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Existence of subcritical percolation phases for generalised
weight-dependent random connection models

Benedikt Jahnel, Lukas Lüchtrath

Abstract

We derive a sufficient condition for the existence of a subcritical percolation phase for a wide
range of continuum percolation models where each vertex is embedded into Euclidean space
and carries an independent weight. In contrast to many established models, the presence of an
edge is not only allowed to depend on the distance and weights of its end vertices but can also
depend on the surrounding vertex set. Our result can be applied in particular to models combin-
ing heavy-tailed degree distributions and long-range effects, which are typically well connected.
Moreover, we establish bounds on the tail-distribution of the number of points and the diameter of
the subcritical component of a typical point. The proofs rest on a multi-scale argument.

1 Introduction

The standard objects studied in continuum percolation theory are random graphs G λ on the points
of a homogeneous Poisson point process on Rd of intensity λ > 0. The spatial embedding of the
vertices enters the connection probability in a way that vertices at a short distance are likelier con-
nected by an edge than far apart vertices. Many well established models belong to that framework,
i.e., Gilbert’s disc model [6], the random connection model [18, 20], the Poisson–Boolean model [14, 7]
and its soft version [9], continuum scale-free percolation [3, 4] or the age-dependent random connec-
tion model [12]. The standard question in percolation theory then is whether there exists a critical
Poisson intensity λc ∈ (0,∞) such that the connected component of the origin (added to the graph
if necessary) is infinite with a positive probability for all λ > λc but is finite almost surely for λ < λc.
We call the regime (0, λc) the subcritical percolation phase and (λc,∞) the supercritical percolation
phase. Often, by ergodicity of the underlying Poisson point process and the way edges are drawn, if
λ > λc then G λ contains an infinite connected component almost surely and if λ < λc there cannot
be an infinite connected component somewhere in the graph. Moreover, under very mild assumptions
on the distribution of G λ, an existing infinite component is almost surely unique [2].

In dimension d ≥ 2 percolation models typically contain a supercritical phase [19] which is essentially
a consequence of the existence of a supercritical percolation phase in nearest-neighbour Bernoulli
percolation on Z2 [13]. Therefore, for d ≥ 2, the proof of existence of a non-trivial phase-transition
λc ∈ (0,∞) reduces to prove the existence of a subcritical phase. In this article we present sufficient
conditions for the existence of a subcritical percolation phase in a quite general setting. Under these
conditions we are able to exhibit estimates for the tail behavior of the distribution of the Euclidean
diameter and the number of points of the component of a typical point in the subcritical regime.

In a recent paper, Gracar et al. introduce a new coefficient δeff which the authors use to identify whether
one-dimensional percolation models contain a supercritical phase [12]. We show how this coefficient
can be used to derive the existence of a subcritical phase in all dimensions by generalising arguments
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of Gouéré for the Poisson–Boolean model [7]. In [12], the coefficient δeff is derived for the weight-
dependent random connection model [10]. In this class of models, containing all the aforementioned
models, each vertex carries an independent mark. The connection mechanism is such that edges are
drawn independently given the vertex locations and their marks. Additionally connections to spatially
close vertices or vertices with small marks are preferred, where the first preference leads to clustering
and the latter can be used to get heavy-tailed degree distributions. This is done in a way that clustering
and degree-distribution are modelled independently, i.e., the degree distribution depends only on the
way the vertex marks enter the connection probability whereas the strength of clustering is determined
by the geometric restrictions alone. We build on their work but extend the setting to models where both
effects are allowed to depend on each other. Moreover, we additionally allow the edges to depend on
local neighbourhoods of their end vertices.

1.1 Framework

We consider graphs where the vertex set is given by a standard Poisson point process on Rd of
intensity λ > 0. Each vertex carries an independent mark distributed uniformly on (0, 1). We denote
a vertex by x = (x, ux) and refer to x ∈ Rd as the vertex’s location and to ux ∈ (0, 1) as the vertex’s
mark. We denote the set of all marked vertices by X = X λ and remark that X is a standard Poisson
point process on Rd× (0, 1) of intensity λ > 0 [17]. We denote by N = N(Rd× (0, 1)) the set of all
at most countably subsets of Rd× (0, 1) so that X is a random element of N. We denote its law and
expectation by Pλ and Eλ. Given X , a pair of vertices x = (x, ux),y = (y, uy) ∈ X is connected
by an edge with probability p(x,y,X \ {x,y}) = p(y,x,X \ {x,y}). That is, whether an edge
is drawn depends not only on the potential end vertices of the edge but may also depend on all other
vertices. We assume that p fulfills the following homogeneity condition when integrating with respect
to the underlying Poisson process: For two deterministically given vertices x and y, we have

Eλ[p(x,y,X )] = Eλ[ϕ(ux, uy, |x− y|d,X )], (1)

where ϕ : (0, 1)× (0, 1)× (0,∞)×N→ [0, 1] is measurable. Note that the deterministically given
vertices are no elements of the Poisson point process with probability one. We make the following
assumptions on the function ϕ:

(i) ϕ is symmetric in the first two arguments and non-increasing in the first three arguments. As a
result, connections to spatially close vertices or vertices with a small mark are preferred. We also
assume that ϕ is translation invariant and isotropic jointly in the third and fourth argument.

(ii) The integral ∫ 1

0

∫ 1

0

∫ ∞
0

Eλ[ϕ(s, t, r,X )]dr ds dt

is finite. This then ensures that expected degrees are finite.

Condition (1) essentially says that the annealed probability of two given vertices being connected only
depends on the given vertices’ distance and marks. Indeed, sinceX is a homogeneous process and ϕ
is translation invariant and isotropic jointly in the third and fourth argument, the Poisson point process
and its influence on the connection probability looks in expectation everywhere the same.

We denote the resulting undirected graph by G = G λ and also write now Pλ and Eλ for the underlying
probability measure and its expectation. We denote the event that x and y are connected by an edge
by x ∼ y and that they belong to the same connected component by x ↔ y. For a given vertex we
denote by C (x) the connected component of x.
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Subcritical percolation phases 3

1.2 Main result

To formulate our main result, we work on the Palm version [17] of the model. That is, a distinguishable
typical vertex o = (o, Uo) is placed at the origin, marked with an independent uniform random variable
U0 and then added to the vertex set. The graph Go = G λ

o is then constructed as above but now with
the additional vertex o. We denote its law by Po = Pλo . We define the random variables

C = C (o) := {x ∈ X : o↔ x},
M = M (o) := sup{|x|d : x ∈ C (o)} and

N = N (o) := ]C (o),

where ]A denotes the number of elements in a countable set A. To ensure the existence of a sub-
critical percolation phase, we rely on two features our graph has to provide: First, the number of ’long
edges‘ should be sufficiently small which then yields that percolation must happen locally in some
sense. Second, the influence of the whole vertex set on the connection mechanism should be driven
by spatially close vertices only to ensure that local percolation in two balls at a large distance can be
seen as independent. To measure the intensity of ’long edges‘ in G , the key quantity is given by the
following limit

− lim
µ↓0

lim inf
n→∞

log
1∫

n−1−µ

1∫
n−1−µ

Eλ[ϕ(s, t, n,X )]dsdt

log n
.

Choosing subsequences if needed, it is no loss of generality to assume in the following that this limit
exists. We then write

ψ(µ) := ψ(µ, ϕ) = lim
n→∞

log
1∫

n−1−µ

1∫
n−1−µ

Eλ[ϕ(s, t, n,X )]dsdt

log n
and

δeff := δeff(ϕ) = − lim
µ↓0

ψ(µ, ϕ) = − inf
µ>0

ψ(µ, ϕ)

(2)

and call δeff the effective decay exponent (associated with ϕ). The effective decay exponent δeff quan-
tifies the occurrence of ’long edges‘ in a way comparable to classical long-range percolation where
each pair of vertices x and y is connected by an edge independently with probability proportional to
|x − y|−dδ for some δ > 1. Indeed, in that scenario we have δeff = δ. For more background on δeff,
we refer to [12].

Let us write Br(x) for the open ball of radius r centered in x and Br := Br(o). To specify local
percolation and quantify the influence of far apart vertices on the connection mechanism, we need to
introduce some notation. For measureable domains D ⊂ Rd and I ⊂ (0, 1) we write

X (D × I) = {x = (x, ux) ∈ X : x ∈ D, ux ∈ I}.

If I = (0, 1), we simply write X (D) = X (D × (0, 1)). Further, we denote by CD(x) the connected
component of x restricted to the vertices located in D. For a given location x ∈ Rd and α > 1, we
define the event

Gα(x) =
{
∃y ∈ X (Bα1/d(x)) : CB

10α1/d (x)(y) 6⊂ X (B8α1/d(x))
}
. (3)

That is, the vertex y located close to x reaches with a path a vertex located in the annulusB10α1/d(x)\
B8α1/d without using vertices located outside B10α1/d(x). We abbreviate Gα = Gα(o). We say that
G λ is mixing if there exist ζ > 0 and Cmix > 0 such that for all λ > 0 and all |x| > 30α1/d, we have∣∣Cov (1Gα ,1Gα(x)

)∣∣ ≤ Cmix λα
−ζ . (4)
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Note that, in the examples mentioned in the introduction, p(y,x,X \ {x,y}) = p(y,x) and hence
all of them are mixing in our sense.

Theorem 1.1 (Existence of a subcritical phase). If δeff > 2 and G is mixing, then there exists a critical
intensity λc > 0 such that for all λ < λc

Pλo(N <∞) = 1 and Pλo(M <∞) = 1.

Let us remark that for the proof of Theorem 1.1 it suffices if the right-hand side in (4) is replaced by
λg(α) where g(α) tends to zero at an arbitrary speed. However, to derive bounds on the decay of
Pλo(N ≥ y) and Pλo(M ≥ y) we need that the graph mixes fast enough.

Theorem 1.2 (Decay properties in the subcritical phase). Let s > 0 and assume that ψ(s + 1) <
−(s+ 3) as well as ζ > s+ 1, then there exists λ′c > 0 such that for all t < s and all λ < λ′c,∫ ∞

1

ytPo(M ≥ y)dy <∞ and

∫ ∞
1

ytPo(N ≥ y)dy <∞.

We present the proofs of both theorems in Section 2.

1.3 Examples

The weight-dependent random connection model This model was introduced in [10] and further
studied in [11, 12, 9]. Here, edges are drawn conditionally independent given X and we have

p(x,y,X \ {x,y}) = ρ
(
β−1g(ux, uy)|x− y|d

)
, (5)

where ρ : (0,∞) → [0, 1] is an integrable and non increasing profile function and g : (0, 1)2 →
(0,∞) is a non increasing kernel function which is symmetric in both arguments. Here, β > 0 controls
the edge intensity of the graph by scaling the vertices’ distance in the connection probability. By the
Poisson point process mapping theorem [17] it is no loss of generality to fix β = 1 and only vary
the Poisson intensity λ or doing the opposite and fixing λ = 1 whilst varying β. Two types of profile
functions have been established in the literature. The long-range profile function ρ(x) := p(1∧|x|−δ)
for δ > 1 or the short-range profile function ρ(x) := p1{0 ≤ x ≤ 1} for some p ∈ (0, 1]. These
profile functions together with the interpolation-kernel

g(s, t) := (s ∧ t)γ(s ∨ t)γ′ , for γ ∈ [0, 1), γ′ ∈ [0, 2− γ),

introduced in [12], represent many of the literature’s model such as the Poisson–Boolean model and
its soft version, scale-free percolation and the age-dependent random connection model, cf. Table 1.

The model (5) has also been studied under the name geometric inhomogeneous random graphs in a
similar yet slightly different parametrisation in [16, 1, 23]. Since δeff > 2 in case that δ > 2, γ < 1−1/δ
and γ′ < 1 − γ, there always exists a subcritical percolation phase in these cases, cf. Figure 1. The
model (5) also shows that the question of non existence of a subcritical phase cannot be answered
with δeff alone. Indeed, in [11] it is shown that for γ < δ/(δ+1) and γ′ ≤ 1 − γ there always exists a
subcritical phase for all δ > 1 which also includes parameter regimes with δeff ≤ 2.
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Table 1: Various choices for γ, γ′ and δ for the weight-dependent random connection model and the models they represent
in the literature. Here, to shorten notation, δ =∞ represents models constructed with ρ being the indicator function

Parameters Names and references
γ = 0, γ′ = 0, δ =∞ random geometric graph, Gilbert’s disc model [6]
γ = 0, γ′ = 0, δ <∞ random connection model [18, 20],

long-range percolation [21]
γ > 0, γ′ = 0, δ =∞ Boolean model [14, 7], scale-free Gilbert graph [15]
γ > 0, γ′ = 0, δ <∞ soft Boolean model [9]
γ = 0, γ′ > 1, δ =∞ ultra-small scale-free geometric network [24]
γ > 0, γ′ = γ, δ ≤ ∞ scale-free percolation [3, 4],

geometric inhomogeneous random graphs [1]
γ > 0, γ′ = 1− γ, δ ≤ ∞ age-dependent random connection model [8]

Let us mention that, in order to get bounds for the decay of M and N , we identify for δ > 2 and
γ′ > 1/δ that

δeff > s+ 3 ⇔ γ <
δ(1− γ′)− s− 1

δ
.

Since we also know from above that γ < 1−1/δ this inequality has a valid solution whenever γ′ > s/δ.
This is particularly satisfied for all s ≤ 1. If however γ′ < 1/δ, we infer for γ > 1/δ that

δeff > s+ 3 ⇔ γ <
δ − s− 2

δ
,

which has a valid solution whenever s ≤ 1. This case includes in particular the soft Boolean model
(γ′ = 0). Finally, if also γ < 1/δ, then simply δeff = δ.

Soft Boolean model with local interference We also present an example of a mixing graph where
the edge probabilities indeed dependent on the surrounding point cloud. The idea is to combine the
soft Boolean model [9] with local inference and noise in the spirit of SINR percolation [5, 22]. To
formulate the model let us denote, for a given vertex y = (y, s) and ξ ≥ 0, the random variable

N ξ(y,X ) := ]
{
z ∈ X : |z − y|d ≤ s−ξ

}
.

The graph G = G λ is then generated by connecting x = (x, t) and y = (y, s) with probability

p(x,y,X \ {x,y}) = 1{s<t}
1 ∧ s−γδ|x− y|−dδ

1 +N ξ(y,X \ {x,y})
+ 1{s≥t}

1 ∧ t−γδ|x− y|−dδ

1 +N ξ(x,X \ {x,y})
, (6)

where again γ ∈ (0, 1) and δ > 2. Since N ξ
λ((y, s),X )

d∼ N ξ
λ((o, s),X ), Condition (1) is satisfied

with

ϕ(s, t, r,X ) = 1{s<t}
1 ∧ s−γδr−δ

1 +N ξ((o, s),X )
+ 1{s≥t}

1 ∧ t−γδr−δ

1 +N ξ((o, t),X )
.

Let us note that the model (6) is a combination of the soft Boolean model, a special instance of
the weight-dependent random connection model above, with random interference coming from the
vertices surrounding the vertices that are to be connected. More precisely, each vertex y = (y, s)
has a sphere of influence of radius s−γ/d and a sphere of interference of radius s−ξ/d. The mark s
can be understood as an inverse attraction parameter and the smaller s the more attractive the vertex

DOI 10.20347/WIAS.PREPRINT.2993 Berlin 2023
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γ
1/2 1

γ′

0

1/2

1

2

Boolean model

ultra-small
scale-free
geometric
network

age-dependent
random connection
model

scale-free
percolation

random connection model

δ−1
δ

δeff < 2

δeff > 2

Figure 1: Phase diagram in γ and γ′ for the weight-dependent random connection model constructed with the interpolation
kernel and a profile function of polynomial decay at rate δ > 2. The solid lines marks the phase transition δeff = 2. Dashed
lines represent no change of behaviour.

is. Note that either both spheres are big (for small s) or small (for large s). Now, the vertex y likes
to connect to each vertex located within its sphere of influence, enlarged by an independent Pareto
random variable for each candidate to include long-range effects (cf. the description of the soft Boolean
model in [9]). However, y gets distracted by all vertices contained in its sphere of interference which
makes it more difficult to form edges. For ξ = 0, each sphere of interference is of radius one and
the model reduces to a version of the soft Boolean model with some additional yet on large scales
insignificant fluctuations.

We start by showing that G is mixing for ξ < 1. To this end, observe that the left-hand side in (4) is
bounded by some constant times the probability of the complement of the largest event on which the
covariance is zero. Further observe that Gα and Gα(x) are independent whenever there is no pair
of vertices in the involved balls such that their spheres of interference intersect. In other words, the
covariance in (4) differs from zero when there are vertices y ∈ X (B10α1/d) and z ∈ X (B10α1/d(x))
such that

u−ξy + u−ξz ≥ |z − y|d.

We recall that |x|d ≥ 30dα and hence |z − y|d ≥ cα for some constant c. Moreover, u−ξy + u−ξz <
2(u−ξy ∨u−ξz ). Hence, the question reduces to the question whether there exists a vertex in one of the

two balls with a mark smaller than cα−1/ξ. But, the expected number of such vertices and hence also
the probability of existence of at least one such vertex is bounded by

Cλα1−1/ξ

for some constant C . Now, since ξ < 1, the graph is mixing with exponent ζ = 1/ξ− 1. Let us further
calculate some values of δeff , see Figure 2. We write f � g for positive functions if f/g is uniformly
bounded from zero and infinity. Since N ξ((o, s),X ) is Poisson distributed with parameter of order
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γ
0 1/2 1

δ

2

3 δeff > 2

ξ
=

0

ξ
=

0.3

ξ
=

0.6

ξ
=

0.9

Figure 2: Phase diagram for γ and δ for the soft Boolean model with local interference. The dashed, dashed-dotted, dotted
and dashed-double dotted lines represent the phase transition for δeff > 2 for ξ = 0, 0.3, 0.6 and 0.9.

s−ξ, we infer

n−δ
∫ 1

1/n

s−γδEλ
[ 1

1 +N ξ((o, s),X )

]
ds � n−δ

∫ 1

1/n

s−γδ+ξds � n−δ ∨ n−δ(1−γ)−1−ξ.

Hence, if γ < (1+ξ)/δ, then δeff = δ. This in particular always true if ξ > δ−2. In the case γ > (1+ξ)/δ,
we have

δeff > 2 ⇔ δ(1− γ) + ξ > 1 ⇔ γ <
δ + ξ − 1

δ
.

For ξ = 0 we recover the bound for the soft Boolean model found in the previous paragraph. For
ξ > 0 we observe that the local distraction indeed makes it harder to percolate. To get bounds on the
tail distribution of M and N when δeff 6= δ, we observe for the mixing parameter

1

ξ
− 1 > s+ 1 ⇔ ξ >

1

δ + 2

and for γ > (1+ξ)/δ, we infer

δeff > s+ 3 ⇔ γ <
δ + ξ − s− 2

δ
,

which has a valid solution if the right-hand side is positive, which is equivalent to s < δ + ξ − 2.

2 Proofs

We employ a multiscale argument similar to the one used for the Poisson–Boolean model in [7]. Recall
the notation of

X (D × I) = {x = (x, ux) ∈ X : x ∈ D, ux ∈ I}

DOI 10.20347/WIAS.PREPRINT.2993 Berlin 2023
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and X (D) = X (D × (0, 1)). Further recall the event Gα(x) and Gα introduced in (3). Let us write
Ac = Rd \ A, for the complement of any A ⊂ Rd, and define two further events

Hα = {∃x ∈ X (Bc10α1/d) and y ∈ X (B9α1/d) : x ∼ y} and

Fα = {∃y ∈ X (B100α1/d) and x ∈ X : x ∼ y and |x− y|d ≥ α}.

We start by proving that both P(Hα) and P(Fα) tend to zero as α→∞ whenever δeff > 2.

Lemma 2.1.

(i) If δeff > 2, then for all ε > 0 such that δeff − ε > 2 there exists µ > 0 and a constant C only
depending on the dimension d and the choice of ε and µ such that

P(Hα) ≤ C(λ ∨ λ2)α−η

with η = (δeff − 2− ε) ∧ µ.

(ii) If δeff > 2, then for all ε > 0 such that δeff − ε > 2 there exists µ > 0 and a constant C ′ only
depending on the dimension d and the choice of ε and µ such that

P(Fα) ≤ C ′(λ ∨ λ2)α−η

with η = (δeff − 2− ε) ∧ µ.

Proof. Define the event

H̃α := {∃x ∈ X (Bc10α1/d) and y ∈ X (B9α1/d) : ux ≥ |x|−d(1+µ), uy ≥ |x|−d(1+µ) and x ∼ y}

and note that

Hα ⊂ H̃α ∪ {∃x ∈ X (Bc10α1/d) : |ux| < |x|−d(1+µ)} ∪ {∃y ∈ X (B9α1/d) : |uy| < 10dα−(1+µ)}.

By standard Poisson process properties, the last two events have probabilities of order

λ

∫
|x|d>10dα

dx |x|−d(1+µ) = π(d)
dµ10µ

λα−µ and λ

∫
|y|d<9dα

dy (10dα)−(1+µ) = 9π(d)

10d(1+µ)λα
−µ,

where π(d) denotes the volume of the d-dimensional unit ball. For the event H̃α, for any ε > 0 and
all sufficiently large α and sufficiently small µ, we calculate using the Mecke-equation [17], (1) and the

DOI 10.20347/WIAS.PREPRINT.2993 Berlin 2023



Subcritical percolation phases 9

definition of δeff ,

P(H̃α) ≤ Eλ
[ ∑
y∈X (B

9α1/d )

∑
x∈X (Bc

10α1/d
)

1{ux, uy > |x|−d(1+µ)}p(x,y,X \ {x,y})
]

= λ2

∫
|y|d<9dα

dy

∫
|x|d>10dα

dx

∫
|x|−d(1+µ)

duy

∫
|x|−d(1+µ)

dux Eλ[p(x,y,X )]

= λ2

∫
|y|d<9dα

dy

∫
|x|d>10dα

dx

1∫
|x|−d(1+µ)

duy

1∫
|x|−d(1+µ)

duxEλ
[
ϕ(ux, uy, |x− y|d,X )

]

≤ Cλ2π(d)α

∫
|x|d>α

dx

1∫
|x|−d(1+µ)

duy

1∫
|x|−d(1+µ)

dux Eλ[ϕ(ux, uy, |x|d,X )]

≤ Cλ2π(d)α

∫
|x|d>α

|x|−d(δeff−ε)dx

≤ Cπ(d)2

δeff−ε−1
λ2α2−δeff+ε.

The proof of (ii) works analogous to the one of (i). We again use the same cut-off of the vertex marks
and consider the coinciding event F̃α and have

P(F̃α) ≤ λ2

∫
|y|d<100dα

dy

∫
|x−y|d>α

dx

1∫
|x|−d(1+µ)

duy

1∫
|x|−d(1+µ)

dux E
λ[ϕ(s, t, |x− y|d,X )]

≤ Cλ2π(d)α

∫
|x|d>α

dx

1∫
|x|−d(1+µ)

duy

1∫
|x|−d(1+µ)

dux E
λ[ϕ(s, t, |x|d,X )]

≤ C ′λ2α2−δeff+ε,

as desired.

Proof of Theorem 1.1. Note that, as in [7, Proposition 3.1], for the diameter we have that

Po(M ≥ 9dα) ≤ P(Gα) + P(Fα). (7)

On the other hand, for the number of points, observe that

Gc
α ∩Hc

α ⊂ {C ⊂ X (B10α1/d)} ⊂ {N ≤ #X (B10α1/d)}.

Moreover, by a standard Chernoff bound for the Poisson point process, there exists constants c, c′ > 0
such that

Pλ(]X (B10α1/d) > cλα) ≤ e−
c′α/λ

and hence

Po(N > cλα) ≤ Po(N > ]X (B10α1/d)) + Pλ(]X (B10α1/d) > cλα)

≤ P(Gα) + P(Hα) + e−
c′α/λ.

(8)
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Hence, it suffices to prove that P(Gα) tends to zero as α tends to infinity for all sufficiently small λ.
From now on, we always assume that λ < 1 and therefore in particular λ2 < λ. We write Sr for the
sphere of radius r and define two finite sets K,L ⊂ Rd satisfying K ⊂ S10 and L ⊂ S80 as well as

S10 ⊂ K + B1 and S80 ⊂ L+ B1.

The key observation for the remaining proof is that

G10dα \ Fα ⊂
( ⋃
k∈K

Gα(αk)
)
∩
(⋃
l∈L

Gα(αl)
)
.

This is because on G10dα \ Fα there exists a path from a vertex located in B10α1/d to some vertex
located in the annulus B100α1/d \ B80α1/d using only vertices located in B100α1/d and edges no longer
than α1/d. Obviously, the sphere S10α1/d as well as the sphere S80α1/d are crossed by an edge. By the
covering property ofK and the fact that all edges are shorter than α1/d, one of the end vertices of the
edge crossing S10α1/d is located in Bα1/d(αk) for some k ∈ K. Let’s denote this vertex by xk. As the
path needs to reach xk and all edges are shorter than α1/d, the path also has to pass a vertex xannul

located in B10α1/d(αk) \ B8α1/d(αk) that is connected by a path to xk using only vertices located in
B10α1/d . Put differently, Gα(αk) occurs, see Figure 3. Using the same arguments, Gα(αl) occurs for
some l ∈ L and as a result,

P(G10α \ Fα) ≤
∑

k∈K, l∈L

P(Gα(αk) ∩Gα(αl)).

Therefore, there exists a constant C1 depending on the choice of K and L such that

P(G10α) ≤ C1 P(Gα)
2 + P(Fα) + C1 max

k∈K, l∈L

(
P
(
Gα(αk) ∩Gα(αl)

)
− P(Gα)

2
)
.

Now, by the mixing assumption (4) and translation invariance, we have

max
k∈K, l∈L

(
P
(
Gα(αk) ∩Gα(αl)

)
− P(Gα)

2
)
≤ Cmixλα

−ζ .

Combining this with Lemma 2.1, we find a constant C2 such that

P(G10α) ≤ C2P(Gα)
2 + C2λα

−(η∧ζ). (9)

Let us define the functions f(α) = C2P(Gα) and g(α) = C2
2λα

−(η∧ζ) and set

λ0 =
1

2 · 10dC2π(d)
∧ 1

4C2
2

.

Then, we have for all λ < λ0 that

C2P(Gα) ≤ C2Eλ[]X (B10α1/d)] = 10dC2π(d)λα ≤ 1/2,

for all α ∈ [1, 10d] as well as g(α) ≤ 1/4 for all α ≥ 1. Moreover, by (9)

f(α) ≤ f(α/10d)2 + g(α)

and therefore P(Gα)→ 0 as α→∞ by [7, Lemma 3.7] as desired.
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S10
√
α

S100
√
α

xk

xannul

Figure 3: A path starting inside B10α1/d leaving B100α1/d using no edge longer than α1/d as part of the event G10α \
Fα. Enlarged the situation where the path crosses the sphere. In bold the edge entering the annulus B10α1/d(αk) \
B8α1/d(αk), the edge entering Bα1/d(αk) and the edge crossing the sphere S100α1/d . Since all three edges are no
longer than α1/d they cannot ’jump over‘ the involved region. In the enlarged picture the event Gα(xk) occurs.

Proof of Theorem 1.2. First note that, since µ 7→ ψ(µ) is increasing, we have

δeff ≥ −ψ(s+ 1) > s+ 3

and hence, for ε = δeff − 3− s > 0, it holds that δeff − 2− ε = s+ 1. Now, define

µ(ε) := sup {µ > 0: ψ(µ) + δeff ≤ ε}

and note thatψ(s+1)+δeff = ψ(s+1)+s+3+ε < ε and hence, by monotonicity, also µ(ε) ≥ s+1.
But then, η = (δeff − 2 − ε) ∧ µ(ε) ∧ ζ ≥ s + 1. Now, recall the functions f(α) = C2P(Gα) and
g(α) = C2

2λα
−η from the previous proof and fix λ < λ0. By the choice of η we have for all t < s that∫ ∞

1

αtg(α)dα ≤ C

∫ ∞
1

αt−(s−1)dα <∞

and also ∫ ∞
1

αt
(
P(Hα) + P(Fα))dα <∞.

From the integrability of g we derive by [7, Lemma 3.7]∫ ∞
1

αtf(α)dα <∞

and therefore
∫∞

1
αtP(Gα) <∞. From (7) we conclude∫ ∞
1

αtPo(M ≥ α)dα ≤ C

∫ ∞
1

αt
(
P(Gα) + P(Fα)

)
dα <∞.

For N , we derive with (8)∫ ∞
1

αtPo(N ≥ α)dα ≤ Cλ

∫ ∞
1

αt
(
P(Gα) + P(Hα) + e−

c′α/λ
)
dα <∞.

This finishes the proof.
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