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Quantum dynamics of coupled excitons and phonons in
chain-like systems: Tensor train approaches and higher-order

propagators
Patrick Gelß, Sebastian Matera, Rupert Klein, Burkhard Schmidt

Abstract

We investigate the use of tensor-train approaches to the solution of the time-dependent Schrö-
dinger equation for chain-like quantum systems with on-site and nearest-neighbor interactions
only. Using the efficient SLIM representation for low-rank tensor train representations of quantum-
mechanical Hamiltonians, we aim at reducing the memory consumption as well as the computa-
tion costs, in order to mitigate the curse of dimensionality as much as possible. As an example,
coupled excitons and phonons modeled in terms of Fröhlich–Holstein type Hamiltonians are stud-
ied here. By comparing our tensor-train based results with semi-analytical results, we demon-
strate the key role of the ranks of tensor-train representations for quantum state vectors. Both
the computational effort of the propagations and the accuracy that can be reached crucially de-
pend on the maximum number of ranks chosen. Typically, an excellent quality of the solutions
is found only when the ranks exceeds a certain value. That threshold, however, is very differ-
ent for excitons, phonons, and coupled systems. One class of propagation schemes used in the
present work builds on splitting the Hamiltonian into two groups of interleaved nearest-neighbor
interactions which commutate within each of the groups. In addition to the first order Lie–Trotter
and the second order Strang–Marchuk splitting schemes, we have also implemented the 4-th or-
der Yoshida–Neri and the 8-th order Kahan–Li symplectic compositions. Especially the latter two
are demonstrated to yield very accurate results, close to machine precision. However, due to the
computational costs, currently their use is restricted to rather short chains. Another class of prop-
agators involves explicit, time-symmetrized Euler integrators. Building on the traditional second
order differencing method, we have also implemented higher order methods. Especially the 4-th
order variant is recommended for quantum simulations of longer chains, even though the high
precision of the splitting schemes cannot be reached. Moreover, the scaling of the computational
effort with the dimensions of the local Hilbert spaces is much more favorable for the differencing
than for the splitting schemes.

1 Introduction

Excitonic energy transport (EET), i.e., the transport of electronic energy without net charge is of
paramount importance in many biological and technological systems. In particular, the efficiency of
the conversion of light into chemical or electric energy crucially depends on it [54, 45]. For example,
in photovoltaic devices the transport of energy from the region of primary excitation to the charge sep-
arating interfaces has to be fast enough to compete with radiative and non-radiative decay channels,
most prominently the recombination of electrons and holes. The efficiency of EET is strongly affected
by the coupling of electronic excitations to (intramolecular and/or intermolecular) vibrational degrees
of freedom [68, 81]. The simplest theoretical approaches to this exciton-phonon coupling (EPC) are
based on the assumption of chain-like, quasi-1D arrangements. Examples relevant for semiconducting
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materials are lattice vibrations in 1D molecular crystal models or various stretching, bending, and/or
torsional motions in conjugated polymer chains. The "dressingöf excitons by vibrations in these classes
of systems is often described in terms of Holstein or Fröhlich type Hamiltonians. Originally developed
for polarons [14], these model Hamiltonians, or extensions thereof, are routinely used in a variety
of applications, ranging from vibrational energy transport in helical proteins [13, 70, 27] up to elec-
tronic energy transport in conjugated polymer chains [4, 17]. Despite of the apparent simplicity of the
Fröhlich–Holstein type systems, their quantum dynamics still poses many open questions, as noted
in the abstract of Ref. [14]: “It is remarkable how the Fröhlich polaron ... has resisted full analytical
or numerical solution ... since ∼1950, when its Hamiltonian was first written. The field has been a
testing ground for analytical, semi-analytical and numerical techniques, such as path integrals, strong-
coupling perturbation expansion, advanced variational, exact diagonalization (ED) and quantum Monte
Carlo (QMC) techniques.” Hence, the study of Fröhlich–Holstein type systems as models for exciton
dynamics in the presence of EPC remains an intriguing and timely research field.

Essentially, the problems of theoretical studies of EPC are due to the quantum dynamical treatment
required for the above-mentioned models, i.e., solutions of time-dependent Schrödinger equations
(TDSE) in many dimensions. Quantum dynamical simulations to solve the TDSE with conventional
methods eventually become unfeasible when increasing the number of dimensions [44]. One way to
circumvent this so-called curse of dimensionality is to resort to mixed (or hybrid) quantum-classical
methods. There, only the electronic degrees of freedom are treated quantum-mechanically, while the
nuclear (ionic) degrees of freedom are treated classically, typically justified by the small electron to ion
mass ratio [48]. The most basic of these hybrid methods is the quantum-classical Ehrenfest approach
which plays an important role, e.g., in the Davydov soliton theory for EET in helical proteins [13, 70, 27].
Apart from the classical approximation, the main limitation of Ehrenfest dynamics is that it builds on
a mean-field coupling of the two sub-systems [6, 56, 11]. This bottleneck is overcome in surface hop-
ping trajectory approaches, where non-adiabatic transitions are approximately treated by stochastic
hopping of trajectories between different (diabatic or adiabatic) energy states [76]. Even though sur-
face hopping trajectory techniques have lately been used a lot in studying the photo-induced physics
and chemistry of EET [79, 55, 21], the validity of the underlying approximations of quantum-classical
dynamics is not always clear. In particular, for EET in organic semiconductors, there is sometimes no
clear distinction between slow and fast degrees of freedom [81].

The focus of the present work is on methods for fully quantum-mechanical approaches to treat coupled
excitons and phonons. In the literature, reports of such simulations are scarce. One example are
quantum dynamical investigations of the related problem of formation of polarons in crystals where
variational techniques for representing quantum state vectors were used [74, 46]. In more recent
work, structure and dynamics of excitons in π-conjugated polymers were investigated, with emphasis
on coupling to the torsional dynamics of the chain [4, 17]. In those studies, the multi-configurational
time-dependent Hartree (MCTDH) method and its multi-layer (ML) extension were used, which are
known as highly efficient algorithms for quantum dynamics in high dimensions [3, 53].

In recent years, the interest in low-rank tensor decompositions has been growing steadily. The poten-
tial of different tensor formats like the canonical format [32], the Tucker format [75], and particularly the
tensor-train (TT, aka matrix product states, MPS) format [59] for mitigating the curse of dimensional-
ity has been shown in various application areas. So far, tensor decomposition techniques have been
used in the fields of, e.g., quantum mechanics [57, 7, 8, 26], neuro-imaging [37, 9, 18], system iden-
tification [43, 23, 38], and supervised learning [72, 42, 39], just to name a few. In previous work, we
proposed TT-based techniques for numerically solving the time-independent Schrödinger equations
(TISE) for coupled excitons and phonons [22]. There, it has been demonstrated that high-dimensional
quantum systems comprising only NN interactions may be simulated and analyzed without an ex-
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Quantum dynamics of coupled excitons and phonons 3

ponential scaling of the memory consumption and/or computational effort by using so-called SLIM
decompositions [24]. Note that the underlying TT representations are a special case of the hierarchi-
cal Tucker format [28], which is equivalent to the wave function representation in the multi-layer (ML)
variant of MCTDH. In recent comparisons of the efficiency of both methods for calculating ground
states of chains of molecular rotors, it has been found, that TT/MPS techniques are less time- and
memory-consuming than the state-of-the-art implementation of ML-MCTDH [52, 71].

In the present work, we want to exploit low-rank TT decompositions of quantum state vectors and
Hamiltonian matrices for the case of the time-dependent Schrödinger equation (TDSE). In addition
to previously published time integrators for TTs using projectors onto the tangent space of the ten-
sor manifold [50, 51, 29], also symmetric Euler differencing schemes [10] and split operator tech-
niques [19, 63] have been suggested recently for use with TT representations [57, 78, 61]. Being
explicit and easy to implement, these two integrators have been in use since the early days of nu-
merical quantum dynamics [47]. Our goal is to investigate them along with their higher-order variants,
see Sec. 3. There, the various time integrators are subjected to rigorous tests for realistic models of
excitons, phonons, and exciton-phonon-coupling. To that end, we are not only considering their ability
to conserve norm and energy but also how accurately they can reproduce semi-analytic propagations
which are available for special cases, see Sec. 4. On the one hand, our focus will be on the scaling
of the numerical effort with the chain length and the Hilbert space dimensions, thus assessing the
propagators for use in simulations of large systems. On the other hand, we will elucidate on the use of
higher-order methods in comparison to lower-order ones in the context of low-rank TT representations
of high-dimensional wave functions. In particular, we will address the question whether the increased
costs for each propagation step will be compensated by the possibility to use larger step sizes, and,
hence, a smaller number of steps, while obtaining solutions with the same accuracy. Note that implicit
schemes such as the trapezoidal rule or the midpoint rule are not considered here. Even though they
offer the advantage of conserving energy, their computational effort is unfavorable because they in-
volve solutions of large-scale linear systems of equations. While this is in principle possible for TTs by
virtue of the alternating linear scheme [33], which is also used in our previous TISE study [22], it is
computationally too expensive to do this in every time step.

2 Model Hamiltonians

In the present work, we use Fröhlich–Holstein type Hamiltonians to describe the dynamics of excitons
and phonons. With the coupling of the two subsystems assumed to be linear, these can be considered
as the simplest models of EPC in organic semiconductors [68, 81]. Originally developed for electrons
in a polarizable lattice [14], these models, partly with minor modifications, are also known as Huang-
Rhys, or Peierls models. There is also a close analogy to Davydov models describing the interaction
of the amide I vibrations and the hydrogen bond stretching in α-helices of proteins [70, 27].

Here, we restrict ourselves to the consideration of effectively one-dimensional, linear chains compris-
ing N exciton-supporting sites assuming NN interactions only, see also our previous work [22]. Such
models are suitable for the description of two classes of systems [54, 31] in the context of photo-
voltaics applications. First, in conjugated polymer chains without major kinks or turns, the excitonic
sites interact with each other mainly via a Dexter mechanism "through bond") [15]. Second, in crystals
of polycyclic aromatic molecules, the coupling of excitons occurs mainly in the direction perpendicular
to the planes of the stacked molecules, governed by the Förster mechanism ("through space") [16].
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The total Hamiltonians for the coupled excitons and phonons can be written as

H = H(ex) ⊗ I(ph) + I(ex) ⊗H(ph) +H(epc) (1)

with the superscripts (ex), (ph), and (epc) standing for excitons, phonons and their coupling, respec-
tively, while the I are the respective identity operators. Note that atomic units with ~ = 1 are used
throughout this work.

Restricting ourselves to a chain of two-state-systems, the excitonic Hamiltonian for a linear or cyclic
system of N (identical or not) sites is given in terms of (bosonic) exciton raising, b†i , and lowering, bi,
operators

H(ex) =
N∑
i=1

αib
†
ibi +

N∑
i=1

βi

(
b†ibi+1 + bib

†
i+1

)
(2)

with local (ön site") excitation energies αi for site i. The nearest-neighbor (NN) coupling energies βi
between site i and i + 1, also known as transfer or hopping integrals, determine the exciton delocal-
ization and mobility. Here and throughout the following, the last summand (i = N ) of the NN coupling
term (with indices i+ 1 replaced by 1) is intended for systems with periodic boundary conditions only
and is deleted otherwise.

The vibrational (phononic) Hamiltonian for a one-dimensional lattice can be written in terms of masses
mi, displacement coordinates Ri, and conjugated momenta Pi in harmonic approximation

H(ph) =
1

2

N∑
i=1

P 2
i

mi

+
1

2

N∑
i=1

miν
2
iR

2
i +

1

2

N∑
i=1

µiω
2
i (Ri −Ri+1)2 (3)

where each site i is restrained to oscillate around its equilibrium position by a harmonic potential with
frequency νi and where the NN interactions between sites i and i + 1 are modeled by harmonic
oscillators with frequency ωi and corresponding reduced masses µi = mimi+1/(mi +mi+1). Note
that the frequencies νi and ωi are assumed to be independent of the excitonic state of the system.

In parallel with the treatment of the excitons, we introduce second quantization also for the phononic
Hamiltonian of Eq. (3) resulting in

H(ph) =
N∑
i=1

ν̃i

(
c†ici +

1

2

)
−

N∑
i=1

ω̃i

(
c†i + ci

)(
c†i+1 + ci+1

)
(4)

where raising and lowering operators of (local) vibrations of site i are indicated by c†i and ci, re-
spectively, and where for the effective frequencies of single site and NN pair vibrations the following
expressions

ν̃i =

√
ν2
i +

mi−1

mi +mi−1

ω2
i−1 +

mi+1

mi +mi+1

ω2
i (5)

ω̃i =
µiω

2
i

2
√
miν̃imi+1ν̃i+1

(6)

have been found where for linear systems without periodic boundary conditions the second or third
term under the square root of Eq. (5) is omitted for the first (i = 1) or last (i = N ) site, respectively.

Linear models for the coupling of excitons and phonons can be formulated in terms of a Fröhlich–
Holstein type Hamiltonian [14]

H(epc) =
N∑
i=1

σib
†
ibi ⊗ [Ri+1 −Ri−1] =

N∑
i=1

b†ibi ⊗
[
σ̄i

(
c†i+1 + ci+1

)
− ¯̄σi

(
c†i−1 + ci−1

)]
(7)
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where the coupling constants σi = dαi/d(Ri+1 − Ri−1) give the linearized dependence of the
exciton energies αi on the sum of the NN distances to the left and to the right of each site. The bar
notation is used here to convert the EPC constants to second quantization, σ̄i = σi/

√
2mi+1ν̃i+1 and

¯̄σi = σi/
√

2mi−1ν̃i−1. Note that in our previous work [22], the distinction between EPC constants
with bars and double bars was missing, which, however, is not required for the homogeneous systems
mainly investigated there.

This symmetric formulation of the EPC is suitable in case of a mirror symmetry of the individual sites
frequently occurring in semiconductor materials whereas one-sided expressions are typically used
for excitons in protein helices where an amide I vibration couples much more strongly to the directly
adjacent H-bond [69, 70, 27]. For other model assumptions, including Peierls type models based on
an R–dependence of the NN coupling parameters βi, see our previous work [22].

3 Tensor train decompositions

3.1 Statement of the problem

Quantum dynamics of non-relativistic, closed systems (i.e., without dissipation or dephasing) is given
in terms of the time-dependent Schrödinger equation (TDSE)

i
d

dt
Ψ(t) = HΨ(t), (8)

where t is the time and where we restrict ourselves to time-independent Hamiltonians H , in our case
the Hamiltonian given in Eq. (1). Note that atomic units with ~ = 1 are used throughout this work.
The initial quantum state is given by Ψ(t = 0) = Ψ0, which in typical photophysical or photochemical
simulation scenarios describes a state prepared by the interaction with light. Let us assume that a
coupled excitonic-phononic state vector for each of the constituent sites will be given by a vector in the
product Hilbert space

ψi ∈ Hi := H(ex)
i ⊗H(ph)

i
∼= Cdi (9)

with dimension di := d
(ex)
i d

(ph)
i , where d(ex)

i and d(ph)
i are the dimensions of the Hilbert spaces of

excitonic and vibrational state vectors, respectively. Then, time-dependent quantum state vectors Ψ(t)
of a complete chain (or ring) comprising N sites can be understood as tensors of order N ,

Ψ ∈ H := H1 ⊗H2 ⊗ · · · ⊗ HN
∼= CD (10)

with a total dimension ofD :=
∏N

i=1 di, i.e., the numerical discretization of Ψ is a tensor inCd1×···×dN .
In analogy, the tensorized representation H of the (real-valued, symmetric) Hamiltonian given in
Eq. (1) is a tensor in R(d1×d1)×···×(dN×dN ).

Because the formal time evolution of quantum states

Ψ(t) = exp(−itH)Ψ0 (11)

is not computationally available for large N , our aim is to numerically integrate the TDSE (8) in terms
of tensor representations by employing time integrators. In general, however, the storage consump-
tion of (non-sparse) tensors of the form (1) or (10) grows exponentially with the order N . Due to this
so-called curse of dimensionality, storing the considered tensors in full format may be not feasible
for large N . Therefore, special tensor representations are required. As in [22], we will focus on the
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tensor train format (TT format) [58, 60]. This type of tensor decomposition is not only tailor-made for
chain-like topologies such as our Hamiltonians with NN interactions, but it is also a preferred choice
for representing high-dimensional tensors in terms of storage consumption and computational robust-
ness. We will also introduce properly designed numerical methods based on tensor trains which we
will use to solve evolution equations such as the TDSE (8) in high-dimensional tensor spaces which
otherwise would be extremely expensive or even impossible with today’s computational resources.

3.2 Tensor trains and SLIM decomposition

In this work, the TT format is used to represent a quantum state Ψ. That is, we decompose a tensor
in Cd1×···×dN into N component tensors which are coupled in a chain, see Fig. 1 and Def. 1.

r1 r2 r3 r4

d1 d2 d3 d4 d5

(a)

r1 r2 r3 r4

d1 d2 d3 d4 d5

d1 d2 d3 d4 d5

(b)

Figure 1: Graphical representation of tensor trains: Tensors are depicted as circles with different arms indicating
the set of free indices. (a) Tensor of order 5 in TT format, the first and the last core are matrices, the other cores
are tensors of order 3. (b) Linear operator in TT format, the first and the last core are tensors of order 3, the
other cores are tensors of order 4. In both cases, arms corresponding to first and last TT ranks are omitted since
r0 = r5 = 1.

Definition 1 A tensor Ψ ∈ Cd1×d2×···×dN is said to be in the TT format if

Ψ =

r0∑
k0=1

· · ·
rN∑

kN=1

Ψ
(1)
k0,:,k1

⊗ · · · ⊗Ψ
(N)
kN−1,:,kN

. (12)

The tensors Ψ(i) ∈ Cri−1×di×ri of order 3 are called TT cores and the numbers ri are called TT
ranks. It holds that r0 = rN = 1 and ri ≥ 1 for i = 1, . . . , N − 1.

To reduce the memory consumption as well as the computational costs, we are especially interested
in low-rank TT decompositions. In Ref. [22], we used the TT format to represent stationary quantum
states, i.e., solutions of the TISE. Here, we are interested in the numerical solution of Eq. (8) in form
of a time series (Ψ(t0),Ψ(t − 1), . . . ,Ψ(T )) of TT representations. That is, if the quantum states
at the considered time points can be approximated accurately enough by tensor trains with ranks of
manageable size, we are able to mitigate the curse of dimensionality. For more details about the TT
format, we refer to Refs. [58, 60, 59].

Since the efficiency of the tensor-based integrators described in the following sections also depends on
the ranks of the operatorH ∈ R(d1×d1)×···×(dN×dN ), we want to construct low-rank TT representations
of the Hamiltonian tensor as well. All terms of the Hamiltonians introduced in Sec. 2 either act locally
on a single site or on two neighboring sites. Thus, as we explained in Ref. [22], H can be expressed
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in the TT format by using a so-called SLIM decomposition [24]:

H =
q
S1 L1 I1 M1

y
⊗

u

ww
v

I2 0 0 0
M2 0 0 0
S2 L2 I2 0
0 0 0 J2

}

��
~⊗ . . .

· · · ⊗

u

ww
v

IN−1 0 0 0
MN−1 0 0 0
SN−1 LN−1 IN−1 0

0 0 0 JN−1

}

��
~⊗

u

ww
v

IN
MN

SN
LN

}

��
~ .

(13)

Above, we use the core notation of the TT format, cf. Refs. [40, 24, 22]. The single-site components
Si for i = 1, . . . , N , see Eqs. (2,4), are given by

Si = αib
†
ibi + ν̃i

(
c†ici +

1

2

)
(14)

The NN interactions are represented by the components Li and Mi+1 defined as

JLiK =
q
Li,1 . . . Li,ξi

y
∈ R1×di×di×ξi ,

JMi+1K =
q
Mi+1,1 . . . Mi+1,ξi

yT ∈ Rξi×di+1×di+1×1,

for i = 1, . . . , N − 1, and

JLNK =
q
LN,1 . . . LN,ξN

yT ∈ RξN×dN×dN×1,

JM1K =
q
M1,1 . . . M1,ξd

y
∈ R1×d1×d1×ξN ,

(15)

for the case of cyclic systems only.

The two-site contributions to the total Hamiltonian, see Eqs. (2,4,7), are expressible in terms of five
operators Li,λ acting on site i and five corresponding operators Mi+1,λ acting on the neighboring site
i+ 1:

Li,1 = βib
†
i , Mi+1,1 = bi+1,

Li,2 = βibi, Mi+1,2 = b†i+1,

Li,3 = −ω̃i
(
c†i + ci

)
, Mi+1,3 = c†i+1 + ci+1,

Li,4 = σ̄ib
†
ibi, Mi+1,4 = c†i+1 + ci+1,

Li,5 = −
(
c†i + ci

)
, Mi+1,5 = ¯̄σi+1b

†
i+1bi+1.

(16)

If certain coefficients vanish, e.g., if we consider purely excitonic or phononic Hamiltonians, the num-
bers ξi of two-site interactions may even be smaller, leading to reduced TT ranks of the Hamiltonian.
A detailed derivation of the above components was given in Ref. [22]. Besides the fact that the storage
consumption scales only linearly with the number of sites if we consider systems with a fixed/bounded
number of NN contributions, the repeating pattern of the SLIM decomposition allows us to easily
increase or decrease the number of sites. We only have to insert or remove certain TT cores, respec-
tively.

3.3 Higher-order differencing schemes

The simplest way to integrate the TDSE (8) forward by one time step ∆t is to employ an explicit Euler
method

Ψ(t+ ∆t) = Ψ(t)− i∆tHΨ(t) +O(∆t2) (17)
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which is known to be unstable because neither the time reversal symmetry nor the symplecticity of the
TDSE is conserved. However, when combining Euler steps forward and backward in time, one arrives
at the second order symmetric Euler (S2) method

Ψ(t+ ∆t) = Ψ(t−∆t)− 2i∆tHΨ(t) +O(∆t3) (18)

which has been in use for more than 40 years in numerical quantum dynamics where it is known
as second order differencing scheme [1, 47]. Not requiring a special structure of the Hamiltonian
(such as the separability, see Sec. 3.4), the S2 scheme is universal and very simple to implement. In
passing, we note the analogy with the Verlet integrator often used for numerical integration of Newton’s
classical equation of motion [77]. Even though this explicit propagation scheme has the advantages
of being time-reversible and conditionally stable, it is neither symplectic nor strictly unitary nor energy
conserving [10]. However, in practice norm and energy conservation are approximately realized for
small enough time steps ∆t. Since the above method is a two step method, it requires two initial
conditions: (i) Ψ(t), which is given, and (ii) Ψ(t−∆t), which we obtain by propagating backwards in
time. A common way to achieve this is to start by a first-order scheme (17) for half a time step, and
then use the S2 scheme (18) to propagate backward another half step [47].

Higher order schemes are based on Euler methods of order `max forward (t + ∆t) and backward
(t−∆t) in time

Ψ(t±∆t) =
`max∑
`=0

1

`!
(∓i∆tH)` Ψ(t) +O(∆t)`max+1 (19)

Combining the forward and backward equation then yields time reversible schemes

Ψ(t+ ∆t) = Ψ(t−∆t) +
kmax∑
k=1

2

(2k − 1)!
(−i∆tH)2k−1

︸ ︷︷ ︸
=:A

Ψ(t) +O(∆t)2kmax+1 (20)

which offer the advantage of eliminating all even powers of ∆t, in particular the term withO(∆t)2kmax .
Hence, the resulting schemes are of order 2kmax, and they will be referred to as S2, S4, S6 for
kmax = 1, 2, 3 throughout Sec. 4.

In our practical work using TT representations of state vectors and (Hamiltonian) operators, solving
Eq. (18) or Eq. (20) is straightforward: given Ψ(t), Ψ(t−∆t) and H in the TT format, we can obtain
Ψ(t+∆t) by simple tensor additions and multiplications. However, since TT ranks add under addition
and multiply under multiplication, we have

rank(Ψ(t+ ∆t)) = rank(Ψ(t−∆t)) + rank(H) · rank(Ψ(t)) (21)

already for the second order scheme of Eq. (18). For the higher-order schemes of (20), the rank of H in
Eq. (21) has to be replaced by rank(A) ≤

∑kmax

k=1 rank(H)2k−1 where A is defined in the underbrace
of Eq. (20). Hence, the rank of our approximate Ψ(t) would grow exponentially with the number of time
steps and would become exceedingly large already after very few time steps. Therefore, one needs to
perform a rank reduction after every time step, i.e., we approximate the high-rank Ψ(t+ ∆t) resulting
from the propagation step with a low-rank TT. That is, given a core of Ψ(t + ∆t), we reshape it into
a matrix and then apply a truncated singular value decomposition (SVD). Depending on the direction
of the orthonormalization, the left- or right-singular vectors then define the updated cores and the
non-orthonormal part is contracted with the next core, see [59, 22] for details. Applying this procedure
successively to each core from one end to the other, we obtain a low-rank approximation which is
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then used for the next time step. The rank reduction requires N − 1 singular value decompositions
on matrices of size s × d · s′ where d is local Hilbert space dimension and s and s′ ≤ s are the
maximum TT ranks of Ψ(t+ ∆t) before and after the orthonormalization. The total cost in each time
step can be estimated byO(NR2r2d2 +NR3r3d), where R and r are the maximum TT ranks of A
and Ψ(t), respectively. The first term results from estimating the contraction of A, see Eq. (20), with
Ψ(t), whereas the second term corresponds to the truncation/orthonormalization of the tensor cores
of Ψ(t−∆t) + AΨ(t).

3.4 Higher order splitting schemes

Since the early days of numerical quantum dynamics, splitting approaches have been widely used for
the matrix exponential (11) governing the formal solution of the TDSE [20, 19]. These methods are
suitable wherever the quantum-mechanical Hamiltonian can be decomposed into (two or more) exactly
(or, at least, easily) solvable parts, e.g., the kinetic and potential energy operator. Because these parts
of the Hamiltonian typically don’t commute, deriving approximations to the Baker–Campbell–Hausdorff
formula has lead to a hierarchy of exponential splitting methods for use as integrators in solving the
time discretized TDSE which are explicit and easy to implement. Based on the classical first order Lie–
Trotter (LT) and second order Strang–Marchuk (SM) schemes, higher-order methods can be obtained
as compositions of the basic methods [80, 73, 2, 5]. For a systematic overview of such composition
methods, the reader is referred to section V.3 of Ref. [30]. Common advantages of the exponential
splitting methods are that they typically are unitary, symplectic and time-reversible [49, 63].

In what follows, we construct various splitting schemes for Hamiltonians restricted to NN interactions in
quasi one-dimensional chains. Moreover, we assume that all state vectors and Hamiltonian operators
are given in TT format as SLIM decompositions. Splitting methods have been considered for opera-
tors in TT format, see, e.g., [57], where the case of Lie–Trotter splitting is explained in detail. In the
closely related context of density matrix renormalization group (DMRG), TT/MPS decompositions are
used to construct time-evolving block decimation (TEBD) schemes for propagations of quantum state
vectors [78, 61], which resemble the techniques described below. For other closely related splitting
methods on TTs, we refer to [50, 51].

The key to splitting the exponential in the evolution (11) is to separate the operators constituting the
Hamiltonian (1) into groups as large as possible. At the same time, all the operators belonging to one
group should commute with each other such that corresponding computations can be carried out in
parallel [78]. Thus, for an implementation of splitting methods for TTs using SLIM decomposition (13),
all single site operators S commute by construction, and operators L and M acting on odd/even
NN pairs commute within their oddity groups. More specificially, we can split our Hamiltonian tensor
operator H ∈ R(d1×d1)×···×(dN×dN ) into two parts Hodd and Heven which are defined by

Hodd =
N∑
i=1,
i odd

I1:i−1 ⊗ S(i) ⊗ I i+1:N +
N−1∑
i=1,
i odd

I1:i−1 ⊗
q
L(i)

y
⊗

q
M (i+1)

y
⊗ I i+2:N

=

dN
2
e∑

i=1

I1:2i−2 ⊗ S(2i−1) ⊗ I2i:N +

dN−1
2
e∑

i=1

I1:2i−2 ⊗
q
L(2i−1)

y
⊗

q
M (2i)

y
⊗ I2i+1:N
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P. Gelß, S. Matera, R. Klein, B. Schmidt 10

and

Heven =
N∑
i=1,
i even

I1:i−1 ⊗ S(i) ⊗ I i+1:N +
N−1∑
i=1,
i even

I1:i−1 ⊗
q
L(i)

y
⊗

q
M (i+1)

y
⊗ I i+2:N

=

bN
2
c∑

i=1

I1:2i−1 ⊗ S(2i) ⊗ I2i+1:N +

bN−1
2
c∑

i=1

I1:2i−1 ⊗
q
L(2i)

y
⊗

q
M (2i+1)

y
⊗ I2i+2:N ,

respectively. Next, we define Hi, i = 1, . . . , N − 1, to denote the components

Hi = I1:i−1 ⊗ S(i) ⊗ I i+1:N + I1:i−1 ⊗ L(i) ⊗M (i+1) ⊗ I i+2:N

= I1:i−1 ⊗
(
S(i) ⊗ I(i+1) + L(i) ⊗M (i+1)

)
⊗ I i+2:N ,

whereas the last component with i = N is simply given by

HN = I1:N−1 ⊗ S(N).

Note that we here only consider non-cyclic systems because defining HN = I1:N−1⊗S(N) +M1⊗
J2:N1 ⊗LN , cf. (13), would either lead to a significant increase of the computational complexity of the
following schemes or would involve cyclic TT representations [28] of quantum states, both of which
are beyond the scope of the present work. For the use of SLIM decompositions of cyclic systems, we
refer to [24, 22]. With this definition of the Hi, the tensors Hodd and Heven can then be written as

Hodd =
∑
i∈Iodd

Hi, Iodd = {1, 3, . . . , 2dN/2e − 1} (22)

and
Heven =

∑
i∈Ieven

Hi, Ieven = {2, 4, . . . , 2bN/2c}. (23)

The components of Hodd as given in (22) commute pairwise. The same holds for the components of
Heven as given in (23). This implies that the components of the propagator in Eq. (11) can be expressed
as

exp(−itHodd) =
∏
i∈Iodd

exp(−itHi)

=
∏
i∈Iodd

I1:i−1 ⊗ exp
(
−it
(
S(i) ⊗ I(i+1) + L(i) ⊗M (i+1)

))
⊗ I i+2:N

with IN+1 = 1 and MN+1 = 0, see above. An analogous statement holds for exp(−itHeven).
That is, the tensor exponentials of −itHodd and −itHeven can be written as the product of dN/2e
and bN/2c, respectively, commuting tensor operators acting only on two sites at most. Thus, we
can directly implement splitting schemes such as first-order Lie–Trotter (LT) or second-order Strang–
Marchuk (SM), see Fig. 2, given by

exp(−itH)
LT
≈ exp(−itHodd) exp(−itHeven)

and

exp(−itH)
SM
≈ exp

(
−i
t

2
Hodd

)
exp(−itHeven) exp

(
−i
t

2
Hodd

)
,

respectively.
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The SM split-operator approach offers the advantage of being unitary, symplectic, stable, symmetric,
and time-reversible [19], However, to obtain highly accurate results, this algorithm requires using small
time steps because it has only second-order accuracy. Hence, we consider TT-based splitting schemes
with higher order by using the fact that these methods can be obtained as suitable compositions of
SM steps [63], i.e.,

exp(−itH) = SM(−iγstH) · · ·SM(−iγ1tH)

with

SM(−iγtH) := exp

(
−i
γt

2
Hodd

)
exp(−iγtHeven) exp

(
−i
γt

2
Hodd

)
,

where s is the number of stages and where consistency implies that
∑s

j=1 γj = 1. For more informa-
tion see Ref. [49], where an overview of splitting methods with different order is given. In the present
work, we consider the palindromic Yoshida–Neri (YN, order 4 with 3 stages) [80] and Kahan–Li (KL,
order 8 with 17 stages) [36] compositions with coefficients

γ1 = γ3 = 1.3512, γ2 = −1.7024,

and

γ1 = γ17 = 0.1302, γ2 = γ16 = 0.5612, γ3 = γ15 = −0.3895, γ4 = γ14 = 0.1588,

γ5 = γ13 = −0.3959, γ6 = γ12 = 0.1845, γ7 = γ11 = 0.2584, γ8 = γ10 = 0.2950,

γ9 = −0.6055,

respectively. Because some of the coefficients are negative, both the YN and the KL scheme can be
considered as combinations of backward and forward propagations in time.

exp
(
Hodd

∆t
2

)exp (Heven∆t)

exp
(
Hodd

∆t
2

)

Ψ(t)

Figure 2: Strang splitting for SLIM operators for even number N of sites: In each stage of the splitting scheme,
only pairs of cores or single cores are altered. If no rank reduction is performed between these stages, the ranks
of the resulting TT representation of Ψ(t+ ∆t) are bounded by rd3, where r is the maximum TT rank of Ψ(t).

Note that the composition schemes described above are time-reversible, symplectic and unitary, i.e.,
norm-preserving. In analogy to the higher-order differencing schemes, see Sec. 3.3, the advantages of
TT-based splitting methods are that, in contrast to implicit time-integration methods, we do not have to
rely on iterative solvers for linear systems like the alternating linear scheme (ALS) [33] and we can, in
principle, parallelize the tensor contractions and rank reductions in each stage. In particular, homoge-
neous systems can be efficiently simulated by splitting methods since the two-site tensor exponentials
of Hodd and Heven are identical for all sites. In general, each two-site operator exp(itHi) has a TT
representation with rank bounded by d2. Thus, by orthonormalizing (without truncation, see Sec. 3.3)
between the stages, the ranks of the resulting tensor after one SM step are alternately bounded by
rd2 and rd3. In this case, the computational complexity for sufficiently large N can be estimated
by O(Nr3d8), where we assume that in each stage the matricizations of the two-site operators are
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multiplied by the contractions of the corresponding cores and the resulting matrix is reshaped and
decomposed by using an SVD. Note that a subsequent truncation for reducing the ranks of Ψ(t+∆t)
to r would take O(Nr3d5) floating-point operations. However, if we only allow TT ranks bounded by
some number s < rd between the SM stages, we can reduce the computational costs to O(Ns3d4).
Truncating the ranks of the resulting tensor train to r then only takes O(Nrs2d) operations. In this
way, we can significantly reduce the computational complexity but we have to accept losses in accu-
racy since our experiments showed that higher TT ranks are needed particularly in between the SM
stages. Choosing s = 2r, however, turned out to yield nearly the same numerical results in our test
cases as when allowing arbitrarily large TT ranks in between the SM stages.

3.5 Software

All simulations presented in this work are carried out using our recently developed Python package
WAVETRAIN which is publicly available via the GitHub platform [62]. It encompasses various numerical
solvers for TISE and TDSE for Hamiltonians in TT form using a SLIM representation, among them all
the integrators mentioned in the present work. WAVETRAIN builds on SCIKIT-TT [25], an open-source
tensor train toolbox for Python based on NumPy and SciPy. For short chains, N ≤ 5, our results
obtained with WAVETRAIN are in excellent agreement with values obtained from the conventional,
grid-based solvers for general Hamiltonians available within the WAVEPACKET software package [67,
65, 66].

4 Results and Discussion

In this Section, we aim at assessing the performance and accuracy of the TT techniques, in particular
the various propagators to numerically solve the TDSE for excitons, for phonons, as well as for the
coupled systems. First of all, our comparisons are based on the conservation of norm and energy over
time. Where possible, we also compare our numerical results with semi-analytical solutions which are
available for short chains, see Sec. 4.3, and/or for harmonic phonons, see Sec. 4.4.

4.1 Model parameters

Unless stated otherwise, in our computer experiments we restrict ourselves to the case of non-periodic,
homogeneous chains, with the model parameters α, β,m, ν, ω, σ being equal for all sites, with their
numerical values adapted from our previous work [22]. For the excitonic Hamiltonian of (2), we choose
a local excitation energy α = 0.1Eh (≈ 2.7 eV) which is of the order of typical band gaps in organic
semiconductors, whereas the NN coupling energy is chosen one order of magnitude smaller, β =
−0.01Eh. The phononic Hamiltonian of (3) is parametrized in terms of mass-weighted displacement
coordinates, R̃ =

√
mR, here with unit masses, m = 1, and harmonic frequencies ν = 10−3Eh/~

(≈ 220 cm−1) and ω =
√

2 × 10−3Eh/~ for the restraining and for the NN oscillators, respectively.
The coupling constant occurring in the (symmetric) EPC mechanism of Eq. (7) is chosen even smaller
than the vibrational frequencies, σ = 2×10−4Eh/a0. Note that for this value of the EPC constant, the
stationary states obtained as solutions of the TISE display mutual trapping of excitons and phonons,
the former ones localized with a full width at half maximum of about 7 sites, see our previous work
[22]. Note that the use of mass-weighted coordinates implies a scaling of the EPC constant with
σ̃ = σ/

√
m. Thus, it is straight-forward to transfer all our results described below to arbitrary values

DOI 10.20347/WIAS.PREPRINT.2995 Berlin 2023



Quantum dynamics of coupled excitons and phonons 13

of the particle masses involved. Except where stated otherwise, we employ a basis set consisting of
d(ex) = 2 (electronic two-state model) and d(ph) = 8 vibrational basis functions (from the second
quantization introduced in Sec. 2).

4.2 Time scales

For a homogeneous, non-periodic chain of infinite length, the TDSE for the purely excitonic two-state
Hamiltonian of Eq. (2) can be solved analytically: For the case of an initial excitation localized at site
i0, the probability of finding the exciton at time t on site i is given by

Pi(t) = J2
i−i0(2|β|t) (24)

where the Jn are n-th order Bessel functions of the first kind [41, 70]. In practice, these solutions
are of limited use as a benchmark for numerical quantum dynamics because typically the excitations
quickly reach the end of a finite length chain. However, the above solution is instrumental in defining
a time scale for the excitonic energy transport as the time between the first maximum of J0 (at t = 0)
and the first maximum of J1 (at 2|β|t/ ≈ 1.8412). Hence, for our example we suggest a rounded
value for the time scale, τ (ex) ≡ 1/|β| = 100 in atomic units, or approximately 2.4 fs. In the absence
of analytical results for phonon dynamics given by the Hamiltonian of Eq. (4), we simply define an
analogous time scale for phononic energy transport, τ (ph) ≡ 1/ν = 1000, or approximately 24 fs.
This value approximately coincides with our empirical observations of a vibrational excitation moving
from one site to its nearest neighbors. Similarly, the time scale of the exciton-phonon coupling of (7)
is defined as τ (epc) ≡ 1/|σ| = 5000, or approximately 120 fs, characterizing the redistribution of
energy between excitonic and phononic subsystems.

4.3 Comparison with quantum dynamics

For short chains, it is straight-forward to obtain semi-analytical solutions to the TDSE (8) by calculating
the matrix exponential in the formal solution (11) directly. Assuming a maximum matrix size of 4096×
4096, the semi-analytical approach is limited to N = 12, N = 4, or N = 3 for excitons with
d(ex) = 2, phonons with d(ph) = 8, or coupled systems with d = d(ex)d(ph) = 16, respectively.

First, we run semi-analytical propagations with 100 main time steps of length τ (ex)/2 = 50 for ex-
citons with and without EPC and τ (ph)/2 = 500 for phonons only. As expected, these simulations
display preservation of norm and energy to machine precision. Subsequently, we use those results
as a reference in assessing the quality of TT-based propagations of the same duration where we split
the main time steps into 1, 2, 5, 10, 20, 50, 100, 200, 500, or 1000 sub-steps each. Propagations are
carried out using the second order symmetric Euler (S2) method, see Sec. 3.3, as well as four different
splitting schemes, i.e., Lie–Trotter (LT), Strang–Marchuk (SM), Yoshida–Neri (YN), and Kahan–Li (KL),
see Sec. 3.4. In all simulations of exciton dynamics with or without EPC, the initial state corresponds to
a single site near the center of the chain being excited. Our simulations of phonon dynamics were ini-
tialized with the vibration of that site being in a coherent state where a mean displacement 〈∆R〉 = 1
has been chosen [64]. Note that this value is small enough such that the truncation of the vibrational
basis (here d(ph) = 8) does not have a notable influence on the precision of the results. All other sites
were prepared in their excitonic and/or vibrational ground states.

Our results for the three classes of systems investigated are displayed in Figs. 3, 4, and 5. The columns
of these figures correspond to different values of r, the maximum ranks of the solutions, characterizing
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the flexibility of the solutions. Note that for given dimension d of the Hilbert spaces for each of the N
sites, the maximum rank possible, rmax, of a tensor train (after left- and right-orthonormalization) is
given by dbN/2c where the values of d are chosen as 2, 8, or 16 for excitons, phonons, or coupled
systems, respectively. Hence, we have rmax = 64 both for pure excitons (N = 12) and pure phonons
(N = 4) whereas we have rmax = 16 for coupled systems (N = 3). The CPU times for a single
thread of a Xeon Skylake 6130 processor, shown in the upper rows of the figures, increase linearly
with the number of time sub-steps. Owing to the simplicity of the integrator (18), the S2 is the fastest
of the 5 integrators compared here. It is followed by the first order (LT) and second order (SM) splitting
schemes with slightly higher computational effort. Note that results for S2, LT, SM propagations are
partly not available for the larger sub-step sizes where they become unstable. The elapsed CPU times
are considerable higher for the 4-th order (YN) and 8-th order (KL) schemes.

The panels in the second rows of Figs. 3–5 show the root mean squared deviation (RMSD, averaged
over the 100 time steps considered) of the norm of the quantum-mechanical states from unity. The
S2 method reproduces the preservation of norm moderately well with RMSD values typically between
10−2 and 10−11, steeply descending with decreasing step size. RMSD values between 10−9 and
10−13 are often found for the splitting methods, which is expected because of the unitarity of those
schemes. However, this favorable behavior is only found where the ranks of the solutions, r, are high
enough. While this is already the case for r = 2 for the exciton results shown in Fig. 3, one has to go
close to the maximum ranks for the other two systems, i.e., r = rmax = 64 for the phonons shown
in Fig. 4 or r = rmax = 16 for the coupled systems, see Fig. 5. A few outliers are found for the YN
scheme for excitons, see Fig. 3, which are apparently caused by the rank reduction in between the
SM stages, see Section 3.4.

A similar behavior is found in our (relative) RMSDs of energies w.r.t. their initial values and for the
(absolute) RMSDs of the TT-based solutions from the semi-analytical solutions, as can be seen in the
third and fourth rows of Figs. 3–5. Once the ranks of the solutions, r, exceed the above-mentioned
thresholds, these two quantities can be brought down to 10−11 or even lower for small enough time
steps. While such a high quality of the numerical solutions requires rather small time steps for the
lower order propagators, it is reached already for much larger time steps when using the higher order
schemes. As expected, our data in the last rows (RMSDs of the state vectors) of the right columns of
Figs. 3–5 are well approximated by power laws with exponents of approximately 1 (LT), 2 (S2, SM), 4
(YN), and 8 (KL). The deviating behavior of the RMSDs when applying YN and KL for small time steps
can be explained by the high number of SVDs used for truncating/orthonormalizing the intermediate
solutions, see Sec. 3.4. In this case, the (numerical) errors induced by the core decompositions appear
to outweigh the time-discretization error.

To summarize, Fig. 6 shows a synopsis of our results for excitons, phonons, and coupled systems.
Again, the respective chain lengths of N = 12, N = 4, and N = 3 are equivalent in the sense
that the dimensions of the underlying Hilbert spaces, (d(ex))12 = (d(ph))4 = (d(ex)d(ph))3 = 4096,
are equal. In this figure, the accuracy, calculated as RMSD between semi-analytical and TT-based
numerical results, is shown as a function of the total CPU time. Essentially, the comparison shows the
superiority of the higher-order splitting integrators when high precision is required. Only the 4-th order
(YN) and 8-th order schemes (KL) are able to reach a precision of 10−8 and below. The most precise
results are obtained for the KL integrator, with RMSDs below 10−11 for suitable choice of the time step
size. In particular, the CPU times required to reach the maximal precision are about 102 s for excitons
and phonons, whereas about 103 s are found for the coupled systems. Since we here consider rather
short chains, especially for phonons and coupled systems, we observe only a weak influence of the
maximum TT rank on the computational costs. But the complexity of the simulations employing the
splitting schemes still depends on d4, see Sec. 3.4, which we identify as the reason for the higher
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CPU times required for computing accurate solutions for the coupled exciton-phonon systems.
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Figure 3: Quantum dynamics of purely excitonic chains with d = 2 and N = 12 sites. From left to right:
Maximum number of ranks of state vectors increasing. From top to bottom: CPU-time versus size of temporal
sub-steps, deviation of norm from unity, relative deviation of energy from initial value, deviation of state vectors
from semi-analytical reference data. For second order symmetric Euler (S2), Lie–Trotter (LT), Strang–Marchuk
(SM), Yoshida–Neri (YN), and Kahan–Li (KL) integration methods
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Figure 4: Quantum dynamics of purely phononic chains with d = 8 and N = 4 sites. For details, see caption
of Fig. 3
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Figure 5: Quantum dynamics of coupled excitons and phonons for d = 16 and N = 3 sites. For details, see
caption of Fig. 3
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Figure 6: Accuracy of solutions versus computational effort. From left to right: excitons (N = 12, r = 8,
d = 2), phonons (N = 4, r = 64, d = 8), and coupled systems (N = 3, r = 16, d = 16).

DOI 10.20347/WIAS.PREPRINT.2995 Berlin 2023



P. Gelß, S. Matera, R. Klein, B. Schmidt 18

4.4 Comparison with classical dynamics

For the dynamics of phonons, reference data for assessing our TT-based results can also be gen-
erated on the basis of the quantum-classical correspondence. According to the Ehrenfest theorem,
the quantum-mechanical expectation values of positions and momenta coincide with results from
classical trajectories, as long as the vibrational Hamiltonian is a polynomial of order not higher than
two [12]. This is indeed the case for our vibrational model Hamiltonian (3) which can be re-formulated
asH(ph) = RTFR+P TGP where F and G stand for the Hessians of the Hamiltonian function with
respect to positions,R, and momenta, P , respectively. Under these assumptions, Hamilton’s classical
equations of motion can be solved in a semi-analytical manner using a matrix exponential(

R(t)
P (t)

)
= exp

[(
0 G
−F 0

)
t

](
R(0)
P (0)

)
(25)

where a symplectic phase space formulation [30] is used and where 0 stands for a zero matrix of size
N ×N . Our classical simulations are initialized with a single site (at the center of the chain) displaced
by ∆R = 1 while all other sites are at their equilibrium positions. We generate a set of classical
simulations with a duration of 100 time steps of size τ (ph)/2 = 500 for N ∈ {4, 8, 16}. As expected
for these system sizes, the semi-analytical solutions display excellent preservation of energy within
machine accuracy.

Next, we conduct TT-based quantum propagations of the same duration (50τ (ph) = 50000) using both
splitting (LT, SM) and differencing (S2, S4) propagators, again sub-dividing the main time steps into 1,
2, 5, 10, 20, 50, 100, 200, 500, 1000 sub-steps each. Moreover, we restrict our analysis to the results
for r = 32. For shorter chains with N = 4, this value has already been shown to yield reasonable
results for the RMSDs of the state vectors, see Fig. 4. Note that we here exclude the higher-order
splitting schemes (YN, KL) due to the exceedingly high computational effort. Furthermore, we find that
S6 as well as S8 splitting methods yield results that are almost identical to those obtained for the S4
method which is the reason why we do not show them anywhere in Fig. 7. We explain this effect as
a consequence of the used orthonormalizations and rank reductions which eliminate the information
stored in the terms corresponding to small singular values and expect S6 to show better results than
S4 when allowing for higher TT ranks.

In analogy to our classical simulations of phonon dynamics, we initialize our quantum simulations
by using a coherent state for a single site with the mean position matching the displacement given
above. Our results are shown in Fig. 7 where RMSD comparisons of quantum versus classical position
values of the vibrational coordinates are shown in the last row. In contrast to our simulations of phonon
dynamics presented in Sec. 4.3, we use a larger basis set with d(ph) = 16 here which has turned out
to be mandatory when aiming at high accuracy for the comparison of vibrational coordinates.

The CPU times for the four integrators used here are shown in the top panels of Fig. 7 for chains of
4, 8, and 16 repeat units. We see an increase in the CPU times of roughly one order of magnitude
upon doubling the chain length both for the differencing schemes (S2, S4) and for the splitting (LT,
SM) schemes. As stated in Sec. 3.3 and Sec. 3.4, the computational complexities of the differencing
and splitting schemes, respectively, scale linearly with the chain length. The reason why this behavior
cannot be observed in Fig. 7 is the comparatively small number of sites and the fact that the ranks r1

and rN−1 of a TT representation of a quantum state vector with dimensions d are always bounded by
d. Thus, in this experiment, every tensor train with N = 4 has only one rank bounded by 32, whereas
it has five when N = 8 and 13 when N = 16. Hence, due to the dominant computational costs of
contractions and orthonormalizations of TT cores with maximum ranks, the CPU times in Fig. 7 are
not expected to show a linear scaling when doubling the chain length. However, by bounding the TT
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ranks of the intermediate solutions in between the SM stages to 2r, cf. Section 3.4, we are able to
reduce the increase of the CPU times for splitting methods significantly while observing almost no loss
in accuracy.

The behavior of the norm of the state vectors is shown in the second row of Fig. 7. The norm is
preserved up to machine precision for the unitary LT and SM splitting schemes only for N = 4
whereas notable deviations from unity are found for N = 8 and N = 16. This behavior is attributed
to the finite ranks, r = 32, used here, see also Fig. 4 and our discussion of rank effects in Sec. 4.3. In
contrast, for the S2 and S4 differencing schemes, the norm is only approximately conserved for short
time steps. For N = 4 and N = 8, the deviation from unity scales is approximately proportional to
τ−4 for the S2 scheme as expected [1], whereas it scales as τ−3 for the S4 scheme. Note that the
RMSDs for longer chains (N = 16) are much larger due to finite-rank effects.

The third row of Fig. 7 shows that the energies are not preserved exactly, as expected for our choice
of integrators which are known not to conserve quadratic invariants rigorously. The comparison of our
results does not show any characteristic differences between the different integrators for longer chains
(N = 8 and N = 16). Only for short chains (N = 4), the double-logarithmic representations show
an approximately linear behavior with slopes of 1.0 (LT), 2.0 (SM), 2.5 (S2) and 3.0 (S4).

Finally, we consider the deviations (RMSD) of our numerical TT quantum results for the calculated
positions from our (semi-analytical) classical results described at the beginning of this section. Again,
only for short chains we find straight lines in the bottom panels of Fig. 7, this time for N = 4 with
slopes of 1.0 (LT), 2.0 (SM), 2.0 (S2) and 4.0 (S4) as expected. Also for the longer chains with N = 8
and N = 16 we find that the higher order differencing schemes are superior to the lower order ones.
Except for the largest time steps, the SM scheme clearly beats the LT scheme, and the S4 scheme is
often several orders of magnitude more precise than the S2 scheme which, however, is the fastest.

DOI 10.20347/WIAS.PREPRINT.2995 Berlin 2023



P. Gelß, S. Matera, R. Klein, B. Schmidt 20

100 101 102

102

103

104

105

106

CP
U 

tim
e 

[s
ec

.]

N = 004

100 101 102

N = 008

100 101 102

102

103

104

105

106
N = 016

Integrators
LT
SM
S2
S4
1 day
1 hour
1 min.

100 101 102

10 10

10 7

10 4

10 1

RM
SD

 o
f n

or
m

100 101 102 100 101 102

10 10

10 7

10 4

10 1

100 101 102

10 10

10 8

10 6

10 4

10 2

RM
SD

 o
f e

ne
rg

y

100 101 102 100 101 102

10 10

10 8

10 6

10 4

10 2

100 101 102

time step

10 8

10 6

10 4

10 2

RM
SD

 o
f p

os
iti

on
s

100 101 102

time step
100 101 102

time step

10 8

10 6

10 4

10 2

Figure 7: Quantum dynamics of phonons for N = 4, N = 8, and N = 16 sites (from left to right) for
d = 16 and r = 32. Note that the last row shows the RMSDs of the displacements (position coordinates) of
the oscillators
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5 Conclusions and Prospects

In the present work, we have shown how to apply tensor-trains (TT) to solve the time-dependent
Schrödinger equation for chain-like systems with nearest neighbor (NN) interactions only. The aim
of this approach is to mitigate the curse of dimensionality, i. e., to reduce the memory consumption
as well as the computational costs, as much as possible. Throughout this study, we have employed
memory-efficient SLIM representations to construct TT representations of the quantum-mechanical
Hamiltonians and state vectors.

Two classes of explicit integrators to solve the Schrödinger equation are investigated here. First, we
consider time-symmetrized Euler integrators, see Sec. 3.3, based on the second order differencing
method regularly used since the early days of numerical quantum dynamics. Second, we study splitting
propagators such as the well-known first order Lie–Trotter and the second-order Strang–Marchuk
schemes, see Sec. 3.4, originally based on a splitting of the Hamiltonian into kinetic and potential
energy terms. However, in the present context of chain-like systems we build on a splitting of the
Hamiltonian into groups of interleaved NN interactions commutating within each group. Both for the
differencing and splitting methods, we have extended the traditional schemes to higher order ones.

This work presents rigorous tests of these approaches for three different classes of Hamiltonians,
i.e., for two-state excitons, for harmonic acoustic phonons, and for coupled exciton-phonon systems
modeled in terms of Frenkel–Fröhlich–Holstein type Hamiltonians. In particular, we have conducted
extensive investigations of the influence of the TT ranks, the time step size, and the orders of the
individual propagators for homogeneous and non-periodic chains of various lengths.

The focus of our studies in Sec. 4.3 is on the dependence of the conservation properties as well as
the approximation quality on the maximum number of ranks, r, of the solutions. Typically we find a
threshold behavior, i.e., once the number r exceeds a certain threshold, the quality of the solutions
increases drastically. For the three classes of physical systems investigated here, this threshold is
found at very different values of r. For example, for an excitonic chain of length N = 12, we find
excellent agreement with semi-analytic results already for r = 2. This may be due to the fact that
the exciton dynamics is confined to the Fock space of states with one excitation which also contains
our initial state. (Note that the number of excitons is a conserved quantity because it commutes with
the Hamiltonian (2)). In marked contrast, for a phononic chain of length N = 4, this threshold is
already beyond r = 50. Nevertheless, we summarize that the TT-based propagators provide excellent
solutions once the ranks are chosen large enough. In particular the higher order splitting methods
such as the YN (4-th order) and KL (8-th order) schemes are recommended where very high precision
(close to machine precision) is required.

The main objective of our studies presented in Sec. 4.4 is the dependence of the approximation quality
on the number of sites, N . Here, splitting methods are not our preferred choice. Instead, differencing
methods are more efficient for longer chains, i.e. the S2 scheme is the faster whereas the S4 scheme
is more accurate than LT or SM splitting. However, one has to be aware that even S4 achieves only
moderate precision.

As an outlook toward future work, we expect our approach to be extended to more complex scenarios
than the ones investigated in the present work. For example, considering more than one vibrational
degree of freedom per site into account is necessary, e.g., for realistically modeling the conformational
dynamics of π-conjugated polymer chains [4, 17]. Obviously, this requires larger dimensions, d, of
the local Hilbert spaces. In the practice of our approaches using TT based propagators, in that case
differencing methods are expected to be superior to splitting methods because of the more favorable
scaling of the computational costs with d for the former ones, see our estimates of the complexities at
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the end of Secs. 3.3 and 3.4.

Finally we remark that we have not discussed implicit integrators. For example, the implicit trapezoidal
scheme offers the intriguing advantage of conserving quadratic invariants such as the energy asso-
ciated with the Hamiltonians proposed in Sec. 2. Unfortunately, in our test calculations this integrator
was found to be considerably slower than any of the explicit schemes considered. This is because it
involves the solution of a large set of equations for every time step. In the context of TT techniques,
this is typically done by means of the alternating linear scheme [33] which is rather time-consuming,
see also our previous TISE work [22]. However, implicit schemes may become more attractive when
combined with spatially and/or temporally adaptive schemes, similar to the trapezoidal rule for adaptive
integration of Liouville equations (TRAIL) [34, 35].
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