T;Y ) ≤ Cpr0‖f‖Lp(T;X) (5.12)

for some constant Cp > 0 only depending on p.

Proof. The result was derived in [9, Corollary 2.3] as a combination of an operator-valued transference
principle for multipliers (see [19, Prop.5.7.1]) with the multiplier theorem due to Weis [34, Theorem
3.4].

For a proof of Theorem 5.4 we now follow the approach from [9].

Proof of Theorem 5.4. Let ϕ ∈ C∞(R) with ϕ(σ) = 1 for σ ≥ λ0 + 1/2 and ϕ(σ) = 0 for
σ ≤ λ0 + 1/4. Set fh = F−1

T [ϕ(|2πT k|)FT[f⊥](k)] and

vh = F−1
T
[
Sκ(i

2π
T k)ϕ(|2πT k|)FT[f⊥](k)

]
, ph = F−1

T
[
Pκ(i

2π
T k)ϕ(|2πT k|)FT[f⊥](k)

]
,

where λ0, Sκ and Pκ are given in Theorem 5.4. Then vh and ph satisfy the equations

∂tvh − µ∆vh − κ∂1vh +∇ph = fh, div vh = 0 in Ω× T, vh|Γ×T = 0.

DOI 10.20347/WIAS.PREPRINT.3000 Berlin 2023



Viscous flow past a translating body with oscillating boundary 15

Moreover, from the R-bounds from Theorem 5.4 we derive

RL (Lq(Ω)3,H2−j
q (Ω)3)

({
(λ∂λ)

`(λj/2ϕ(|λ|)Sκ(λ)) | λ ∈ Σε,λ0

})
≤ Cϕr0,

RL (Lq(Ω)3,Lq(Ω)3)

({
(λ∂λ)

`(ϕ(|λ|)∇Pκ(λ)) | λ ∈ Σε,λ0

})
≤ Cϕr0

for ` = 0, 1, j = 0, 1, 2, where Cϕ is a constant only depending on ϕ. Using Theorem 5.5, we
conclude

‖∂tvh‖Lp(T,Lq(Ω)) + ‖vh‖Lp(T,H2
q(Ω)) + ‖∇ph‖Lp(T,Lq(Ω)) ≤ C‖fh‖Lp(T,Lq(Ω)) ≤ C‖f⊥‖Lp(T,Lq(Ω)).

(5.13)
We now set

v⊥(t) = vh(t) +
∑

0<|k|≤λ0

ei
2π
T ktSκ(i

2π
T k)FT[f⊥](k),

p⊥(t) = ph(t) +
∑

0<|k|≤λ0

ei
2π
T ktPκ(i

2π
T k)FT[f⊥](k).

Then, v⊥ and p⊥ satisfy (5.2), and from (5.10) and (5.13) we conclude estimate (5.7).

For the uniqueness statement, consider the difference (u⊥, q⊥) = (v⊥ − ṽ⊥, p⊥ − p̃⊥), which
is a solution to (5.2) with f⊥ = 0. Then, for each k ∈ Z \ {0}, the functions ûk = FT[u⊥](k)
and q̂k = FT[q⊥](k) satisfy ûk ∈ H2

q(Ω)3 + H2
s(Ω)3 and q̂k ∈ Ĥ1

q(Ω) + Ĥ1
s(Ω) and solve the

homogeneous equations

i2π
T kûk − µ∆ûk − κ∂1ûk +∇q̂k = 0, div ûk = 0 in Ω, ûk|Γ = 0.

Using elliptic regularity for the Stokes operator and Sobolev embeddings, similarly as in the proof of
Theorem 5.2 we conclude ûk = ∇q̂k = 0 for any k ∈ Z. This shows v = ∇p = 0 and completes
the proof.

5.3 Pointwise decay of the oscillatory part

In this section, we study decay properties of solutions (v⊥, p⊥) to the purely oscillatory problem (5.2).
We derive decay properties of ‖v⊥(x, ·)‖Lp(T) and ‖∇v⊥(x, ·)‖Lp(T) as |x| → ∞ as stated in the
following theorem.

Theorem 5.6. Let 1 < p <∞, 3 < q <∞, ` ∈ (0, 3] and κ0 ≥ 0. Let f⊥ = divF⊥ + g⊥ with∫
T
F⊥(x, t) dt = 0, < F⊥ >p,` + < divF⊥ >p,`+1<∞,∫

T
g⊥(x, t) dt = 0, g⊥ ∈ Lp(T,Lq,3b(Ω)).

(5.14)

Let (v⊥, p⊥) be the solution to (5.2) according to Theorem 5.3. Then, v⊥ satisfies

< v⊥ >p,` + < ∇v⊥ >p,`+1≤ C(< divF⊥ >p,`+1 + < F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω))) (5.15)

with some constant C > 0 only dependent on Ω, T , µ, p, q, ` and κ0.

Remark 5.7. Since 3 < q < ∞, we have ‖divF⊥‖Lp(T,Lq(Ω)) ≤ Cq,` < divF⊥ >p,`+1, so that
f⊥ ∈ Lp(T,Lq(Ω)) and

‖f⊥‖Lp(T,Lq(Ω)) ≤ C
(
< divF⊥ >p,`+1 + < F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω))

)
.

Therefore, existence of (v⊥, p⊥) indeed follows from Theorem 5.3.
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T. Eiter, Y. Shibata 16

This pointwise estimate will be concluded by using the velocity fundamental solution to the purely
oscillatory problem (5.2), which is a tensor field Γκ⊥ such that v⊥ := Γκ⊥ ∗ H⊥ defines a solution
to (5.2) for Ω = R3. We use the following properties of Γκ⊥, which were mainly derived in [7] in the
general multidimensional case.

Theorem 5.8. Let κ ∈ R and µ, T > 0. Let

Γκ⊥ = F−1
R3×T

[ 1− δZ(k)

µ|ξ|2 − iκξ1 + i2π
T k

(
I− ξ ⊗ ξ

|ξ|2
)]
. (5.16)

Then, it holds Γκ⊥ ∈ Lq(R3 × T)3×3 for q ∈ (1, 5/3), and ∂jΓκ⊥ ∈ Lr(R3 × T)3×3 for r ∈ [1, 4/3),
j = 1, 2, 3. If κ0 > 0 such that |κ| ≤ κ0, then

‖Γκ⊥‖Lq(R3×T) + ‖∇Γκ⊥‖Lr(R3×T) ≤ C (5.17)

for some constant C > 0 only dependent on T , µ, q, r and κ0. Moreover, for any α ∈ N3
0, δ > 0,

r ∈ [1,∞) and θ > 0 such that T κ2 ≤ θ, there exists a constant C > 0, only dependent on µ, α,
δ, r and θ, such that

∀|x| ≥ δ : ‖∂αxΓκ⊥(x, ·)‖Lr(T) ≤ C|x|−(3+|α|). (5.18)

Proof. The majority of the result was proved in [7]. However, it was not shown that the respective
estimates are uniform in κ if κ is small. To show this property, we reconsider those parts of the proof
in [7], where this assumption has an effect.

To study integrability properties of Γκ⊥, the components of Γκ⊥ were expressed as

(Γκ⊥)j` =
[
δj`RmRm −RjR`

]
◦F−1

R3×T
[
Mκ,TFR3×T[Ψ]

]
,

where Rj denotes a Riesz transform, which is a continuous operator on Lq(R3×T). Moreover,Mκ,T
is given by

Mκ,T (k, ξ) :=
(1− δZ(k)) |2πT k|

2
5 (1 + |ξ|2)

3
5

µ|ξ|2 + iκξ1 + i2π
T k

,

and Ψ: R3 × T→ R is given as the product Ψ(x, t) = ψ(x)χ(t) with FR3 [ψ](ξ) = (1 + |ξ|2)−
3
5

and FT[χ](k) = (1− δZ(k))|2πT k|
− 2

5 . Then Mκ,T was shown to be an Lq-multiplier in R3×T such
that

‖Γκ⊥‖Lq(R3×T) ≤ C‖Ψ‖Lq(R3×T).

Going through the proof in [7], one readily verifies that the multiplier norm of Mκ,T and thus the
constant C > 0 in this estimate can be chosen uniformly in κ if |κ| ≤ κ0. It was also shown that
Ψ ∈ Lq(R3×T) for all q ∈ (1, 5/3), the norm of which is clearly independent of κ. This leads to the
asserted estimate for Γκ⊥, and arguing in the same way for∇Γκ⊥, we obtain the uniform estimate (5.17).

To derive the pointwise estimate (5.18), a central term in the proof from [7] given by

µ(κ, k) :=
(κ

2

)2

+ i
2π

T
k

for k ∈ Z, and its square root
√
−µ(κ, k), where

√
z denotes the square root of z with nonnegative

imaginary part. In particular, we need a constant Cθ > 0, only depending on θ, such that

Im
√
−µ(κ, k)− |κ|

2
≥ Cθ

∣∣2π
T
k
∣∣ 12 (5.19)
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Viscous flow past a translating body with oscillating boundary 17

for all k ∈ Z \ {0}. Repeating the calculations in [7, Lemma 3.2], we obtain

Im
√
−µ(κ, k)− |κ|

2
=
∣∣2π
T
k
∣∣ Φ
( |κ|/2
|2πT k|1/2

)
for Φ given by

Φ(s) := s
( 1√

2

(
1 +

(
1 + s−4

) 1
2

) 1
2 − 1

)
.

Since lims→0 Φ(s) = 1√
2

and Φ(s) > 0 for all s > 0, estimate (5.19) follows with

Cθ = min
{

Φ(s) | 0 < s ≤
√
θ

2
√

2π

}
> 0.

Moreover, we have

∣∣2π
T
k
∣∣ ≤ |µ(κ, k)| =

∣∣2π
T
k
∣∣√1 +

( |κ|2/4
|2πT k|

)2

≤ C̃θ
∣∣2π
T
k
∣∣

with C̃2
θ = 1 + (θ/8π)2, so that µ is comparable with

∣∣2π
T k
∣∣ with constants only depending on θ.

Based on these observations, one can now repeat the proof of the pointwise estimate (5.18) given
in [7] and see that all constants can be chosen uniformly in κ and T as long as T κ2 ≤ θ.

We can now show the statements of Theorem 5.6.

Proof of Theorem 5.6. We proceed as in the proof of [9, Theorem 5.6], where the result was proved
for κ = 0. In order to clarify that the constant C in (5.15) can be chosen independently of κ for
|κ| ≤ κ0, we repeat the arguments here.

Since we assume 3 < q <∞, Sobolev embeddings and estimate (5.7) imply

sup
|x|≤4b

‖v⊥(·, x)‖Lp(T) + sup
|x|≤4b

‖(∇v⊥)(·, x)‖Lp(T) ≤ C‖v⊥‖Lp(T,H2
q(Ω)) ≤ C‖f⊥‖Lp(T,Lq(Ω)).

In virtue of Remark 5.7, it thus remains to estimate v⊥ for |x| > 4b. As seen in the proof of Theorem
5.3, we have v⊥ = F−1

T [Sκ(i
2π
T k)FT[f⊥](k)] and p⊥ = F−1

T [Pκ(i
2π
T k)FT[f⊥](k)], where Sκ

and Pκ are the families of solution operators given in Theorem 5.4.

We first derive a representation formula of Sκ(i
2π
T k) for k ∈ Z \ {0} and |x| > 4b. Notice that

Sκ(i
2π
T k) ∈ L (Lq(Ω)3,H2

q(Ω)3) and Pκ(i
2π
T k) ∈ L (Lq(Ω)3, Ĥ1

q(Ω)) satisfy the estimate

‖Sκ(i
2π
T k)f‖H2

q(Ω) + ‖∇Pκ(i
2π
T k)f‖Lq(Ω) ≤ C‖f‖Lq(Ω) (5.20)

for f ∈ Lq(Ω)3, where C depends solely on Ω, µ, q and κ0. Moreover, u = FT[v⊥](k) =
Sκ(i

2π
T k)FT[f⊥](k) and q = FT[p⊥](k) = Pκ(i

2π
T k)FT[f⊥](k) satisfy the equations

i2π
T ku− µ∆u− κ∂1u +∇q = fk, divu = 0 in Ω, u|Γ = 0, (5.21)

where fk = FT[f⊥](k). Let ϕ be a function in C∞0 (R3) that equals 1 for |x| < 2b and 0 for |x| > 3b.
Let

w = (1− ϕ)Sκ(i
2π
T k)fk + B[(∇ϕ) ·Sκ(i

2π
T k)fk], r = (1− ϕ)Pκ(i

2π
T k)fk, (5.22)
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where B denotes the Bogovskiı̆ operator [1, 2]. Then w ∈ H2
q(R3)3 and r ∈ Ĥ1

q(R3), and the
functions w and r satisfy the equations

i2π
T kw − µ∆w − κ∂1w +∇r = (1− ϕ)fk +R1,κ(i

2π
T k)fk, divw = 0 in R3,

where we have set

R1,κ(λ)f = 2µ(∇ϕ) · ∇Sκ(λ)f + (µ∆ϕ+ κ∂1ϕ)Sκ(λ)f − (∇ϕ)Pκ(λ)f

+ (λ− µ∆− κ∂1)B[(∇ϕ) ·Sκ(λ)f ].

By the uniqueness of solutions to the Oseen resolvent problem in R3, we have w = Tκ(i2π
T k)((1−

ϕ)fk +R1,κ(i
2π
T k)fk), where

Tκ(λ)f = F−1
R3

[ 1

µ|ξ|2 − iκξ1 + λ

(
I− ξ ⊗ ξ

|ξ|2
)
FR3 [f ]

]
. (5.23)

Since 1− ϕ(x) = 1 and B[(∇ϕ) ·Sκ(i
2π
T k)fk](x, t) = 0 for |x| > 4b, by (5.22) we thus obtain

Sκ(i
2π
T k)fk(x) = Tκ(i2π

T k)((1− ϕ)fk)(x) + Tκ(i2π
T k)(R1,κ(i

2π
T k)fk)(x)

for |x| > 4b and any k ∈ Z \ {0}.
This representation formula implies

v⊥ = F−1
T [(1− δZ(k))Sκ(i

2π
T k)FT[f⊥](k)]

= F−1
T [(1− δZ(k))Tκ(i2π

T k)FT[(1− ϕ)f⊥](k))]

+ F−1
T [(1− δZ(k))Tκ(i2π

T k)(R1,κ(i
2π
T k)FT[f⊥](k))]

(5.24)

for |x| > 4b. Moreover, from Theorem 5.4 we conclude

RL (Lq(Ω)3,H1
q(R3)3)({(λ∂λ)`R1,κ(λ) | λ ∈ R \ [−λ0, λ0]}) ≤ r0 (` = 0, 1),

‖R1,κ(i
2π
T k)fk‖H1

q(R3) ≤ r0‖fk‖Lq(Ω)

for any k ∈ Z \ {0} with some constant r0 independent of κ. We can thus define R2,κf⊥ by setting
R2,κf⊥ = F−1

T [(1− δZ(k))R1,κ(i
2π
T k)fk] and obtain that

suppR2,κf⊥ ⊂ D2b,3b := {(x, t) ∈ R3 × R | 2b < |x| < 3b},
‖R2,κf⊥‖Lp(T,Lq(Ω)) ≤ C‖f⊥‖Lp(T,Lq(Ω))

(5.25)

by employing Theorem 5.5 in the same way as in the proof of Theorem 5.3. Recalling that f⊥ =
divF⊥+g⊥, we set G = (1−ϕ)F⊥ and h = (∇ϕ)F⊥+ (1−ϕ)g⊥+R2,κf⊥. In virtue of (5.16),
(5.23) and (5.24), we then have

v⊥(x, t) = Γκ⊥ ∗ (divG)(x, t) + Γκ⊥ ∗ h(x, t)

for t ∈ T and |x| > 4b.

We decompose this formula into two parts and set v1 = Γκ⊥ ∗ (divG) and v2 = Γκ⊥ ∗ h. By the
divergence theorem, we obtain

v1(x, t) = ∇Γκ⊥ ∗G(x, t)

=

∫
T

∫
|y|≤1

∇Γκ⊥(y, s)G(x− y, t− s) dyds+

∫
T

∫
1≤|y|≤|x|/2

∇Γκ⊥(y, s)G(x− y, t− s) dyds

+

∫
T

∫
|x|/2≤|y|≤2|x|

∇Γκ⊥(y, s)G(x− y, t− s) dyds+

∫
T

∫
|y|≥2|x|

∇Γκ⊥(y, s)G(x− y, t− s) dyds.

DOI 10.20347/WIAS.PREPRINT.3000 Berlin 2023



Viscous flow past a translating body with oscillating boundary 19

We set γ` =< G >p,` and consider p < r0 <∞, r1 ∈ (1, 5/4) such that 1 + 1/r0 = 1/r1 + 1/p.
From Young’s inequality and Theorem 5.8, we thus conclude

‖v1(x, ·)‖Lr0 (T) ≤ γ`‖∇Γκ⊥‖Lr1 (B1×T)(1 + |x|)−` + Cγ`(1 + |x|)−`
∫

1≤|y|≤|x|/2
|y|−4 dy

+ Cγ`(|x|/2)−4

∫
|z|≤3|x|

(1 + |z|)−` dz + Cγ`

∫
|y|≥2|x|

|y|−4−` dy.

Noting that p ≤ r0 and γ` ≤ < F⊥ >p,`, we infer

‖v1(x, ·)‖Lp(T) ≤ Cb|x|−min{`,4} < F⊥ >p,` for |x| ≥ 4b.

In the same way we decompose∇v1 = ∇Γκ⊥ ∗ divG and use Theorem 5.8 and Young’s inequality
to obtain

‖∇v1(x, ·)‖Lr0 (T)

≤ γ`+1‖∇Γ`‖Lr1 (B1×T)(1 + |x|)−`−1 + Cγ`+1(1 + |x|)−`−1

∫
1≤|y|≤|x|/2

|y|−4 dy

+ Cγ`+1(|x|/2)−4

∫
|z|≤3|x|

(1 + |z|)−`−1 dz + Cγ`+1

∫
|y|≥2|x|

|y|−5−` dy,

where γ`+1 =< divG >p,`+1. Since we have

< divG >p,`+1 ≤ < divF⊥ >p,`+1 + < (∇ϕ)F⊥ >p,`+1

≤ < divF >p,`+1 +‖∇ϕ‖L∞(R3)3b < F >p,`

and p ≤ r0, we thus obtain

‖∇v1(x, ·)‖Lp(T) ≤ Cb|x|−min{`+1,4}(< divF⊥ >p,`+1 + < F⊥ >p,`) for |x| ≥ 4b.

Using that h(y, s) vanishes for |y| ≥ 3b, we obtain have

∇mv2(x, t) =

∫
T

∫
|x−y|≤3b

∇mΓκ⊥(y, s)h(x− y, t− s) dyds

form = 0, 1. Since |x| ≥ 4b and |x−y| ≤ 3b implies |y| ≥ |x|/4 ≥ b, by Theorem 5.8 and Young’s
inequality, we deduce

‖∇mv2(x, ·)‖Lp(T) ≤
∫
|x−y|≤3b

‖∇mΓκ⊥(y, ·)‖Lp(T)‖h(x− y, ·)‖L1(T) dy

≤ Cm|x|−3−m‖h‖L1(B3b×T).

Noting (5.25), we can estimate the last term as

‖h‖L1(B3b×T) ≤ C‖h‖Lp(T,Lq(B3b)) ≤ C
(
< F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω)) + ‖R2,κf⊥‖Lp(T,Lq(Ω))

)
≤ C

(
< F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω)) + ‖f⊥‖Lp(T,Lq(Ω))

)
.

For |x| ≥ 4b we now conclude

‖∇mv2(x, ·)‖Lp(T) ≤ C|x|−3−m( < F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω))+ < divF⊥ >p,`+1

)
in virtue of Remark 5.7. Since v(x, t) = v1(x, t) + v2(x, t) for |x| ≥ 4b, we conclude (5.15).
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5.4 The full time-periodic problem

To conclude the existence result for time-periodic solutions to the Oseen problem as stated in The-
orem 4.6, we combine Theorem 5.1 and Theorem 5.6 with a lifting argument for inhomogeneous
boundary conditions.

Proof of Theorem 4.6. We first reduce the problem to the case of homogeneous boundary conditions.
For this purpose, let

v1 ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p1 ∈ Lp(T, Ĥ1
q(Ω)),

be a solution to the time-periodic Stokes problem

∂tv1 − µ∆v1 +∇p1 = 0, div v1 = 0 in Ω× T, v1|Γ×T = h|Γ×T,

which exists due to Theorem 4.5. Let ϕ ∈ C∞0 (Ω) be such that ϕ ≡ 1 in B2b and ϕ ≡ 0 in R3 \B3b.
Let D2b,3b = {x ∈ R3 | 2b < |x| < 3b} and

H2
q,0,a(D2b,3b)=

{
f ∈ H2

q(D2b,3b) | ∂αx f |SL = 0 for L = 2b, 3b and |α| ≤ 1,

∫
D2b,3b

f(x) dx = 0
}
.

According to [33, Lemma 5], we know that (∇ϕ) · v1(t) ∈ H2
q,0,a(D2b,3b) for a.a. t ∈ R, and setting

ṽ = ϕv1 − B[(∇ϕ) · v1], we see that

ṽ ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), supp ṽ ⊂ B3b ∩ Ω, div ṽ = 0, ṽ|Γ = h,

‖∂tṽ‖Lp(T,Lq(Ω)) + ‖ṽ‖Lp(T,H2
q(Ω)) ≤ C(‖∂th‖Lp(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω))).
(5.26)

Now let (wS, qS) and (w⊥, q⊥) be the unique solutions to the equations

−∆wS − κ∂1wS +∇qS = fS + κ∂1ṽS, divwS = 0 in Ω, wS|Γ = 0,
(5.27)

∂tw⊥ −∆w⊥ − κ∂1w⊥ +∇q⊥ = f⊥ + κ∂1ṽ⊥, divw⊥ = 0 in Ω× T, w⊥|Γ×T = 0,
(5.28)

which exist due to Theorem 5.1 and Theorem 5.3. Also invoking Theorem 5.6, we see that (v, p) =
(ṽ+wS+w⊥, qS+q⊥) is a solution to the original problem (4.1) and belongs to the asserted function
class since ṽ vanishes in R3\B3b. Estimate (4.7) follows by combining the estimates from (5.3), (5.7),
(5.15) and (5.26).

The uniqueness statement is a direct consequence of decomposing a solution (v, p) into a stationary
and an oscillatory part by means of (2.2) and using the respective statements from Theorem 5.1 and
Theorem 5.3.

Proof of Theorem 4.7. We proceed as in the proof of Theorem 4.6 and first reduce the problem to the
case of homogeneous boundary conditions. We construct the function ṽ as before, and let (wS, qS)
and (w⊥, q⊥) be the solutions to (5.27) and (5.28), which exist due to Theorem 5.2 and Theorem 5.3.
Then (v, p) = (ṽ + wS + w⊥, qS + q⊥) is a solution to (4.1) and the estimates (4.8) and (4.9)
follow from (5.5), (5.7) and (5.26). As before, the uniqueness statement follows from the respective
statements of Theorem 5.2 and Theorem 5.3.
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6 Existence of solutions to the nonlinear problem

To show existence of time-periodic solutions to the nonlinear problem (3.8), we combine the linear
theory from Theorem 4.5 Theorem 4.6 and Theorem 4.7 with suitable estimates for the linear pertur-
bation term L and the nonlinear term N given in (3.9). Then Banach’s fixed-point theorem will finally
lead to the proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3. More precisely, we consider the set

Iκ,ρ =
{

(v, q) | v ∈ L1,loc(Ω× T)3, q ∈ L1,loc(Ω× T), ‖(v, q)‖Iκ ≤ ρ
}

(6.1)

for a suitable norm ‖ · ‖Iκ that is defined in the respective proofs and is suggested by the associated
linear theory. For given (v, q) ∈ Iκ,ρ, we then consider the solution (u, p) to the linear system

∂tu− µ∆u− κ∂1u +∇p = f +L(v, q) +N (v), divu = 0 in Ω× T, u|Γ×T = h|Γ×T,
(6.2)

where L andN are defined in (3.9). We show that in the respective settings and for a suitable choice
of ρ, this leads to a well-defined solution mapping Ξκ : Iκ,ρ → Iκ,ρ, (v, q) 7→ (u, p), which is
contractive. Therefore, Banach’s fixed-point theorem yields the existence of an element (w, q) such
that Ξκ(w, q) = (w, q), that is, (w, q) is a solution to the nonlinear problem (3.8).

To derive suitable estimates, we write L(v, q) andN (v) as

L(v, q) = L1∂tv +
∑
|α|≤2

L2,αD
αv +

∑
|α|=1

L3,αD
αq,

N (v) = N 1(v) +N 2(v) = v · ∇v +
∑
|α|≤1

L4,αv ·Dαv.
(6.3)

Here, L1, L2,α, L3,α and L4,α correspond to time-periodic continuous functions on Ω × T, which
vanish on R3 \B2b × T and satisfy the estimate

‖(L1,L2,α,L3,α,L4,α)‖L∞(Ω×T) ≤ Cε0 (6.4)

if |κ| ≤ κ0, due to (3.6) and (3.7). We define Ω2b = Ω ∩ B2b. The terms that vanish outside of
Ω2b × T, where Ω2b = Ω ∩B2b, can be estimated in the following manner.

Lemma 6.1. Let 2 < p <∞ and 3 < q <∞, and let

v ∈ H1
p(T,Lq(Ω2b)

3) ∩ Lp(T,H2
q(Ω2b)

3), ∇q ∈ Lp(T,Lq(Ω2b)
3).

It holds

‖L(v, q)‖Lp(T,Lq(Ω)) ≤ Cε0

(
‖∂tv‖Lp(T,Lq(Ω2b)) + ‖v‖Lp(T,H2

q(Ω2b)) + ‖∇q‖Lp(T,Lq(Ω2b))

)
, (6.5)

‖N 2(v)‖Lp(T,Lq(Ω)) ≤ Cε0

(
‖∂tv‖Lp(T,Lq(Ω2b)) + ‖v‖Lp(T,H2

q(Ω2b))

)2
. (6.6)

Proof. Estimate (6.5) is a direct consequence of (6.3) and (6.4). For estimate (6.6), we first use
Hölder’s inequality and (6.4) to obtain

‖N 2(v)⊥‖Lp(T,Lq(Ω)) ≤ Cε0‖v‖L∞(T,L∞(Ω2b))‖∇v‖Lp(T,Lq(Ω2b))

Now choose σ > 0 so small that σ + 3/q < 2(1 − 1/p), which is possible due to 2/p + 3/q < 2.
Using Sobolev’s inequality and real interpolation, we then have

‖w‖L∞(T,L∞(D)) ≤ C‖w‖
L∞(T,Wσ+3/q

q (D))
≤ C‖w‖

L∞(T,B2(1−1/p)
q,p (D))

≤ C(‖∂tw‖Lp(T,Lq(D)) + ‖w‖Lp(T,H2
q(D)))

(6.7)
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for any Lipschitz domain D ⊂ R3. Using this estimate with w = v and D = ΩR leads to esti-
mate (6.6).

We shall use these estimates of the local terms in all proofs below. However, for estimates of the term
N 1(v), which also gives a contribution far away from the boundary, the spatial decay of solutions has
to be taken into account. Observe that div v = 0 impliesN 1(v) = div Ñ 1(v) with Ñ 1(v) = v⊗v.
Then

N 1(v)S = vS · ∇vS +

∫
T
v⊥ · ∇v⊥ dt

Ñ 1(v)S = vS ⊗ vS +

∫
T
v⊥ ⊗ v⊥ dt;

N 1(v)⊥ = vS · ∇v⊥ + v⊥ · ∇vS + v⊥ · ∇v⊥ −
∫
T
v⊥ · ∇v⊥ dt

Ñ 1(v)⊥ = vS ⊗ v⊥ + v⊥ ⊗ vS + v⊥ ⊗ v⊥ −
∫
T
v⊥ ⊗ v⊥ dt.

(6.8)

and div Ñ (v)S = N 1(v)S and div Ñ (v)⊥ = N 1(v)⊥. Corresponding estimates that suit to the
linear theory are derived in the following three lemmas.

Lemma 6.2. Let 2 < p <∞ and 3 < q <∞, and let

v ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), < v >p,1 + < ∇v >p,2<∞.

Then

< N 1(v)S >3 ≤ C(< vS >1< ∇vS >2 + < v⊥ >p,1< ∇v⊥ >p,2),

< Ñ 1(v)S >2 ≤ C(< vS >
2
1 + < v⊥ >

2
p,1),

< N 1(v)⊥ >p,2 ≤ C
(
< v⊥ >p,1< ∇vS >2

+ (‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω))+ < v >p,1) < ∇v⊥ >p,2

)
,

< Ñ 1(v)⊥ >p,1 ≤ C
(
‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2

q(Ω))+ < v >p,1

)
< v⊥ >p,1 .

Proof. The estimates ofN (v)S and Ñ (v)S follow directly from using Hölder’s inequality for the time
integrals since p > 2. For the estimates ofN (v)⊥ and Ñ (v)⊥, Hölder’s inequality leads to

< N 1(v)⊥ >p,2 ≤ C(< vS >1< ∇v⊥ >p,2 + < v⊥ >p,1< ∇vS >2

+ ‖v⊥‖L∞(T,L∞(Ω)) < ∇v⊥ >p,2 + < v⊥ >p,1< ∇v⊥ >p,2),

< Ñ 1(v)⊥ >p,1 ≤ C(< vS >1< v⊥ >p,1 +‖v⊥‖L∞(T,L∞(Ω)) < v⊥ >p,1 + < v⊥ >
2
p,1).

Using now the interpolation inequality (6.7) completes the proof.

Lemma 6.3. Let 2 < p <∞, 3 < q <∞ and δ ∈ (0, 1
4
), and let

v ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3),

< vS >
w
1,δ + < ∇vS >w

3/2,1/2+δ + < v⊥ >p,1+δ + < ∇v⊥ >p,2+δ<∞.
Then

< N 1(v)S >
w
5/2,1/2+2δ≤ C

(
< vS >

w
1,δ< ∇vS >w

3/2,1/2+δ + < v⊥ >p,1+δ< ∇v⊥ >p,2+δ

)
,

< N 1(v)⊥ >p,2+δ≤ C
(
< v⊥ >p,1+δ< ∇vS >w

3/2,1/2+δ

+ (‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω))+ < vS >

w
1,δ + < v⊥ >p,1+δ) < ∇v⊥ >p,2+δ

)
,

< Ñ 1(v)⊥ >p,1+δ

≤ C(‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω))+ < vS >

w
1,δ + < v⊥ >p,1+δ) < v⊥ >p,1+δ .
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Proof. As in the previous proof, the estimate of N 1(v)S follows directly from Hölder’s inequality.
Moreover, we obtain

< N 1(v)⊥ >p,2+δ ≤ C(< vS >
w
1,δ< ∇v⊥ >p,2+δ + < v⊥ >p,1+δ< ∇vS >w

3/2,1/2+δ

+ ‖v⊥‖L∞(T,L∞(Ω)) < ∇v⊥ >p,2+δ + < v⊥ >p,1+δ< ∇v⊥ >p,2+δ),

< Ñ 1(v)⊥ >p,1+δ ≤ C(< vS >
w
1,δ< v⊥ >p,1+δ

+ ‖v⊥‖L∞(T,L∞(Ω)) < v⊥ >p,1+δ + < v⊥ >
2
p,1+δ).

The asserted estimates now result from the interpolation inequality (6.7).

Lemma 6.4. Let 2 < p <∞, 3 < q <∞ and 1 < s ≤ 4/3, and let v = vS + v⊥ be such that

vS ∈ L2s/(2−s)(Ω), ∇vS ∈ L4s/(4−s)(Ω), ∇2vS ∈ Ls(Ω) ∩ Lq(Ω),

v⊥ ∈ H1
p(T,Lq(Ω)3 ∩ Ls(Ω)3) ∩ Lp(T,H2

q(Ω)3 ∩ H2
s(Ω)3).

Then

‖N 1(v)S‖Ls(Ω) ≤ C
(
‖vS‖1−θ

L2s/(2−s)(Ω)‖∇
2vS‖θLq(Ω)‖∇vS‖L4s/(4−s)(Ω)

+ (‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω)))‖v⊥‖Lp(T,H1

s(Ω))

)
,

‖N 1(v)S‖Lq(Ω) ≤ C
(
(‖∇2vS‖Ls(Ω) + ‖∇2vS‖Lq(Ω))

2

+ (‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω)))

2
)
,

‖N 1(v)⊥‖Lp(T;Ls(Ω)) ≤ C
(
‖∇2vS‖Ls(Ω) + ‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2

q(Ω))

)
×
(
‖v⊥‖Lp(T,H1

s(Ω)) + ‖v⊥‖Lp(T,H1
q(Ω))

)
,

‖N 1(v)⊥‖Lp(T;Lq(Ω)) ≤ C
(
‖∇2vS‖Ls(Ω)+‖∇2vS‖Lq(Ω) + ‖∂tv⊥‖Lp(T,Lq(Ω))+‖v⊥‖Lp(T,H2

q(Ω))

)
× ‖v⊥‖Lp(T,H1

q(Ω)),

where θ = (1/s− 3/4)/(1/s+ 1/6− 1/q).

Proof. Using the Gagliardo–Nirenberg inequality in exterior domains (see [4]) and Young’s inequality,
we obtain

‖vS‖L4(Ω) ≤ C‖vS‖1−θ
L2s/(2−s)(Ω)‖∇

2vS‖θLq(Ω),

‖vS‖L∞(Ω) ≤ C‖vS‖1−θ1
L3s/(3−2s)(Ω)‖∇

2vS‖θ1Lq(Ω) ≤ C
(
‖∇2vS‖Ls(Ω) + ‖∇2vS‖Lq(Ω)

)
,

‖∇vS‖Lq(Ω) ≤ C‖∇vS‖1−θ2
L3s/(3−s)(Ω)‖∇

2vS‖θ2Lq(Ω) ≤ C
(
‖∇2vS‖Ls(Ω) + ‖∇2vS‖Lq(Ω)

)
,

with θ as above, θ1 = (1/s − 2/3)/(1/s − 1/q) and θ2 = (1/s − 1/q − 1/3)/(1/s − 1/q).
Combining these estimates with the interpolation inequality (6.7) for w = v⊥ and D = Ω, we obtain
the asserted estimates of N (v)S directly from Hölder’s inequality. For the estimates of N (v)⊥, the
Hölder inequality yields

‖N 1(v)⊥‖Lp(T;Ls(Ω)) ≤ ‖vS‖L3s/(3−2s)(Ω)‖∇v⊥‖Lp(T;L3/2(Ω))+‖v⊥‖Lp(T;L3(Ω))‖∇vS‖L3s/(3−s)(Ω)

+‖v⊥‖L∞(T;L∞(Ω))‖∇v⊥‖Lp(T;Ls(Ω))+‖v⊥‖L∞(T;L∞(Ω))‖∇v⊥‖L1(T;Ls(Ω)),

‖N 1(v)⊥‖Lp(T;Lq(Ω)) ≤ ‖vS‖L∞(Ω)‖∇v⊥‖Lp(T;Lq(Ω))+‖v⊥‖Lp(T;L∞(Ω))‖∇vS‖Lq(Ω)

+‖v⊥‖L∞(T;L∞(Ω))‖∇v⊥‖Lp(T;Lq(Ω))+‖v⊥‖L∞(T;L∞(Ω))‖∇v⊥‖L1(T;Lq(Ω)).

Since s ≤ 4/3 < 3/2 < 3 < q, the remaining estimates now follow by Sobolev embeddings and
interpolation as before.
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After these preparations, we prove the main theorems of this article. We begin with the case κ = 0.

Proof of Theorem 4.1. Consider I0,ρ as in (6.1) with

‖(v, q)‖I0 := ‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω)) + ‖∇q‖Lp(T,Lq(Ω))+ < v >p,1 + < ∇v >p,2 .

Let (v, q) ∈ I0,ρ. In virtue of Lemma 6.1 and Lemma 6.2, Theorem 4.5 implies the existence of a
solution (u, p) to (6.2) such that

‖(u, p)‖I0 ≤ C
(
< fS >3 + < FS >2 + < f⊥ >p,2 + < F⊥ >p,1

+ < N 1(v)S >3 + < Ñ 1(v)S >2 + < N 1(v)⊥ >p,2 + < Ñ 1(v)⊥ >p,1

+ ‖N 2(v)‖Lp(T,Lq(Ω)) + ‖L(v, q)‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T)

)
≤ C

(
ε2 + ‖(v, q)‖2

I0 + ε0‖(v, q)‖2
I0 + ε0‖(v, q)‖I0

)
≤ C(ε2ρ−1 + ρ+ ε0ρ+ ε0)ρ,

where C > 0 does not depend on the choice of (v, q). Choosing ρ = ε and ε, ε0 > 0 sufficiently
small, we have C(ε2ρ−1 + ρ + ε0ρ + ε0) < 1, so that the solution map Ξ0 : (v, q) 7→ (u, p) is a
well-defined self-mapping on I0,ρ.

Since L(v, q) is linear and N (v) is quadratic in (v, q), similar arguments lead to a constant C > 0
such that

‖Ξ0(v1, q1)− Ξ0(v2, q2)‖I0
≤ C

(
< N 1(v1)S −N 1(v2)S >3 + < Ñ 1(v1)S − Ñ 1(v2)S >2

+ < N 1(v1)⊥ −N 1(v2)⊥ >p,2 + < Ñ 1(v1)⊥ − Ñ 1(v2)⊥ >p,1

+ ‖N 2(v1)−N 2(v2)‖Lp(T,Lq(Ω)) + ‖L(v1, q1)− L(v2, q2)‖Lp(T,Lq(Ω))

)
≤ C

(
‖(v1, q1)‖I0 + ‖(v2, q2)‖I0 + ε0‖(v1, q1)‖I0 + ε0‖(v2, q2)‖I0 + ε0)

× ‖(v1 + v2, q1 − q2)‖I0
≤ C(ρ+ ε0ρ+ ε0)‖(v1 − v2, q1 − q2)‖I0 ,

for all (v1, q1), (v2, q2) ∈ I0,ρ. Again we have ρ = ε, and choosing ε, ε0 > 0 so small that
C(ε+ε0ε+ε0) < 1, we see that Ξ0 is also a contraction. Therefore, the contraction mapping principle
yields existence of a fixed-point of Ξ0, which is a solution to (3.8) with the asserted properties.

We treat the case κ 6= 0 in a similar way, starting with the framework of functions with anisotropic
pointwise decay.

Proof of Theorem 4.2. Consider Iκ,ρ as in (6.1) with

‖(v, q)‖Iκ := ‖∂tv‖Lp(T,Lq(Ω)) + ‖v‖Lp(T,H2
q(Ω)) + ‖∇q‖Lp(T,Lq(Ω))

+ |κ|δ < vS >
w
1,δ + |κ|δ < ∇vS >w

3/2,1/2+δ + < v⊥ >p,1+δ + < ∇v⊥ >p,2+δ .

Let (v, q) ∈ Iκ,ρ. In virtue of Lemma 6.1 and Lemma 6.3, Theorem 4.6 implies the existence of a
solution (u, p) to (6.2) such that

‖(u, p)‖Iκ ≤ C
(
< fS >

w
5/2,1/2+2δ + < f⊥ >p,2+δ + < F⊥ >p,1+δ + < N 1(v)S >

w
5/2,1/2+2δ

+ < N 1(v)⊥ >p,`+1 + < Ñ 1(v)⊥ >p,` +‖N 2(v)‖Lp(T,Lq(Ω))

+ ‖L(v, q)‖Lp(T,Lq(Ω)) + ‖h‖Tp,q(Γ×T)

)
≤ C

(
ε2|κ|2δ + (1 + |κ|−2δ)‖(v, q)‖2

Iκ + ε0‖(v, q)‖2
Iκ + ε0‖(v, q)‖Iκ

)
≤ C

(
ε2|κ|2δρ−1 + (1 + |κ|−2δ)ρ+ ε0ρ+ ε0

)
ρ.
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We further proceed similarly to the proof of Theorem 4.6. We choose ρ = ε|κ|2δ. Then the solution
map Ξκ : (v, q) 7→ (u, p) is a self-mapping on Iκ,ρ if C(ε + ε(|κ|2δ + 1) + ε0(1 + ε|κ|2δ)) < 1.
This is the case for all |κ| ≤ κ0 if we choose ε, ε0 > 0 sufficiently small. Arguing as in the previous
proof, we further obtain

‖Ξκ(v1, q1)− Ξκ(v2, q2)‖Iκ
≤ C

(
(1 + |κ|−2δ)(‖(v1, q1)‖Iκ + ‖(v2, q2)‖Iκ) + ε0(1 + ‖(v1, q1)‖Iκ + ‖(v2, q2)‖Iκ)

)
× ‖(v1 − v2, q1 − q2)‖Iκ

≤ C
(
ρ+ |κ|−2δρ+ ε0 + ε0ρ

)
‖(v1 − v2, q1 − q2)‖Iκ

for (v1, q1), (v2, q2) ∈ Iκ,ρ. With the choice ρ = ε|κ|2δ we see that Ξκ is also contractive for all
|κ| ≤ κ0 for ε, ε0 > 0 sufficiently small. Finally, Banach’s fixed-point theorem yields an element
(w, q) ∈ Iκ with (w, q) = Ξκ(w, q), which completes the proof.

Finally, we treat the case κ 6= 0 in a framework of homogeneous Sobolev spaces.

Proof of Theorem 4.3. Consider Iκ,ρ as in (6.1) with

‖(v, q)‖Iκ := ‖∇2vS‖Ls(Ω) + |κ|1/4‖∇vS‖L4s/(4−s)(Ω) + |κ|1/2‖vS‖L2s/(2−s)(Ω)

+ |κ| ‖∂1vS‖Ls(Ω) + ‖∇2vS‖Lq(Ω) + ‖∂tv⊥‖Lp(T,Ls(Ω)) + ‖v⊥‖Lp(T,H2
s(Ω))

+ ‖∇q‖Lp(T,Ls(Ω)) + ‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω)) + ‖∇q‖Lp(T,Lq(Ω)).

Let (v, q) ∈ Iκ,ρ. In virtue of Lemma 6.1 and Lemma 6.4, Theorem 4.7 implies the existence of a
solution (u, p) to (6.2) such that

‖(u, p)‖Iκ ≤ C
(
‖f‖Lp(T,Ls(Ω)) + ‖f‖Lp(T,Lq(Ω)) + ‖N 1(v)‖Lp(T,Ls(Ω)) + ‖N 1(v)‖Lp(T,Lq(Ω))

+ ‖N 2(v)‖Lp(T,Ls(Ω)) + ‖N 2(v)‖Lp(T,Lq(Ω)) + ‖L(v, q)‖Lp(T,Ls(Ω))

+ ‖L(v, q)‖Lp(T,Lq(Ω)) + ‖h‖Tp,s(Γ×T) + ‖h‖Tp,q(Γ×T)

)
.

Observe that C is independent of |κ| ≤ 1. Since N 2(v) and L(v) vanish outside Ω2b, we can use
Lemma 6.1 to estimate

‖N 2(v)‖Lp(T,Ls(Ω)) + ‖N 2(v)‖Lp(T,Lq(Ω)) + ‖L(v, q)‖Lp(T,Ls(Ω)) + ‖L(v, q)‖Lp(T,Lq(Ω))

≤ C
(
‖N 2(v)‖Lp(T,Lq(Ω2b)) + ‖L(v, q)‖Lp(T,Lq(Ω2b))

)
≤ Cε0

(
‖(v, q)‖Iκ + ‖(v, q)‖2

Iκ

)
,

where we used

‖vS‖H2
q(Ω2b) ≤ C

(
‖vS‖L3s/(3−2s)(Ω2b) + ‖∇2vS‖Lq(Ω2b)

)
≤ C

(
‖∇2vS‖Ls(Ω) + ‖∇2vS‖Lq(Ω)

)
.

We further decompose N 1(v) into steady-state and oscillatory part and combine the estimates from
Lemma 6.4 with the previous one to conclude

‖(u, p)‖Iκ ≤ C
(
ε2|κ|(1+δ)/2+|κ|−(1−θ)/2‖(v, q)‖2

Iκ+‖(v, q)‖2
Iκ+ε0(‖(v, q)‖Iκ+‖(v, q)‖2

Iκ)
)

≤ C
(
ε2|κ|(1+δ)/2ρ−1 + |κ|−(1−θ)/2ρ+ ρ+ ε0(1 + ρ)

)
ρ

with θ as in Lemma 6.4, so that θ ∈ [0, 3/10). We now choose ρ = ε|κ|1/2. Then the solution map
Ξκ : (v, q) 7→ (u, p) is a self-mapping on Iκ,ρ if

C
(
ε|κ|δ/2 + ε|κ|θ/2 + ε|κ|1/2 + ε0(1 + ε|κ|1/2)

)
< 1.
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Since the constant C is independent of κ, we can take ε, ε0 > 0 so small that this is satisfied for all
|κ| ≤ κ0. Modifying the previous argument, we can further show

‖Ξκ(v1, q1)− Ξκ(v2, q2)‖Iκ
≤ C

(
(1 + |κ|−(1−θ)/2)(‖(v1, q1)‖Iκ + ‖(v2, q2)‖Iκ) + ε0(1 + ‖(v1, q1)‖Iκ + ‖(v2, q2)‖Iκ)

)
× ‖(v1 − v2, q1 − q2)‖Iκ

≤ C
(
ρ+ |κ|−(1−θ)/2ρ+ ε0 + ε0ρ

)
‖(v1 − v2, q1 − q2)‖Iκ

for some C > 0 independent of κ and for all (v1, q1), (v2, q2) ∈ Iκ,ρ. With ρ = ε|κ|1/2, we can
choose and ε, ε0 > 0 so small that Ξκ is a contractive self-mapping for all |κ| ≤ κ0. Now Banach’s
fixed-point theorem yields existence of a unique fixed point in Iκ,ρ, which is a solution to (3.8) as
claimed.
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