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WaveTrain: A Python package for numerical quantum mechanics
of chain-like systems based on tensor trains

Jerome Riedel, Patrick Gelß, Rupert Klein, Burkhard Schmidt

Abstract

WAVETRAIN is an open-source software for numerical simulations of chain-like quantum sys-
tems with nearest-neighbor (NN) interactions only. The Python package is centered around ten-
sor train (TT, or matrix product) format representations of Hamiltonian operators and (stationary
or time-evolving) state vectors. It builds on the Python tensor train toolbox SCIKIT_TT, which pro-
vides efficient construction methods and storage schemes for the TT format. Its solvers for eigen-
value problems and linear differential equations are used in WAVETRAIN for the time-independent
and time-dependent Schrödinger equations, respectively. Employing efficient decompositions to
construct low-rank representations, the tensor-train ranks of state vectors are often found to de-
pend only marginally on the chain length N . This results in the computational effort growing only
slightly more than linearly withN , thus mitigating the curse of dimensionality. As a complement to
the classes for full quantum mechanics, WAVETRAIN also contains classes for fully classical and
mixed quantum-classical (Ehrenfest or mean field) dynamics of bipartite systems. The graphical
capabilities allow visualization of quantum dynamics ‘on the fly’, with a choice of several different
representations based on reduced density matrices. Even though developed for treating quasi
one-dimensional excitonic energy transport in molecular solids or conjugated organic polymers,
including coupling to phonons, WAVETRAIN can be used for any kind of chain-like quantum sys-
tems, with or without periodic boundary conditions, and with NN interactions only.

The present work describes version 1.0 of our WAVETRAIN software, based on version 1.2 of
SCIKIT_TT, both of which are freely available from the GitHub platform where they will also be
further developed. Moreover, WAVETRAIN is mirrored at SourceForge, within the framework of
the WAVEPACKET project for numerical quantum dynamics. Worked-out demonstration examples
with complete input and output, including animated graphics, are available.

1 Introduction

Progress in ultra-fast experimental techniques, in particular the generation of ultra-short, intense laser
pulses, has led to substantial advances in atomic and molecular physics, chemical reaction dynamics,
material sciences and related fields [10]. This has also motivated research in theoretical and sim-
ulation studies of quantum dynamics in recent years [38, 55, 23]. However, in marked contrast to
electronic structure theory where a number of software packages have been under constant devel-
opment for years or even decades and which have reached a remarkable degree of sophistication,
general-purpose simulation software for quantum dynamics is relatively scarce. For example, QuTiP
is an open-source Python framework for the dynamics of open quantum systems [27, 28]. Another
framework for closed and open quantum systems, coded in Matlab, aims at applications in quantum
optics and condensed matter [42]. Furthermore, Libra offers a toolbox for quantum and classical dy-
namics simulations, including non-adiabatic processes in molecular system [2]. This is also a main
feature of WAVEPACKET, a general purpose package for solving coupled Schrödinger or Liouville-von
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Neumann equations of closed and open quantum systems, respectively [50, 48, 49]. Additionally, it
offers modules for fully classical and mixed quantum-classical dynamics on an equal footing, as well
as a module for optimal control. The latter is the focus of QEngine [54], a C++ library, and of Krotov, a
Python implementation of quantum optimal control [21].

Quantum dynamical simulations using any of the software packages mentioned above are limited to
rather few degrees of freedom. This is because of the use of conventional grid techniques for the
representations of quantum states and operators, thus suffering from the curse of dimensionality,
i. e., the exponential growth of storage and CPU time with the number of dimensions. One way to
overcome this problem is the multi-configurational time-dependent Hartree (MCTDH) implementation
and its multi-layer (ML) extensions [4, 39]. This package is frequently used for complex quantum
molecular dynamics simulation tasks, and it has evolved into a quasi-standard in the chemical physics
community. From the quantum physics point of view, similar concepts are formulated in terms of tensor
networks. In fact, it is well established that the (ML-)MCTDH algorithm corresponds to (hierarchical)
Tucker tensor formats. For various types of tensor networks, the ITensor software library is available for
practical calculations [14]. In particular, it contains the density matrix renormalization group (DMRG)
algorithm for computing low-energy states of quantum systems [47].

The present work deals with high-dimensional quantum dynamics using tensor train (TT) represen-
tations of quantum states and operators, also known as matrix product states (MPS) and operators
(MPO) [1, 44, 46]. The idea behind this format is to decompose a high-dimensional tensor into a
chain-like network of lower-dimensional tensors which enables us to simulate and analyze large-scale
problems if the underlying coupling structure allows for low-rank decompositions. Several applications
of tensor trains – which can be considered as a special case of the ansatz used in the multi-layer
(ML) variant of MCTDH [4, 39] mentioned above – and tensor-train operators have shown that it is
possible to mitigate the curse of dimensionality and to tackle high-dimensional problems which can-
not be solved using conventional numerical methods, see, e.g., dynamical systems [31, 36], system
identification [18, 22], quantum mechanics [58, 16, 17], and also quantum machine learning [30, 26].
Typically, the applications require the approximation of the solutions of systems of linear equations,
eigenvalue problems, ordinary/partial differential equations. For this reason, we use the open-source
toolbox SCIKIT-TT1, a general-purpose package for tensor trains written in Python based on NumPy
and Scipy. It provides a powerful TT class as well as different modules for the automatic construction
of tensor trains. Furthermore, SCIKIT-TT comprises different solvers for algebraic problems which we
need for our simulations.

Herein, we present version 1.0.0 of the WAVETRAIN software package which specializes on high-
dimensional quantum dynamics for systems with a chain-like topology and nearest-neighbor (NN)
interactions only. Using tensor-train (TT) representations based on the so-called SLIM scheme [19],
this packet builds on SCIKIT-TT thus providing efficient low-rank tensor approximation approaches
which aim at reducing the exponential scaling of the computational effort for solving time-independent
and time-dependent Schrödinger equations in many dimensions. Being restricted to the SLIM scheme
for TT representations for chain-like quantum systems with NN interactions, this approach is less gen-
eral than other tensor schemes such as the (hierarchical) Tucker format underlying the ML–MCTDH
scheme, but has the advantage of very favorable scaling of the numerical effort with the chain length.

In our previous papers, the TT scheme was applied to the solution of the time-independent (TISE) and
time-dependent Schrödinger equation (TDSE) for exciton-phonon systems of NN type, i.e., quasi-1D
excitonic chains, ranging from few to about one hundred sites [16, 17]. There it was demonstrated
that the storage consumption of the SLIM scheme scales linearly with the number of sites, and the

1https://github.com/PGelss/scikit_tt

DOI 10.20347/WIAS.PREPRINT.2996 Berlin 2023

https://github.com/PGelss/scikit_tt


WaveTrain: A Python package for numerical quantum mechanics 3

scaling of the CPU time is only slightly less favorable. Moreover, for the case of the TISE, convergence
with regard to the tensor rank was shown to be essentially independent of the system size. In another
recent study, the efficiency in calculating ground states of chains of linear rotors interacting through
their dipole moments was investigated. There, it was found that for these systems a TT-based approach
is less time- and memory-consuming than the state-of-the-art implementation of ML-MCTDH [37, 53].
Finally, it is mentioned that the WAVETRAIN platform also contains modules for fully classical and
hybrid quantum-classical dynamics dynamics, both for reference and/or for treating systems that are
too complex for fully a quantum-mechanical treatment.

2 Physical systems and Hamiltonians

2.1 Tensor trains and the SLIM decomposition

Throughout the WAVETRAIN software package we limit ourselves to the treatment of physical/chemical
systems with a chain-like topology with NN (nearest neighbor) interactions only. For such systems,
quantum-mechanical Hamiltonians H can be decomposed into operators that either act locally on
single sites or that couple NN pairs in a chain withN sites. Using a so-called SLIM decomposition [19]
where the origin of the acronym is due to the quantities S, L, I,M ), the canonical representation
of the tensor H ∈ R(d1×d1)×···×(dN×dN ) only consists of elementary tensors, where at most two
(adjacent) components are unequal to the identity matrix:

H = S1 ⊗ I2 ⊗ · · · ⊗ IN + . . . + I1 ⊗ · · · ⊗ IN−1 ⊗ SN

+

ξ1∑
λ=1

L1,λ ⊗M2,λ ⊗ I3 ⊗ · · · ⊗ IN + . . .

+

ξN−1∑
λ=1

I1 ⊗ · · · ⊗ IN−2 ⊗ LN−1,λ ⊗MN,λ

+

ξN∑
λ=1

M1,λ ⊗ I2 ⊗ · · · ⊗ IN−1 ⊗ LN,λ.

(1)

Here all components Si, Li,λ, and Mi,λ as well as the identities Ii are matrices in Rdi×di where the
di are the dimensions of the Hilbert spaces characterizing quantum states on the sites i. Note that the
last line of Eq. (1) is only to comply with periodic boundary conditions of cyclic systems and can be
omitted otherwise.

As shown in [19], the structure of such a Hamiltonian corresponds to the topology of a tensor train (TT,
also known as matrix product) format. Gathering all components of Li,λ (Mi,λ) in corresponding core
elements Li (Mi) in a row-wise (column-wise) fashion, see Appendix 2 of Ref. [16], allows to express
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Hamiltonian H in the following form

H =
q
S1 L1 I1 M1

y
⊗

u

ww
v

I2 0 0 0
M2 0 0 0
S2 L2 I2 0
0 0 0 J2

}

��
~⊗ . . .

· · · ⊗

u

ww
v

IN−1 0 0 0
MN−1 0 0 0
SN−1 LN−1 IN−1 0
0 0 0 JN−1

}

��
~⊗

u

ww
v

IN
MN

SN
LN

}

��
~ .

(2)

where Ji comprises ξi identity matrices Ii along the diagonal and zero matrices else. Note that the
double square bracket notation does not stand for block matrices but for the compact tensor notation
of Ref. [19]. The Appendix of that work gives a proof of the above equation for all heterogeneous,
cyclic systems. For homogeneous systems, the core elements Si, Li, Ii, Mi, and Ji do not depend
on the site index i.

The ranks of the TT operator (2) are naturally bounded due to the restriction to NN interactions only,
e.g., for homogeneous and periodic systems, we have ξ1 = · · · = ξN =: ξ and, thus, R = 2 + 2ξ,
see [19]. One of the main advantages of SLIM decompositions is the linear scaling of the memory
consumption with N in case that the TT ranks of the solution do not increase with the order. Simi-
larly, this also holds for the computational effort when considering time-independent and -dependent
Schrödinger equations, see Secs. 3.2 and 3.3, respectively. The considered SLIM decompositions in
WAVETRAIN are constructed using SCIKIT-TT.

In the following subsections we will introduce exemplarily a few simple model Hamiltonians for chain-
like systems with their SLIM decompositions and a description of the Python classes used for their
respective implementations. In particular, those are classes for excitons, for phonons, and for exciton-
phonon coupling in quasi–1D chains. Note that all these classes inherit from a common superclass for
the implementation of the chain topology, see also the class hierarchy diagram shown in Fig. 1.

2.2 Super class Chain: General setup of linear or cyclic chain systems

The properties of the quasi-1D chain-like topologies underlying all of the present work are handled in
super class Chain. For initialization, this class uses just three parameters. In addition to n_site giv-
ing the number of sites,N , the two Boolean variables periodic and homogen specify whether or
not periodic boundary conditions are to be used and whether the chain is homogeneous or heteroge-
neous, respectively. According to the latter setting, all further parameters of the respective Hamiltoni-
ans are given either as scalars or as Python lists. Furthermore, the class Chain contains two methods
of general use:

Method get_2Q is intended for quantum-mechanical Hamiltonians formulated in terms of the second
quantization. For given dimension d (argument n_dim) of the local Hilbert space, which is assumed
to be the same for each of the sites, this method sets up matrix representations of the raising (a†)
and lowering (a) operators, as well as of the number operators. Where applicable, the position and
momentum operators are obtained from the ladder operators.

Method get_TT is at the very heart of the SLIM formalism within our WAVETRAIN package. Given the
lists of matrices Si,λ, Li,λ, Ii,Mi,λ (potentially independent of site index i for homogeneous chains)

DOI 10.20347/WIAS.PREPRINT.2996 Berlin 2023
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Chain
n_site
periodic
homogen

get_2Q (n_dim)
get_TT (n_basis, qtt)Exciton

alpha, beta, eta

get_2Q (n_dim)
get_SLIM (n_dim)
get_exact (n_levels)

Phonon
mass, nu, omg

get_2Q (n_dim)
get_SLIM (n_dim)
get_exact (n_levels)
potential (q)
kinetic (p)
force (q)
hess_pot ()
hess_kin ()

Coupled

alpha, beta, eta
mass, nu, omg
chi, rho, sig, tau

get_2Q (n_dims)
get_SLIM (n_dims)
qu_coupling
cl_coupling

Figure 1: Hierarchy of the Python classes representing the physical systems and Hamiltonians avail-
able as samples in WAVETRAIN . Selected attributes and methods of each class are given in the
upper and lower parts, respectively, of the boxes. The corresponding Python files are located in folder
wave_train/hamilton.
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from one of the sub classes described below, this method serves to construct the tensor train super
cores according to Eq. (2). Subsequently, an instance of class TT (tensor train) from the SCIKIT-
TT package is created whose attributes (dimensions, ranks, and cores) are then set accordingly,
depending on the initialization parameters n_site, periodic, and homogen.

2.3 Class Exciton: Electronic Dynamics

As a first example, we introduce a simple Hamiltonian for the excitonic dynamics of atoms or molecules
in a chain-like arrangement. For simplicity, we restrict ourselves here to a chain of two-state-systems,
e.g., assuming only excitations of one electron from the highest occupied to the lowest unoccupied
molecular orbital (HOMO–LUMO). Then, the excitonic Hamiltonian for a heterogeneous system of N
sites can be given in terms of (bosonic) exciton raising, b†i , and lowering, bi, operators for site i

H(ex) =
N∑
i=1

αib
†
ibi +

N∑
i=1

βi

(
b†ibi+1 + bib

†
i+1

)
+ η (3)

where the αi are local (ön site") excitation energies and η is a general offset of the energy scale.
The nearest-neighbor (NN) coupling energies βi between site i and i + 1, also known as "transfer
integralsör "hopping integrals", govern the delocalization and mobility of excitons within this simple
model. Here and throughout the following, the last summand (i = N ) of the NN coupling term (with
indices i+1 replaced by 1) is used for systems with periodic boundary conditions only and is omitted
otherwise.

The most important methods in class Exciton are described in the following:

Method __init__: The following sample input illustrates the handling of excitons within our WAVE-
TRAIN software package

from wave_train.hamilton.exciton import Exciton
hamilton = Exciton(

n_site=6, periodic=True, homogen=True,
alpha=0.1, beta=-0.01, eta=0.0

)

This creates an object of class Exciton the definition of which is imported from sub folder hamilton
in the wave_train source folder. Note that the first three arguments in the code above are used
to initialize the super class Chain, see Sec. 2.2, whereas the remaining three arguments specify the
energetic parameters α, β, η as given in Eq. (3), the values of which are taken here from our previous
work in Refs. [16, 17].

Method get_SLIM: Based on the above attributes of class Exciton and on the definition of the ladder
operators in class Chain, this method provides the SLIM formulation of Eq. (3) yielding

Si = αib
†
ibi +

η

N
Ii

Li,1 = βib
†
i , Mi+1,1 = bi+1

Li,2 = βibi, Mi+1,2 = b†i+1 (4)

DOI 10.20347/WIAS.PREPRINT.2996 Berlin 2023
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where the dependence on the site index i is omitted for the case of a homogeneous chain. Note that
method get_SLIM is called from within method get_TT in super class Chain to construct the tensor
train supercores according to Eq. (2), see Sec. 2.1. The following code line illustrates this for the case
of excitons

hamilton.get_TT(n_basis=2, qtt=False)

where the first argument gives the dimension d of the local exciton Hilbert space, i.e., the size of the
electronic basis set.

Method get_exact: For the case of homogeneous excitonic chains, i.e., with all sites being equiv-
alent, this method provides analytic/exact solutions of the time-independent Schrödinger equation
(TISE) based on a Bethe ansatz as given in Ref. [16]. In principle, the number of analytic solutions to
be calculated can be chosen by the user, see Sec. 3.2 below. However, for linear systems, only the
energy levels for the ground state and for the N states within the Fock space of singly excited states
are currently available, which are obtained in close analogy to Hückel theory. For cyclic systems, we
also implemented the N(N − 1)/2 energy levels for states with two quanta of excitation [25].

2.4 Class Phonon: Vibrational Dynamics

As another example, we introduce a simple Hamiltonian for the vibrational (phononic) dynamics of
a one-dimensional lattice model based on the harmonic approximation. In terms of site masses mi,
displacement coordinates Ri, and conjugate momenta Pi, a general Hamiltonian can be written as

H(ph) =
1

2

N∑
i=1

P 2
i

mi

+
1

2

N∑
i=1

miν
2
iR

2
i +

1

2

N∑
i=1

µiω
2
i (Ri −Ri+1)

2 (5)

where each site i is restrained around its equilibrium position by harmonic oscillators with frequencies
νi. The NN interactions between neighboring sites i and i + 1 are modeled by harmonic oscillators
with frequency ωi and corresponding reduced masses µi = mimi+1/(mi +mi+1).

In analogy to the treatment of the excitons in Sec. 2.3, we re-formulate the phononic Hamiltonian of
Eq. (5) using second quantization

H(ph) =
N∑
i=1

ν̃i

(
c†ici +

1

2

)
−

N∑
i=1

ω̃i

(
c†i + ci

)(
c†i+1 + ci+1

)
(6)

with raising (c†i ) and lowering (ci) operators of (local) vibrations of site i. The effective frequencies of
single site and NN pair vibrations are given by

ν̃i =

√
ν2i +

mi−1

mi +mi−1
ω2
i−1 +

mi+1

mi +mi+1

ω2
i (7)

ω̃i =
µiω

2
i

2
√
miν̃imi+1ν̃i+1

(8)

where for linear systems without periodic boundary conditions the second or third term under the
square root of Eq. (7) are omitted for the first (i = 1) or last (i = N ) site, respectively. Note that the
SLIM structure defined in Eq. (1) is apparent in our formulation (6) for the phononic Hamiltonian.

The most important methods in class Phonon are described in the following:

DOI 10.20347/WIAS.PREPRINT.2996 Berlin 2023
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Method __init__: This sample input shows the setup of the phonon dynamics using the WAVETRAIN

package

from wave_train.hamilton.phonon import Phonon
hamilton = Phonon(

n_site=6, periodic=True, homogen=True,
mass=1, nu=1e-3, omg=2**(1/2)1e-3

)

which creates an object of class Phonon which is imported from subfolder hamilton in the wave_train
source folder. Again, the first three arguments in the code above are used to initialize the super class
Chain, see Sec. 2.2, whereas the other three arguments specify the masses and frequency parame-
ters m, ν, ω as given in Eq. (5). The initialization method of class Phonon also provides the effective
frequencies ν̃ and ω̃, see Eqs. (7), (8).

Method get_SLIM: Based on the above attributes of class Phonon and on the matrix represen-
tations of the ladder operators from super class Chain, the SLIM formulation of Eq. (6) is straight-
forwardly expressed as

Si = ν̃i

(
c†ici +

1

2

)
Li,1 = −ω̃i

(
c†i + ci

)
, Mi+1,1 = c†i+1 + ci+1 (9)

where the dependence on the site index i becomes irrelevant for a homogeneous chain. Again, method
get_SLIM is called from within method get_TT (super class Chain), to construct the tensor train su-
percores, see Eq. (2). The use of this method is illustrated here

hamilton.get_TT(n_basis=8, qtt=False)

where the first argument gives the dimension d of the local phonon Hilbert space, i.e., the size of
the harmonic oscillator vibrational basis set. In practice, this parameter needs to be determined by
convergence tests. Typically, it depends on the total energy available in the simulated system.

Method get_exact: Also for the one-dimensional chain of oscillators given in Eqs. (5), we imple-
mented reference solutions for homogeneous chains to check the accuracy of the numeric TISE
solvers described in Sec. 3.2 below. For periodic chains, analytic (Bloch type) solutions are well known,
see our previous work [16]. For non-periodic systems, where fully analytic solutions are not available
because of the non-uniformity of the effective frequencies in Eqs. (7) and (8), energy levels are ob-
tained from a conventional normal mode analysis which is considered to be quasi-exact here. Note that
this requires the calculation of the Hessian matrix of the phonon potential energy function of Eq. (5)
which is provided in method hess_pot in class Phonon, see also Fig. 1.

2.5 Class Coupled: Exciton-Phonon-Coupling

Because the excitonic energy transfer is known to be affected by coupling to vibrational degrees of
freedom, the study of exciton-phonon coupling (EPC) is of vital importance, e.g. for the transport

DOI 10.20347/WIAS.PREPRINT.2996 Berlin 2023
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of electronic energy in semiconducting materials [40, 51, 59] or the transport of amide I vibrational
energy in helical proteins [52, 20]. Within the Hilbert space used for EPC, which is a direct product of
the Hilbert spaces for the excitonic and phononic states, the total Hamiltonian can be written as

H = H(ex) ⊗ I(ph) + I(ex) ⊗H(ph) +H(epc) (10)

where H(ex) and H(ph) are the Hamiltonians for excitons and phonons, see Eqs. (3) and (6), and
where I(ex) and I(ph) are identity operators on the respective Hilbert spaces. A selection of simple,
Fröhlich–Holstein type Hamiltonians H(epc) for the coupling of excitons and phonons is implemented
in WAVETRAIN

N∑
i=1

χib
†
i bi ⊗Ri =

N∑
i=1

χ̄ib
†
i bi ⊗

(
c†i + ci

)
N∑
i=1

ρib
†
i bi ⊗ (Ri+1 −Ri) =

N∑
i=1

b†i bi ⊗
[
ρ̄i

(
c†i+1 + ci+1

)
− ¯̄ρi

(
c†i + ci

)]
N∑
i=1

σib
†
i bi ⊗ (Ri+1 −Ri−1) =

N∑
i=1

b†i bi ⊗
[
σ̄i

(
c†i+1 + ci+1

)
− ¯̄σi

(
c†i−1 + ci−1

)]
N∑
i=1

τi

(
b†i bi+1 + bib

†
i+1

)
⊗ (Ri+1 −Ri) =

N∑
i=1

(
b†i bi+1 + bib

†
i+1

)
⊗
[
τ̄i

(
c†i+1 + ci+1

)
− ¯̄τi

(
c†i + ci

)]
(11)

Here the EPC constants χ, ρ, and σ give the linear dependence of the excitonic site energies α on the positions of, or
distances between, nearest or second-nearest sites, respectively. In contrast, the constants τ characterize the dependence
of excitonic coupling energies β on the corresponding distances thus including also Holstein-Peierls type models. The bar
notation in Eq. (11) is used to convert the EPC constants to second quantization

χ̄i = χi/
√

2miν̃i,

ρ̄i = ρi/
√

2mi+1ν̃i+1, ¯̄ρi = ρi/
√

2miν̃i,

σ̄i = σi/
√

2mi+1ν̃i+1, ¯̄σi = σi/
√

2mi−1ν̃i−1

τ̄i = τi/
√

2mi+1ν̃i+1 , ¯̄τi = τi/
√

2miν̃i (12)

Note that in our previous work [16], the distinction between EPC constants with bars and double bars was missing, which,
however, was not required for the cyclic systems mainly investigated there.

In the following, a description of important methods comprising class Coupled will be given:

Method __init__: The following lines of input serve to create an instance of class Coupled

from wave_train.hamilton.coupled import Coupled
hamilton = Coupled(

n_site=5, periodic=True, homogen=True,
alpha=0.1, beta=-0.01, eta=0.0,
mass=1, nu=1e-3, omg=1e-3*2**(1/2),
chi=0, rho=0, sig=1.6e-4, tau=0

)

where the first nine arguments specify the chain topology, the excitons, and the phonons, see Secs. 2.2, 2.3, 2.4, respec-
tively. The last four arguments specify the parameters χ, ρ, σ, τ required for the different types of EPC models given in
Eq. (11). For simplicity, we only consider the σ–coupling mechanisms in the present work.

DOI 10.20347/WIAS.PREPRINT.2996 Berlin 2023
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Method get_2Q: Unlike classes Exciton and Phonon, which essentially use the inherited method get_2Q from super
class Chain, the class Coupled overrides the super class method get_2Q. Here, one object of class Exciton and another
object of class Phonon are created, along with their respective matrix representations for ladder operators. This allows a
convenient calculation of direct products of excitonic and phononic operators, e.g., bi ⊗ ci+1, using the Numpy function
kron for the Kronecker product.

Method get_SLIM: This method is intended to provide the SLIM formulation of Eq. (11) which is given by

Si = (χ̄i − ¯̄ρi)b
†
i bi ⊗

(
c†i + ci

)
Li,1 = (ρ̄i + σ̄i)b

†
i bi , Mi+1,1 = c†i+1 + ci+1

Li,2 = −
(
c†i + ci

)
, Mi+1,2 = ¯̄σi+1b

†
i+1bi+1

Li,3 = τ̄ib
†
i , Mi+1,3 = bi+1 ⊗

(
c†i+1 + ci+1

)
,

Li,4 = −¯̄τib
†
i ⊗

(
c†i + ci

)
, Mi+1,4 = bi+1,

Li,5 = τ̄ibi , Mi+1,5 = b†i+1 ⊗
(
c†i+1 + ci+1

)
,

Li,6 = −¯̄τibi ⊗
(
c†i + ci

)
, Mi+1,6 = b†i+1 (13)

Also here, the method get_SLIM is called within method get_TT of super class Chain which constructs the tensor train

super cores, see Sec. 2.2. The following code line illustrates this for the case of coupled excitons and phonons

hamilton.get_TT(n_basis=[2, 8], qtt=False)

where the Python list in the first argument contains the sizes of the electronic and vibrational basis sets, respectively.

3 Quantum and Classical Dynamics

3.1 Super classes for quantum and classical mechanics

This section deals with the implementation of different types of physical/chemical dynamics within WAVETRAIN . The
main work horses of our software package are the classes TISE and TDSE containing numerical solvers for the time-
independent and time-dependent Schrödinger equation based on the TT tensor format, see Secs. 3.2 and 3.3. For com-
pleteness, we have added classes QCMD and CEoM for mixed quantum-classical molecular dynamics and fully classical
dynamics, see Secs. 3.4 and 3.5.

The four main classes inherit from a set of super classes for quantum mechanics, mixed quantum-classical mechanics,
and classical mechanics, see Fig. 2 for a class hierarchy diagram. Upon initializing objects of any of these classes, an input
argument hamilton is required, which has to be an object of one of the three classes for excitons, phonons, or coupled
systems explained above in Sec. 2. Note that quantum-classical dynamics only works for coupled exciton–phonon systems
while fully classical dynamics is restricted to phonons only. Most importantly, each of the three super classes provides a
method observe which deals with calculating and printing expectation values of important observables such as energy,
positions and momenta of the particles. This is complemented by utility methods such as calculations of "braketßcalar
products, expectation values with their uncertainties, and reduced density matrices for quantum simulations.

In turn, the three super classes inherit from the more fundamental class Mechanics for general mechanical systems. This
class contains method save which writes important quantities into binary data files which can be either of Python ’pickle’
or of Matlab ’mat ’ type. Those file types can also be read by method load which thus serves to obtain deviations between
the results of two simulations, e.g., for the case of different dynamic or different numerical schemes applied to the same
physical problem and the same time discretization. Note that such a comparison is based on root mean squared deviations
(RMSD), either for the quantum state vectors themselves, for populations, or for expectation values of observables such
as positions or momenta. The corresponding file names for such a comparison are set as properties save_file and
load_file, and the type of comparison is set by the string compare. Moreover, class Mechanics also contains
a method for linear regressions of conserved quantities, such as energy or norm of state vectors, or of the mentioned
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RMSDs. Finally, methods gaussian and sec_hyp can be used to set up wave packets with Gaussian or hyperbolic
secant envelope, respectively, see the description of the eligible sub classes in Secs. 3.3, 3.4.

3.2 Class TISE: Time-Independent Schrödinger Equation

Solving the time-independent Schrödinger equation (TISE)

Ĥ|Ψn〉 = En|Ψn〉, n = 0, 1, . . . (14)

yields a set of stationary quantum states |Ψn〉 along with their corresponding energies En where Ĥ is one of the (time-
independent) Hamiltonians presented in Sec. 2 or another one provided by the user. To beat the curse of dimensionality, the
strategy followed in the WAVETRAIN software builds on low-rank tensor approximations for the state vectors, in analogy to
the TT representation of the Hamiltonian given in Sec. 2.1. In practice, the eigenvalue problem is solved numerically using
the alternating linear scheme (ALS) which is an iterative algorithm based on sequential contractions of the TT cores of Ĥ
and |Ψn〉 to construct low-dimensional eigenvalue problems [24]. A key feature of the WAVETRAIN implementation is that
not only ground states but also higher excited states can be obtained in an efficient way by means of integrated Wielandt
deflation which enables us to displace previously computed eigenvalues while keeping all other eigenvalues unchanged,
see [16]. To avoid an explosion of the computational costs for higher excited states, which would arise in a straight-forward
application of the Wielandt deflation, the computation of the deflated Hamiltonians is implicitly incorporated into the ALS
routine of SCIKIT-TT.

The use of class TISE is illustrated here by the following sample input

from wave_train.dynamics.tise import TISE
dynamics = TISE(hamilton=hamilton, n_levels=10,

solver=’als’, eigen=’eigs’,
ranks=15, repeats=20, conv_eps=1e-8,
e_est=0.08)

dynamics.solve()

where object hamilton pertains to one of the classes described in Sec. 2 and n_levels gives the desired number
of eigenvalues to be calculated. The argument solver serves to choose the scheme to solve the full eigenproblem, by
default the above-mentioned ALS algorithm which is one of the key components of the scikit_tt package. The next
argument, eigen, specifies the solver used for the micro-problems within each of the ALS iterations, in this case the
sparse matrix eigensolver ’eigs’ from the SciPy package. Alternative choices are ’eig’ or ’eigh’. The subse-
quent arguments serve to specify the ALS parameters, most importantly the number (ranks) of maximal ranks of the
solutions. In all cases, ALS iterations are terminated once the estimated eigenvalues do not change by more than a certain
threshold (conv_eps) in the last three ALS sweeps or when the number of sweeps reaches the limit given by attribute
repeats. Finally, the parameter e_est gives an estimated energy (here: α − 2|β|) close to which the energy levels
are to be searched. If eigen is set to ’eig’, eigenvalues closest to e_est are chosen from the list of all computed
eigenvalues. Otherwise Scipy’s ’eigs’ uses the shift-invert mode to find the desired eigenvalues. This is of importance,
e.g., when calculating the stabilization gained from mutual trapping of phonons and excitons from the lowest eigenvalue
within theN (ex) = 1 manifold [16]. Typically, below that energy there is a huge number of eigenvalues in theN (ex) = 0
manifold which are not of interest and which can thus be excluded.

As an alternative, the WAVETRAIN package offers quasi-exact solutions, provided that the dimension of the full Hibert
space, dN , is not too large (typically 4096 for a standard PC). In that case, tensor train methods are bypassed and the
eigenproblem for a matricized version of H is solved directly. This is invoked by setting solver = ’qe’ where the
parameter eigen again specifies the choice of the numeric solver. While this option is clearly not eligible for longer
chains, it serves the purpose of creating reference solutions for shorter chains.

The resulting energy levels will also be compared against analytic (or semi-analytic) solutions which are available only for
the Hamiltonians (3) for uncoupled excitons and (6) for uncoupled phonons, see also [16].
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3.3 Class TDSE: Time-Dependent Schrödinger Equation

The evolution of quantum states, Ψ(t), is obtained as a solution of the time-dependent Schrödinger equation (TDSE) for
one of the Hamiltonians Ĥ of Sec. 2

i
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉, |Ψ(t = 0)〉 = |Ψ0〉 (15)

where atomic units with ~ = 1 are used. Again, the problem of high dimensionality is tackled by strategies building on
low-rank tensor representations of the state vectors. Our implementation of class TDSE within WAVETRAIN builds on the
choice of numeric propagators for tensor trains available within the scikit_tt software package. Restricting ourselves
to explicit, reversible, and symplectic schemes, the most obvious choice is a symmetric, second order Euler (S2) method.
This method has been routinely used in the quantum dynamics community for several decades, where it is also known as
second-order differencing scheme [3, 32]. Within WAVETRAIN , also higher order variants, e.g. fourth (S4) and sixth (S6)
order differencing methods are available. The former one has been shown to offer a good compromise between efficiency
and accuracy [17].

Frequently used alternatives are based on operator splitting originally developed for cases where Hamiltonians consist of
kinetic and potential energy which are treated separately in momentum and position representation, respectively [15, 13].
In the present work, however, we resort to the Hamiltonians of Sec. 2.2 for systems with a chain-like topology and NN
interactions only. For such cases, various novel splitting schemes are available in SCIKIT-TT which are based on separating
the interlacing pairs of NN sites [43, 47, 17]. Not only the classical first order Lie–Trotter (LT) and second order Strang–
Marchuk (SM) schemes, but also higher-order compositions of the basic methods are available, namely the 4-th order
Yoshida–Neri (YN) and the 8-th order Kahane–Li (KL) method which have displayed an excellent accuracy in our test
calculations [17]. For more information see Ref. [35], where an overview of splitting methods with different order is given.

Finally, note that implicit schemes such as the trapezoidal rule or the midpoint rule are available within scikit_tt, too.
However, in our quantum dynamics test simulations they have displayed a very unfavorable numeric effort because they
involve the solutions of large-scale linear systems of equations. While the use of ALS [24] is an integral part of the TISE
class, doing this at each time step results in an unfavorable numerical effort. Therefore, the TDSE class is solely based on
explicit integration schemes.

To demonstrate the use of the TDSE class we consider the following sample code lines

from wave_train.dynamics.tdse import TDSE
dynamics = TDSE(hamilton=hamilton,

num_steps=50, step_size=20, sub_steps=5,
solver=’s2’, normalize=0,
max_rank=8, threshold=1e-12)

where the object hamilton refers to one of the Hamiltonian classes of Sec. 2. Here we propagate for 1000 (atomic)
units of time, divided into 50 main time steps with a (constant) length of 20 units. After each of the main steps, expectation
values of important observables are calculated and printed, and a frame is added to the (optionally generated) animated
visualization, see Sec. 4. Internally, each of the main steps can be divided into a (constant) number of sub steps (here
5). The arguments solver and normalize for the initialization of class TDSE specify the choice of the numeric
solver (two-letter codes explained above) as well as whether normalization of the state vector after every sub step is to
be enforced or not. The remaining arguments are max_rank, the maximal rank in the decomposition of solutions Ψ(t),
and threshold the value of which is used for the rank truncation within the splitting schemes (LT, SM, YN, KL) and the
symmetric Euler (S2, S4, S6) schemes. In both cases, an orthonormalization scheme called higher-order singular value
decomposition (HOSVD) [45] with absolute as well as relative cut-off criteria for singular values is applied to keep the TT
ranks of our solutions bouned by max_rank.

Before actually solving the TDSE, it is necessary to specify the initial state |Ψ(t = 0)〉 = |Ψ0〉. To that end, the class
TDSE contains method fundamental to set up an initial state where one (or more) sites are fundamentally (0 →
1) excited while all others are prepared in their ground state. The resulting quantum state is constructed as a tensor
train using the TT class from the SCIKIT-TT toolbox. That is, depending on a given vector of coefficients coeffs, the

canonical representation of |Ψ0〉 is given by the sum over tensor products of the form coeff[j] ·
⊗n

k=1 v
(k)
j for non-zero

coefficients, where v(k)j = [0, 1]> if k = j and otherwise [1, 0]>. The created instance of the TT class then stores the
cores of the corresponding TT representation of |Ψ0〉
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While this method works in an analogous way for excitons and phonons, we note that for coupled systems only the

electronic parts are fundamentally excited whereas the vibrational parts are in their ground states. In the following Python

example

dynamics.fundamental()
dynamics.solve()

the default behavior is to return a state with a single excitation localized at the central site of the chain, which then serves
as an initial state for solving the TDSE. It is also possible to give a vector of coefficients as input for method fundamental, in
which case a weighted sum of products, each with a single site excitation, is returned. This feature of WAVETRAIN can be
used, e.g., to construct bell-shaped wave packets with Gaussian or hyperbolic secant (sech) envelope with settable mean
position, mean momentum, and width. The Gaussian shape is typically used to describe a free particle whereas the sech
shape typically occurs as a solution of nonlinear cubic TDSEs, see e.g. Davydov’s soliton theory [9, 20].

As an alternative to the use of fundamentally excited states, class TDSE also contains method coherent which is meant
only for vibrational systems, see our description of class Phonons in Sec. 2.4. That method serves to set up coherent states
of the i–th site which are eigenstates of the lowering operator ci, defined as ci|ζ〉i = ζi|ζ〉i with

|ζ〉i = e−
|ζi|

2

2

∞∑
k=0

ζki√
k!
|k〉i (16)

Here |k〉i stands for the k-th harmonic oscillator eigenstate of the i-th site and

〈Ri〉 =

√
2

miν̃i
ζi (17)

gives the mean value of the displacement coordinate, Ri, of the respective quantum harmonic oscillator with mass mi

and effective frequency ν̃i. In analogy to method fundamental, also method coherent allows for the possibility of
a combination of excitations of several sites.

In close analogy to class TISE described in Sec. 3.2, also class TDSE offers quasi-exact solutions for simulations where
the full Hilbert space dimension is not too large. In that case, the matricized Hamiltonian is exponentiated yielding a direct
way to calculate the time evolution operator. This can be useful when benchmarking the accuracy of different propagation
schemes and/or different time steps, see e.g. our results in Ref. [17]. Moreover, for two-state systems, class TDSE calcu-
lates analytic Bessel function solutions of the time evolution [29], e.g., for class Exciton explained in Sec. 2.3. However, their
use for benchmarking TT-based solutions is limited because they build on the assumption of non-periodic, infinitely-long
chains.

3.4 Class QCMD: Quantum-Classical Molecular Dynamics

The above-mentioned TT-based approaches implemented in WAVETRAIN can be very helpful instruments in tackling prob-
lems in quantum dynamics of bipartite systems such as the example of coupled excitons and phonons mentioned in
Sec. 2.5. On the one hand, we have shown that the computational effort is almost linear inN which allows for treating long
chains [16, 17]. On the other hand, these methods can mitigate the curse of dimensionality only as long as the problem at
hand allows for an acceptable accuracy of the approximate solution when we restrict ourselves to TT cores with ranks of
manageable size. However, the computational effort for solving the TDSE scales at least with d2 (symmetric Euler) where
d is the dimension of the local Hilbert space. Hence, there are still simulation scenarios where a fully quantum-mechanical
treatment is out of reach with the computational resources of today, and probably also in the foreseeable future.

In many simulation scenarios, a clear separation of time and/or energy scales is found. In the above example of coupled
excitons and phonons, the NN excitonic coupling energies β typically exceed the vibrational energies ν, ω, which is due to
the disparity of electronic and nuclear masses [33]. In such cases, a promising way to overcome the curse of dimensionality
is to resort to hybrid quantum-classical molecular dynamics where only the light (fast) subsystem is treated quantum-
mechanically while the classical approximation for the heavy (slow) subsystem is used. Such approaches appear especially
suitable for problems where a large local Hilbert space dimension d is due to the latter subsystems being more complicated
than those of Eq. (5). An example are conjugated polymer chains where the chromophoric sub-units are typically connected
by a chain segment of several chemical bonds featuring a number of stretching, bending, and torsional degrees of freedom
[5, 12].
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The simplest quantum-classical approach is given by mean field or Ehrenfest dynamics which rests on a separability
ansatz. There, the state vector of the coupled system is assumed to be a single product of the two subsystem states which
is also known as time-dependent Hartree method. Moreover, the quantum (excitonic) states can be restricted to the Fock
space of singly excited states

∑N
i=1 ai(t)b

†
i |0〉 with time-dependent, complex coefficients ai(t) and with |0〉 standing for

the electronic ground state. While this assumption neglects couplings to states bearing two or more excitons, it renders a
TT-based approach for the excitons unnecessary.

For the example of the Hamiltonians of coupled excitons and phonons introduced in Sec. 2, the evolution of the quantum
sub-system (excitons) is governed by a Schrödinger-type equation

i
dai
dt

= [αi + σi(Ri+1 −Ri−1) +W ] ai + βi−1ai−1 + βiai+1 (18)

where ai(t) are the expansion coefficients of the excitonic state and where W stands for the (classical) energy of the
phonons. Further, the dynamics of the classical sub-system (phonons) is described in terms of a classical trajectory,R(t),
which is governed by a Newton-type equation

mi
d2Ri

dt2
= = −miν

2
i Ri

−µj−1ω
2
j−1(Ri −Ri−1)− σi−1|ai−1|2

+µjω
2
j (Ri+1 −Ri) + σi+1|ai+1|2 (19)

Note that here the two sub-systems given in Eqs (18), (19) are coupled to each other through terms proportional to the
EPC constants σi defined in the third row of Eq. (11). For detailed discussions of the asymtotics and error estimates of the
separabilty ansatz and/or the classical approximation see, e.g., Refs. [6, 9, 20, 7, 8].

The use of class QCMD is shown in the following sample code lines

from wave_train.dynamics.qcmd import QCMD
dynamics = QCMD(hamilton=hamilton,

num_steps=50, step_size=20, sub_steps=5,
solver=’sm’, normalize=0)

dynamics.fundamental()
dynamics.solve()

where hamilton has to be an object of class Coupled, see Sec. 2.5, or another class for bipartite systems provided
by the user. Note that in order to be used for Ehrenfest quantum-classical mechanics simulations, such classes have to
provide methods qu_coupling and cl_coupling returning the couplings of one sub-system to the respective other one, see
also Fig. 1. For numerically solving the QCMD scheme, there is a choice of numerical propagators implemented within the
QCMD class, such as a generalized Lie–Trotter (’lt’) and Strang–Marchuk method (option ’sm’ in the example code
above), as well as the symplectic pickaback (’pb’) propagator [41].

The choice of initial conditions for the quantum sub-system (e.g. excitons) is the same as in Sec. 3.3 for class TDSE, i.e.,
fundamental electronic excitations, with the possibility for Gaussian bell-shaped and sech-shaped superpositions thereof.
Note that initial excitations of the classical sub-system (e.g. phonons) are at present not yet implemented.

3.5 Class CEoM: Classical Equations of Motion

Moreover, we have added a class for solving classical (Newton’s or Hamilton’s) equations of motion to the WAVETRAIN

package. The motivation for this is to generate reference solutions for systems where a classical analogue to the quantum-
mechanical Hamiltonian exists. Hence, this class works, e.g., with objects of class Phonon. According to the Ehrenfest
theorem, quantum-mechanical expectation values of observables such as positions and momenta coincide with results
from classical trajectories, as long as the vibrational Hamiltonian is a polynomial of order not higher than two, which is
indeed the case for our harmonic model Hamiltonian (5). There, the positions are governed by the Newton-type equa-
tion (19), but without the σ term for the EPC.

The use of class CEoM is illustrated in the following code lines
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from wave_train.dynamics.ceom import CEoM
dynamics = CEoM(hamilton=hamilton,

num_steps=50, step_size=20, sub_steps=5,
solver=’rk’, normalize=0)

dynamics.coherent(displace=[1.0 if i == hamilton.n_site//2
else 0.0 for i in range(hamilton.n_site)])

dynamics.solve()

where hamilton is an object of class Phonon, for a description see Sec. 2.4, or another class provided by the user for a
system for which the use of the classical approximation is justifiable. Note that for use in classical mechanics simulations,
such classes have to encompass additional methods for the calculations of forces and of classical potential and kinetic
energy, see also Fig. 1. For numerically solving the classical equations of motion, there is a choice of propagators imple-
mented in class CEoM, such as the Runge-Kutta (option ’rk’ in the example above) and the Velocity-Verlet (’vv’)
scheme. In addition, quasi-exact solutions for the harmonic vibrations are available which require additional Python meth-
ods to calculate the Hessian matrices of the potential and kinetic energy functions, see also Eq. (25) of Ref. [17]. In the
sample code above, method coherent of class CEoM is used to provide classical initial conditions equivalent to those of
a coherent state of quantum harmonic oscillators with the displacement of the classical particles given by Eq. (17), here
with 〈R〉 = 1 at the central site and 〈R〉 = 0 everywhere else.

3.6 Class Load: Loading data from a previous simulation

In addition to generating solutions of (stationary or dynamical) equations of motion as described in the subsections above,

WAVETRAIN also offers the possibility of loading previously generated solutions If, for example, a TDSE simulation is run

with option load_file=tdse_1.pic, essential data are stored in a Python pickle file by virtue of method save in

class Mechanics, see Sec. 3.1. Subsequently, this information is easily retrieved using class Load

from wave_train.io.load import Load
dynamics = Load(’tdse_1’, ’pic’)

The created object contains not only expectation values of important physical observables which can be used for automated
analysis of series of runs, but also the TT representation of the last bound state (TISE) or the state at the last time
step (TDSE) which allows for an easy restart of a simulation. Finally, objects of class Load contain also reduced density
information which serve the purpose of creating a new (or different) animated visualization without having to perform
another full simulation, see also the following section.

4 Graphical output

The ability to create rich graphical output is one of the hallmarks of simulations with the WAVETRAIN software. To meet
the demand of users for rich and insightful graphical representations, the software package provides a set of default
visualization classes. They allow the user to track the progress and stability of computations at run time or to create
graphical output of previously generated results by utilizing the Load class, see Sec. 3.6. After completion of a simulation,
the plots are available not only as images (png file format) but also as animations (mp4 file format) which are created using
the ffmpeg tool.[56]

Classes for visualization are created based on a Dependency Injection (DI) scheme, with different visualization services
being injected into the main class Visual, that handles the execution order of the respective services. Generally, visualizing
the results of solving the equations of motion introduced in Sec. 3 clusters into two independent services that can be
separately added to the pipeline for creating visual output. In the main service step the current quantum or classical state
is visualized in a collection of subplots for each of the sites or in a single view along a discretized axis of site indices, in
both cases shown in the left half of the generated figures. Additionally, a second service can be added to monitor system
properties, i.e., energy (TISE, TDSE, QCMD, CEoM), norm (TISE, TDSE, QCMD) and autocorrelation function (ACF),
C(t) = 〈ψ(0)|ψ(t)〉 (TDSE, QCMD), optionally displayed in the right half of the generated figures.

The following code snippet illustrates the setup of an animation for visualizing the quantum dynamics of a single system,
e.g., a chain of excitons as shown in Fig. 3
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Service System Dynamics Description
QuantNumbers Exciton, Phonon TISE, TDSE Mean quantum numbers
Populations Exciton, Phonon TISE, TDSE Populations of quantum states
DensityMat Exciton, Phonon TISE, TDSE Reduced density matrices
PhaseSpace Phonon TISE, TDSE, CEoM Mean trajectories in phase space

Positions2 Coupled TISE, TDSE, QCMD
Excitonic quantum number and
lattice distortions as line plots

QuantDisplace2 Coupled TISE, TDSE, QCMD
Excitonic quantum numbers and
lattice distortions as bar plots

QuantNumbers2 Coupled TISE, TDSE,
Excitonic and phononic
quantum numbers as bar plots

Table 1: Overview of the different visualization services and their cross-dependencies regarding sys-
tems and dynamics. Upper four options for simple systems, lower three options for bipartite systems.

from wave_train.graphics.factory import VisualTDSE

graphics = VisualTDSE(
dynamics=dynamics,
plot_type=’QuantNumbers’,
plot_expect=True,
movie_file=’tdse.mp4’).create()

graphics.solve()

Here, it is assumed that dynamics is a previously created object of class TDSE, as described in Sec. 3.3. This instance is
then inserted into the factory constructor, which becomes responsible for internal logical checks, e.g., whether plot type,
hamilton instance, and dynamics instance are compatible. The VisualTDSE factory returns an instance of the Visual class
after a call to the create method, which will inject the respective services. Visualizations of different dynamics instances
follows the same logic, with equivalent factory classes being provided for TISE, QCMD, and CEoM. In the above code
snippet, the service QuantNumbers for displaying average quantum numbers for each of the sites has been selected and
the toggle (plot_expect) for the visualization of system properties (expectation values of norm and energy, ACF) has been
activated. The setup for high-level visualization of these observables is routed through the factory interface, that provides
the factory classes for the different dynamics implemented in the WAVETRAIN software (i.e. TISE, TDSE, QCMD, CEoM).
Please note that the new instance graphics provides a proxy to start solving the Schrödinger equation, thus replacing the
calls to dynamics.solve in the code snippets given previously in Sec. 3. Finally, specifying the movie_file keyword argument
allows to create animated output in mp4 file format.

The visualization of the system state in the left half of the figures is based on the reduced density formalism. Once
calculated, the reduced density matrices for each site can be shown directly, or in the form of populations or averaged
quantum numbers, positions and/or momenta. For an overview of the different visualization options, see Tab. 1. That table
also lists the special graphics services designed for use with bipartite systems, e.g. the coupled exciton-phonon systems
described in Sec. 2.5.

Optionally, the system properties can be visualized in the right half of the figures. These properties are directly calculated
as overlaps or as expectation values by utilizing the tensor product as provided by scikit_tt. Where possible, system
properties are always separated into their individual contributions, e.g., for bipartite systems the state space is visualized
for the two sub-systems separately. Furthermore, for CEoM simulations, the system energy is split into kinetic and potential
energy contributions whereas for QCMD, energy contributions are decomposed into the contributions from the quantum
and classical subsystem, as well as the energy pertaining to the quantum-classical coupling.

Typical graphical output from WAVETRAIN is illustrated and discussed for four selected cases.

� Fig. 3 is a visualization of the quantum dynamics of excitons on a linear chain of length N = 21, with parameters
from Sec. 2.3. The left half is showing a snapshot for t = 540 after an initial excitation of the central site (i = 11)
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Figure 3: Quantum dynamics of excitons on a linear chain. Left panel: snapshot of quantum numbers
for each of the sites. Right panel: evolution of the mean energy and the norm of the state vector versus
time, as well as the autocorrelation function.

only. The semi-transparent bars show analytic solutions which are available for infinitely long chains of two-level
systems with NN coupling only [29]. While analytic and numerical results agree well in the middle of the chain,
there are considerable discrepancies near the edges of the chain, as expected.

� Fig. 4 shows the quantum dynamics of phonons on a linear chain of lengthN = 9, with parameters from Sec. 2.4.
The left panel represents a snapshots for t = 2000 after an initial excitation of the central site (i = 4) to a coherent
state with 〈R〉 = 50. For this value of the initial displacement, the representation of quantum state vectors in terms
of 8 basis functions per site is almost large enough, with tiny deficiencies still visible in the deviation of the norm of
the state vectors from unity.

� Fig. 5 visualizes the dynamics of phonons on a linear chain of length N = 9, with parameters from Sec. 2.4. The
left panel shows phase-space portraits for 0 ≤ t ≤ 8400 starting from an initial displacement with 〈R〉 = 20 of
the central site (i = 4) only. Note that for the quadratic Hamiltonian of Eq. (5), resulting expectation values from
quantum and classical dynamics coincide by virtue of the Ehrenfest theorem.

� Fig. 6 shows the quantum-classical dynamics of coupled excitons and phonons on a linear chain, with parameters
from Sec. 2.5. The left part of the figure shows a snapshot at t = 1875 after preparing an initial state with a
sech-like distribution of an exciton peaked around the central site (i = 20), see Ref. [16], but without vibrational
excitation. Hence, this simulation shows the formation of a soliton or, more precisely, the onset of the dressing of
an exciton with phonons in real time.

5 Download and Installation

The WAVETRAIN software is a pure Python3 package and can be readily installed from the PyPI package index using pip.

A command line installation of the WAVETRAIN software can be achieved by issuing the following command in a terminal

environment

$ pip install wave_train

where pip installs into a Python3 installation with minimum version requirement 3.7.0. The source code is publicly available
in the Github repository PGelss/wave_train under the GNU General Public License v3.0. For a developer installation of
WAVETRAIN , a specific version of sckit_tt may be required, which can be readily installed from the Github repository
PGelss/scikit_tt. By default, WAVETRAIN installs with the latest scikit_tt version.
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Figure 4: Quantum dynamics of phonons on a linear chain. Left panel: snapshots of populations of
harmonic oscillator states for each of the sites, arranged in a row-wise manner. Right panel: Same as
in Fig. 3.
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Figure 6: Quantum-classical dynamics of coupled excitons and phonons on a linear chain. Left panel:
Snapshots of mean quantum numbers of the excitons (green bars) and vibrational displacements
(scaled by 0.1) of the sites (orange bars). Upper right panel: Total energy versus time, along with its
decomposition in contributions of the quantum and the classical subsystem, as well as the quantum-
classical coupling. Middle and lower right: Norm and autocorrelation function of the quantum subsys-
tem only.

6 Conclusions and Prospect

In the present work, we have illustrated the use of WAVETRAIN for rather simple models of excitons and phonons from
our previous works [16, 17]. However, it is straight-forward to apply our software to a variety of other quantum systems, as
long as they are of a linear or cyclic chain-like topology with on-site and NN interactions only. Obvious extensions of the
models given above include exciton dynamics with more than two electronic states per site (e.g., singlet and triplet states)
and/or anharmonic description of phonons. Note that in the latter case one does not necessarily have to use the second
quantization introduced in Eq. (6). It is also posssible to use, e.g., pseudo-spectral representations in coordinate space
to discretize the vibrational degrees of freedom [34, 50]. The flexible structure of the WAVETRAIN package also allows for
easy implementation of other types of quantum systems such as chains of spin systems (Ising or Heisenberg models),
chains of molecular rotors [53], or polarons in one-dimensional lattices [11]. In all those cases, one would have to design
a new Python class for the underlying Hamiltonian which inherits from the super-class Chain. It is recommended for such
a class to have a method __init__ dealing with the physical parameters of the Hamiltonian (class attributes) and a method
__str__ generating a string for print output. A mandatory ingredient of such a class is a method get_SLIM providing the
S,L, I,M matrices from which to construct the tensor cores [19], see also Eqs. (1), (2) in Sec. 2.1.

Moreover, the object-oriented architecture of the WAVETRAIN package also supports a straight-forward addition of Python
classes for further types of equations of motion. An obvious choice is the Liouville-von Neumann equation (LvNE) adding
dissipation and decoherence to quantum dynamics. In that case, tensor trains will be used for the representations of
the density matrices, and numerical solution of the LvNE will rest on the efficient ODE solvers available in the scikit_tt
toolbox, similar to our implementation of class TDSE described in Sec. 3.3. A frequently used alternative to the Ehrenfest
or mean field quantum-classical approach implemented in class QCMD is the surface hopping trajectory method, featuring
stochastic hopping between different electronic states [57]. In such a case, TT representations are not required, and a
corresponding class should contain its own propagation methods, as is also the case for class QCMD described in Sec. 3.4.
Yet another option could be diffusive Langevin dynamics adding friction and stochastic forces to classical dynamics, thus
extending the class CEoM, see Sec. 3.5. Note that the classes for these three examples will inherit from the respective
super classes for fully quantum, mixed quantum-classical, and purely classic dynamics, as described in Sec. 3.1. Moreover,
when writing a new Python class for another type of dynamics, the following methods will have to be implemented: In
addition to a method __init__ for initialization and a method __str__ for print output, it is mandatory for such a class to
encompass a method solve. That method calls start_solve used for initialization of the numerical solvers, e.g., propagation
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one step backwards in time which is required for the symmetric Euler scheme to solve the TDSE. Subsequently, for every
time-step a method update_solve is called that actually carries out the propagation. Finally, it should be mentioned that
each of the dynamics classes needs to have (one or several) method(s) to generate an initial system state.

The WAVETRAIN software package is hosted and further developed at the Github platform, along with the scikit_tt toolbox
for tensor train computations on which it is based. Moreover, WAVETRAIN is mirrored at the SourceForge platform, as
a part of the WAVEPACKET project for numerical quantum dynamics which is already in use for a number of years in
several labs [50, 48, 49]. That MATLAB software package also features quantum and mixed quantum-classical dynamics,
but for general Hamiltonians, i.e., without the restriction to chain-like topologies. The recently published version 7.0 of
WAVEPACKET contains a MATLAB class definition for the Hamiltonians of Eqs. (3), (5), (11) from the present work. Hence,
integration of WAVETRAIN into the WAVEPACKET project allows for a simple and direct comparability of results, thus allowing
to benefit from the easy usability and the advanced graphical capabilities of the latter one. However, such comparisons will
have to be limited to short chains up to N ≈ 3 for TISE or N ≈ 6 for TDSE because - without the use of tensor train
methods - WAVEPACKET suffers from the curse of dimensionality.
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