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The throughput in multi-channel (slotted) ALOHA:

Large deviations and analysis of bad events
Wolfgang König, Charles Kwofie

Abstract

We consider ALOHA and slotted ALOHA protocols as medium access rules for a multi-channel mes-

sage delivery system. Users decide randomly and independently with a minimal amount of knowledge

about the system at random times to make a message emission attempt. We consider the two cases

that the system has a fixed number of independent available channels, and that interference constraints

make the delivery of too many messages at a time impossible.

We derive probabilistic formulas for the most important quantities like the number of successfully

delivered messages and the number of emission attempts, and we derive large-deviation principles for

these quantities in the limit of many participants and many emission attempts. We analyse the rate

functions and their minimizers and derive laws of large numbers for the throughput. We optimize it over

the probability parameter. Furthermore, we are interested in questions like “if the number of successfully

delivered messages is significantly lower than the expectation, was the reason that too many or too few

sending attempts were made?”. Our main tools are basic tools from probability and the theory of (the

probabilities of) large deviations.

1 Introduction and main results

1.1 Introduction

Protocols for medium access control (MAC) are fundamental and ubiquitous in any telecommunication sys-
tem. Here we are particularly interested in multi-channel systems, where a fixed number of channels is avail-
able. In order to keep the complexity of the algorithm of the channel choices by the transmitters low, we make
a well-known probabilistic ansatz and assume that each transmitter chooses randomly and independently a
channel for each transmission. This makes the system get along with a minimum of infrastructure, i.e, with
a minimum knowledge about the occupancy of the channels. In other words, we consider an ALOHA-based
multi-channel protocol, see [RS90]. More specifically, we concentrate in this paper on slotted ALOHA, where
message transmissions are possible only in specific micro time slots.

It is our purpose to study random events that comprise the transmission of many messages from many
transmitters in a large number of (very short) time-slots, forming a fixed time interval, in the limit of many
such slots. In each of the slots, each transmitter chooses with a certain probability, independently over all
transmitters and over all slots, whether to make a transmission attempt in that slot or not. This probability
must be very small, i.e., on the scale of the inverse of the number of transmitters. This leads to a huge
number of random decisions that have to be drawn in each time slot, with a tiny probability each, which leads
to a huge amount of data with high imprecision.
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In this paper, we give a probabilistic analysis of the main quantities, like numbers of attempts and of
successes, per micro time slot in the limit of many such time slots, coupled with many message emission
attempts. In particular, we comprehensively characterize the main quality parameter, the throughput. We
are going to find neat descriptions of the entire (joint) distributions of these quantities and of their limits.
In particular, we introduce techniques from the probabilistic theory of (the probabilities of) large deviations.
Using this theory, we analyse events that have a very low probability in this limit, like the event that the
number of successes is significantly lower than its expectation. Furthermore, we give an explicit assessment
of the most likely reason for this. In this way, we go far beyond calculating (limiting) expectations, but we
handle the numbers of message attempts and transmission successes per slot as stochastic processes with
a rich structure.

In our system, we have a fixed upper bound κ for the number of messages that can be successfully
delivered in a given micro time slot. Our main system parameter is the probability parameter p, the medium
access probability (MAP), with which each of the messages tries randomly to gain access to the system.
If p is too large, then it is likely that the system exceeds the upper bound κ, which results into failures of
many message transmissions. On the other hand, if p is too small, then a part of the possible capacity is not
exhausted, and the system underachieves. One of our goals is to quantify an optimal choice of p. The main
quantity for this criterion is the throughput, the number of successfully transmitted messages per time unit.
But we analyse also other quantities like the number of message attempts.

In the multi-channel (MC) models that we consider in this paper, we assume a total interference isolation
between the channels, i.e., we neglect possible interferences between them. Here each channel in a given
micro time slot is able to successfully transmit one message, if no more than one emission attempt is made
through this channel. The higher the number of emission attempts is, the higher is the number of sucesses
(but also the number of unsuccessful messages, which we could also analyse with our ansatz, but abstained
from); hence an optimization over the probability parameter is only of limited interest, unless there is a
substantial price that is paid per unsuccessful transmission.

Closely related to multi-channel systems are systems with entirely unlimited interference between all
of them. Here the success of the transmission of the messages is regulated by means of the signal-to-
interference ratio (SIR). In a simplified setting, the transmission of message i in a given time slot is successful
if and only if

1∑
j∈I\{i} 1

≥ τ,

where τ ∈ (0,∞) is a technical constant, and I is the index set of messages that attempt to transmit in this
slot (which depends on various quantities, like the number of message emission attempts in that slot, which
may be random). Since we are working in a spaceless model, there is no distance and therefore no path-
loss function involved, and we give the same signal strength power 1 to each transmission attempt. Putting
κ = 1 + b 1

τ
c ∈ N, we see that any transmission attempt in the slot is successful if and only if no more

than κ attempts are made in the slot; otherwise interference makes all these attempts unsuccessful. This is
the second of the two model functionalities that we are going to study; we call it an interference-based (IB)
model. Mathematically, it shows great similarities to multi-channel models, but the most important difference
is that a high number of emission attempts leads to many unsuccessful attempts and is therefore working
against a high throughput; hence an optimization over the probability parameter is of high interest and not
an easy task.

While the derivation of the expected throughput in the multi-channel ALOHA model and its optimization
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over p is easy (with the well-known result that the maximal throughput is equal to κ/e with κ the number
of channels), for the interference-based model, we can offer an explicit formula for the expectation, but only
approximate characterisations of the maximization over p, which get sharp in the limit as κ→∞.

We would like to point out that, from a mathematical-practical point of view, it might have advantages to let
each transmitter decide, for the entire time interval under consideration, whether or not an attempt is made
during that interval, and then to randomly and uniformly distribute the attempts over the time slots of this
interval. We call the first mode of attempt decisions local and the latter global. We will be studying both in
this paper, since we believe that both have their right and their advantages. On the level of expectations, there
will be no difference noticeable between the main quantities of interest, but in the large-deviation behavior.

Summarizing, the main new contributions of the present paper are the following.

(a) describing the relevant quantities in terms of their entire joint distribution (rather than only expecta-
tions),

(b) describing limiting events of large deviations asymptotically in terms of explicit rate functions,

(c) comparing local and global random assignments of transmission slots,

(d) optimizing the throughput over the MAP for the interference-based model,

(e) analysis of large deviation probabilities of conditional events (e.g., of a low number of successes).

The remainder of this paper is organized as follows. We introduce our models in Section 1.2 and the most
important quantities and questions in Section 1.3. Our results are presented and commented in Section 1.4,
and some comments on the literature are made in Section 1.5. Section 2 brings all the proofs of the large-
deviation principles, and Section 3 the proofs of the other results.

1.2 Description of the models

Let us introduce the models that we are going to analyse. We consider a reference time interval, which we
pick as [0, 1]. We have a large parameter N ∈ N, which models a large number of network participants
and a large number of time slots. The reference time interval is divided in to N slots [ i−1

N
, i
N

) for i ∈ [N ] =

{1, . . . , N}; every message delivery starts at the beginning of one of these slots and terminates before its
elapsure. With a fixed parameter b ∈ (0,∞), we assume that bN participants (we waive the integer-part
brackets) are in the system, i.e., at any time bN devices would like to emit one message each. Access to the
medium is under some random rule, for which we consider two variants, a rule that is local in time and one
that is global in time; both have a parameter p ∈ (0,∞).

Access rules:

(L) Under the local rule each of the bN participants chooses at any time slot randomly with probability p
N

to emit a message during this slot, independently over all bN participants and all N time slots.

(G) Under the global rule each of the bN participants chooses randomly with probability p whether to emit
a message during some of the N time slots, and then all those who choose that option are randomly
and uniformly distributed over the N time slots.
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Under Rule (G), any participant has only at most one chance during [0, 1], while under Rule (L), every
message has an unbounded number of trials and can be successful several times uring [0, 1]. Hence, under
(G), p needs to be in (0, 1], while under (L), it can be any positive number, assuming that N is large (and
we assume this). We assume that each participant has an unbounded number of packages to be sent, i.e., it
makes successively an unbounded number of emission attempts. Rule (G) has a two-step random strategy,
as first each message randomly decides whether to attempt a transmission, and then picks randomly a
microscopic time slot. Here the number of random variables that need to be sampled is much smaller than
under Rule (L), and the probability parameter is of finite order in N , in contrast to Rule (L). We therefore see
substantial practical advantages in Rule (G) over Rule (L).

Now we describe the criteria for successful delivery of the messages that are choosen to be emitted under
either Rule (L) or (G). We consider two scenarios, the multi-channel scenario and the interference-based
scenario; both come with a parameter κ ∈ N:

Success rules:

(MC) In the multi-channel scenario, the are κ channels available, and in each slot each of the emission
attempts choose randomly and uniformly one of the κ channels, independent over all the other partic-
ipants and time slots. A transmission attempt is successful in this slot if no other participant chooses
the channel that it picked. All other attempts are unsuccessful.

(IB) In the interference-based scenario, in any given time slot, all transmission attempts are successful if
their number does not exceed κ; otherwise all attempts in that slot are unsuccessful.

In the case of a successful attempt of transmission of a message, we say that the participant has gained
access to the medium. As we explained in Section 1.1, Scenario (MC) describes slotted ALOHA with κ
channels and total absence of infrastructure, while Scenario (IB) describes the influence of interference
constraints. Note that Model (B) in [HLS12] is contained in Scenario (MC).

We are going to couple each of the two scenarios (MC) and (IB) with each of the two Rules (L) and (G)
and obtain four different protocols. Scenario (MC), coupled with Rule (L), is equal to Model (B) in [HLS12].

1.3 Quantities and questions of interest

There are three parameters in our simple models:

• p ∈ (0,∞) the emission attempt probability parameter,

• b ∈ (0,∞) the rate of messages that would like to be transmittted during [0, 1],

• κ ∈ N the threshold for the success criterion.

We consider κ (given by technical conditions) and b (given by the appearance of participants) as given
quantities that cannot be controled. However, the parameter p can be picked by the system operator and can
be adapted to b and κ; it is decisive for the success of the system. Part of our investigations will be on an
optimal choice of p given κ and b.

The quantities that we are interested in are the following.

DOI 10.20347/WIAS.PREPRINT.2991 Berlin 2023
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� AN = the number of message sending attempts,

� SN = number of successfully sent messages,

� (only for Secnario (IB)) RN = number of successful slots, that is, slots in which all messages are
successfully transmitted.

These three quantities are defined on probability spaces whose probability measures are denoted by P(N)

D,E

with D ∈ {L,G} and E ∈ {MC, IB}, respectively.

The most important quantity is the throughput, the number of succcessfully sent messages per time unit,
which is equal to SN/N in our model. But we find it also important to consider the number of unsuccessful
sending attempts, in order to be able to say something about the frustration of the participants of the system.

In both scenarios, in order to maximize the number of successes, one would like to pick the probability
parameter p in such a way that the expected number of transmission attempts per slot is close to κ, i.e.,
p ≈ κ/b. However, if the number of attempts fluctuates upwards, then the success is damaged, in (IB) even
maximally damaged; hence the optimal choice of p should be a bit lower. Part of our analysis is devoted to
finding the optimal value of this parameter.

1.4 Our results

In this section we describe and comment on our results: Section 1.4.1 on large-deviations, Section 1.4.2 on
laws of large numbers, Section 1.4.3 on the optimal choice of the probability parameter p, and Section 1.4.4
on the question where the event of having few successes most likely comes from.

We denote the Poisson distribution with parameter α ∈ (0,∞) on N0 by Poiα = (e−α α
k

k!
)k∈N0 , and

the binomial distribution on {0, 1, . . . , N} with parameters N ∈ N and p ∈ (0, 1) by BinN,p(k) =(
N
k

)
pk(1− p)N−k. Furthermore, we denote the entropy of a probability measure µ on some discrete set X

with respect to another one, ν, by H(µ|ν) =
∑

k∈X µk log µk
νk

. Recall that µ 7→ H(µ|ν) is non-negative,
strictly convex and is zero only for µ = ν. ByM1(X ) we denote the set of probability measures on X .

1.4.1 Large-deviation principles

Our first main result is on the asymptotics asN →∞ of the joint distribution of (SN , AN , RN), in the sense
of a large-deviation principle. First we turn to (IB).

Theorem 1.1 (LDP for 1
N

(AN , SN , RN) for Scenario (IB)). Fix the model parameters b, p > 0 and κ ∈ N,
where we assume p ≤ 1 for D = G. Then for both D ∈ {L,G}, the tuple 1

N
(AN , SN , RN) satisfies a

large-deviation principle (LDP) under P(N)

D,IB with rate function given by

IL,IB(a, s, r) = inf
{
H(µ|Poibp) : µ ∈M1(N0),

∑
k∈N0

f(k)µk = (a, s, r)
}

(1.1)

where f(k) = (k, k1l{k ≤ κ}, 1l{k ≤ κ}), while

IG,IB(a, s, r) = IL,IB(a, s, r) + (b− a) log
1− a

b

1− p
+ a− bp. (1.2)
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The proof is in Section 2.1 for Rule (L) and in Section 2.2 for Rule (G). An alternate proof under Rule (L)
is described in Section 2.3; this leads to a very different formula for the rate function.

The stated LDP says that for any open, respectively closed, set G,F ⊂ [0, b]× [0, b]× [0, 1] ,

lim sup
N→∞

1

N
logP(N)

D,IB

( 1

N

(
AN , SN , RN

)
∈ F

)
≤ −inf

F
ID,IB,

lim inf
N→∞

1

N
logP(N)

D,IB

( 1

N

(
AN , SN , RN

)
∈ G

)
≥ −inf

G
ID,IB.

This can be symbolically summarized by saying that for any (a, s, r)

P(N)

D,IB

(
1
N

(AN , SN , RN) ≈ (a, s, r)
)
≈ e−NID,IB(a,s,r), N →∞.

See [DZ10] for an account on the theory of (the probabilities of) large deviations.

Remark 1.2 (LDP for SN ). A standard corollary of Theorem 1.1 is an LDP for the number SN of suc-
cesses, which follows directly from the contraction principle (which says that (ϕ(XN))N∈N satisfies an LDP
if (XN)N∈N does and ϕ is continuous, and it gives a formula for the rate function). Indeed 1

N
SN satisfies an

LDP under P(N)

D,IB with rate function for D=L

s 7→ inf
a,r
IL,IB(a, s, r) = inf

{
H(µ|Poibp) : µ ∈M1(N0),

∑
k∈[κ]

kµ(k) = s
}
.

This formula is further analysed as a by-product in the proof of Theorem 1.15. A conclusion is that
the probability to have less than N(sIB(p, κ) − ε) successes decays exponentially fast with rate
inf{H(µ|Poibp) : µ ∈ M1(N0),

∑
k∈[κ] kµ(k) ≤ sIB(p, κ) − ε}, which is a positive number. Certainly,

the analogous statement holds also for Rule (G). Furthermore, we can also apply the contraction principle to
obtain an LDP for RN or for the pair (AN , SN). ♦

Remark 1.3 (Higher precision). With more of technical work, we could also prove the following, stronger
assertion. Fix a, s ∈ [0, b] satisfying s ≤ a and fix r ∈ [0, 1]. Pick sequences aN , sN , rN ∈ 1

N
N0 such

that aN → a, sN → s and rN → r as N →∞. Then for D ∈ {G,L},

ID,IB(a, s, r) = − lim
N→∞

1

N
logP(N)

D,IB

(
AN = NaN , SN = NsN , RN = NrN

)
. (1.3)

♦

Remark 1.4 (Difference of the rate functions). In the proof in Section 2.2 it will turn out that, under Rule (L),
AN has the distribution ofN independent BinbN,p/N -distributed random variables, while unter Rule (G),AN
is BinbN,p-distributed. Given AN , the distribution of (SN , RN) is the same under both rules. The last term
on the right-hand side of (1.2) (i.e., the difference of the two rate functions) is equal to the difference of the
two rate functions for 1

N
AN . These two rate functions are

JL(a) = pb− a+ a log
a

pb
, (1.4)

JG(a) = a log
a

p
+ (b− a) log

b− a
1− p

− b log b, (1.5)
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and the last term in (1.2) is equal to JG(a)− JL(a). Note that

J ′G(a) = log
a

b− a
+ log

1− p
p

, J ′′G(a) =
b

a(b− a)
,

and J ′L(a) = log a
bp

and J ′′L(a) = 1
bp

. Hence, J ′′L(bp) < J ′′G(bp) and therefore, for a in a neighbourhood of
the minimal site bp outside bp, we see that JL(a) < JG(a). This shows that under Rule (G) the number of
attempts has a smaller variance (even on the exponential scale) than under Rule (L), which we consider as
a structural advantage of (G) over (L). ♦

Remark 1.5 (Analysis of rate function). On the first view, the formula in (1.1) seems to be rather involved,
but in the proof of Theorem 1.15 we will find the minimizing µ for infr IL,IB(a, s, r) and will characterize it
using standard variational analysis. ♦

Remark 1.6 (Alternative rate function). Our proof of Theorem 1.1 in Sections 2.1 and 2.2 is based on Sanov’s
theorem and the contraction principle and leads to an entropy description of the rate function. In Section 2.3
we give an alternate proof of Theorem 1.1 using Cramér’s theorem, leading to a representation of the rate
function involving Legendre transforms of logarithms of moment-generating functions. This representation
appears in (2.8). ♦

Now we turn to our LDP for the multi-channel case. Recall that Model (B) in [HLS12] is contained in what
we called Scenario (MC).

Theorem 1.7 (LDP for 1
N

(AN , SN) for Scenario (MC)). Fix the model parameters b, p > 0 and κ ∈ N
channels, where we assume p ≤ 1 for Rule D = G. Then the tuple 1

N
(AN , SN) satisfies an LDP under

P(N)

D,MC for D ∈ {L,G} with rate function (for D = L)

IL,MC(a, s) = inf
{
H(ν|M) : ν ∈M1(Ξ),

∑
(i,j)∈Ξ

ν(i, j)i = a,
∑

(i,j)∈Ξ

ν(i, j)j = s
}
, (1.6)

where Ξ = {(i, j) ∈ N2
0 : j ≤ i and j ≤ κ} and the reference probability measure M on Ξ is given as

M(i, j) = Poi⊗κbp/κ

(∑
k∈[κ]

Xk = i,
∑
k∈[κ]

1l{Xk=1} = j
)
, (1.7)

and, for D = G, with rate function given as

IG,MC(a, s) = κ inf
{
H(µ|Poibp/κ) : µ ∈M1(N0),

∑
g∈N0

µ(g)g =
a

κ
, µ({1}) =

s

κ

}
+ a− bp+ (b− a) log

1− a
b

1− p
.

(1.8)

The proof is in Section 2.4 for Rule (L) and in Section 2.5 for Rule (G).

Remark 1.8 (Interpretation). The reference measure M has the interpretation of a channel-choice distri-
bution. Indeed, the Poisson-distributed variables Xk, k ∈ [κ], with parameter bp stand for the number of
participants that choose the k-th channel for the transmission attempt; then M(i, j) is the probability that in
total i attempts are made and j successes are earned. ♦
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Remark 1.9 (Contraction principle). The analogous assertions of Remark 1.2 about an LDP for SN , e.g.,
hold certainly also for Scenario (MC). ♦

Remark 1.10 (Difference of the two rate functions). The difference of the two rate functions in (1.8) is the
same as in (1.2), but the reason is different from the reason in Scenario (IB) (see Remark 1.4). It comes out
by some explicit manipulation of the distribution of (AN , SN), for which cannot offer an easy interpretation.
♦

Remark 1.11. Like for Scenario (IB), we could prove, with more technical work, the following also in Scenario
(MC). Fix a, s ∈ [0, b] satisfying s ≤ a and pick sequences aN , sN ∈ 1

N
N0 such that aN → a and sN → s

as N →∞. Then for D ∈ {L,G},

ID,MC(a, s) = − lim
N→∞

1

N
logP(N)

D,MC

(
AN = NaN , SN = NsN

)
(1.9)

1.4.2 Laws of large numbers

It is a standard conclusion from the LDP that, if the rate function has a unique minimizer at (ap, sp, rp), a law
of large numbers (LLN) follows, i.e., 1

N
(AN , SN , RN) → (ap, sp, rp) in probability with exponential decay

of the probability of being outside a neighbourhood of (ap, sp, rp). Hence, the following statement implies
two LLNs.

Corollary 1.12 (LLN for the throughput in Scenario (IB)). The two rate functions IG,IB and IL,IB are both
strictly convex and possess the same unique minimizer (aIB(p, κ), sIB(p, κ), rIB(p, κ)) given by

aIB(p, κ) = pb = EPoibp(X), (1.10)

sIB(p, κ) = e−bp
κ∑
i=0

i
(bp)i

i!
= EPoibp [X1l{X ≤ κ}] = bp e−bp

κ−1∑
i=0

(bp)i

i!
, (1.11)

rIB(p, κ) = e−bp
κ∑
i=0

(bp)i

i!
= Poibp([0, κ]). (1.12)

Proof. Just recall that the map µ 7→ H(µ|Poibp) is strictly convex and has the unique minimizer µ = Poibp;
hence the unique minimizing (a, s, r) must be compatible with that, i.e., equal to

∑
k∈N0

f(k)Poibp(k). �

In particular, the throughput in Scenario (IB) is equal to the Poibp-expectation of X1l{X ≤ κ}, and the
typical rate of successful micro time slots is Poibp([0, κ]).

In the same way, we see the analogous statement for (MC):

Corollary 1.13 (LLN for the throughput in Scenario (MC)). The two rate functions IG,MC and IL,MC are both
strictly convex and possess the same unique minimizer(

aMC(p, κ), sMC(p, κ)
)

=
(
pb, pbe−bp/κ

)
.

In particular, the throughput in Scenario (MC) is equal to bpe−bp/κ.
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1.4.3 Optimal p

A natural and important question is about that value of p that maximizes the expected throughput per micro
slot, sIB(p, κ), respectively sMC(p, κ). Since p is restricted to [0, 1] under Rule (G), we will consider only
Rule (L), where we can optimize over all p ∈ (0,∞).

For Scenario (MC), the answer is easily derived by differentiating: the optimal p is equal to κ/b, and the
optimal throughput is equal to κ/e.

Scenario (IB) is more interesting. It is clear that the optimal value of p should be such that bp is smaller
than κ, since otherwise the number of attempts per time slot is larger than the success threshold. But the
question is how much below one should go in order not to underachieve more than necessary.

Lemma 1.14 (Optimal p). For any κ ∈ N, there is precisely one p∗ ∈ (0,∞) that maximizes the map
(0,∞) 3 p 7→ sIB(p, κ). It is characterised by

(a∗)
κ

(κ− 1)!
=

∑
i∈N0 : i≤κ−1

(a∗)
i

i!
, a∗ = bp∗, (1.13)

and it satisfies bp∗ < κ−1 and bp∗ ∼ κ as κ→∞. More precisely, we even have bp∗ ≥ (κ−
√
κ)1−κ−1/2

for any κ. Furthermore, p 7→ sIB(p, κ) strictly increases in [0, p∗] and strictly decreases in [p∗,∞).

The proof of Lemma 1.14 is in Section 3.1.

1.4.4 Conditioning the number of attempts on the number of successes

In this section we discuss an interesting question in the interferenced-based scenario, where too many
messages lead to a serious descrease of throughput: what is the most likely reason for a deviation event
of the form that the throughput is below the theoretically optimal one? Have there been too many message
emission attempts, such that the interference canceled many, or did the system underachieve, i.e., had fewer
attempts than could be handled successfully?

This question can be answered with the help of large-deviation theory, combined with an analysis of the
rate functions. We handle this only for the Rule (L), where we can work with any value of p ∈ (0,∞). In
order to formalize this question, we write P(N,p)

L,IB = P(N,p) for the probability measure in Scenario (IB) with
parameter p and E(N,p) for the corresponding expectation. Picking some 0 < s ≤ a, then it follows from
Remark 1.3 that

lim
N→∞

1

N
logP(N,p)

(
AN = baNc

∣∣SN = bNsc
)

= − inf
r
I (p)

L,IB(a, s, r) + inf
ã,r
I (p)

L,IB(ã, s, r),

where we wrote I (p)

L,IB for the rate function IL,IB defined in (1.1). From this, we see that

lim
N→∞

E(N,p)

(AN
N

∣∣∣SN = bNsc
)

= argmin
a

(
inf
r
I (p)

L,IB(a, s, r)
)
.

(The latter can also be derived from Theorem 1.1 instead from the unproved Remark 1.3.) Given s, we now
define ap(s) as a minimizer of the map a 7→ infr I

(p)

L,IB(a, s, r), i.e., the typical rate of sending attempts,
conditional on having≈ sN successes. It will turn out that ap(s) is well-defined at least in a neighbourhood
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of ap(sp) if p is close enough to p∗ = p∗(L, IB), where we now abbreviate sp = sL,IB(p, κ) for the mini-
mizer that we established in Corollary 1.12, and p∗ is the maximizing p for (0,∞) 3 p 7→ sp characterized
by (1.13). In terms of these quantities, the question now reads: Given s < sp , is it true that ap(s) < ap(sp)?

Theorem 1.15. Fix κ. Then, for any p ∈ (0,∞) and for any s in some neighbourhood of sp, we have

p < p∗ =⇒
[
s < sp ⇒ ap(s) < ap(sp)

]
and

[
s > sp ⇒ ap(s) > ap(sp)

]
, (1.14)

p > p∗ =⇒
[
s < sp ⇒ ap(s) > ap(sp)

]
and

[
s > sp ⇒ ap(s) < ap(sp)

]
. (1.15)

Furthermore, for p = p∗, for any s ∈ [0, p∗b] \ {sp∗}, we have ap∗(s) > ap∗(sp∗).

The proof is in Section 3.2. Theorem 1.15 says that, for non-optimal p, if s sufficiently close to the optimal
sp, then the attempt number ap(s) deviates to the same side of ap(sp) as s is with respect to sp, while in
the optimal p∗, the typical attempt number for non-optimal success number is always larger than the optimal
one. The latter means that, for the optimal choice p = p∗, the event of non-optimal throughput alway comes
with overwhelming probability from too many attempts. Apparently, here the conditional probability for having
too many attempts is much larger than the one for having too few.

1.5 Literature remarks

A wide range of multiple access protocols have been extensively discussed in the literature; see for example
[RS90, BG92, LST19, SBBB09]. See [MBMH16, Y91, TTH18, I11] for an explanation of the advantages
and disadvantages of multi-channel ALOHA protocols from a operational point of view and a description
of transmit-reference modulation (TR Modulation) for handling the problem of synchronizing simultaneous
message transmissions in such systems. [HLS12] gives some probabilistic analysis of a few concrete ALOHA
variants, but fails to give tractable formulas; Model (B) there is identical to our Scenario (MC) under Rule (L).
In [C20a, C20b], additional functionalities are investigated as a possible improvement of the throughput by
means of an additional exploration phase.

A systematic probabilistic analysis of the performance of ALOHA protocols has been started for the single-
channel pure ALOHA in the 1950s; see [A77, SW95] and some of the above mentioned references. The
throughput is identified there as λe−2λ, which also coincides with our result for sALOHA(λ, 1) in the special
case κ = 1. In [SW95], [LST19], [RS90] and [SBBB09] one can also read about the more popular and better
known single-channel version of ALOHA, namely the slotted ALOHA, which offers the higher throughput
λe−λ. The multi-channel case of this model has also been studied, e.g., in [SL12], where the throughput
λe−λ/κ has been calculated. In the present paper, we re-derive this value and combine it with a large-
deviation analysis with explicit rate functions.

To the best of our knowledge, in continuous time there are no results for the multi-channel model in
the literature yet that are similar to those of the present paper, with the recent exception [KS22], where the
ALOHA and the Carrier Sense Multiple Access (CSMA) protocol are analysed and similar results are derived
as in the present paper for slotted ALOHA in discrete time. The difference is that in the interference constraint
is valid in any fixed time interval, but not only in all the determined micro time slots. Hence, [KS22] does not
find a description in terms of independent random variables, but in terms of a Markov renewal process.
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2 Proofs of the LDPs

2.1 Proof of Theorem 1.1 for Rule (L)

In this section, we prove the LDP for Scenario (IB) under Rule (L). Recall that we write [k] = {1, . . . , k} for
k ∈ N.

For i ∈ [bN ] and j ∈ [N ], we let X (j)

i ∈ {0, 1} be the indicator on the event that the i-th participant
chooses to attempt to send a message in the j-th time slot. All these random variables are independent
Bernoulli random variables with parameter p/N . Let

A(j)

N =
∑
i∈[bN ]

1l{X (j)

i = 1}, R(j)

N = 1l{A(j)

N ≤ κ}, S(j)

N = A(j)

N 1l{A(j)

N ≤ κ}.

Then A(j)

N is the number of transmission attempts, R(j)

N the indicator on the event that the j-th micro slot
is successful and S(j)

N is the number of successfully sent messages during that time slot. Clearly, A(j)

N is
binomially distributed with parameters bN and p/N , and the collection of them over j ∈ [N ] is independent.
Furthermore, AN =

∑N
j=1A

(j)

N , RN =
∑N

j=1R
(j)

N and SN =
∑N

j=1 S
(j)

N . We introduce the empirical
measure

µN :=
1

N

N∑
j=1

δ
A

(j)
N
,

which is a random member of the setM1(N0) of probability measures on N0. Furthermore, we introduce

f : N0 → N0 × [κ]× {0, 1}, f(a) =
(
a, a1l{a ≤ κ}, 1l{a ≤ κ}

)
.

Note that the triple under interest, (AN , RN , SN), is nothing but N〈f, µN〉, i.e., the image of µN under the
map µ 7→ 〈f, µ〉.

We abbreviate qk = Poibp(k) = e−pb(pb)k/k! and q = (qk)k∈N0 . If A(j)

N would be exactly Poibp-
distributed, then Sanov’s theorem would imply that (µN)N∈N satisfies an LDP with rate function µ 7→
H(µ|Poibp). Let us assume for a moment that 〈f, µ̃N〉 satisfies an LDP with rate function given in (1.1)
if µ̃N is the empirical measure of independent Poibp-distributed random variables A(1), . . . , A(N). We show
that 〈f, µN〉 and 〈f, µ̃N〉 are exponentially equivalent as N → ∞ and therefore satisfy the same LDP,
namely the LDP of Theorem 1.1 for D=L with rate function given in (1.1). For this, it suffices to show that, for
a suitable coupling of the A(1), . . . , A(N) with the A(1)

N , . . . , A
(N)

N ,

lim
N→∞

1

N
logP

( N∑
j=1

|A(j)

N − A
(j)| > εN

)
= −∞, ε > 0, (2.1)

since the second and third components of f are smaller than the first one. We will show this for any coupling
of these variables such that limN→∞ P(A(1)

N 6= A(1)) = 0. We use Markov’s inequality (or the exponential
Chebyshev inequality) and the independence, to estimate, for any C > 0,

P
( N∑
j=1

|A(j)

N − A
(j)| > εN

)
≤ e−CεNE

[
eC|A

(1)
N −A

(1)|
]N
.
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We are finished as soon as we have shown that limN→∞ E[eC|A
(1)
N −A

(1)|] = 1 for any C > 0. In the
expectation, we estimate 1 ≤ 1l{A(1)

N ≤ K,A(1) ≤ K} + 1l{A(1)

N > K} + 1l{A(1) > K} and use once
more the exponential Chebyshev inequality and then Hölder’s inequality to obtain, for any L > 0,

E[eC|A
(1)
N −A

(1)|] ≤ 1 + e2CKP(A(1)

N 6= A(1))

+ e−LK
(√

E[e2(C+L)A
(1)
N ]E[e2CA(1) ] +

√
E[e2(C+L)A(1) ]E[e2CA

(1)
N ]
)

→ 1 + 2e−LKebp(e
2(C+L)−1)ebp(e

2C−1), N →∞,

as an explicit calculation for the exponential moments ofA(1)

N andA(1) shows. We pick now L = 1 and make
K →∞ to see that the right-hand side converges to one, which concludes the proof of (2.1).

It remains to show that 〈f, µ̃N〉 satisfies an LDP with rate function given in (1.1). Then Sanov’s theorem
implies that (µ̃N)N∈N satisfies an LDP onM1(N0) with rate function µ 7→ H(µ|Poibp). If the map µ 7→
〈f, µ〉 would be continuous in the weak topology onM1(N0), then the contraction principle immediately
would give the assertion. However, clearly f is not bounded, hence the map µ 7→ 〈f, µ〉 is not continuous in
the weak topology onM1(N0). Hence we cannot directly apply the contraction principle. Clearly, the second
and third argument in the function are bounded. A sufficient cutting argument for the first argument is given
by proving that

lim
C→∞

lim sup
N→∞

1

N
logPN

( N∑
j=1

A(j) > CN
)

= −∞. (2.2)

A proof of (2.2) is easily derived using the exponential Chebyshev inequality as above and thatA(1), . . . , A(N)

N

are independent Poibp-distributed random variables and that E[eCA
(1)

] = epb(e
C−1) for any C . Hence,

modulo elementary technical details, the proof of Theorem 1.1 for Rule (L) follows from this.

2.2 Proof of Theorem 1.1 under Rule (G)

In this section, we prove the LDP for Scenario (IB) under Rule (G).

We want to identify the large deviation behaviour of the probability distribution of the triple (AN , SN , RN)

under P(N)

G,IB. We have it already under P(N)

L,IB. We are going to identify the former distribution now explicitly
in terms of the latter.

For any a, s, r ∈ N0 we have the following;

dN = P(N)
G,IB

(
AN = a, SN = s, RN = r

)
= P(N)

G,IB(AN = a)P(N)

G,IB(SN = s, R = r|AN = a)

= P(N)

L,IB(AN = a)P(N)

L,IB(SN = s, RN = r|AN = a)
P(N)

G,IB(AN = a)

P(N)

L,IB(AN = a)
,

(2.3)

where we used that P(N)

G,IB(SN = s, RN = r|AN = a) = P(N)

L,IB(SN = s, RN = r|AN = a), since the
success rules are the same for the local and the global access rules. Hence

dN = P(N)

L,IB(AN = a, SN = s, RN = r)
P(N)

G,IB(AN = a)

P(N)

L,IB(AN = a)
. (2.4)
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Hence, the two rate functions IL,IB and IG,IB differ only by the exponential rate of the quotient. The latter is
easily identified. Indeed, observe that AN is BinbN,p distributed under P(N)

G,IB, hence, if aN ∈ 1
N
N0 satisfies

aN → a, then Stirling’s formula (N ! = (N/e)Neo(N) for N →∞) shows that

JG(a) := − lim
N→∞

1

N
logP(N)

G,IB

(
AN = NaN

)
= a log

a

p
+ (b− a) log

b− a
1− p

− b log b. (2.5)

Furthermore, under P(N)

L,IB, AN is distributed as the sum of N independent BinbN,p/N -distributed random
variables. We showed in Section 2.1 (see (2.1)) that AN is exponentially equivalent with a sum of N inde-
pendent Poibp-distritbuted random variables, hence AN satisfies an LDP with the same rate function, more
precisely,

JL(a) := − lim
N→∞

1

N
logP(N)

L,IB

(
AN = NaN

)
= pb− a+ a log

a

pb
. (2.6)

Hence, 1
N

(AN , SN , RN) under P(N)

G,IB satisfies an LDP with rate function

IG,IB(a, s, r) = IL,IB(a, s, r)− JG(a) + JL(a),

and this is equal to right hand side of (1.2).

2.3 Alternate proof of Theorem 1.1 under Rule (L)

In this section, we indicate an alternative proof of the LDP of Theorem 1.1 in Scenario (IB) under Rule (L)
with an alternate representation of the rate function that is very different from (1.1); see (2.8). Indeed, it does
not involve any entropy, but is instead based on formulas that appear in connection with Cramér’s theorem,
i.e., Legendre transforms of the logarithm of moment generating functions.

We use the notation of Section 2.1. Recall that A(j)

N is the number of emission attempts in the j-th micro
time slot, ( j−1

N
, j
N

]. Then A(1)

N , . . . , A
(N)

N are i.i.d., and each of them is BinbN,p/N -distributed. Fix a, s, r ∈
N0 and consider the event {AN = a, SN = s, RN = r}. This is the event that in precisely r time slots the
corresponding A(j)

N is ≤ κ (these time slots are successful) and in all the other N − r time slots it is > κ

(these slots are unsuccessful), and that the total sum of all the A(j)

N with A(j)

N is equal to s. By permutation
symmetry of the time slots, we may assume that all the first r time slots are successful and the remainning
ones are not. The total number of distinctions of the N slots into r successful and N − r unsuccessful ones
is
(
N
r

)
. Hence, by independence of the A(j)

N ’s and after relabeling, we have

P(N)

L,IB(AN = a, SN = s, RN = r)

=

(
N

r

)
P
(
A(j)

N ≤ κ ∀j ∈ [r],
∑
j∈[r]

A(j)

N = s
)

× P
(
A(j)

N > κ ∀j ∈ [N − r],
∑

j∈[N−r]

A(j)

N = a− s
)

=

(
N

r

)
BinbN,p/N([0, κ])r P(N)

≤κ

(1

r

∑
j∈[r]

A(j)

N =
s

r

)
× BinbN,p/N((κ,∞))N−r P(N)

>κ

( 1

N − r
∑

j∈[N−r]

A(j)

N =
a− s
N − r

)
,

(2.7)
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where P
(N)

≤κ is the expectation with respect to independent BinbN,p/N -distributed variables, conditioned on
being ≤ κ, and P

(N)

>κ is defined analogously.

Now the remainder of the proof is clear. We replace a, s, r ∈ N by aNN, sNN, rNN ∈ N with aN → a,
sN → s and rN → r for some a, s, r ∈ (0,∞) and we find easily the large-N exponential asymptotics of
the binomial term and the two probability powers, and for the two probabilities involving the sums of A(j)

N ’s,
we can use Cramér’s theorem. Here are some details: We again use the Poisson limit theorem to see that
BinbN,p/N([0, κ])rNN = Poipb([0, κ])rNeo(N) as N → ∞ and the analogous statement for the other
probability term. Furthermore, we leave to the reader to check that the average of the A(j)

N under P(N)

≤κ satisfy
the same LDP as the average of independent Poibp-distributed random variables, conditioned on being≤ κ

and analogously with > κ instead of ≤ κ. (This is implied by a variant the exponential equivalence that
we proved in Section 2.1: see (2.1).) The latter do satisfy an LDP, according to Cramér’s theorem, with rate
function equal to the Legendre transform of y 7→ log E≤κ[e

yX1 ], where E≤κ is the expectation with respect
to P≤κ, and X1 is a corresponding random variable. Hence we have that 1

rNN

∑
j∈[rNN ] A

(j)

N satisfies an

LDP under P(N)

≤κ on the scale N with rate function

x 7→= rJ≤κ(x), where J≤κ(x) = sup
y∈R

(
xy − log E≤κ[e

yX1 ]
)
,

and an analogous assertion for the other probability term (last line of (2.7)). Note that Stirling’s formula gives
that − limN→∞

1
N

log
(
N
rNN

)
= r log r + (1 − r) log(1 − r). Substitution all this in the last two lines of

(2.7), we obtain that 1
N

(AN , SN , RN) satisfies under Rule (L) in Scenario (IB) an LDP on the scale N with
rate function equal to

ĨL,IB(a, s, r) = r log r + (1− r) log(1− r) + rJ≤κ(
s
r
)− r log Poibp([0, κ])

+ (1− r)J>κ(a−s1−r )− (1− r) log Poibp((κ,∞)).

This can be rewritten as follows. Introducing I≤κ(x) = supz∈R(xz− log
∑κ

i=0 ezi/i!), we see, after making
the substitution ez = bpey, i.e., y = z − log(pb), that

rJ≤κ(
s
r
)− r log Poibp([0, κ]) = rbp− s log(bp) + rI≤κ(

s
r
),

and an analogous formula for the last term, resulting in

ĨL,IB(a, s, r) = rI≤κ(
s
r
) + (1− r)I>κ(a−s1−r ) + bp− a log(bp) + r log r + (1− r) log(1− r). (2.8)

Certainly, this function must coincide with IL,IB defined in (1.1), but this is admittedly hard to see.

2.4 Proof of Theorem 1.7 under Rule (L)

We are now proving the LDP of Theorem 1.7 in Scenario (MC) under the Rule (L). We recall some of the
notation from Section 2.1: for i ∈ [bN ] and j ∈ [N ], we let X (j)

i ∈ {0, 1} be the indicator on the event that
the i-th participant chooses to attempt to send a message in the j-th time slot. All these random variables
are independent Bernoulli random variables with parameter p/N . Let A(j)

N =
∑

i∈[bN ] 1l{X (j)

i = 1}, then

A(j)

N is the number of transmission attempts. Clearly, A(j)

N is binomially distributed with parameters bN and
p/N , and the collection of them over j ∈ [N ] is independent. Furthermore, AN =

∑N
j=1A

(j)

N .
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Let us identify the distribution of the number S(j)

N of successes in the j-th slot given that there are a = A(j)

N

attempts. We observe that the vector of numbers (Z1, . . . , Zκ) of message transmission attempts Zk in
the k-th channel is multinomially distributed with parameter a =

∑
k∈[κ] Zk and κ. This means, for any

α ∈ (0,∞), that

P(N)

L,MC

(
S(j)

N = s|A(j)

N = a
)

=
∑

z1,··· ,zκ∈N0 :
∑
k zk=a∑

k 1l{zk=1}=s

κ−a
(

a

(zk)k

)

=
a!

κα
α−aeακ

∑
z1,··· ,zκ∈N0 :

∑
k zk=a∑

k 1l{zk=1}=s

∏
j∈[κ]

(
αzk

zk!
e−α
)

=
1

Poiακ(a)
Poi⊗κα

(∑
k∈[κ]

Xk = a,
∑
k∈[κ]

1l{Xk=1} = s
)
,

(2.9)

where X1, . . . , Xκ are independent Poiα-distributed variables. We obtain for the joint distribution of A(j)

N

and S(j)

N that

P(N)

L,MC

(
A(j)

N = a, S(j)

N = s) =
BinbN,p/N(a)

Poiακ(a)
Poi⊗κα

(∑
k∈[κ]

Xk = a,
∑
k∈[κ]

1l{Xk=1} = s
)
, (a, s) ∈ Ξ.

(2.10)
We now pick α = bp/κ and observe that the quotient on the right-hand side then converges towards one as
N → ∞, according to the Poisson limit theorem. Furthermore, the last term was introduced in (1.7) under
the name M(a, s). Hence, the pair (AN , SN) is equal to the sum of N independent copies of a pair with
distribution MN that converges pointwise towards M as N →∞. Analogously to the corresponding part in
Section 2.1 (see around (2.1)), one shows that 1

N
(ÃN , S̃N) and 1

N
(AN , SN) are exponentially equivalent,

where the former is 1
N

times a sum of N independent random vectors (A(1), S(1)), . . . , (A(N), S(N)) with
distribution M each. Hence both satisfy the same LDP, if any of them satisfies some.

Indeed, 1
N

(ÃN , S̃N) does satisfy the LDP of Theorem 1.7 under Rule (L), as is seen in the same way

as in Section 2.1. One uses that the empirical measure µ̃N = 1
N

∑N
j=1 δ(A(j),S(j)) satisfies an LDP with

rate function µ 7→ H(µ|M) and that 1
N

(ÃN , S̃N) =
∑

(i,j)∈Ξ µ̃N(i, j)(i, j) is a function of µ̃N that is,

after applying some cutting procedure, continuous. Then the contraction principle implies that 1
N

(ÃN , S̃N)

satisfies the LDP of Theorem 1.7 under Rule (L).

2.5 Proof of Theorem 1.7 under Rule (G)

In this section, we prove the LDP for 1
N

(An, SN) in Scenario (MC) under Rule (G). We are able to use the
identification of their distribution from Section 2.4 here for a different choice of parameters. Indeed, recall
that AN is BinbN,p-distributed. Given that AN = a attempts are made during the entire time interval [0, 1],
each of the a attempts makes a random and uniform choice among N time slots and κ channels altogether.
Furthermore, in each channel in each slot, the success criterion is that no more than one choice is made
here. This means that the distribution of SN given {AN = a} is the same as in (2.9) with κN instead of κ.
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Again, we choose α = bp/κ. Hence, for any (a, s) ∈ Ξ,

P(N)

G,IB

(
AN = a, SN = s

)
=

BinbN,p(a)

PoibpN(a)
Poi⊗κNbp/κ

( κN∑
i=1

Xi = a,

κN∑
i=1

1l{Xi=1} = s
)
. (2.11)

We use this now for (a, s) replaced by (aNN, sNN) ∈ N2 with aN → a and sN → s for some (a, s) ∈ Ξ

and see that the quotient on the right-hand side behaves like

lim
N→∞

1

N
log

BinbN,p(aNN)

PoibpN(aNN)
= lim

N→∞

1

N
log

(bN/e)bNpaN(1− p)(b−a)N(aN)!ebpN

(aN)!((b− a)N/e)(b−a)N(bpN)aN

= −
[
a− bp+ (b− a) log

1− a
b

1− p

]
,

using also Stirling’s formula.

The second term on the right-hand side of (2.11) is the dsitribution of the sum of (Xi, 1l{Xi=1}) of κN
independent, Poibp/κ-distributed random variables X1, . . . , XκN . This is a two-dimensional functional of
their empirical measure µκN , and the latter satisfies an LDP with speed κN with rate function equal to
µ 7→ H(µ|Poibp/κ). This functional is not a continuous one, since the identity map is not bounded, but in
Section 2.1 (see (2.2)) we saw how to perform a suitable cutting argument. Hence, we know that the pair

1
κN

∑κN
i=1(Xi, 1l{Xi=1}) = (〈µκN , id〉, 〈µκN , δ{1}〉) satisfies, according to the contraction principle, an LDP

with speed N with rate function

µ 7→ κ inf
{
H(µ|Poibp/κ) : µ ∈M1(N0),

∑
g∈N0

µ(g)g =
a

κ
, µ({1}) =

s

κ

}
.

(The prefactor κ comes from the change of scales from κN toN in the LDP, and the κ in the two denomina-
tors comes from the normalization of

∑κN
i=1 by κN instead of N .) Hence summarizing everything together

ends the proof of Theorem 1.7 under Rule (G).

3 Optimizing and conditioning

In this section we prove Lemma 1.14 and Theorem 1.15.

3.1 Optimizing p 7→ sp

In this section, we prove Lemma 1.14, that is, we analyse the maximizer of the map (0,∞) 3 p 7→ sIB(p, κ),
the optimal throughput for Scenario (IB) under Rule (L). We abbreviate sp = sIB(p, κ).

The analytic function g(a) = sa/b = ae−a
∑κ−1

i=0
ai

i!
is positive in (0,∞) with limits 0 at a ↓ 0 and

a → ∞, hence it has at least one maximizer a∗, which is characterised by g′(a∗) = 0. We see that (with
f≤(a) =

∑κ
i=0

ai

i!
)

d

dp
sp = b e−ap

(
f ′≤(ap) + apf

′′
≤(ap)− apf ′≤(ap)

)
= be−bp

[ ∑
i≤κ−1

(bp)i

i!
− (bp)κ

(κ− 1)!

]
, p > 0. (3.1)
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Hence, (1.13) characterizes the minimizer(s) p∗, but at this stage we do not yet know how many minimizers
exist.

Using elementary calculus, we see that a solution a∗ to (1.13) exists since the polynomial f(a) = −(κ−
1)!be−a d

dp
sp = aκ −

∑
i≤κ−1 a

i (κ−1)!
i!

starts with f(0) < 0 and satisfies f(a) → ∞ as a → ∞. Note
that, for any a > 0, we have

f(a) ≥ aκ −
∑
i≤κ−1

ai(κ− 1)κ−1−i = aκ − (κ− 1)κ−1
∑
i≤κ−1

( a

κ− 1

)i
= aκ +

(κ− 1)κ − aκ

a− (κ− 1)

=
aκ(a− κ) + (κ− 1)κ

a− (κ− 1)
,

and the latter is positive for any a > κ − 1. Hence, we even have that a∗ ≤ κ − 1. Furthermore, there is
only one solution, since f ′(a) = κaκ−1 −

∑
i≤κ−1 a

i (κ−1)!
i!

+ aκ−1 for any a, and for any solution a∗ we
see that f ′(a∗) = (κ + 1)aκ−1

∗ − aκ∗ = aκ−1
∗ [κ + 1 − a∗], which is positive. Hence, f has precisely one

zero in [0,∞). It is negative left of a∗ and positive right of it. Accordingly, p 7→ sp is increasing in [0, p∗] and
decreasing in [p∗,∞). We obtain a lower bound for a∗ by

f(a) ≤ aκ − ai (κ− 1)!

i!
< ai

(
aκ−i − (i+ 1)κ−i−1

)
, a > 0, i ∈ {0, . . . , κ− 1}.

This upper bound is zero for a = (i+1)1−1/(κ−i), hence a∗ ≥ maxκ−1
i=0 (i+1)1−1/(κ−i). Taking i = κ−

√
κ

gives a∗ ≥ (κ−
√
κ)1−κ−1/2

= κ(1 + o(1)) as κ→∞. This finishes the proof of Lemma 1.14.

3.2 Conditioning on successes

In this section, we prove Theorem 1.15. Recall that we conceive the maximal throughput per micro slot,
s = sp, as a function of p. Recall from Lemma 1.14 that the maximal p∗ for p 7→ sp is characterized by

aκp
(κ− 1)!

=
κ−1∑
i=0

aip
i!
, ap = bp. (3.2)

Furthermore recall that ap(s) denotes the minimising a for the map a 7→ infr I
(p)

L,IB(a, s, r), and note that
ap = ap(sp) = bp. Here we answer the question of the reason for few number of successes. The following
lemma implies Theorem 1.15.

Lemma 3.1. For any p ∈ (0,∞), we have a′p(sp) < 0 for p < p∗ and a′p(sp) > 0 for p > p∗. In particular,
for s in a neighbourhood of sp, (1.14) and (1.15) hold.

Furthermore, for p = p∗, we have ap∗(s) > ap∗(sp∗) = bp∗ for any s ∈ [0, b] \ {bp∗}.

Proof. Let us first analyse infr I
(p)

L,IB(a, s, r) for fixed a, s ∈ (0,∞) satisfying a > s. We benefit from the
representation in (1.2): We have that

inf
r
I (p)

L,IB(a, s, r) = inf
r

inf{H(µ|Poipb) : 〈f, µ〉 = (a, s, r)}

= inf
{
H(µ|Poipb) :

∞∑
k=0

kµk = a,
κ∑
k=0

kµk = s
}

= inf
{
H(µ|Poipb) : 〈µ, id〉 = a, 〈µ, id|≤κ〉 = s

}
,
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where id is the identity function on N0 and id|≤κ(k) = k1l[0,κ](k); and we used the notation 〈µ, f〉 for the
integral of a function f with respect to a measure µ. Now we apply standard variational calculus. Consider
a minimizer µ of the last formula. A standard argument shows that µk > 0 for any k. Fix some compactly
supported γ : N0 → R satisfying γ⊥1l, γ⊥id and γ⊥id|≤κ. Then, for any ε ∈ R with sufficiently small |ε|,
the measure µ+ εγ is admissible. From minimality, we deduce that

0 = ∂ε|ε=0H(µ+ εγ|Poipb) =
∑
k

(
γk log

µk
qk

+ µk
γk
µk

)
=
〈
γ, log

µ

q

〉
,

where we put qk = Poipb(k). Hence, log µ
q

is a linear combination of 1l, id and id|≤κ. That is, there are
A,B,C ∈ R such that

µk = qke
AeBk ×

{
eCk for k ≤ κ,

1 for k > κ,
k ∈ N0. (3.3)

We note that A,B and C are well-defined functions of a and s, since 1l, id and id|≤κ are linearly indepen-
dent.

Now using that 〈µ, 1l〉 = 1 and 〈µ, id〉 = a and 〈µ, id|≤κ〉 = s, and introducing the notation

ϕ(B,C) := log
( κ∑
k=0

qke
(B+C)k +

∑
k>κ

qke
Bk
)
, B, C ∈ R, (3.4)

we see that B = B(a, s) and C = C(a, s) are characterised by

a =

∑
k≤κ

kqke
(B+C)k +

∑
k>κ

kqke
Bk∑

k≤κ
qke(B+C)k +

∑
k>κ

qkeBk
= ∂Bϕ(B,C), (3.5)

s =

∑
k≤κ

kqke
(B+C)k∑

k≤κ
qke(B+C)k +

∑
k>κ

qkeBk
= ∂Cϕ(B,C), (3.6)

while A(a, s) = −ϕ(B(a, s), C(a, s)). Furthermore,

inf
r
I (p)

L,IB(a, s, r) =
∑
k

µk log
µk
qk

= Ba+ Cs− ϕ(B,C). (3.7)

This finishes the characterisation of infr I
(p)

L,IB(a, s, r) for any fixed a, s.

Now we optimise over a with s fixed. We recall that ap(s) denotes the minimizing a of infr I
(p)

L,IB(a, s, r).
Recalling that B and C are functions of a and s, we differentiate (3.7) with respect to a and use it for
a = ap(s) to obtain

0 =
(
ap(s)− ∂Bϕ(B(ap(s), s), C(ap(s), s))

) d

ds
B(ap(s), s)

+
(
s− ∂Cϕ(B(ap(s), s), C(ap(s), s))

) d

ds
C(ap(s), s) +B(ap(s), s)

= B(ap(s), s),

(3.8)
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also using (3.5) and (3.6). Differentiating this with respect to s produces

a′p(s) = −∂sB(ap(s), s)

∂aB(ap(s), s)
. (3.9)

A tedious calculation, starting from differentiating both (3.5) and (3.6) both with respect to a and to s, gives,
for B = B(a, s) and any a and s,

∂aB =
∂2
Cϕ

∂2
Bϕ∂

2
Cϕ− (∂C∂Bϕ)2

and ∂sB = − ∂B∂Cϕ

∂2
Bϕ∂

2
Cϕ− (∂C∂Bϕ)2

and hence

a′p(s) =
∂B∂Cϕ(B,C)

∂2
Cϕ(B,C)

with B = B(ap(s), s) = 0 and C = C(ap(s), s). (3.10)

First we show that the denominator is positive:

∂2
Cϕ(B,C) =

∑
k≤κ

k2qke
(B+C)k

(∑
k≤κ

qke
(B+C)k +

∑
k>κ

qke
Bk
)
−
(∑
k≤κ

kqke
(B+C)k

)2

(∑
k≤κ

qke(B+C)k +
∑
k>κ

qkeBk
)2

≥

(∑
k≤κ

k2qke
(B+C)k

)(∑
k≤κ

qke
(B+C)k

)
−
(∑
k≤κ

kqke
(B+C)k

)2

(∑
k≤κ

qke(B+C)k +
∑
k>κ

qkeBk
)2 > 0, B, C ∈ R,

as a standard symmetrisation shows. Next we consider the numerator in (3.10):

∂B∂Cϕ(0, C) =
(∑
k≤κ

qke
Ck +

∑
k>κ

qk

)−2

[∑
k≤κ

k2qke
Ck
(∑
k≤κ

qke
Ck +

∑
k>κ

qk

)
−
(∑
k≤κ

kqke
Ck +

∑
k>κ

kqk

)∑
k≤κ

kqke
Ck
]
.

(3.11)
No we use the facts that

∑
k≤κ qk +

∑
k>κ qk = 1 (since (qk)k∈N0 is a probability distribution) and∑

k∈N0
kqk = bp = ap = ap(sp) (see Corollary 1.12; (qk)k∈N0 = Poipb has expectation pb). Further-

more, note that C(ap(sp), sp) = 0 by optimality (which can be seen in the same way as the fact that
B(ap(s), s) = 0 above). Then we get

a′p(sp) = ∂B∂Cϕ(0, 0) =
∑
k≤κ

k2qk − bp
∑
k≤κ

kqk

= bpe−bp
[ ∑
k≤κ−1

(k + 1)
(bp)k

k!
− bp

∑
k≤κ−1

(bp)k

k!

]
= p

d

dp
sp,

as we see from (3.1). Recall that p∗ is the unique maximizer for p 7→ sp. According to Lemma 1.14, this (and
therefore a′p(sp)) is positive if p < p∗ and negative if p > p∗. This implies all assertions of Lemma 3.1 for
p 6= p∗.
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Now we consider the case p = p∗ characterised in (3.2). Here it will not be successful to rely on the
characterisation of ap(s) by 0 = B(ap(s), s) and to consider the derivative with respect to s in s = sp∗
only, since ∂B∂Cϕ(0, 0) = 0 for p = p∗. Instead, we use (3.5) and explicitly look at the difference

ap∗(s)− ap∗(sp∗) = ∂Bϕ(0, C)− bp∗ =

∑
k≤κ qke

Ck[k − ap∗ ] +
∑

k>κ qk[k − ap∗ ]∑
k≤κ qke

Ck +
∑

k>κ qk

=

∑
k≤κ qk[e

Ck − 1][k − ap∗ ]∑
k≤κ qke

Ck +
∑

k>κ qk
,

(3.12)

with C = C(ap∗(s), s). We used in the last step that
∑

k>κ kqk = ap∗ −
∑

k≤κ kqk and
∑

k∈N0
qk = 1.

Note that C < 0 for s < sp∗ and C > 0 for s > sp∗ . Indeed, a similar calculation as in (3.8) shows that

d

ds
inf
r,a
I (p∗)

L,IB(a, s, r) =
d

ds

[
sC(ap∗(s), s)− ϕ

(
0, C(ap∗(s), s)

)]
= C(ap∗(s), s), s ∈ (0,∞).

Now note that sp∗ is defined as the minimizer of the function s 7→ infr,a I
(p∗)
L,IB(a, s, r); hence it is decreasing

left of the minimal point and increasing right of it.

Write g(C) =
∑κ

k=0 qk[e
Ck − 1][k − ap∗ ] for the numerator of the right-hand side of (3.12). Clearly

g(0) = 0. Recall that ∂B∂Cϕ(0, 0) = 0 hence the derivative of 3.12 with respect to C is 0. Clearly the
derivative of (3.12) is 0 only if g′(0) = 0. Hence observe that, for any C < 0,

g′(C) =
κ∑
k=0

kqke
Ck(k − ap∗) < eCap∗

∑
k≤ap∗

kqk(k − ap∗) + eCap∗
∑

k : ap∗<k≤κ

kqk(k − ap∗) = 0.

Hence, g is strictly decreasing in (−∞, 0] and hence positive in (−∞, 0). An analogous argument shows
that g′(C) > 0 for C > 0:

g′(C) =
κ∑
k=0

kqke
Ck(k − ap∗) >

∑
k≤ap∗

kqk(k − ap∗) +
∑

k : ap∗<k≤κ

kqk(k − ap∗) = 0.

Hence g is strictly increasing and positive in (0,∞). This implies that ap∗(s) > ap∗(sp∗) for any s 6= sp∗
and finishes the proof of the lemma. �
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