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Optimal temperature distribution for a nonisothermal
Cahn–Hilliard system with source term

Pierluigi Colli, Gianni Gilardi, Andrea Signori, Jürgen Sprekels

Abstract

In this note, we study the optimal control of a nonisothermal phase field system of Cahn–
Hilliard type that constitutes an extension of the classical Caginalp model for nonisothermal phase
transitions with a conserved order parameter. The system couples a Cahn–Hilliard type equation
with source term for the order parameter with the universal balance law of internal energy. In place
of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by
the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the
evolution. This has the consequence that the balance law of internal energy becomes a second-
order in time equation for the thermal displacement or freezing index, that is, a primitive with
respect to time of the temperature. Another particular feature of our system is the presence of the
source term in the equation for the order parameter, which entails additional mathematical diffi-
culties because the mass conservation of the order parameter, typical of the classic Cahn–Hilliard
equation, is no longer satisfied. In this paper, we analyze the case that the double-well potential
driving the evolution of the phase transition is differentiable, either (in the regular case) on the
whole set of reals or (in the singular logarithmic case) on a finite open interval; nondifferentiable
cases like the double obstacle potential are excluded from the analysis. We prove the Fréchet
differentiability of the control-to-state operator between suitable Banach spaces for both the reg-
ular and the logarithmic cases and establish the solvability of the corresponding adjoint systems
in order to derive the associated first-order necessary optimality conditions for the optimal control
problem. Crucial for the whole analysis to work is the so-called “strict separation property”, which
states that the order parameter attains its values in a compact subset of the interior of the effec-
tive domain of the nonlinearity. While this separation property turns out to be generally valid for
regular potentials in three dimensions of space, it can be shown for the logarithmic case only in
two dimensions.

1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be some open, bounded, and connected set having a smooth boundary
Γ := ∂Ω and the outward unit normal field n. Denoting by ∂n the directional derivative in the direction
of n, and putting, with a fixed final time T > 0,

Qt := Ω× (0, t) and Σt := Γ× (0, t) for t ∈ (0, T ], as well as Q := QT and Σ := ΣT ,
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 2

we study in this paper as state system the following initial-boundary value problem:

∂tϕ−∆µ+ γϕ = f in Q, (1.1)

µ = −∆ϕ+ F ′(ϕ) + a− b∂tw in Q, (1.2)

∂2
tw −∆(κ1∂tw + κ2w) + λ∂tϕ = u in Q, (1.3)

∂nϕ = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ, (1.4)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = w1 in Ω. (1.5)

The cost functional under consideration is given by

J((ϕ,w), u) :=
α1

2

∫ T

0

∫
Ω

|ϕ− ϕQ|2 +
α2

2

∫
Ω

|ϕ(T )− ϕΩ|2

+
α3

2

∫ T

0

∫
Ω

|w − wQ|2 +
α4

2

∫
Ω

|w(T )− wΩ|2

+
α5

2

∫ T

0

∫
Ω

|∂tw − w′Q|2 +
α6

2

∫
Ω

|∂tw(T )− w′Ω|2 +
ν

2

∫ T

0

∫
Ω

|u|2, (1.6)

with nonnegative constants αi, 1 ≤ i ≤ 6, which are not all zero, and where ϕΩ, wΩ, w
′
Ω ∈ L2(Ω)

and ϕQ, wQ, w′Q ∈ L2(Q) denote given target functions.

For the control variable u, we choose as control space

U := L∞(Q), (1.7)

and the related set of admissible controls is given by

Uad :=
{
u ∈ U : umin ≤ u ≤ umax a.e. in Q

}
, (1.8)

where umin, umax ∈ L∞(Q) satisfy umin ≤ umax almost everywhere in Q.

In summary, the control problem under investigation can be reformulated as follows:

(P) min
u∈Uad

J((ϕ,w), u) subject to the constraint that (ϕ, µ, w) solves (1.1)–(1.5).

The state system (1.1)–(1.5) is a formal extension of the nonisothermal Cahn–Hilliard system intro-
duced by Caginalp in [4] to model the phenomenon of nonisothermal phase segregation in binary
mixtures (see also [3,5] and the derivation in [2, Ex. 4.4.2, (4.44), (4.46)]); it corresponds to the Allen–
Cahn counterpart analyzed recently in [13]. The unknowns in the state system have the following
physical meaning: ϕ is a normalized difference between the volume fractions of pure phases in the
binary mixture (the dimensionless order parameter of the phase transformation, which should attain its
values in the interval [−1, 1]), µ is the associated chemical potential, and w is the so-called thermal
displacement (or freezing index), which is directly connected to the temperature ϑ (which in the case
of the Caginalp model is actually a temperature difference) through the relation

w(·, t) = w0 +

∫ t

0

ϑ(·, s) ds, t ∈ [0, T ]. (1.9)

Moreover, κ1 and κ2 in (1.3) stand for prescribed positive coefficients related to the heat flux, which is
here assumed in the Green–Naghdi form (see [19–21,26])

q = −κ1∇(∂tw)− κ2∇w where κi > 0, i = 1, 2, (1.10)
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Optimal Control of a nonisothermal Cahn–Hilliard type model 3

which accounts for a possible previous thermal history of the phenomenon. Moreover, γ is a positive
physical constant related to the intensity of the mass absorption/production of the source, where the
source term in (1.1) is S := f − γϕ. This term reflects the fact that the system may not be isolated
and the loss or production of mass is possible, which happens, e.g., in numerous liquid-liquid phase
segregation problems that arise in cell biology [15] and in tumor growth models [17]. Notice that the
presence of the source term entails that the property of mass conservation of the order parameter is
no longer valid; in fact, from (1.1) it directly follows that the mass balance has the form

d

dt

( 1

|Ω|

∫
Ω

ϕ(t)
)

=
1

|Ω|

∫
Ω

S(t), for a.e. t ∈ (0, T ), (1.11)

where |Ω| denotes the volume of Ω. To this concern, we would like to quote the paper [8], where a
comparable Cahn–Hilliard system without mass conservation was examined from the optimal control
viewpoint. Moreover, we refer to [6, 7, 12, 23, 25, 27, 31], where similar systems have been analyzed.
For optimal control problems involving sparsity effects, let us mention [14, 16, 28, 30]. Also, let us
incidentally point out that the differential structure of equation (1.3), with respect to w, is sometimes
also referred to as the strongly damped wave equation, see, e.g., [24] and the references therein.

In addition to the quantities already introduced, λ stands for the latent heat of the phase transformation,
a, b are physical constants, and the control variable u is a distributed heat source/sink. Besides,
ϕ0, w0, andw1 indicate some given initial values. Finally, the function F is assumed to have a double-
well shape. Prototypical choices for the double-well shaped nonlinearity F are the regular and singular
logarithmic potential and its common (nonsingular) polynomial approximation, the regular potential. In
the order, they are defined as

Flog(r) :=

{
(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 if |r| ≤ 1,
+∞ otherwise,

(1.12)

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.13)

with the convention that 0 ln(0) := limr↘0 r ln(r) = 0 and c1 > 1 so that Flog is nonconvex.
Another important example is the nonregular and singular double obstacle potential, given by

F2obs(r) := −c2r
2 if |r| ≤ 1 and F2obs(r) := +∞ if |r| > 1, (1.14)

with c2 > 0. However, the double obstacle case is not included in the subsequent analysis, although
we expect that, with similar techniques as those employed in [10], it is possible to extend the analysis
also to this kind of nonregular potentials.

The state system (1.1)–(1.5) was recently in [11] analyzed concerning well-posedness and regularity
(see the results cited below in Section 2), where also the double obstacle case was included. Here, we
concentrate on the optimal control problem. While the existence of optimal controls is not too difficult
to show, the derivation of first-order necessary optimality conditions is a much more challenging task,
since it makes the derivation of differentiability properties of the associated control-to-state operator
necessary. This, however, requires that the order parameter ϕ satisfies the so-called strict separation
property, which means that ϕ attains its values in a compact subset of the interior of the effective
domain of the derivative F ′ of F . While for regular potentials this condition turns out to be generally
satisfied, it cannot be guaranteed for singular potentials. In fact, following the ideas of the recent
paper [9] on the isothermal case, one is just able to ensure the validity of the strict separation property
for the logarithmic potential Flog in the two-dimensional case d = 2. Correspondingly, the analysis
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 4

leading to first-order necessary optimality conditions will be restricted to either the regular case for
d ≤ 3 or the logarithmic case in two dimensions of space. In this sense, our results apply to similar
cases as those studied in [9] in the isothermal situation. Observe, however, that the control problem
considered in [9] differs considerably from that studied in this paper: indeed, in [9] the control u occurs
in the order parameter equation resembling (1.1), while in our case it appears in the energy balance
(1.3); for this reason, the set of admissible controls Uad had to be assumed in [9] as a subset of
the space H1(0, T ;L2(Ω)) ∩ L∞(Q), which is cumbersome from the viewpoint of optimal control,
instead of the much better space L∞(Q) used here.

The plan of the paper is as follows. The next section is devoted to collect previous results concerning
the well-posedness of the state system (1.1)–(1.5). Then, under suitable conditions, we provide some
stronger analytic results in terms of regularity and stability properties of the state system with respect
to the control variable u appearing in (1.3). The proof of these new results are addressed in Section
3. Then, using these results, we analyze in Section 4 the optimal control problem (P).

2 Notation, assumptions and analytic results

First, let us set some notation and general assumptions. For any Banach space X , we employ the
notation ‖·‖X , X∗, and 〈·, ·〉X , to indicate the corresponding norm, its dual space, and the related
duality pairing betweenX∗ andX . For two Banach spacesX and Y continuously embedded in some
topological vector space Z , we introduce the linear space X ∩ Y , which becomes a Banach space
when equipped with its natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y , for v ∈ X ∩ Y .

A special notation is used for the standard Lebesgue and Sobolev spaces defined on Ω. For every
1 ≤ p ≤ ∞ and k ≥ 0, they are denoted by Lp(Ω) and W k,p(Ω), with the associated norms
‖ · ‖Lp(Ω) = ‖ · ‖p and ‖ · ‖Wk,p(Ω), respectively. If p = 2, they become Hilbert spaces, and we
employ the standard convention Hk(Ω) := W k,2(Ω). For convenience, we also set

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}.

For simplicity, we use the symbol ‖ · ‖ for the norm in H and in any power of it. Observe that the
embeddings W ↪→ V ↪→ H ↪→ V ∗ ↪→ W ∗ are dense and compact. As usual, H is identified with
a subspace of V ∗ to have the Hilbert triplet (V,H, V ∗) along with identity

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V ,

where we employ the special notation 〈·, ·〉 := 〈·, ·〉V .

Next, for a generic element v ∈ V ∗, we define its generalized mean value v by

v :=
1

|Ω|
〈v,1〉, (2.1)

where 1 stands for the constant function that takes the value 1 in Ω. It is clear that v reduces to the
usual mean value if v ∈ H . The same notation v is employed also if v is a time-dependent function.

To conclude, for normed spaces X and v ∈ L1(0, T ;X), we define the convolution products

(1 ∗ v)(t) :=

∫ t

0

v(s) ds, (1~ v)(t) :=

∫ T

t

v(s) ds, t ∈ [0, T ]. (2.2)

For the remainder of this paper, we make the following general assumptions.
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Optimal Control of a nonisothermal Cahn–Hilliard type model 5

(A1) The structural constants γ, a, b, κ1, κ2, and λ are positive.

(A2) The double-well potential F can be written as F = β̂ + π̂, where

β̂ : R→ [0,+∞] is convex and lower semicontinuous with β̂(0) = 0.

This entails that β := ∂β̂ is a maximal monotone graph with β(0) 3 0. Moreover, we assume
that

π̂ ∈ C3(R), where π := π̂′ : R→ R is a Lipschitz continuous function.

Besides, denoting the effective domain of β by D(β), we assume that D(β) = (r−, r+) with

−∞ ≤ r− < 0 < r+ ≤ +∞ and that the restriction of β̂ to (r−, r+) belongs to C3(r−, r+).

There, β reduces to the derivative of β̂, and we require that

lim
r↘r−

β(r) = −∞ and lim
r↗r+

β(r) = +∞.

Please note that F ′ in (1.2) has to be understood as β + π.

(A3) Let f ∈ L∞(Q). We set ρ := ‖f‖∞
γ

and assume the compatibility condition that all of the
quantities

inf
x∈Ω

ϕ0(x), sup
x∈Ω

ϕ0(x), −ρ− (ϕ0)− , ρ+ (ϕ0)+ belong to the interior of D(β),

where (·)+ and (·)− denote the positive and negative part functions, respectively.

The analysis of the above system (1.1)–(1.5) has been the subject of investigation in [11]. There,
weak and strong well-posedness has been addressed for general potentials and source terms. Since
here we aim at solving the optimal control problem (P), we are forced to work under the framework
of strong solutions. This, in particular, forces us to restrict the investigation to differentiable potentials,
more precisely, to either regular ones like (1.13) or, under the further restriction that d = 2, to the
logarithmic potential from (1.12). Since we are going to assume (A1)–(A3) in any case, we state the
following results under these assumptions, even if some of the conditions may be relaxed (cf. [11]).

As a consequence of [11, Thms. 2.2, 2.3, and 2.5], we have the following well-posedness result for the
initial-boundary value problem (1.1)–(1.5).

Theorem 2.1 (Well-posedness of the state system). Suppose that (A1)–(A3) hold true, and let the
data of the system fulfill

f ∈ H1(0, T ;V ∗), u ∈ L2(0, T ;H), (2.3)

ϕ0 ∈ H3(Ω) ∩W, w0 ∈ V, w1 ∈ V. (2.4)

Then, there exists a unique solution (ϕ, µ, w) to the system (1.1)–(1.5) satisfying

ϕ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W 2,6(Ω)) with β(ϕ) ∈ L∞(0, T ;L6(Ω)), (2.5)

µ ∈ L∞(0, T ;V ), (2.6)

w ∈ H2(0, T ;H) ∩ C1([0, T ];V ), (2.7)
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as well as the estimate

‖ϕ‖H1(0,T ;V )∩L∞(0,T ;W 2,6(Ω)) + ‖µ‖L∞(0,T ;V ) + ‖β(ϕ)‖L∞(0,T ;L6(Ω))

+ ‖w‖H2(0,T ;H)∩C1([0,T ];V ) ≤ K1 , (2.8)

with some constant K1 > 0 that depends only on the structure of the system, Ω, T , and upper
bounds for the norms of the data and the quantities related to assumptions (2.3)–(2.4). Besides, let
ui ∈ L2(0, T ;H), i = 1, 2, and let (ϕi, µi, wi) be the corresponding solutions. Then it holds that

‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖w1 − w2‖H1(0,T ;H)∩L∞(0,T ;V )

≤ K2‖1∗(u1 − u2)‖L2(0,T ;H) , (2.9)

with some K2 > 0 that depends only on the structure of the system, Ω, T , and an upper bound for
the norms of β(ϕ1) and β(ϕ2) in L1(Q).

Let us remark that, due to (2.5), the compact embeddingW 2,6(Ω) ↪→ C0(Ω), and classical compact-
ness results (see, e.g., [29, Sect. 8, Cor. 4]), it follows that ϕ ∈ C0(Q).

Remark 2.2. The above well-posedness result refers to the natural variational form of the homoge-
neous Neumann problem for equation (1.1), due to the low regularity of µ specified in (2.6). However, it
is clear that, thanks to (2.5), (A3) and the elliptic regularity theory, we also have that µ ∈ L2(0, T ;W ),
so that we actually can write (1.1) in its strong form. A similar consideration can be repeated for the
linear combination κ1∂tw + κ2w in (1.3) as you can find in the remark below.

Remark 2.3. We point out that the regularity C1([0, T ];V ) for the variable w stated in (2.7) does not
directly follow from [11, Thms. 2.2, 2.3, 2.5], where just the regularity W 1,∞(0, T ;V ) was noticed.
This, however, can be deduced with the help of (1.3), rewritten as the parabolic equation

1

κ1

∂ty −∆y = fw, with y := κ1∂tw + κ2w and fw := u− λ∂tϕ+
κ2

κ1

∂tw, (2.10)

where, due to the previous results, it readily follows that fw ∈ L2(0, T ;H). Note that y satisfies (2.10)
along with the Neumann homogeneous boundary condition in (1.4), and the initial condition (cf. (1.5))

y(0) = (κ1∂tw + κ2w)(0) = κ1w1 + κ2w0 ∈ V.

Then, by a straightforward application of the parabolic regularity theory (see, e.g., [1, 22]), it turns out
that

y = κ1∂tw + κ2w ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ).

At this point, it is not difficult to check that w ∈ C1([0, T ];V ), whereas we cannot infer the regularity
w ∈ H1(0, T ;W ) unless when w(0) = w0 ∈ W .

As will be clear in the forthcoming Section 4, the analytic framework encapsulated in Theorem 2.1
does not suffice to rigorously prove the Fréchet differentiability of the solution operator associated with
the system (1.1)–(1.5) (cf. Theorem 4.4 further on) which is a key point to formulate the first-order nec-
essary conditions for optimality addressed in Section 4.3. For this reason, before entering the study
of the optimal control problem (P), we present some refined analytic results which are now possible
by virtue of the more restricting condition we are assuming on the potentials. In particular, a key regu-
larity property to include singular and regular potentials in the analysis of the optimal control problem

DOI 10.20347/WIAS.PREPRINT.2997 Berlin 2023



Optimal Control of a nonisothermal Cahn–Hilliard type model 7

is the so-called strict separation property for the order parameter ϕ. This means that the values of
ϕ are always confined in a compact subset of the interior of D(β). Notice that, if D(β) = R, then
the boundedness of ϕ that follows from the previous theorem already guarantees this property. For
singular potentials, when D(β) is an open interval, that means that the singularities of the potential
at the end-points of D(β) are not reached by ϕ at any time, meaning that the potential and its deriva-
tive actually are globally Lipschitz continuous functions. The proof of the following result, sketched in
Section 3, is derived with minor modifications arguing as done in [9, Prop. 2.6]. It ensures both more
regularity for the solution and the desired separation property in the important case of the logarithmic
potential (1.12) in two dimensions.

Theorem 2.4 (Regularity and separation principle). Suppose that (A1)–(A3) hold, let d = 2, and F be
the logarithmic potential defined in (1.12). Moreover, in addition to (2.3)–(2.4), let f and the auxiliary
datum µ0 fulfill

f ∈ H1(0, T ;H), µ0 := −∆ϕ0 + F ′(ϕ0) + a− bw1 ∈ W. (2.11)

Then, the unique solution (ϕ, µ, w) obtained from Theorem 2.1 additionally enjoys the regularity prop-
erties

∂tϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;W ), µ ∈ L∞(Q), β(ϕ) ∈ L∞(Q), (2.12)

as well as

‖∂tϕ‖L∞(0,T ;H)∩L2(0,T ;W ) + ‖µ‖L∞(Q) + ‖β(ϕ)‖L∞(Q) ≤ K4,

for some K4 > 0 that depends only on the structure of the system, the initial data, Ω, and T . Further-
more, assume that

r− < min
x∈Ω

ϕ0(x) ≤ max
x∈Ω

ϕ0(x) < r+.

Then, the order parameter ϕ enjoys the strict separation property, that is, there exist real numbers r∗
and r∗ depending only on the structure of the system such that

r− < r∗ ≤ ϕ(x, t) ≤ r∗ < r+ for a.e. (x, t) ∈ Q.

Remark 2.5. We point out that the regularity for µ in (2.12) is a consequence of the regularity µ ∈
L∞(0, T ;W ) and of the Sobolev embeddingW ↪→ L∞(Ω), which holds up to the three-dimensional
case. Notice also that a class of potentials slightly more general than the logarithmic one in (1.12) may
be possibly considered: for this aim we refer to [18, Thm. 5.1], where a strict separation property has
been derived in a suitable framework.

As a straightforward consequence of the above results, we have the following.

Corollary 2.6. Suppose that either D(β) = R or that the assumptions of Theorem 2.4 are fulfilled.
Then, there exists a positive constant K5 just depending on the structure and an upper bound for the
norms of the data of the system such that

‖ϕ‖L∞(Q) + max
i=0,1,2,3

‖F (i)(ϕ)‖L∞(Q) ≤ K5. (2.13)

DOI 10.20347/WIAS.PREPRINT.2997 Berlin 2023
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With the above regularity improvement, we are now in a position to obtain a stronger continuous
dependence estimate concerning the controls.

Theorem 2.7 (Refined continuous dependence result). Suppose that (A1)–(A3) hold. Moreover, as-
sume that the first and second derivatives of the potential F are Lipschitz continuous. Consider
ui ∈ L2(0, T ;H), i = 1, 2, and let (ϕi, µi, wi), i = 1, 2, be the corresponding solutions. Then,
it holds that

‖ϕ1 − ϕ2‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖µ1 − µ2‖L2(0,T ;V )

+ ‖w1 − w2‖H2(0,T ;V ∗)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ K6‖u1 − u2‖L2(0,T ;H), (2.14)

with some K6 > 0 that depends only on the structure of the system, Ω, and T .

Notice that the above result holds for regular potentials both in dimensions two and three, as for
these the Lipschitz continuity of F ′ follows as a consequence of Theorem 2.1. On the other hand,
the logarithmic potential can be considered just in dimension two as a consequence of the separation
principle established by Theorem 2.4. It is worth pointing out that the regularity improvement obtained
in Theorem 2.4 does not require more regularity of the control variable u. In particular, the strong
well-posedness for the system is guaranteed for any control u ∈ L2(0, T ;H) (in which the control
space U is embedded, see (1.7)).

Let us conclude this section by collecting some useful tools that will be employed later on. We often
owe to the Young, Poincaré and compactness inequalities:

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0, (2.15)

‖v‖V ≤ CΩ

(
‖∇v‖+ |v|

)
for every v ∈ V , (2.16)

‖v‖ ≤ δ ‖∇v‖+ CΩ,δ ‖v‖∗ for every v ∈ V and δ > 0, (2.17)

where CΩ depends only on Ω, CΩ,δ depends on δ, in addition, and ‖ · ‖∗ is the norm in V ∗ to be
introduced below (see (2.20)).

Next, we recall an important tool which is commonly used when working with problems connected
to the Cahn–Hilliard equation. Consider the weak formulation of the Poisson equation −∆z = ψ
with homogeneous Neumann boundary conditions. Namely, for a given ψ ∈ V ∗ (and not necessarily
in H), we consider the problem:

find z ∈ V such that

∫
Ω

∇z · ∇v = 〈ψ, v〉 for every v ∈ V . (2.18)

Since Ω is connected and regular, it is well known that the above problem admits a unique solution
z if and only if ψ has zero mean value. Hence, we can introduce the associated solution operator N,
which turns out to be an isomorphism between the following spaces, as

N : dom(N) := {ψ ∈ V ∗ : ψ = 0} → {z ∈ V : z = 0}, N : ψ 7→ z, (2.19)

where z is the unique solution to (2.18) satisfying z = 0. Moreover, it follows that the formula

‖ψ‖2
∗ := ‖∇N(ψ − ψ)‖2 + |ψ|2 for every ψ ∈ V ∗ (2.20)
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defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm of V ∗. From the above
properties, one can obtain the following identities:∫

Ω

∇Nψ · ∇v = 〈ψ, v〉 for every ψ ∈ dom(N), v ∈ V , (2.21)

〈ψ,Nζ〉 = 〈ζ,Nψ〉 for every ψ, ζ ∈ dom(N), (2.22)

〈ψ,Nψ〉 =

∫
Ω

|∇Nψ|2 = ‖ψ‖2
∗ for every ψ ∈ dom(N), (2.23)

as well as∫ t

0

〈∂tv(s),Nv(s)〉 ds =

∫ t

0

〈v(s),N(∂tv(s))〉 ds =
1

2
‖v(t)‖2

∗ −
1

2
‖v(0)‖2

∗ , (2.24)

which holds for every t ∈ [0, T ] and every v ∈ H1(0, T ; dom(N)).

Finally, without further reference later on, we are going to employ the following convention: the capital-
case symbol C is used to denote every constant that depends only on the structural data of the
problem such as Ω, T , a, b, κ1, κ2, γ, λ, the shape of the nonlinearities, and the norms of the
involved functions. Therefore, its meaning may vary from line to line and even within the same line.
In addition, when a positive constant δ enters the computation, the related symbol Cδ, in place of a
general C , denotes constants that depend on δ, in addition.

3 Regularity and continuous dependence results

This section is devoted to the proofs of Theorem 2.4 and Theorem 2.7. The first result is propedeutic
to the second one which will play a key role in proving that the solution operator associated with the
system enjoys some differentiability properties.

Proof of Theorem 2.4. We can follow exactly the same argument as that used in [9, Sect. 5.2] to prove
the analogous result [9, Prop. 2.6]. However, although we should perform the estimates in a rigorous
way on a suitable discrete scheme designed on a proper approximating problem as done in the quoted
paper, we proceed formally, for simplicity, by directly acting on problem (1.1)–(1.5), and point out the
few differences arising from the presence of the additional variable w. We differentiate both (1.1) and
(1.2) with respect to time and test the resulting inequalities by ∂tϕ and ∆∂tϕ, respectively. If we sum
up and integrate by parts and over (0, t), then a cancellation occurs, and we obtain that

1

2

∫
Ω

|∂tϕ(t)|2 + γ

∫
Qt

|∂tϕ|2 +

∫
Qt

|∆∂tϕ|2

=
1

2

∫
Ω

|∂tϕ(0)|2 +

∫
Qt

∂tf ∂tϕ+

∫
Qt

(β′ + π′)(ϕ) ∂tϕ∆∂tϕ− b
∫
Qt

∂2
tw∆∂tϕ .

This is the analogue of [9, formula (5.16)] and essentially differs from it just for the presence of the last
term. However, this term can be easily dealt with by using Young’s inequality and the regularity of w
ensured by (2.7). Indeed, we have that

−b
∫
Qt

∂2
tw∆∂tϕ ≤

1

4

∫
Qt

|∆∂tϕ|2 + C

∫
Qt

|∂2
tw|2 ≤

1

4

∫
Qt

|∆∂tϕ|2 + C .
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As the other terms can be treated as in the quoted paper, we arrive at the analogue of [9, formula
(5.17)], i.e.,

‖∂tϕ‖2
L∞(0,T ;H) + ‖∆∂tϕ‖2

L2(0,T ;H)

≤ C
(
‖∂tϕ(0)‖2 + ‖β′(ϕ)‖2

L2(0,T ;L3(Ω)) + 1
)
e
C ‖β′(ϕ)‖4

L4(0,T ;L3(Ω)) .

At this point, the new variable w just enters the computation of ∂tϕ(0). By still proceeding formally,
we recover the initial value for µ(0) = µ0 from (1.2) at the time t = 0, then, using the regularity of µ0

(and f ) stated in (2.11), we find out that

∂tϕ(0) = f(0) + ∆µ0 − γϕ0 ∈ H

from (1.1), also written for t = 0. Then, we obtain that

‖∂tϕ(0)‖2 ≤ ‖f(0) + ∆µ0 − γϕ0‖2 ≤ C.

At this point, w does not enter the argument any longer, and we can proceed and then conclude
exactly as in [9].

Proof of Theorem 2.7. To begin with, let us set the following notation for the differences involved in the
statement:

ϕ := ϕ1 − ϕ2, µ := µ1 − µ2, u := u1 − u2, w := w1 − w2.

Next, we write the system solved by the differences that, in its strong form, reads as

∂tϕ−∆µ+ γϕ = 0 in Q, (3.1)

µ = −∆ϕ+ (F ′(ϕ1)− F ′(ϕ2))− b∂tw in Q, (3.2)

∂2
tw −∆(κ1∂tw + κ2w) + λ∂tϕ = u in Q, (3.3)

∂nϕ = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ, (3.4)

ϕ(0) = w(0) = ∂tw(0) = 0 in Ω. (3.5)

First estimate. First, we recall that F ′ is now assumed to be Lipschitz continuous. Then, testing
(3.1) by ϕ, (3.2) by µ, and adding the resulting equations lead us to

1

2

d

dt
‖ϕ‖2 + γ‖ϕ‖2 + ‖µ‖2 =

∫
Ω

(F ′(ϕ1)− F ′(ϕ2))µ− b
∫

Ω

∂twµ

≤ 1

2
‖µ‖2 + C

(
‖ϕ‖2 + ‖∂tw‖2

)
.

Now, recalling the continuous dependence estimate already proved in Theorem 2.1, we infer, after
integrating over time, that

‖ϕ1 − ϕ2‖L∞(0,T ;H) + ‖µ1 − µ2‖L2(0,T ;H) ≤ C‖1 ∗ (u1 − u2)‖L2(0,T ;H). (3.6)
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Second estimate. First, let us establish an auxiliary estimate. Since F ′ and F ′′ are supposed to be
Lipschitz continuous and (2.8) ensures a uniform bound for ‖∇ϕ2‖∞, we have, almost everywhere in
(0, T ), that

‖F ′(ϕ1)− F ′(ϕ2)‖V ≤ ‖F ′(ϕ1)− F ′(ϕ2)‖+ ‖F ′′(ϕ1)∇ϕ1 − F ′′(ϕ2)∇ϕ2‖
≤ C ‖ϕ‖+ ‖F ′′(ϕ1)∇ϕ‖+ ‖(F ′′(ϕ1)− F ′′(ϕ2))∇ϕ2‖
≤ C ‖ϕ‖+ C ‖∇ϕ‖ ≤ C ‖ϕ‖V .

Next, we multiply (3.1) by 1/|Ω| to obtain that

d

dt
ϕ(t) + γ ϕ(t) = 0 for a.a. t ∈ (0, T ), (3.7)

which entails that ϕ(t) = 0 for every t ∈ [0, T ] since ϕ(0) = 0. In particular, besides ϕ, even ∂tϕ
has zero mean value. Thus, we are allowed to test (3.1) by N(∂tϕ), (3.2) by−∂tϕ, and (3.3) by b

λ
∂tw,

and add the resulting identities. By also accounting for the Lipschitz continuity of F ′ and the Young
inequality, we deduce that, a.e. in (0, T ),

‖∂tϕ‖2
∗ +

γ

2

d

dt
‖ϕ‖2

∗ +
1

2

d

dt
‖∇ϕ‖2 +

b

2λ

d

dt
‖∂tw‖2 +

κ1b

2λ
‖∇(∂tw)‖2 +

κ2b

2λ

d

dt
‖∇w‖2

=

∫
Ω

(F ′(ϕ1)− F ′(ϕ2))∂tϕ+
b

λ

∫
Ω

u ∂tw

≤ C
(
‖ϕ‖V ‖∂tϕ‖∗ + ‖u‖ ‖∂tw‖

)
≤ 1

2
‖∂tϕ‖2

∗ + C
(
‖ϕ‖2

V + ‖u‖2 + ‖∂tw‖2
)
.

Hence, integrating over time and using (2.9), we may conclude that

‖ϕ1 − ϕ2‖H1(0,T ;V ∗)∩L∞(0,T ;V ) + ‖w1 − w2‖W 1,∞(0,T ;H)∩H1(0,T ;V )

≤ C‖u1 − u2‖L2(0,T ;H). (3.8)

Third estimate. By testing (3.1) by µ, we have that∫
Ω

∂tϕµ+

∫
Ω

|∇µ|2 + γ

∫
Ω

ϕµ = 0 .

Now, we recall that ϕ and ∂tϕ have zero mean value. Hence, by also accounting for the Poincaré
inequality (2.16), we deduce that∫

Ω

|∇µ|2 = −
∫

Ω

∂tϕ (µ− µ)− γ
∫

Ω

ϕ(µ− µ) ≤ 1

2

∫
Ω

|∇µ|2 + C
(
‖∂tϕ‖2

∗ + ‖ϕ‖2
)
.

Therefore, thanks to (3.6) and (3.8), it readily follows that

‖µ1 − µ2‖L2(0,T ;V ) ≤ C‖u1 − u2‖L2(0,T ;H). (3.9)

Fourth estimate. A simple comparison argument in (3.2), along with the above estimates and elliptic
regularity theory, entails that

‖ϕ1 − ϕ2‖L2(0,T ;W ) ≤ C‖u1 − u2‖L2(0,T ;H). (3.10)
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Fifth estimate. We take an arbitrary v ∈ L2(0, T ;V ), multiply (3.3) by v, and integrate over Q and
by parts. By rearranging and estimating, we easily obtain that∫
Q

∂2
tw v ≤ C

(
‖u‖L2(0,T ;H) + ‖∂tw‖L2(0,T ;V ) + ‖w‖L2(0,T ;V ) + ‖∂tϕ‖L2(0,T ;V ∗)

)
‖v‖L2(0,T ;V ) .

On account of the previous estimates, we conclude that

‖∂2
tw1 − ∂2

tw2‖L2(0,T ;V ∗) ≤ C‖u1 − u2‖L2(0,T ;H). (3.11)

Sixth estimate. Arguing as in Remark 2.3, we now rewrite (3.3) as a parabolic equation in the
auxiliary variable y := κ1∂tw + κ2w + κ1λϕ obtaining that

1

κ1

∂ty −∆y = u+
κ2

κ1

∂tw − κ1λ∆ϕ.

Besides, let us underline that y satisfies homogeneous Neumann boundary conditions and null initial
conditions, as it can be realized from (3.4) and (3.5). Then, using a well-known parabolic regularity
result and the already found estimates (3.8) and (3.10), it is straightforward to deduce that

‖y‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ C
∥∥∥u+

κ2

κ1

∂tw − κ1λ∆ϕ
∥∥∥
L2(0,T ;H)

≤ C‖u‖L2(0,T ;H) .

Thus, by solving the Cauchy problem for the ordinary differential equation κ1∂tw+κ2w = y−κ1λϕ
in terms of w, and recalling again (3.8) and (3.10), we find out that

‖w1 − w2‖H2(0,T ;V ∗)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ C‖u1 − u2‖L2(0,T ;H). (3.12)

This completes the proof, as collecting the above estimates yields (2.14).

4 The optimal control problem

In this section, we study the optimal control problem introduced at the beginning, which we recall here
for the reader’s convenience:

(P) min
u∈Uad

J((ϕ,w), u) subject to the constraint that (ϕ, µ, w) solves (1.1)–(1.5),

where the cost functional J is given by (1.6).

To begin with, let us fix some notation concerning the solution operator S associated with the system
(1.1)–(1.5). As a consequence of the Theorems 2.1, 2.4, and 2.7, the control-to-state operator

S = (S1, S2, S3) : L2(Q)(⊃ U)→ Y, S : u 7→ (ϕ, µ, w),

is well defined, where (ϕ, µ, w) ∈ Y is the unique solution to the state system, and the Banach space
Y, referred to as the state space, is defined by the regularity specified in (2.5)–(2.7) and partially in
(2.12), that is,

Y :=
(
W 1,∞(0, T ;H) ∩H1(0, T ;W ) ∩ L∞(0, T ;W 2,6(Ω))

)
× L∞(0, T ;V )

×
(
H2(0, T ;H) ∩ C1([0, T ];V )

)
.
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Moreover, the continuous dependence estimate provided by Theorem 2.7 allows us to infer that the
solution operator is Lipschitz continuous in the sense that, for any pair (u1, u2) of controls, it holds
that

‖S(u1)− S(u2)‖X ≤ K6‖u1 − u2‖L2(0,T ;H),

where X is the space defined by

X :=
(
H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ))× L2(0, T ;V )

×
(
H2(0, T ;V ∗) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )). (4.1)

Furthermore, we introduce the reduced cost functional, given by

Jred : L2(Q) ⊂ U→ R, Jred : u 7→ J(S1(u), S3(u), u), (4.2)

which allows us to reduce the optimization problem (P) to the form

min
u∈Uad

Jred(u).

In what follows, we are working in the framework of Theorem 2.1 (and possibly in the sense of Theorem
2.4). For this reason, the following conditions will be in order:

(C1) The source f fulfills (2.3), and the initial data ϕ0, w0, and w1 satisfy (2.4). Moreover, if we
consider the logarithmic potential and d = 2, they additionally fulfill (2.11).

(C2) The functions umin, umax belong to U with umin ≤ umax a.e. in Q.

(C3) α1, . . . , α6, and ν are nonnegative constants, not all zero.

(C4) The target functions fulfill ϕQ, wQ, w′Q ∈ L2(Q), ϕΩ ∈ V,wΩ ∈ H , and w′Ω ∈ V .

4.1 Existence of optimal controls

The first result we are going to address concerns the existence of optimal controls.

Theorem 4.1 (Existence of optimal controls). We suppose that the assumptions (A1)–(A3) and (C1)–
(C4) are fulfilled. Then, the optimal control problem (P) admits a solution.

Proof of Theorem 4.1. As the proof is an immediate consequence of the direct method of the calculus
of variations, we just briefly outline the crucial steps. Consider a minimizing sequence {un}n ⊂
Uad for the reduced cost functional Jred defined by (4.2). Let us introduce also the sequence of the
associated states {(ϕn, µn, wn)}n, where (ϕn, µn, wn) = S(un) for every n ∈ N. Namely, we have
that

lim
n→∞

Jred(un) = lim
n→∞

J
(
(S1(un), S3(un)), un

)
= inf

u∈Uad

Jred(u) ≥ 0.

Thus, as Uad is bounded in U, by standard compactness arguments, using also that Uad is closed and
convex, we obtain a limit function u∗ ∈ Uad and a nonrelabelled subsequence such that, as n→∞,

un → u∗ weakly-star in L∞(Q).
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On the other hand, by the boundedness property (2.8) stated in Theorem 2.1, along with standard
compactness results (see, e.g., [29, Sect. 8, Cor. 4]), we also have that

ϕn → ϕ∗ weakly-star in H1(0, T ;V ) ∩ L∞(0, T ;W 2,6(Ω)),

and strongly in C0(Q),

µn → µ∗ weakly-star in L∞(0, T ;V ),

wn → w∗ weakly-star in H2(0, T ;H) ∩W 1,∞(0, T ;V ),

and strongly in C1([0, T ];H),

F ′(ϕn)→ ξ∗ weakly-star in L∞(0, T ;L6(Ω)),

for some limits ϕ∗, µ∗, w∗, and ξ∗. The first strong convergence follows from the compact embedding
W 2,6(Ω) ↪→ C0(Ω). Besides, as

π(ϕn)→ π(ϕ∗) strongly in C0(Q) and β(ϕn)→ ξ∗ − π(ϕ∗) weakly in L1(Q),

by maximal monotonicity arguments it is not difficult to conclude that ξ∗ = F ′(ϕ∗). Then, using the
above weak, weak-star and strong convergence properties, it is a standard matter to pass to the
limit as n tends to infinity in the variational formulation associated with system (1.1)–(1.5), written
for ϕn, µn, wn, and un. This will also prove that (ϕ∗, µ∗, w∗) is nothing but S(u∗). Finally, the lower
semicontinuity of norms entails that

Jred(u∗) ≤ lim inf
n→∞

Jred(un) = lim
n→∞

Jred(un) = inf
u∈Uad

Jred(u) ,

meaning that u∗ is a global minimizer for Jred.

4.2 Differentiability of the solution operator

In the following, we are going to prove some differentiability properties for the solution operator S. Since
these have to be analyzed in open sets, let us take an open ball in the L∞-topology that contains the
set of admissible controls Uad, namely, let R > 0 be chosen such that

UR := {u ∈ U : ‖u‖U < R} ⊃ Uad.

Now, we fix u ∈ UR and denote by (ϕ, µ, w) = S(u) the unique corresponding state. Then, the
linearized system to (1.1)–(1.5) at the fixed control u is given, for any h ∈ L2(Q), as follows:

∂tξ −∆η + γξ = 0 in Q, (4.3)

η = −∆ξ + F ′′(ϕ)ξ − b∂tζ in Q, (4.4)

∂2
t ζ −∆(κ1∂tζ + κ2ζ) + λ∂tξ = h in Q, (4.5)

∂nξ = ∂nη = ∂n(κ1∂tζ + κ2ζ) = 0 on Σ, (4.6)

ξ(0) = ζ(0) = ∂tζ(0) = 0 in Ω. (4.7)

The proof of the well-posedness of the above system is very similar (and, in fact, easier, as the system
is linear) to the proof of Theorem 2.1. We have the following result.

Theorem 4.2 (Well-posedness of the linearized system). Assume that (A1)–(A3) and (C1) hold, and
let u ∈ UR with associated state (ϕ, µ, w) = S(u) be given. Then, for every h ∈ L2(Q), the
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linearized system (4.3)–(4.7) admits a unique solution (ξ, η, ζ) ∈ X, where X is the Banach space
introduced by (4.1). Furthermore, there exists some K7 > 0, which depends only on the structure of
the system and an upper bound for the norm of f and those of the initial data, such that

‖ξ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖η‖L2(0,T ;V )

+ ‖ζ‖H2(0,T ;V ∗)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ K7‖h‖L2(0,T ;H). (4.8)

Remark 4.3. Due to the low regularity level given by the definition (4.1) of X, the above result must
refer to a proper variational formulation of the linearized problem. For instance, (4.3) with the homoge-
neous Neumann boundary condition for η has to be read as

〈∂tξ, v〉+

∫
Ω

∇η · ∇v + γ

∫
Ω

ξv = 0 a.e. in (0, T ), for every v ∈ V .

Proof of Theorem 4.2. As the system is linear, the uniqueness of solutions readily follows once (4.8)
has been shown for a special solution. Indeed, suppose that there are two solutions (ξ1, η1, ζ1) and
(ξ2, η2, ζ2). It is then enough to repeat the procedure used below with ξ = ξ1 − ξ2, η = η1 − η2

and ζ = ζ1 − ζ2 to realize that the same as (4.8) holds with the right-hand side equal to 0 so that
(ξ1, η1, ζ1) ≡ (ξ2, η2, ζ2), i.e., the uniqueness.

Since the proof of existence is standard, we avoid introducing any approximation scheme and just pro-
vide formal estimates. The rigorous argument can be straightforwardly reproduced, e.g., on a suitable
Faedo–Galerkin scheme.

First estimate. We aim at proving that

‖ξ‖L∞(0,T ;V ) + ‖η‖L2(0,T ;V ) + ‖ζ‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C‖h‖L2(0,T ;H) . (4.9)

We preliminarily observe that

‖∂tξ‖L2(0,t;V ∗) ≤ C
(
‖ξ‖L2(0,t;H) + ‖η‖L2(0,t;V )

)
for every t ∈ (0, T ] , (4.10)

as one immediately sees by multiplying (4.3) by any v ∈ L2(0, t;V ) and integrating over Qt and by
parts. Moreover, we recall (2.8) and (2.13) and observe that the former yields a uniform L∞ bound
for∇ϕ since W 1,6(Ω) ↪→ L∞(Ω). It then follows that

‖F ′′(ϕ)ξ‖V ≤ C‖ξ‖V a.e. in (0, T ) . (4.11)

At this point, we are ready to perform the desired estimate. We test (4.3) by η+ ξ, (4.4) by−∂tξ + η,
(4.5) by b

λ
∂tζ , and add the resulting equalities to infer that a.e. in (0, T ) it holds

‖η‖2
V +

1

2

d

dt
‖ξ‖2

V + γ‖ξ‖2 +
b

2λ

d

dt
‖∂tζ‖2 +

κ1b

λ
‖∇∂tζ‖2 +

κ2b

2λ

d

dt
‖∇ζ‖2

= −γ
∫

Ω

ξη +

∫
Ω

F ′′(ϕ)ξ (η − ∂tξ)− b
∫

Ω

∂tζη +
b

λ

∫
Ω

h ∂tζ ,

thanks to a number of cancellations. Now, the whole right-hand side can easily be bounded from
above by

1

4
‖η‖2

V + C
(
‖ξ‖2

V + ‖∂tζ‖2 + ‖h‖2)−
∫

Ω

F ′′(ϕ)ξ ∂tξ ,
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and it is clear that (4.9) follows upon integrating in time and invoking Gronwall’s lemma provided we
can properly estimate the time integral of the last term. Using also (4.10) and (4.11), we have that

−
∫
Qt

F ′′(ϕ)ξ ∂tξ ≤ C‖F ′′(ϕ)ξ‖L2(0,t;V )‖∂tξ‖L2(0,t;V ∗)

≤ C‖ξ‖L2(0,t;V )

(
‖ξ‖L2(0,t;H) + ‖η‖L2(0,t;V )

)
≤ 1

4
‖η‖2

L2(0,t;V ) + C‖ξ‖2
L2(0,t;V ) ,

and this is sufficient to conclude.

Second Estimate. We now readily deduce from (4.10) that

‖∂tξ‖L2(0,T ;V ∗) ≤ C‖h‖L2(0,T ;H) . (4.12)

On the other hand, by comparing the terms in (4.4) and taking advantage of (4.9) and (4.11), well-
known elliptic regularity results allow us to infer that

‖ξ‖L2(0,T ;W ) ≤ C‖h‖L2(0,T ;H) . (4.13)

Third Estimate. Now, let us rewrite equation (4.5) in terms of the auxiliary variable z := κ1∂tζ +
κ2ζ + κ1λξ. We obtain

1

κ1

∂tz −∆z = h+
κ2

κ1

∂tζ − κ1λ∆ξ,

and observe that, in view of (4.6)–(4.7), z satisfies Neumann homogeneous boundary conditions and
null initial conditions. Then, by known parabolic regularity results, (4.9), and (4.13), we easily deduce
that

‖z‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ C
∥∥∥h+

κ2

κ1

∂tζ − κ1λ∆ξ
∥∥∥
L2(0,T ;H)

≤ C‖h‖L2(0,T ;H) .

Hence, by recalling the definition of z and the already proved bounds (4.9), (4.12), and (4.13), we
arrive at

‖ζ‖H2(0,T ;V ∗)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ C‖h‖L2(0,T ;H) . (4.14)

Due to the embeddings V ∗ ↪→ W ∗ and W ↪→ H ≡ H∗ ↪→ W ∗, by interpolation we have that

H2(0, T ;V ∗) ∩H1(0, T ;W ) ↪→ C1([0, T ];H),

whence (4.14) entails, in particular, that

‖ζ‖C1([0,T ];H) ≤ C‖h‖L2(0,T ;H). (4.15)

This concludes the sketch of the proof.

We now expect that – provided we select the correct Banach spaces – the linearized system encap-
sulates the behavior of the Fréchet derivative of the solution operator S. This is stated rigorously in the
next theorem, but prior to this, let us introduce the following Banach space:

Z :=
(
H1(0, T ;W ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;W )

)
× L2(0, T ;H)

×
(
H2(0, T ;W ∗) ∩ C1([0, T ];H) ∩H1(0, T ;W )

)
. (4.16)
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Optimal Control of a nonisothermal Cahn–Hilliard type model 17

Theorem 4.4 (Fréchet differentiability of the solution operator). Let the set of assumptions (A1)–(A3)
and (C1) be fulfilled. Then, the control-to-state operator S is Fréchet differentiable at any u ∈ UR as
a mapping from L2(Q) into Z. Moreover, for u ∈ UR, the mapping DS(u) ∈ L(L2(Q),Z) acts
as follows: for every h ∈ L2(Q), DS(u)h is the unique solution (ξ, η, ζ) to the linearized system
(4.3)–(4.7) associated with h.

Proof of Theorem 4.4. We fix u ∈ UR and first notice that the map h 7→ (ξ, η, ζ) of the statement
actually belongs to L(L2(Q),Z) as a consequence of (4.8). Then, we proceed with a direct check of
the claim by showing that

‖S(u+ h)− S(u)− (ξ, η, ζ)‖Z
‖h‖L2(Q)

→ 0 as ‖h‖L2(Q) → 0. (4.17)

This will imply both the Fréchet differentiability of S in the sense specified in the statement and the
validity of the identity DS(u)h = (ξ, η, ζ).

At this place, we remark that the following argumentation will be formal, because of the low regular-
ity of the linearized variables (recall Remark 4.3). Nevertheless, we adopt it for brevity, in order to
avoid any approximation, like a Faedo–Galerkin scheme based on the eigenfunctions of the Laplace
operator with homogeneous Neumann boundary conditions (in which case, e.g., the Laplacian of the
components of the discrete solution could actually be used as test functions).

Without loss of generality, we may assume that ‖h‖L2(Q) is small enough. In particular, we owe to the
estimates proved for the solutions to the nonlinear problem corresponding to both u and u + h. For
convenience, let us set

ψ := ϕh − ϕ− ξ, σ := µh − µ− η, ω := wh − w − ζ,

with (ϕh, µh, wh) := S(u + h), (ϕ, µ, w) := S(u), and where (ξ, η, ζ) is the unique solution to
(4.3)–(4.7) associated with h. Due to the previous results, we already know that (ψ, σ, ω) ∈ X ↪→ Z

and that, by difference, it yields a weak solution to the system

∂tψ −∆σ + γψ = 0 in Q, (4.18)

σ = −∆ψ + [F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ξ]− b∂tω in Q, (4.19)

∂2
t ω −∆(κ1∂tω + κ2ω) + λ∂tψ = 0 in Q, (4.20)

∂nψ = ∂nσ = ∂n(κ1∂tω + κ2ω) = 0 on Σ, (4.21)

ψ(0) = ω(0) = ∂tω(0) = 0 in Ω. (4.22)

Besides, with the above notation, (4.17) amounts show that

‖(ψ, σ, ω)‖Z = o(‖h‖L2(Q)) as ‖h‖L2(Q) → 0. (4.23)

Moreover, Theorems 2.1 and 2.7 entail that

‖ϕh‖H1(0,T ;V )∩L∞(0,T ;W 2,6(Ω)) + ‖µh‖L∞(0,T ;V ) + ‖wh‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ K1, (4.24)

as well as

‖ϕh − ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖µh − µ‖L2(0,T ;V )

+ ‖wh − w‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ K6‖h‖L2(0,T ;H). (4.25)
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Actually, for the logarithmic potential in the two-dimensional setting, we also have a stronger version
of (4.24) arising as a consequence of Theorem 2.4.

Before entering the details, we recall that Taylor’s formula yields that

F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ξ = F ′′(ϕ)ψ +Rh (ϕh − ϕ)2, (4.26)

where the remainder Rh is given by

Rh =

∫ 1

0

F (3)
(
ϕ+ s(ϕh − ϕ)

)
(1− s) ds .

Due to (2.13), we have that

‖Rh‖L∞(Q) ≤ C. (4.27)

First estimate. We notice that ψ has zero mean value as can be easily checked by testing (4.18) by
1/|Ω| and using (4.22). Hence, we can test (4.18) by Nψ and (4.19) by −ψ. Moreover, we integrate
(4.20) in time and test the resulting equation by b

λ
∂tω. Finally, we sum up and add the same term

κ1b
2λ

d
dt
‖ω‖2 = κ1b

2λ

∫
Ω
ω ∂tω to both sides. We obtain that

1

2

d

dt
‖ψ‖2

∗ + γ‖ψ‖2
∗ + ‖∇ψ‖2 +

b

λ
‖∂tω‖2 +

κ1b

2λ

d

dt
‖ω‖2

V

=

∫
Ω

[F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ξ]ψ − bκ2

λ

∫
Ω

∇(1∗ω) · ∇∂tω +
κ1b

2λ

∫
Ω

ω ∂tω.

Since we aim at applying the Gronwall lemma, we should integrate over (0, t) with respect to time.
However, for brevity, we just estimate the first two terms of the right-hand side obtained by integration
(the last one can be trivially handled by the Young inequality) and avoid writing the integration variable s
in the integrals over (0, t). The first one can be controlled by using the Hölder and Young inequalities,
(4.25), the continuous embedding V ↪→ L4(Ω), (4.26), (4.27), and the compactness inequality (2.17)
as follows:∫

Qt

[F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ξ]ψ =

∫
Qt

[F ′′(ϕ)ψ +Rh (ϕh − ϕ)2]ψ

≤ C

∫ t

0

‖ψ‖2 ds+ C

∫ t

0

‖ϕh − ϕ‖2
4‖ψ‖ ds ≤ C

∫ t

0

‖ψ‖2 ds+ C

∫ t

0

‖ϕh − ϕ‖4
V ds

≤ C

∫ t

0

‖ψ‖2 ds+ CT‖h‖4
L2(Q) ≤

1

2

∫ t

0

‖∇ψ‖2 ds+ C

∫ t

0

‖ψ‖2
∗ ds+ C‖h‖4

L2(Q).

As for the second term, we integrate by parts both in space and time. By also accounting for the Young
inequality, we find that

− bκ2

λ

∫
Qt

∇(1∗ω) · ∇∂tω = −bκ2

λ

∫
Ω

∇(1∗ω)(t) · ∇ω(t) +
bκ2

λ

∫
Qt

|∇ω|2

≤ κ1b

4λ

∫
Ω

|∇ω(t)|2 + C

∫
Ω

∣∣∣∫ t

0

∇ω ds
∣∣∣2 + C

∫
Qt

|∇ω|2 ≤ κ1b

4λ

∫
Ω

|∇ω(t)|2 + C

∫
Qt

|∇ω|2.

Thus, we can apply the Gronwall lemma and conclude that

‖ψ‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖ω‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C‖h‖2
L2(Q). (4.28)
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Second estimate. We test (4.18) by ψ, (4.19) by ∆ψ, and add the resulting equalities to find that

1

2

d

dt
‖ψ‖2 + ‖∆ψ‖2 + γ‖ψ‖2 =

∫
Ω

[F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ξ]∆ψ− b
∫

Ω

∂tω∆ψ.

As above, we only estimate the right-hand side of the equality obtained by integrating over (0, t). By
also accounting for the previous estimate, we have that∫

Qt

[F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ξ]∆ψ− b
∫
Qt

∂tω∆ψ

≤
∫
Qt

|F ′′(ϕ)| |ψ| |∆ψ|+
∫
Qt

|Rh| |ϕh − ϕ|2 |∆ψ|+ C

∫ t

0

‖∂tω‖ ‖∆ψ‖ ds

≤ 1

2

∫ t

0

‖∆ψ‖2 ds+ C

∫ t

0

(‖ψ‖2 + ‖∂tω‖2) ds+ C‖h‖4
L2(Q)

≤ 1

2

∫ t

0

‖∆ψ‖2 ds+ C‖h‖4
L2(Q).

Thus, owing also to the elliptic regularity theory, we conclude that

‖ψ‖L∞(0,T ;H)∩L2(0,T ;W ) ≤ C‖h‖2
L2(Q). (4.29)

Third estimate. Next, we test (4.19) by σ and, arguing as above, we obtain that

‖σ‖L2(0,T ;H) ≤ C‖h‖2
L2(Q). (4.30)

Fourth estimate. We can now test (4.18) by an arbitrary function v ∈ L2(0, T ;W ) and, in view of
(4.29) and (4.30), easily infer that∣∣∣∫ T

0

〈∂tψ, v〉W
∣∣∣ ≤ ‖σ‖L2(0,T ;H)‖∆v‖L2(0,T ;H) + γ‖ψ‖L2(0,T ;H)‖v‖L2(0,T ;H)

≤ C‖h‖2
L2(Q)‖v‖L2(0,T ;W ) for all v ∈ L2(0, T ;W ).

Hence, ‖∂tψ‖L2(0,T ;W ∗) is uniformly bounded by a quantity proportional to ‖h‖2
L2(Q), so that from

(4.29) and an interpolation argument we recover that

‖ψ‖H1(0,T ;W ∗)∩C0([0,T ];H)∩L2(0,T ;W ) ≤ C‖h‖2
L2(Q). (4.31)

Fifth estimate. Next, we rewrite equation (4.20) in terms of the auxiliary variable τ := κ1∂tω +
κ2ω + κ1λψ to obtain

1

κ1

∂tτ −∆τ =
κ2

κ1

∂tω − κ1λ∆ψ.

Thanks to (4.21)–(4.22), it turns out that τ satisfies Neumann homogeneous boundary conditions and
null initial conditions. Then, by virtue of parabolic regularity results along with (4.28) and (4.31), we
have that

‖τ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ C
∥∥∥κ2

κ1

∂tω − κ1λ∆ψ
∥∥∥
L2(0,T ;H)

≤ C‖h‖2
L2(Q) .

Therefore, observing that κ1∂tω + κ2ω = τ − κ1λψ, it follows that both ω and ∂tω satisfy (at least)
the same estimate as (4.31), which yields

‖ω‖H2(0,T ;W ∗)∩C1([0,T ];H)∩H1(0,T ;W ) ≤ C‖h‖2
L2(Q). (4.32)

This concludes the proof since the estimates (4.30)–(4.32) directly lead to (4.23).
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4.3 Adjoint system and first-order optimality conditions

As a final step, we now introduce a suitable adjoint system to (1.1)–(1.5) in order to recover a more
practical form of the optimality conditions for (P). Let u ∈ Uad be given with its associated state
(ϕ, µ, w). In a strong formulation, the adjoint system is expressed by the backward-in-time parabolic
system

− ∂tp−∆q + γp+ F ′′(ϕ)q − λ∂tr = α1(ϕ− ϕQ) in Q, (4.33)

q = −∆p in Q, (4.34)

− ∂tr −∆(κ1r − κ2(1 ~ r))− bq
= α3(1 ~ (w − wQ)) + α4(w(T )− wΩ) + α5(∂tw − w′Q) in Q, (4.35)

∂np = ∂nq = ∂n(κ1r − κ2(1 ~ r)) = 0 on Σ, (4.36)

p(T ) = α2(ϕ(T )− ϕΩ)− λα6(∂tw(T )− w′Ω), r(T ) = α6(∂tw(T )− w′Ω) in Ω, (4.37)

where the convolution product ~ has been introduced in (2.2). Concerning this product, note in par-
ticular that ∂t(1 ~ r) = −r. Let us introduce the following shorthand for the right-hand side of (4.35),

fr := α3(1 ~ (w − wQ)) + α4(w(T )− wΩ) + α5(∂tw − w′Q) .

We also notice that the second term is independent of time. Due to the regularity properties in (2.7)
and (C4), it holds that

‖fr‖L2(0,T ;H) ≤ C(‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V ) + 1) ≤ C. (4.38)

Let us remark that the variable r corresponds to the adjoint of the freezing index w. Besides, equation
(4.35) is of first-order in time instead of second-order. However, it is worth pointing out that (4.35) may
be rewritten in the time-integrated variable 1 ~ r as it holds that −∂tr = ∂2

t (1 ~ r).

Theorem 4.5 (Well-posedness of the adjoint system). Let the assumptions (A1)–(A3) and (C1)–(C4)
hold, and let u ∈ Uad with associated state (ϕ, µ, w)= S(u) be given. Then, the adjoint system
(4.33)–(4.37) admits a unique weak solution (p, q, r) such that

p ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

q ∈ L2(0, T ;V ),

r ∈ H1(0, T ;H) ∩ L∞(0, T ;V ).

Remark 4.6. Similarly as in Remark 4.3, we should here speak of a proper variational formulation.
For instance, (4.33) with the homogeneous Neumann boundary condition for q has to be read as

−〈∂tp, v〉+

∫
Ω

∇q · ∇v +

∫
Ω

(
γp+ F ′′(ϕ)q − λ∂tr

)
v

=

∫
Ω

α1(ϕ− ϕQ)v a.e. in (0, T ), for every v ∈ V .

Proof of Theorem 4.5. Again, for existence, we proceed formally but let us underline that the following
computations can however be reproduced in a rigorous framework.
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First estimate. We test (4.33) by p+q, (4.34) by ∂tp+(K5 +1)q, whereK5 is the positive constant
arising from (2.13), (4.35) by−λ

b
∂tr and add the resulting identities to each other. Then, we infer that

− 1

2

d

dt
‖p‖2

V + (K5 + 1)‖q‖2 + ‖∇q‖2 + γ‖p‖2 +
λ

b
‖∂tr‖2

− κ1λ

2b

d

dt
‖∇r‖2 +

κ2λ

b

∫
Ω

∇(1 ~ r) · ∇∂tr

= −γ
∫

Ω

pq −
∫

Ω

F ′′(ϕ)q(p+ q) + λ

∫
Ω

∂tr p+ α1

∫
Ω

(ϕ− ϕQ)(p+ q)

+K5

∫
Ω

∇p · ∇q − λ

b

∫
Ω

fr ∂tr. (4.39)

Now, recalling (2.13), the second term on the right-hand side can be bounded from above as

−
∫

Ω

F ′′(ϕ)q(p+ q) ≤ ‖F ′′(ϕ)‖∞‖p‖‖q‖+ ‖F ′′(ϕ)‖∞‖q‖2 ≤
(1

2
+K5

)
‖q‖2 + C‖p‖2,

and the first term appearing on the right can be absorbed by the corresponding contribution appearing
on the left of (4.39). By the Young inequality, we see that the remaining terms on the right-hand side
are bounded above by

λ

2b
‖∂tr‖2 +

1

2
‖∇q‖2 +

1

4
‖q‖2 + C(‖p‖2

V + 1) ,

thanks to (2.8) and the estimate (4.38) of fr. Next, we integrate over (t, T ), for any t ∈ (0, T ), and
notice that (C4) provide uniform bounds for ‖p(T )‖2

V and ‖r(T )‖2
V using their explicit form given

by (4.37). Moreover, we treat the integral deriving from the last term on the left-hand side of (4.39)
as follows. With the notation Qt := Ω× (t, T ), we have that

κ2λ

b

∫
Qt

∇(1 ~ r) · ∇∂tr = −κ2λ

b

∫
Ω

∇(1 ~ r)(t) · ∇r(t) +
κ2λ

b

∫
Qt

|∇r|2 .

On the other hand, we also have that∣∣∣−κ2λ

b

∫
Ω

∇(1 ~ r)(t) · ∇r(t)
∣∣∣ ≤ κ1λ

4b

∫
Ω

|∇r(t)|2 + C

∫
Ω

|∇(1 ~ r)(t)|2

≤ κ1λ

4b

∫
Ω

|∇r(t)|2 + C

∫
Qt

|∇r|2 .

Thus, from the (backward) Gronwall lemma and the obvious subsequent inequality

‖r(t)‖ ≤ C ‖∂tr‖L2(Q) + C for every t ∈ [0, T ],

we infer that

‖p‖L∞(0,T ;V ) + ‖q‖L2(0,T ;V ) + ‖r‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C.

Second estimate. Elliptic regularity theory applied to (4.34) then produces

‖p‖L2(0,T ;W ) ≤ C.
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Third estimate. Finally, it is a standard matter to infer from a comparison argument in (4.33), along
with the above estimates, that

‖∂tp‖L2(0,T ;V ∗) ≤ C.

This concludes the (formal) proof of the existence of a solution. By performing the same estimates in
the case of vanishing right-hand side and final data, we see that the solution must vanish, whence
uniqueness in the general case follows by linearity.

Finally, using the adjoint variables, we present the first-order necessary conditions for an optimal
control u∗ solving (P). In the following, (p, q, r) and (ξ, η, ζ) denote the solutions of the respective
adjoint problem and linearized problem, but written in terms of the associated state (ϕ∗, µ∗, w∗) =
S(u∗) that replaces (ϕ, µ, w) in systems (4.3)–(4.7) and (4.33)–(4.37).

Theorem 4.7 (First-order optimality conditions). Suppose that (A1)–(A3) and (C1)–(C4) hold. Let u∗

be an optimal control for (P) with associated state (ϕ∗, µ∗, w∗) = S(u∗) and adjoint (p, q, r). Then,
it necessarily fulfills the variational inequality∫

Q

(r + νu∗)(u− u∗) ≥ 0 for every u ∈ Uad. (4.40)

Proof of Theorem 4.7. From standard results of convex analysis, the first-order necessary optimality
condition for every optimal control u∗ of (P) is expressed in the abstract form as

〈DJred(u∗), u− u∗〉 ≥ 0 ∀u ∈ Uad,

where DJred denotes the Fréchet derivative of the reduced cost functional J. As a consequence of
the Fréchet differentiability of the control-to-state operator established in Theorem 4.4, and the form of
the cost functional J in (1.6), this entails that any optimal control u∗ necessarily fulfills

α1

∫
Q

(ϕ∗ − ϕQ)ξ + α2

∫
Ω

(ϕ∗(T )− ϕΩ)ξ(T ) + α3

∫
Q

(w∗ − wQ)ζ

+ α4

∫
Ω

(w∗(T )− wΩ)ζ(T ) + α5

∫
Q

(∂tw
∗ − w′Q)∂tζ

+ α6

∫
Ω

(∂tw
∗(T )− w′Ω)∂tζ(T ) + ν

∫
Q

u∗(u− u∗) ≥ 0 ∀u ∈ Uad, (4.41)

where (ξ, η, ζ) is the unique solution to the linearized system as obtained from Theorem 4.2 associ-
ated with (ϕ, µ, w) = (ϕ∗, µ∗, w∗) = S(u∗) and h = u−u∗. Unfortunately, the above formulation is
not very useful in numerical applications as it depends on the linearized variables. However, with the
help of the adjoint variables, playing the role of Lagrangian multipliers, the above variational inequality
can be simplified. In this direction, we test (4.3) by p, (4.4) by q, (4.5) by r, and add the resulting
equalities and integrate over time and by parts. More precisely, we should consider the variational
formulations of the linearized and adjoint systems mentioned in Remarks 4.3 and 4.6 in order to avoid
writing some Laplacian that does not exist in the usual sense, and we should also owe to (well-known)
generalized versions of the integration by parts in time. However, for shortness, we proceed as said
above and obtain

0 =

∫
Q

[∂tξ −∆η + γξ]p+

∫
Q

[−η −∆ξ + F ′′(ϕ)ξ − b∂tζ]q

+

∫
Q

[∂2
t ζ −∆(κ1∂tζ + κ2ζ) + λ∂tξ − h]r
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=

∫
Q

ξ[−∂tp−∆q + γp+ F ′′(ϕ)q − λ∂tr]

+

∫
Q

η[−∆p− q] +

∫
Q

∂tζ[−∂tr −∆(κ1r − κ2(1 ~ r))− bq]

+

∫
Ω

[ξ(T )p(T ) + ∂tζ(T )r(T ) + λξ(T )r(T )]−
∫
Q

hr.

Using the adjoint system (4.33)–(4.37) and the associated final conditions, and integrating by parts as
well, we infer that∫

Q

r(u− u∗) =

∫
Q

hr

=

∫
Q

ξ α1(ϕ∗ − ϕQ) +

∫
Q

∂tζ [α3(1 ~ (w∗ − wQ) + α4(w∗(T )− wΩ) + α5(∂tw
∗ − w′Q)]

+

∫
Ω

ξ(T ) [α2(ϕ∗(T )− ϕΩ)− λα6(∂tw
∗(T )− w′Ω)]

+

∫
Ω

∂tζ(T )α6(∂tw
∗(T )− w′Ω) +

∫
Ω

λξ(T )α6(∂tw
∗(T )− w′Ω)

= α1

∫
Q

(ϕ∗ − ϕQ)ξ+α2

∫
Ω

(ϕ∗(T )− ϕΩ)ξ(T ) + α3

∫
Q

(w∗ − wQ)ζ

+α4

∫
Ω

(w∗(T )− wΩ)ζ(T ) + α5

∫
Q

(∂tw
∗ − w′Q)∂tζ + α6

∫
Ω

(∂tw
∗(T )− w′Ω)∂tζ(T ),

so that (4.41) entails (4.40), and this concludes the proof.

Corollary 4.8. Suppose the assumptions of Theorem 4.7 are fulfilled, and let u∗ be an optimal control
with associated state (ϕ∗, µ∗, w∗) = S(u∗) and adjoint (p, q, r). Then, whenever ν > 0, u∗ is the
L2-orthogonal projection of − 1

ν
r onto Uad. Besides, we have the pointwise characterization of the

optimal control u∗ as

u∗(x, t) = max
{
umin(x, t),min{umax(x, t),−1

ν
r(x, t)}

}
for a.a. (x, t) ∈ Q.
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