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Simulating rough surfaces by periodic and biperiodic gratings
Andreas Rathsfeld

Abstract

The scattering of acoustic and electro-magnetic plane waves by rough surfaces is the subject
of many books and papers. For simplicity, we consider the special case, described by a Dirich-
let boundary value problem of the Helmholtz equation in the half space above the surface. We
recall the formulae of the far-field pattern and the far-field intensity. The far-field can be defined
formally for general rough surfaces. However, the derivation as asymptotic limits works only for
waves, which decay for surface points tending to infinity. Comparing with the case of periodic
surface structures, it is clear that the rigorous model of plane-wave scattering is accurate for the
near field close to the surface. For the far field, however, the finite extent of the beams in the
planes orthogonal to the propagation direction is to be taken into account. Doing this rigorously,
leads to extremely expensive computations or is simply impossible. Therefore and to enable the
approximation of waves above the rough surface by waves above periodic and biperiodic rough
structures, we consider a simplified model of beams. The beam is restricted to a cylindrical do-
main around a ray in propagation direction, and the wave is equal to a plane wave inside of this
domain and to zero outside. Based on this beam model, we derive the corresponding asymptotic
formulae for the wave and its intensity. The intensity is equal to the formally defined far-field in-
tensity multiplied by a simple cosine factor. Under special assumptions, the intensity for the rough
surface can be approximated by that for rough periodic and biperiodic surface structures. In par-
ticular, we can cope with the case of shallow roughness, where the reflected intensity includes,
besides the smooth density function w.r.t. the angular direction, a plane-wave beam propagating
into the reflection direction of the planar mirror.

Altogether, the main point of the paper is to fix the technical assumptions needed for the
far-field formula of a simple beam model and for the approximation by the far fields of periodized
rough surfaces. Furthermore, using the beam model, we discuss numerical experiments for rough
surfaces defined as realizations of a random field and, to get a more practical case, the Dirichlet
condition is replaced by a transmission condition. The far-field intensity function for a rough sur-
face is the limit of intensity functions for periodized rough surfaces if the period tends to infinity.
However, almost the same intensity function can be obtained with a fixed period by computing
the average over many different realizations of the random field. Finally, we present numerical re-
sults for an inverse problem, where the parameters of the random field are sought from measured
mean values of the intensities.

1 Introduction

Rough surfaces appear in many applications. We consider surfaces defined as the graph of contin-
uous functions, which might be even smooth. By roughness we only indicate that the planar surface
is perturbed by corrugations in a non-systematic way. These rough surfaces could be e.g. the water
surface of the ocean or the surface of a workpiece, which ideally should be planar but has corruga-
tions due to imperfections in the manufacturing process. Especially, in technical applications based
on electro-magnetic waves of smaller and smaller wavelengths, small corrugations become more and
more “visible” by the waves and have an important impact on the functional behaviour of the devices.
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A. Rathsfeld 2

The theory of scattering by rough surfaces has been analyzed by many authors. We mention here
e.g. the books [3, 27, 37], [34], [26, Chapt. 7], the articles [29, 36], and the overview paper [13].
There exist papers on numerical methods based on “rule of thumbs”, methods under simplifying as-
sumptions, and algorithms of rigorous Helmholtz and Maxwell solvers based e.g. on finite-element
(FEM), boundary-integral (BEM), and finite-difference-time-domain (FDTD) methods combined also
with stochastic models of the surface (cf. e.g. [32,39], [2], the books mentioned above, [35], the topi-
cal review [38], and the similar case of bounded domains treated in [17–19]).

For simplicity, in this paper we consider the scattered field as the solution of the Helmholtz equation in
the domain above the surface together with a Dirichlet boundary condition at the rough surface. The
Dirichlet boundary data is the restriction of an incident plane-wave. Clearly, this is the accepted model
for acoustic waves with sound-hard boundary conditions and, in the two-dimensional case, also for
TE-polarized electro-magnetic waves. Existence and uniqueness of the reflected wave solution have
been proved in two dimensions. We guess that the case of three-dimensional Maxwell equations is
quite similar. For this and for the three-dimensional Helmholtz equation (i.e., for acoustic waves), we
assume there are classes of functions such that, for any rough surface represented as the graph of
a function in the class and for any plane wave incidence, the corresponding Dirichlet problem has a
unique wave solution.

In general, the Dirichlet problem for the Helmholtz equation is an accurate model for the scattering of
the plane wave by the rough surface. This is true, though, instead of a complete plane-wave, a realistic
incoming wave is a beam with a cross section of finite extent. If the finite diameter of the cross section
is much bigger than the wavelength, then the near field, where the beam meets the rough surface,
is accurately described by the Dirichlet solution. The far-field picture, however, is different. Only for
waves, decaying over the rough surface at infinity, an asymptotic formula for the far-field of the solution
is well known, and, using this, an asymptotic formula for the intensity (flux of energy) of the wave field
can be derived. These well-known formulae of the far-field can formally generalized to the plane-wave
case, for which there is no decay. Unfortunately, the meaning as a term in the asymptotics is lost.

Therefore, for an asymptotic analysis of the scattering by rough surfaces, we have to take into account
that any realistic wave beam has a cross section of finite extent. For example, looking at the optical
experiments of reflection by periodic grating structures with wavelength in the range of visible light, we
see a light-beam of a diameter in the range of a millimeter arriving onto the grating structure, and a
finite number of similar light-beams appear as reflection. No scattering into other angular direction can
be seen. Since a rigorous determination of the beam waves requires huge domains of computation,
we have to simplify the model. In this sense, our plane-wave scattering model is based on beams of
cylindrical structure ( cf. the comments on tapered incident fields in [38, Sect. 2.4] or think of a simpli-
fied long Gaussian beam, cf. [25]). The diameter of the cross section should be huge in comparison
to the wavelength, but the beam model is considered in the far field at a distance to the reflecting sur-
face, which is huge in comparison to the diameter. By the assumption of our simple model, the wave is
equal to the plane wave inside the beam, equal to zero outside the beam, and the more difficult exact
behaviour close to the beam boundary is neglected. The shape of the cross section is of no impor-
tance, and the size of the cross section can only effect some nonessential constants in the formulae.
Using this model for periodic and biperiodic surface structures, i.e. for gratings, we get an asymptotic
behaviour as seen in the experiments. The far-field intensity is the weighted sum of the Dirac delta
functions at the directions of the propagating reflected plane-wave modes, and the weights are exactly
the well-known efficiencies of these wave modes. Applying the same model to rough surfaces, the
asymptotic intensity function (density w.r.t. direction) is like the intensity function, formally derived for
plane waves of infinite extent, except for some multiplicative factor equal to constant times cosine of
the inclination angle of the direction. The additional cosine is due to the fact that the cross section of
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Rough surfaces 3

the beam in a fixed direction is cosine times the size of the highlighted area at the rough surface, from
where the beam in the fixed direction originates.

As a consequence of the simplified model, if the rough surface is approximated by periodic or biperi-
odic rough grating surfaces, then smoothed asymptotic intensities of the gratings tend to the smoothed
asymptotic intensity of the rough surface. If the asymptotic intensity is smooth, then the smoothed
asymptotic intensities of the gratings approximate the asymptotic intensity of the rough surface. Al-
though the nature of the reflected fields is different for rough surfaces (diffuse irradiation into all di-
rections) and for periodic or biperiodic structures (finite number of plane-waves), we end up with a
good approximation. Consequently, well-developed grating solvers can be used for roughness as well.
In fact, for approximations, the periodic extension of a finite section of a rough surface (cf. e.g. [35]
and [22] for a comparison with tapered waves) is more natural than the simple truncation (cf. e.g. [7,8]).
There is no reason to believe that the convergence (local or in weighted Lebesgue spaces) of periodic
and biperiodic solutions to the rough-surface solution should be worse than that in the case of approx-
imation by finite sections. Furthermore, in the case of rough surfaces close to an ideal planar surface
(corrugations of small height), there should be a plane-wave beam in the reflected wave propagating
into the reflection direction of a planar mirror (cf. e.g. [32]). This beam can be incorporated into the
model with beams of finite extent. By simulations based on a FEM for two-dimensional gratings, we
demonstrate that such beams really appear besides the smooth density function of intensity. Note
however, to get a more practical case, the Dirichlet boundary condition is replaced by a transmission
condition in all our numerical examples.

Altogether, we employ a unified and simplified model for reflection by rough surfaces and by periodic
surface structures, which is based on the exact near-field model close to the rough surface and on
simple beam propagation up to the far field. This leads to the classical far-field picture for periodic and
biperiodic surface structures. Approximating the rough surface by such gratings, we get the far-field
intensity function of the waves reflected by rough surfaces. The two main objectives of the current pa-
per are, on the one hand, to highlight the technical assumptions for the intensity formulae and for the
approximation by periodized rough surfaces and, on the other hand, to demonstrate the convergence
in numerical experiments. Note that the assumptions concern the unique solvability of the bound-
ary value problem (cf. Asms. 2.1 and 3.1), the local convergence of the corresponding finite-section
method (cf. Asm. 3.4), and the continuity of the far-field pattern (cf. Asms. 5.1 and 6.1). Asms. 2.1-3.4
are fulfilled in the two-dimensional case, and they are subject of future work for three dimensions.
Asms. 5.1 and 6.1 should be verified by experiments. Suppose all assumptions are fulfilled and that
the rough surface is a realization of random field. Then the smoothed far-field intensity function is the
limit of smoothed intensity functions for periodized rough surfaces if the period tends to infinity. How-
ever, almost the same intensity function can be obtained with a fixed period by computing the average
over many different realizations of the random field.

Finally, we report the numerical solution of a two-dimensional inverse problem (compare [40]), which
is based on the intensity formula of our beam model. We assume that the rough surface is defined
as a realization of a stationary, zero-mean, Gaussian random field with squared exponential kernel.
Then, by means of a Bayesian inversion (cf. [23]), we infer the variance and the correlation length
from measured scatterometric values. Naturally, these scatterometric values are the mean values
of the intensities at a fixed direction. Additionally, we solve the problem by a Markov-chain Monte
Carlo method (MCMC) (cf. [5]) with a surrogate model for the mapping from unknown parameters to
intensities. This is done by a tensor-train approximation (cf. [28]). Note that such a method is expected
to be efficient for rough surfaces with more involved random-field description.

The plan of the paper is as follows. In Sect. 2 we formulate the Dirichlet problem for the Helmholtz
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Figure 1: Geometry settings.

equation under plane-wave incidence in the half plane above a rough surface. We recall the classical
formulae for the far field and the asymptotic intensity function. To approximate the solution by a bound-
ary value problem over a finite domain, we approximate the surface by periodic or biperiodic surfaces
in Sect. 3. For these grating structures, we describe the well-known solutions of diffraction and add the
formula for the efficiencies, i.e., for the intensities of the reflected plane-wave modes. Sect. 4 contains
the simple model of plane-wave beams of finite extent above gratings and the corresponding far-field
asymptotics and intensity. In Sect. 5, we extend this model to the reflection by the rough surface lead-
ing to a diffuse scattering with a smooth far-field pattern, and in Sect. 6 we complement the model
to deal with additional plane-wave beams in the directions of mirror reflection. A simple stochastic
model for a rough surface represented as a random field is introduced in Sect. 7. For this, we present
numerical simulations of the far-field intensities. In Sect. 8 we formulate an inverse problem for the re-
construction of the parameters of the random field from scatterometric data, i.e., from the mean values
of measured intensities. The numerical solution by Bayesian inversion is proposed. Finally, in Sect. 9
we discuss a tensor-train surrogate model to improve the Bayesian inversion by an MCMC method.

2 Scattering by rough surfaces

In this section we shall introduce the deterministic notion of a rough surface. Later (cf. Sect. 7) each
realization of a stochastic surface will be of this form. For the scattering of a plane wave by such a
rough surface, we shall formulate the Dirichlet problem in the domain above the surface. Furthermore,
we shall define the far-field pattern for the asymptotics of the wave solution in radial directions and add
a formula for the asymptotic intensity distribution.

2.1 Boundary value problem and radiation condition

Throughout this paper we denote the points of the n-dimensional Euclidean space Rn, n=2,3 by
~x :=(x′, x3)> and ~y :=(y′, y3)> with x′ :=x1 for n=2 and and x′ :=(x1, x2)>∈R2 for n=3. For
fixed numbers xf,n, we define the half spaces Rn

xf,n,+
:={(x′, xn)>∈Rn : xn>xf,n}. The bound-

ary planes take the form Rn
xf,n

:={(x′, xf,n)>: x′∈Rn−1}. Furthermore, given a continuous func-

tion F : Rn−1→R such that −hF ≤F (x′)<0 with fixed hF >0, our rough surface is the graph

DOI 10.20347/WIAS.PREPRINT.2989 Berlin 2022



Rough surfaces 5

ΓD :={(x′, F (x′))>: x′∈Rn−1} (cf. Fig. 1 for a two-dimensional sketch of the three-dimensional set-
ting). We consider the half space Ω:=ΩF :={(x′, xn)>∈Rn : xn>F (x′)} above this surface ΓD,
and acoustic time-harmonic waves in Ω will be described by Helmholtz solutions u : Ω→C, i.e., by
solutions of (∆+k2I)u=0 for a fixed wavenumber k>0.

We assume that the Dirichlet problem of the Helmholtz equation over Ω has a unique solution, i.e., for
a fixed wave number and for an incoming plane-wave function

uinc(~x ) := ei
~kinc·~x, (2.1)

~kinc = (k′inc, kinc,n)> :=

{
k(sin θinc,−cos θinc)

> if n=2
k(sin θinc cosφinc, sin θinc sinφinc,−cos θinc)

> if n=3

with incidence angles−π
2
<θinc<

π
2

and−π<φinc<π, there exists a unique scattered wave function
u over Ω such that

∆u(~x ) + k2u(~x ) = 0, ~x ∈ Ω,

u
(
(x′, F (x′))>

)
= −uinc

(
(x′, F (x′))>

)
, x′ ∈ Rn−1, (2.2)

u satisfies the half-space radiation condition (HSRC).

Here we shall say that u satisfies the (HSRC) (cf. [31] and compare [11], [10], [9], [7], [13], [1, 21]) if
there exist real numbers cu, εu, xh,n, and xf,n with cu>0, εu>0, and 0<xf,n<xh,n such that

i) For any l′∈Zn−1, the restriction of u to Ωl′,xh,n :={~x∈Ω: |x′−l′|<4 , xn<xh,n} is in the
Sobolev space H1(Ωl′,xh,n) and has a bounded norm ‖u|Ωl′,xh,n‖H1(Ωl′,xh,n

)<cu.

ii) For the solution u with n= 2 and for the second order derivative ∂2
x3
u with n= 3, there holds

the representation

u(~x ) = 2

∫
R
∂y2G2D

(
~x, (y′, xf,2)>

)
u
(
(y′, xf,2)>

)
dy′, ~x ∈ R2

xf,2,+
, and

(2.3)

∂2
x3
u(~x ) = 2

∫
R2

∂3
y3
G3D

(
~x, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′, ~x∈R3

xf,3,+
,

respectively. Here GnD is the fundamental solution of the Helmholtz equation, i.e., this function
is defined by G3D(~x, ~y) := 1

4π
eik|~x−~y |/|~x−~y | for n=3 and G2D(~x, ~y ) := i

4
H

(1)
0 (k|~x−~y |) for

n=2, respectively.

Concerning this definition, we note the following. The Dirichlet condition in (2.2) can be defined in
the sense of traces for u satisfying item i) of the (HSRC). The four in the definition of Ωl′,xh,n (cf.
the diameter eight equal to two times four in Fig. 1) can be replaced by any sufficiently large number
such that the surface ΓD is completely covered by the Ωl′,xh,n , l

′∈Zn−1. Item i) is a radiation condi-
tion in the sense that the asymptotic boundedness of u(~x ) for |~x | →∞ along the rough surface is
required. The uniform boundedness of H1(Ωl′,xh,n) is natural since the setting of the rough surface
is invariant w.r.t. shifts in the surface directions. Further, note that in well-known three-dimensional
radiation conditions for wave functions decaying at infinity (upward propagating radiation condition),
the field is represented as a double layer integral with the fundamental solution G3D similarly to the
two-dimensional case with G2D. Differentiating this representation twice with respect to x3, we arrive
at the weaker condition presented in item ii), which is defined for functions u∈L∞(R3

f,3). Indeed, the
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differentiated kernel takes the form

∂3
y3
G3D(~x, ~y ) =

eik|~x−~y |

4π

{
3(ik)2(y3 − x3)

|~x− ~y |3
− 9(ik)(y3 − x3)

|~x− ~y |4
+

(ik)3(y3 − x3)3

|~x− ~y |4

−6(ik)2(y3 − x3)3

|~x− ~y |5
+

9(y3 − x3)

|~x− ~y |5
+

15(ik)(y3 − x3)3

|~x− ~y |6

−15(y3 − x3)3

|~x− ~y |7

}
= O

(
1

|x′ − y′|3

)
, |x′ − y′| → ∞. (2.4)

Now we need

Assumption 2.1. Fix a special class Clrs of bounded continuous function over Rn−1 and consider
the rough surfaces ΓD, defined by functions F ∈Clrs, together with the corresponding half spaces
Ω=ΩF above ΓD. We assume that, for any F ∈Clrs and for any incoming plane wave uinc, there
exists a unique solution of the scattering problem (2.2).

Remark 2.2. Existence and uniqueness for n=2 and for any continuous and uniformly bounded
function F is shown in [7], where it is even proved that the solution belongs to a weighted Sobolev
space. In other words, we can choose Clrs as the class of all continuous and bounded functions, and
Asm. 2.1 is fulfilled. For the case n=3, such a result is not known and, probably, not true. We expect
that future research will reveal the existence of special classes Clrs with Asm. 2.1.

2.2 Far field pattern, intensity, and measurement values

Next we turn to the far-field behaviour of the solution and to the measured intensity. To simplify nota-
tion, we consider the case xf,n=0, and we introduce the set Sn−1

+ :={~x∈Rn : |~x|=1, xn>0} of
directions pointing into the upper half space Rn

0,+. We consider (2.3) and, for n=3, we assume for a
moment that the representation of u by the double layer integral holds as well (i.e., the two-dimensional
part in (2.3) with G2D by G3D), which is true for special u((x′, x3)>) decaying for |x′|→∞. Taking
the limit r→∞, we arrive at (cf. [12], Theorem 2.5)

u(r~p ) = 2

∫
Rn−1

∂ynG
(
r~p, (y′, 0)>

)
u
(
(y′, 0)>

)
dy′, ~p = (p′, p3)>∈ Sn−1

+ ,

lim
r→∞

u(r~p ) =
eikr

r(n−1)/2
Φ(~p ), Φ(~p ) := Cnpn

[
F
(
u|Rn0

)](kp′
2π

)
, (2.5)

[Ff ] (ξ′) :=

∫
Rn−1

e−i2πx
′·ξ′f(x′)dx′, Cn :=

{ √
k(1−i)
2
√
π

if n=2
k

2πi
if n=3

.

The function Φ is called far-field pattern. A similar asymptotics is well known from the far-field repre-
sentation for the simpler case of scattering by bounded obstacles. For a general uniformly bounded
u|R3

0
, we should replace (2.5) by

lim
r→∞

∂2
x3
u(r~p ) =

eikr

r
(ikp3)2Φ(~p ). (2.6)
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Indeed, setting ~x=r~p, y3 =0 and replacing the differentiated kernel function 2∂3
y3
G3D(~x, ~y ) in (2.3)

by the expression eik|~x−~y |(y3 − x3)3|~x− ~y |−4 (cf. the third term in (2.4)), we get

re−ikr

p3
3

∫
R2

eik|~x−~y |
(y3 − x3)3

|~x− ~y |4
u(~y ) dy′ =

∫
R2

u(~y )e−ikp
′·y′ e

ik[|~x−~y |−|~x |+~x·~y/r]r4

|r~p− ~y |4
dy′

=

∫
R2

u(~y )e−ikp
′·y′f(p′, y′, r) dy′,

f(p′, y′, r) := exp

(
ik
|y′|2 + (|rp′ − y′| − r) p′ ·y′

|rp′ − y′|+ r

)
r4√

(rp′ − y′)2 + r2p2
3

4 ,

where f(p′, y′, r) on the right-hand side is uniformly bounded and tends to one for r→∞. In other
words, for an absolutely integrable u|R3

0
, the integral tends to the Fourier transform of u|R3

0
evaluated at

ky′/(2π) by Lebesgue’s theorem on dominated convergence. We get (2.6) if we use the last derivation
and similar formulae for 2∂3

y3
G3D(~x, ~y ) in (2.3) replaced by the other terms (leading to asymptotic

terms of lower order for r→∞) in the kernel representation (2.4).

In the case of a uniformly bounded smooth u|Rn0 , which does not decay at infinity, the above deriva-
tion breaks down since, for the application of Lebesgue’s theorem, there is no integrable majorant
function like y′ 7→ C|u(~y )| for the decaying case. However, we can approximate u|Rn0 in the space
of Schwartz distributions by decaying functions. Then the far-field pattern in (2.5) is the limit of the
patterns corresponding to the far-fields of the waves defined by (2.3) with u|Rn0 = u|Rnxf,n replaced

by the approximate distributions of u|Rn0 . Clearly, in general the far-field pattern is a distribution. We
expect that, in some sense, this far-field pattern is still a good model and useful to get measured scat-
terometric data in the subsequent Sect. 8. For the example of a plane wave upw(~x ) :=exp(i~kpw ·~x )

with |~kpw|=k and ~kpw =(k′pw, kpw,n)>, we obtain

Φpw(~p ) :=

[
2π

k

]n−1

Cnpn δ
(
p′ − k′pw/k

)
=

[
2π

k

]n−1

Cnpn δk′pw/k(p
′)

=

[
2π

k

]n−1

Cn δ~kpw/k(~p )

with the Dirac delta function δ. This corresponds to the peaks measured in the far-field at the prop-
agation direction ~kpw. On the other hand, we have upw(~x + r~p ) = exp(i~kpw ·r~p )upw(~x ), which
tells us that there is no limit like in (2.5). With the exception of a complex factor of modulus one, the
plane-wave field is everywhere the same. However, later we shall see the usefulness of the far-field
notion (cf. (4.8)).

Now we switch to intensities. By arguments similar to (2.5) we conclude

lim
r→∞

[∇u](r~p ) =
eikr

r(n−1)/2
ik~p Φ(~p ). (2.7)

The intensity Ĩ(~x ) is the average in time of the product of pressure and scaled velocity, i.e., the
average in time of the product of −∂t<e [u(~x )e−iωt] and 1

%0
∇<e [u(~x )e−iωt] (cf. [12], Sect. 2.1 and

note that ω is the frequency of the time-harmonic acoustic wave, %0 a fixed density value such that the
true density of the medium is a function oscillating by a small amount about %0 ). For the far field, (2.5)
and (2.7) imply

Ĩ(r~p )·~p =
ωk

%0rn−1

1

2π/ω

∫ 2π/ω

0

[<eΦ(~p ) sin(kr−ωt)+=mΦ(~p ) cos(kr−ωt)]2 dt+ o(1) ,

I(~p ) := lim
r→∞

rn−1Ĩ(r~p ) · ~p = cI |Φ(~p )|2 , (2.8)
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A. Rathsfeld 8

where cI :=kω2/(2%0) is a material constant.

Suppose the rough surface is irradiated by an inspecting laser beam modeled as a plane wave
uinc (cf. (2.1)). For a perfectly planar surface (i.e.F =const.), the reflected wave is upw(~x ) = ei

~k·~x

with ~k :=k(sin θinc, cos θinc)
> and ~k :=k(sin θinc cosφinc, sin θinc sinφinc, cos θinc)

>, respectively.
Of course, the case of a general F is more difficult. To measure the reflected wave for the gen-
eral rough surface, a detector is placed in the reflection direction ~k/k ∈ Sn−1 of the perfect mir-
ror at a distance d1. If this detector has an aperture diameter d2 and if the angle ζ is defined as
ζ := arctan

(
d2/(2d1)

)
, then the vector ~p points into the detector if and only if the angle between

~p and ~k/k is less than ζ , i.e., if and only if ~p ·[~k/k]>cos ζ . Thus a simple model for a measured
intensity is

Imeas =

∫
{~p∈ Sn−1

+ : ~p ·[~k/k]> cos ζ}
I(~p ) d~p. (2.9)

Depending on the properties of the detector an additional multiplicator for the intensity function in (2.9)
is possible.

The asymptotic formulas (2.5), (2.7), and (2.8) are correct if the function y′ 7→u
(
(y′, 0)>

)
decays suf-

ficiently fast for |y′|→∞. Unfortunately, in the general case the integral in (2.5) might not converge
in the classical sense, and the Fourier transform F(u|Rn0 ) might be a distribution rather than a clas-
sical function. To get expressions with classical functions, we smoothen the far-field pattern. Roughly
speaking, we replace the generalized function Φ by the smoothed function ΦR, which is the convolu-
tion of p′ 7→Φ((p′, pn)>) with a smooth function p′ 7→ ψ̂R(p′). Under the condition

∫
Rn−1 ψ̂R=1 and

supposing that
∫
p′:|p′|>1/R

ψ̂R is small, the smoothed function ΦR is a smooth local average of Φ.
Moreover, defining ΦR for any positive R, the ΦR tend to Φ for R→∞ in the distributional sense.
Note that some kind of smoothing can be helpful to model the output data of the detection devices.

More precisely, we choose a three times continuously differentiable functionψ>0 over Rn−1 such that
ψ(s′)=1 for |s′|≤1 and ψ(s′)=0 for |s′|≥2 and denote the Fourier transform by ψ̂ := Fψ. For a

large R>0, the dilated ψR(s′) :=ψ(s′/R) has the transform ψ̂R(p′) :=[FψR](p′)=Rn−1ψ̂(Rp′)

concentrated in a small neighbourhood of zero and with an integral
∫
Rn−1 ψ̂R=ψR(0) = 1. The

smoothed far-field pattern ΦR is the convolution

ΦR(~p ) := pn(p′)

∫
Rn−1

1

qn(q′)
Φ
(
(q′, qn(q′))>

)
ψ̂Rk/2π(p′ − q′) dq′

= pn(p′)

[
Φ
(
(·, qn(·))>

)
qn(·)

∗ ψ̂Rk/2π

]
(p′), (2.10)

pn(p′) :=
√

1− |p′|2, qn(q′) :=
√

1− |q′|2,

which rigorously can be defined as

ΦR(~p ) := Cnpn
[
F
(
u|Rn0ψR

)](kp′
2π

)
, ~p = (p′, pn)>∈ Sn−1

+ . (2.11)

Note that this convolution corresponds to defining the far-field pattern in the distributional sense by
the formulae 〈Φ0, ϕ〉 :=Cn

∫
R2 u|Rn0F

−1ϕ and Φ(p′,
√

1−|p′|2 )=
√

1−|p′|2 Φ0(kp′/2π). In this
sense, ΦR results from the smoothing of the distributional Φ0.

In accordance with (2.8) and (2.9), we define the smoothed far-field intensity IR(~p ) :=cI |ΦR(~p )|2
and the measured one by Imeas

R =
∫
{~p∈ Sn−1

+ : ~p ·[~k/k]> cos ζ}IR(~p ) d~p.
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Figure 2: The periodized rough surface.

3 Periodic and biperiodic finite sections of the rough surface

In this section we introduce periodic and biperiodic finite sections of the rough surface ΓD. Further-
more, we recall the definitions and results for the periodic and biperiodic solutions to the problem of
scattered plane waves. We shall discuss far-field patterns and the asymptotics of the intensity.

Since a numerical simulation over an infinite domain is impossible, we shall restrict Ω to finite sections
in horizontal direction, solve the corresponding Dirichlet problems together with lateral periodic and
biperiodic boundary conditions, and consider periodic and biperiodic extensions of the solutions, re-
spectively. More precisely, we choose a large period per (to avoid the overlapping of the subsequent
periodization (3.1) at points of distance equal to [per l′], l′∈Zn−1, we suppose, at least, per>3) and
a smooth (at least continuous and s.t. the subsequent Asm. 3.1 holds) cut-off function χ defined on R
such that χ(t)=1 for |t|≤ 1

2
and χ(t) = 0 for |t|≥1. Then the function χper(t) :=χ(t+per/2) has

its support around per/2. In the case n=2, we consider the per-periodic interval [−per/2, per/2].
To get a periodic approximation of F restricted to [−per/2, per/2], we leave F unchanged in the
interval [−per/2, per/2−1] but change F close to per/2 such that the changed part fits periodically
to the values of F close to −per/2. We add χper(x1)[F (x1+per)−F (x1)] to F , and the sum is
smooth and per-periodic. In the case n=3, we apply a tensor-product transform of the case n=2.
The resulting function

Fper(x
′) :=



[1− χper(x1)]F (x1) + χper(x1)F (x1 + per) if n=2

[1− χper(x1)] [1− χper(x2)]F (x′)
+χper(x1) [1− χper(x2)]F

(
x′ + (per, 0)>

)
+[1− χper(x1)]χper(x2)F

(
x′ + (0, per)>

)
+ χper(x1)χper(x2)F

(
x′ + (per, per)>

)
, if n=3

(3.1)

−per

2
≤ xj ≤

per

2
, j = 1, · · · , n− 1.

is equal to F for −per/2+1<xj<per/2−1, j=1, · · · , n−1, and Fper admits a continuous pe-

riodic resp. biperiodic extension Fper to Rn−1. The domain Ω̃per :=ΩFper is defined as the perturbed

half space over the periodic resp. biperiodic surface Γ̃D,per :={~x∈Rn−1: xn=Fper(x
′)}. The finite

section domain restricted to a single period of Ω is the column

Ωper :=
{
~x∈ΩFper: −

per

2
<xj<

per

2
, j=1, · · · , n−1

}
,
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and the corresponding Dirichlet problem over this grating structure is (cf. Fig. 2)

∆uper(~x ) + k2uper(~x ) = 0, ~x ∈ Ω̃per,

uper

(
~x+ (per l′, 0)>

)
= ei per k′inc·l

′
uper(~x ) , ∀l′∈Zn−1, ~x ∈ Ω̃per,

uper

(
(x′, F (x′))>

)
= −uinc

(
(x′, F (x′))>

)
, x′ ∈ Rn−1, (3.2)

uper satisfies the half-space radiation condition (HSRC),

which, equivalently, can be considered over the column Ωper only. Note that, for periodic resp. biperi-
odic structures condition (HSRC) is equivalent to the radiation condition for gratings. Namely, uper

satisfies (HSRC) if and only if it is the superposition of outgoing plane waves

uper(~x ) =
∑

l′∈Zn−1

cl′e
i~αl′ ·~x, ∀~x ∈ Rn, xn ≥ 0, (3.3)

~αl′ := (α′l′ , αl′,n)
>
, α′l′ := k′inc+

2π

per
l′, αl′,n :=

{√
k2−|α′l′|2 if k≥|α′l′ |

i
√
|α′l′|2−k2 else

, (3.4)

where cl′ is a constant Rayleigh coefficient.

Assumption 3.1. We assume that together with F also the continuous functions Fper : Rn−1→R
belong to the class Clrs of Asm. 2.1.

Remark 3.2. For n=2 and Clrs chosen as the class of uniformly bounded and continuous functions,
Asm. 3.1 is satisfied.

Remark 3.3. Asm. 3.1 guarantees the existence of a unique solution to (3.2). Of course, unique solv-
ability is known for the Dirichlet problem for any periodic and biperiodic surface Γper. However, if the
Dirichlet boundary condition is switched to a different one, then this point should not be forgotten. Asm.
3.1 is also made to prepare the framework for Asm. 3.4.

Using (3.3) and (2.5), we conclude

[F(uper|Rn0 )] =
∑

l′∈Zn−1

cl′δα′
l′/(2π), [F(uper|Rn0 )]

(
kp′

2π

)
=

[
2π

k

]n−1 ∑
l′∈Zn−1

cl′δα′
l′/k

(p′),

Φper(~p ) = Cn

[
2π

k

]n−1

pn
∑

l′∈Zn−1: |α′
l′ |≤k

cl′ δα′
l′/k

(p′ ), (3.5)

Φper,R(~p ) = Cn

[
2π

k

]n−1

pn
∑

l′∈Zn−1: |α′
l′ |≤k

cl′ψ̂Rk/2π

(
p′ − α′l′

k

)
, ~p = (p′, pn)>∈ S2

+.

Here, for the first identity, we have used the formula δα′
l′/(2π)(k/2π ·)=[2π/k]n−1δα′

l′/k
. Note that

the far-field pattern Φper is defined by the second formula of (2.5), and an asymptotic relation for uper

similar to the first formula of (2.5) does not hold.

Now we look at the intensities. For a plane wave u(~x )=ei~α·~x, we have the local intensity

Ĩ(~x, t) = −∂t<e
[
u(~x )e−iωt

] 1

%0

∇<e
[
u(~x )e−iωt

]
=

ω

%0

{
[<e ei~α·~x]2 sin2(−ωt) + [=mei~α·~x]2 cos2(−ωt)

+2[<e ei~α·~x][=mei~α·~x] sin(−ωt) cos(−ωt)
}
~α.
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Taking time average, we arrive at

Ĩ(~x ) =
ω

2%0

∣∣ei~α·~x∣∣2 ~α =
ω

2%0

~α, I(~p ) =
ωk

2%0

[
~α

k

]
· ~p . (3.6)

No asymptotic limit r→∞ is needed.

For the superposition of two plane waves u(~x )=aei~α·~x + bei
~β·~x with complex valued coefficients, we

analogously obtain

Ĩ(~x, t) =
ω

%0

{
<e [aei~α·~x + bei

~β·~x] sin(−ωt) + =m [aei~α·~x + bei
~β·~x] cos(−ωt)

}
×
{
<e [aei~α·~x~α + bei

~β·~x~β] sin(−ωt) + =m [aei~α·~x~α + bei
~β·~x~β] cos(−ωt)

}
,

Ĩ(~x ) =
ω

2%0

{
<e [aei~α·~x + bei

~β·~x]<e [aei~α·~x~α + bei
~β·~x~β]

+=m [aei~α·~x + bei
~β·~x]=m [aei~α·~x~α + bei

~β·~x~β]
}

=
ω

2%0

{
|a|2~α + |b|2~β +

[
<e (aei~α·~x)<e (bei

~β·~x) + =m (aei~α·~x)=m (bei
~β·~x)
]

(~α + ~β)
}
.

Setting a = |a|eia0 and b = |b|eib0 , we continue

Ĩ(~x ) =
ω

2%0

{
|a|2~α + |b|2~β + |a||b| cos

(
[~α− ~β] · ~x+ a0 − b0

)
(~α + ~β)

}
. (3.7)

Clearly, for any open set S⊂Sn−1
+ and for a difference ~α−~β not in the closure of S, the parame-

ter depending integral 1
|rS|

∫
[rS]

cos([~α−~β]·~x ) d~x is equal to the integral 1
|S|

∫
S

cos(r[~α−~β]·[~x]) d~x
and tends to zero for r→∞. Hence, in a weak limit (e.g. define the weak limit as the limit of aver-
ages limr→∞

1
di(r)

∫ r+di(r)

r
Ĩ(%~p )d% with a fixed monotonically increasing diameter function di s.t.

di(r)→∞ for r→∞) the coupling terms |a||b| cos([~α−~β]·~x+a0−b0)(~α + ~β) in Equ. (3.7) with
[~α−~β]·~x 6=0 can be neglected. We obtain, for ~x=r~p with ~p∈Sn−1

+ and t→∞, the far-field limit

I(~p ) := lim
r→∞

Ĩ(r~p ) · ~p

=


ω

2%0

{
|a|2~α + |b|2~β

}
· ~p if ~p ·[~α− ~β] 6= 0

ω
2%0

{
|a|2~α + |b|2~β + <e(ab) (~α + ~β)

}
· ~p

= ω
2%0
|a+ b|2 ~α+~β

2
· ~p else .

(3.8)

Now we observe that the plane wave functions ~x 7→ei~αl′ ·~x in (3.3) decay for large xn if |α′l′|>k. Thus
in the asymptotics, we may restrict the sum in (3.3) to l′ ∈Z2 with |α′l′| ≤ k. For the function uper in
(3.3), analogously to (3.8) we obtain the intensity formula

Iper(~p ) =
ω

2%0

{ ∑
l′∈Zn−1: |α′

l′ |≤k

|cl′|2~αl′ +
1

2

∑
l′,m′∈Zn−1: l′ 6=m′,
|α′
l′ |≤k, |α

′
m′ |≤k,

(~αl′−~αm′ )·~p= 0

<e(cl′cm′) (~αl′+~αm′)

}
· ~p (3.9)

=
ω

2%0

{
α0′,n

∑
l′∈Zn−1: |α′

l′ |≤k

~αl′ ·~p
αl′,n

Eper,l′ +
1

2

∑
l′,m′∈Zn−1: l′ 6=m′,
|α′
l′ |≤k, |α

′
m′ |≤k,

(~αl′−~αm′ )·~p= 0

<e(cl′cm′) (~αl′+~αm′) · ~p

}
,
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where 0′=0 for n=2 and 0′=(0, 0)> for n=3, and where Eper,l′ is the efficiency of the reflected
plane wave mode cl′ei~αl′ ·~x of order l′∈Zn−1 with |α′l′ |≤k. This is given as (cf. e.g. Sect. 1.2.3 of [30])

Eper,l′ =
αl′,n
α0′,n

|cl′|2. (3.10)

and is nothing else than the portion of energy over a unit time, which is radiated by the plane wave
of propagation direction ~αl′ through a unit area of a horizontal plane. Note that (3.9) is the correct
formula if the distance of asymptotics r in u(r~p ) is much larger than the wavelength but smaller than
the lateral extent of the plane wave incidence.

Now we look at the convergence of the smoothed far-field patterns Φper,R (cf. (2.11) and (3.5)) for
per→∞. We expect that the solutions uper of (3.2) converge to the solution u of (2.2) as per→∞.
More precisely:

Assumption 3.4. We suppose F, Fper∈Clrs (cf. Asms. 2.1 and 3.1). For any fixed l′∈Zn−1 and
the corresponding cylindrical domain Ωl′,xh,n , we assume that the solutions of (3.2) restricted to
Ωl′,xh,n converge to the solution of (2.2) restricted to Ωl′,xh,n at least weakly in H1, i.e., for any
ϕ∈H−1(Ωl′,xh,n), there holds 〈uper|Ωl′,xh,n−u|Ωl′,xh,n , ϕ 〉→0 for per→∞.

Remark 3.5. Suppose per0≥0 is fixed and that, for any per≥per0 and any fixed l′∈Zn−1, the
Sobolev norm ‖uper‖H1(Ωl′,xh,n

) is bounded by a constant independent of per and l′, then Asm. 3.4

is satisfied.

Remark 3.6. For n=2, Asm. 3.4 follows similar to the results on non-periodic finite sections in
weighted Sobolev spaces (cf. Sect. 5.2 of [7]).

If we assume that Asm. 3.4 is true, then uper|Ωl′,xh,n converges to u|Ωl′,xh,n strongly in Hs(Ωl′,xh,n)

for per→∞, for any 0≤s<1, and for any l′∈Z2. Consequently, the analytic Helmholtz solutions
uper together with all their derivatives will converge on each compact subset of the line Rn

xf,n
with

a last component xf,n>supx′∈R2 F (x′) in the supremum norm. For a fixed R (cf. definition (2.11))
the smoothed far-field patterns Φper,R, are nothing else but the products of the function pn multi-
plied by the Fourier transforms of the product uperψR (cf. (2.11)), where ψR is a function of bounded
support. Hence, for a fixed R and per→∞, the patterns Φper,R together with all their derivatives
converge to the pattern ΦR and its derivatives in L∞(Sn−1

+ ). Similarly, the far-field intensities Iper,R :=
cI |Φper,R(~p )|2 of the periodic resp. biperiodic finite sections will converge to the intensity IR of the
rough surface (cf. the end of Sect. 2.2).

We do not know, whether the Iper of the periodic structures converge to the I of the rough surface in
some weak sense. To prove this by an argument based on formula (2.8) would require the square of a
Dirac-delta, which is difficult to define.

4 Far-field beam model over periodized surfaces

In this section we replace the plane wave model of Sect. 3 by a simple model of beams with a finite
cross section in the planes orthogonal to the direction of propagation. Though the waves are no so-
lution of the Helmholtz equation at the boundary points of the beams, the far-field concept is more
realistic than that for the plane waves. The shape of the cross section has no influence on the far-field.

Of course, real waves in the measurement settings are not plane waves over the full space. For exam-
ple, in optical experiments with periodic gratings, we can see a light-beam of a diameter in the range
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Figure 3: Cross-section domainD~α
cs of beam propagating in the direction of ~α. DomainD~α

cs is located
in a plane perpendicular to ~α.

of a millimeter arriving onto the grating structure, and a finite number of similar light-beams appear
as reflection. No scattering into other angular direction can be seen. Therefore, we model the plane
waves as beams with a cross section close to an ellipsoidal domain (cf. Fig. 3 and the subsequent
Equ. (4.1)), i.e., as a “plane wave with a finite diameter” (waist). In free space, the beams of the model
propagate as rays. Close to the surface structure they are modeled by the rigorous diffraction theory of
plane waves. However, the reflected plane waves leaving the surface are considered as beams again
(cf. Fig. 4). Heuristically, this is acceptable since the beam diameter is in the millimeter range, which is
huge in comparison to the wavelength or to the corrugations of the surface. We assume that the effect
of a non-perfect model at the boundary of the rays can be neglected. In Fig. 4 the period has been
increased. In pictures with the correct scaling of the rough surface the periodic corrugations are tiny
in comparison to the beam diameter. Thus, in pictures, where the diameter of the beam is shown, the
surface with small frequency corrugations would look like a planar surface (cf. the dotted line).

More precisely, suppose we have a plane wave u~αpw(~x ) :=cpwe
i~α·~x with |~α|=k and complex am-

plitude cpw∈C propagating in the direction ~α/k, and suppose D~α
cs is a cross-section domain in the

plane pl~α (cf. Fig. 3), which is normal to the direction and which contains the origin of the coordinate
system. Here we assume that the origin is in the middle of the beam and at the rough surface. Obvi-
ously, the projection P ~α~x of a vector ~x onto the cross-section plane is P ~α~x :=~x− ~x·~α

~α·~α~α. We denote
the characteristic function of D~α

cs over the plane by χ~αcs :=χD~αcs and model the beam of finite lateral
extent by

u~αpw(~x ) := cpwe
i~α·~xχ~αcs

(
P ~α~x

)
= cpwe

i~α·~xχ~αcs

(
~x− ~x · ~α

~α · ~α
~α

)
. (4.1)

This u~αpw does not satisfy the Helmholtz equation at the boundary of the beam, i.e., at points ~x with
P ~α~x at the boundary of the cross section D~α

cs.

Assumption 4.1. The correct behaviour close to the lateral boundary of the beam can be neglected
in the far-field behaviour.

Remark 4.2. This assumption is reasonable since the width of the beam is large in comparison to the
wavelength, i.e., possible deviation of the wave in the distance less than a few wavelengths from the
lateral boundary of the ray are not important in comparison to the plane-wave behaviour in regions,
whose distance from the beam boundary is greater than a few wavelengths. Clearly, this argument is
rigorous in the near field close to the surface, and the good approximation property of our simple model
should be true up to a “certain distance” from the surface. This “certain distance” must be observed
in experiments. In regions, where the beam cross section is nearly unchanged, the assumption of the

DOI 10.20347/WIAS.PREPRINT.2989 Berlin 2022



A. Rathsfeld 14

D

D

D

D

l’

cs

cs

αinc

cs

periodic surface

m’

refl.beam u

refl.beam u

l’

m’

incoming beam uinc

hor

Figure 4: Wave as beams with ellipsoidal cross section of different diameters.

model is expected to be true, since any violation should result in a changed cross section. We assume
that the measurement device is in the region of “certain distance”. Certainly, it is a big challenge
to design measurement devices with good incident wave beams. On the other hand, the distance
between measurement device and surface structure is in the range of something like twenty or more
centimeters (wavelength in the range of visible light, beam diameter about a millimeter), which is huge
in comparison to the beam width. So we really need the far-field behaviour of the beam with finite
waist.

The solid angle, under which the cross section of the beam, perpendicular to the propagation, is seen
from the origin, tends to zero if the cross section is moving along the propagation direction away
from the origin. Consequently, the far-field intensity distribution (function depending on the directions
originating at the origin) for the plane wave u~αpw of finite cross section D~α

cs is approximately equal to
a constant cff times the Dirac-delta function at ~α/k∈Sn−1

+ . Clearly, the constant cff is proportional to
the measure |D~α

cs| of the cross-section and to |cpw|2 (cf. the subsequent (4.4)).

Now suppose the incoming wave is a plane-wave beam with the exponent ~α=~αinc =~kinc and the
cross section domain is D~α

cs =D~αinc
cs . We suppose the periodic resp. biperiodic boundary surface

Γ̃D,per is a perturbation of the plane Rn
0 :={~x∈Rn : xn=0} and denote the cross section of the

ray in (4.1) with the horizontal plane Rn
0 by Dho. As a simple model, we suppose the reflected plane

waves in the representation for (3.3) are plane-wave beams defined by (4.1) with with ~α=~αl′ (cf. (3.3))
andD~α

cs =Dl′
cs :=D

~αl′
cs such that the cross section of the ray with the horizontal plane R3

0 is againDho.
Then we get (cf. Fig. 4)

|D~αinc
cs | = |Dho|

αinc,n

k
, |Dl′

cs| = |Dho|
αl′,n
k

, |Dl′

cs| = |D~αinc
cs |

αl′,n
αinc,n

. (4.2)

The function uper, modified to propagating beams of finite diameters and with anything else neglected,
is then given as

uBper(~x ) :=
∑

l′∈Zn−1: |α′
l′ |≤k

cl′e
i~α·~xχ~αl′cs

(
P ~αl′~x

)
. (4.3)

Using (3.6) and neglecting the modifications of the wave at the lateral boundary of the beam, the
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intensity of the l′th reflected plane wave tested against the test function ϕ is

〈IBl′ , ϕ〉 = lim
r→∞

∫
rSn−1

+

|cl′ |2
ω

2%0

~αl′ ·[~x/r]χ~αl′cs

(
~x− ~x · ~αl′

~αl′ · ~αl′
~αl′

)
ϕ(~x/r) d~x

= |cl′ |2
ω

2%0

lim
r→∞

rn−1

∫
{~x∈Sn−1

+ : [~x−
~x·~αl′
~αl′ ·~αl′

~αl′ ]∈
1
r
Dl′cs}

~αl′ ·~x ϕ(~x) d~x

= |cl′ |2
ωk

2%0

|Dl′

cs|ϕ(~αl′/k),

IBl′ = |cl′ |2
ωk

2%0

|Dl′

cs|δ~αl′/k =
ωk

2%0

|D~αinc
cs |

αl′,n
αinc,n

|cl′|2δ~αl′/k. (4.4)

Altogether, using α0′,n=αinc,n and recalling (3.10) and (4.2), we arrive at

IBper(~p ) =
ωk

2%0

|D~αinc
cs |

∑
l′∈Z2:|αl′ |≤k

Eper,l′ δ~αl′/k(~p ) =
∑

l′∈Z2:|αl′ |≤k

Eper,l′ δ~αl′/k(~p ) (4.5)

= pn
∑

l′∈Z2:|αl′ |≤k

Eper,l′ δα′
l′/k

(p′) .

Here, for the right-hand side of the first line, we assume the normalization that the average incoming
energy

∫
Sn−1
+
IBinc(~x )d~x = ωk

2%0
|D~αinc

cs | is one s.t., due to energy conservation, the reflected energy is

one as well, and the constant factor in front of the sum can be dropped. Applying such a normalization,
there is no dependence on the cross section D~αinc

cs anymore.

At first glance, (4.5) seems to be the classical result of diffraction by periodic and biperiodic gratings,
respectively. The portion of energy of the incoming wave radiated in the l′th reflected wave mode is
the efficiency Eper,l′ . However, for the classical diffraction in Sect. 3, this is the time average of energy
carried by the l′th wave mode over the units of any horizontal plane above the grating. Here, in the
case of rays with finite diameter, it is the intensity (density function of energy flux depending on the
directions in S2

+) irradiated into the space direction of the wave mode. By chance, the values for both
energies coincide.

To get an asymptotic limit as a far-field pattern, the usual asymptotic factor eikr/r(n−1)/2 (cf. (2.5)) is
replaced by eikr. A simple calculation shows

〈ΦB
per, ϕ〉 := lim

r→∞

∫
rSn−1

+

e−ikr
∑

l′∈Zn−1:|αl′ |≤k

cl′e
i~αl′ ·~x χ~αl′cs

(
~x− ~x · ~αl′

~αl′ · ~αl′
~αl′

)
ϕ(~x/r) d~x

=
∑

l′∈Zn−1:|αl′ |≤k

cl′|Dl′

cs|ϕ(~αl′/k), (4.6)

ΦB
per(~p ) =

∑
l′∈Zn−1:|αl′ |≤k

cl′|Dl′

cs|δ~αl′/k(~p ) =
|D~αinc

cs |
αinc,n

∑
l′∈Zn−1:|αl′ |≤k

cl′αl′,nδ~αl′/k(~p )

=
|D~αinc

cs |
αinc,nk

∑
l′∈Zn−1:|αl′ |≤k

cl′α
2
l′,nδα′l′/k(p

′) =
|D~αinc

cs |p2
n

αinc,n/k

∑
l′∈Zn−1:|αl′ |≤k

cl′δα′
l′/k

(p′) ,

where, for the closed disc IDn−1 :={x′∈Rn−1 : |x′|<1} of radius one, we have used the integral
transformation

∫
Sn−1
+
f(~x )ϕ(~x )d~x =

∫
IDn−1

+
f(x′, xn)ϕ(x′, xn) 1

xn
dx′ with xn =

√
1−|x′|2 s.t., for

f(~x )=δ~αl′/k(~x ), there holds∫
Sn−1
+

δ~αl′/k(~x )ϕ(~x )d~x =

∫
IDn−1

+

αl′,n−1

k
δα′

l′/k
(x′)ϕ

(
(x′, xn)>

) 1

xn
dx′,
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A. Rathsfeld 16

i.e., δ~αl′/k(~x ) = [αl′,n/k]δα′
l′/k

(x′) = pnδα′
l′/k

(x′) with pn(p′) :=
√

1− |p′|2. In the sense of (4.6)
we get

uBper(r~p ) = eikrΦB
per(~p ) + o(1) , r →∞, (4.7)

ΦB
per(~p ) := CA pn

∑
l′∈Zn−1:|αl′ |≤k

cl′δ~αl′/k(~p ) = CA p
2
n

∑
l′∈Zn−1:|αl′ |≤k

cl′δα′
l′/k

(p′) (4.8)

~p ∈ Sn−1
+ , CA :=

|D~αinc
cs |

αinc,n/k
.

Note that this far-field pattern ΦB
per(~p ) is equal to the formally defined Φper(~p ) in (3.5) multiplied by

the function pn and by a constant factor. The additional factor pn is clearly due to the introduction of
a finite waist (cf. (4.2)). Again we define the smoothed far-field and the smoothed intensity (cf. (2.10)
and (2.11)) by

ΦB
per,R := p2

n

(
ΦB

per

p2
n

∗ ψ̂Rk/2π

)
= CA

[
k

2π

]n−1

p2
n

[
F(uper|Rn0ψR)

](
kp′

2π

)
, (4.9)

IBper,R(~p ) :=
1

C2
A[αinc,n/k]pn

|ΦB
per,R|2 . (4.10)

The factor 1/{C2
A[αinc,n/k]pn} in the last definition is borrowed from the subsequent Equ. (5.8). This

choice and the arguments, following Asm. 3.4 and leading to Iper,R→IR, imply IBper,R→IBR .

5 Far-field beam model for rough surface and its approximation

In this section we generalize the model of finite waist to the case of a rough surface. We suppose
the incoming plane-wave beam is scattered by a rough surface and apply the same arguments and
formulae as in Sect. 4.

Instead of a finite sum like in (3.3), we now have an integral

u
(
(x′, 0)>

)
=

∫
Rn−1

ei2πx′·ξ′ [Fu|Rn0 ](ξ′)dξ′
=

∫
Rn−1

[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
eikq′·x′ dq′,

u(~x )≈
∫
Sn−1
+

{[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
qn

}
eik~q·~x d~q, qn :=qn(q′) :=

√
1− |q′|2, (5.1)

where we have used the radiation condition (angular spectrum representation, cf. [9]), which, for n=3,
is stronger than the (HSRC), and where the integral over the ~q with |q′|>1 are neglected.

Assumption 5.1. We assume that the restriction of the function q′ 7→
[
F(u|Rn0 )

](
kq′/(2π)

)
qn to the

closed disc IDn−1 is continuous and that (5.1) provides a reasonable far-field approximation.

Remark 5.2. Note that the continuity condition on the Fourier transform [Fu|Rn0 ] is not fulfilled for
all rough surfaces and all plane-wave reflections (cf. Sects. 4 and 5). It is just this condition, which
leads to diffuse scattering in all directions with a continuous density function (cf. e.g. [26, Chapt. 7]).
Consequently, Asm. 5.1 should be accepted for a special application if experiments confirm this.
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rough surface

incoming beam u

diffuse reflection u

inc

Figure 5: Diffuse scattering by rough surface. To make them visible, the lengths of the corrugations of
the surface are increased.

Remark 5.3. Fix positive constants ε and cj, j=1, 2. If the Fourier transform F(u|Rn0 ) can be esti-

mated by |[F(u|Rn0 )](x′)|≤c1e
−c2|x′|1/2 and if we consider the far field of u(~x ) in the conical domain

of all ~x =r~p such that ~p ∈Sn−1
εD

with Sn−1
εD

:={~p ∈ Sn−1
+ : pn≥εD|p′|}, then the second part of

Asm. 5.1 holds. Of course, the interesting case of grazing incidence (cf. e.g. [6] [36] [33]) with |θinc|
close to π/2 is only covered at the price of larger constants.

Proof. The second part of Asm. 5.1 holds, i.e., the right-hand side of (5.1) is a good approximation, if
the remainder integral

∫
Rn−1\IDn−1

[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
eik~q·~x dq′ (5.2)

with q :=(q′, qn)> and qn := i
√
|q′|2 − 1 is small. If we consider the far field of u(~x ) in the conical

domain, then the generalized plane wave eik~q·~x in (5.2) can be estimated as

∣∣eik~q·~x∣∣ ≤ e−kqnxn ≤
{
e−kqnεD|p

′|r≤ e−0.5 k εD qnr if |p′| ≥ 0.5

e−kqnpnr ≤ e−
√

0.75 k qnr if |p′| =
√

1− p2
n ≤ 0.5 ,

≤ e−cE qnr, cE := k min
{

0.5 εD,
√

0.75
}
,

where e−cEqnr decays exponentially for r≥1 and |q′|→∞. Thus, if q′ 7→ [F(u|Rn0 )](kq′/(2π)) grows

not faster than e−cE |q
′|/2, then, by Lebesgue’s theorem on dominated convergence, we conclude that

the integral of (5.2) is small for large r.

Equation (5.1) corresponds to a diffuse scattering (cf. Fig. 5). In the far field, the plane wave eik~x·~q is
replaced by the beam eik~x·~qχ~qcs(~x−

~x·~q
~q·~q ~q ), i.e., by the wave (4.1) with with ~α=k~q andD~α

cs =Dq′
cs such

that the cross section of the ray with the horizontal plane Rn
0 isDho. Analogously to (4.3), we introduce

u(~x ) ≈ uB(~x ) :=

∫
Sn−1
+

{[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
qn

}
eik~x·~qχ~qcs

(
~x−~x · ~q

~q · ~q
~q

)
d~q . (5.3)
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A. Rathsfeld 18

Instead of (4.4) derived for cl′ei~αl′ ·~xχ
~αl′
cs (~x− ~x·~αl′

~αl′ ·~αl′
~αl′), we get

〈IB~q , ϕ〉 = lim
r→∞

∫
rSn−1

+

∣∣∣∣∣
[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
qn

∣∣∣∣∣
2
ωk

2%0

q′ ·[~x/r]χ~qcs

(
~x−~x · ~q

~q · ~q
~q

)
ϕ(~x/r) d~x

=

∣∣∣∣∣
[
k

2π

]n−1 [
Fu|Rn0

](kq′
2π

)
qn

∣∣∣∣∣
2
ωk

2%0

|D~q
cs|ϕ(~q ). (5.4)

Altogether, using |D~q
cs|= |D~αinc

cs |kqn/αinc,n (compare (4.2)), we arrive at

〈IB, ϕ〉 =
ωk2

2%0αinc,n

|D~αinc
cs |

∫
Sn−1
+

∣∣∣∣∣
[
k

2π

]n−1 [
Fu|Rn0

](kq′
2π

)
qn

∣∣∣∣∣
2

qn ϕ(~q )d~q,

IB(~q ) =
ωk2n|D~αinc

cs |
22n−1π2n−2%0αinc,n

∣∣∣∣[Fu|Rn0 ](kq′2π

)∣∣∣∣2q3
n = CI |Φ(~q )/Cn|2qn (5.5)

CI :=

[
k

2π

]2(n−1)
1

αinc,n/k
, Φ(~q )/Cn =

[
Fu|Rn0

](kq′
2π

)
qn .

Here, the same constant factor in front of the integral is dropped as in front of the sum in (4.5). Com-
paring (5.5) with (2.8), we see the same result except the different constant and except the additional
factor qn in (5.8). The last is due to the finite diameter of the beam (cf. (4.2)).

For the far-field pattern, a simple calculation shows

〈ΦB, ϕ〉 :=

lim
r→∞

∫
rSn−1

+

e−ikr
∫
Sn−1
+

{[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
qn

}
eik~q·~x χ~qcs

(
~x−~x · ~q

~q · ~q
~q

)
d~q ϕ(~x/r) d~x

=

∫
Sn−1
+

[
k

2π

]n−1[
Fu|Rn0

](kq′
2π

)
qn|D~q

cs|ϕ(~q ) d~q ,

ΦB(~p ) = CB p
2
n

[
Fu|Rn0

](kp′
2π

)
, CB :=

[
k

2π

]n−1 |D~αinc
cs |

αinc,n/k
, (5.6)

uB(r~p ) = eikrΦB(~p ) + o(1) , r →∞, ~p ∈ Sn−1
+ . (5.7)

Note that Φ(~p ) in (2.5), multiplied by the function pn and by a constant factor, is equal to ΦB(~p ) in
(5.6). From (5.5) we get

IB(~q ) =
1

C2
A[αinc,n/k]qn

∣∣ΦB(~q )
∣∣2 . (5.8)

Analogously to the smoothed far-field pattern ΦR (cf. (2.11) and compare (4.9)), we define the con-
volution ΦB

R(~p ) :=CBp
2
n[Fu|Rn0ψR](kp

′

2π
). Analogously to the smoothed far-field intensity function IR

(cf. (2.8) and the end of Sect. 2.2, compare (4.10)), we set IBR (~p ) := 1
C2
A[αinc,n/k]pn

|ΦB
R(~p )|2.

Collecting all the results, we arrive at

Theorem 5.4. Suppose Asm. 2.1 is satisfied such that, in accordance with physics, there exist a
unique wave solution of the scattering problem. Further suppose Asm. 4.1, i.e., that our beam model
of finite extent is a good approximation. Observing, for our application in mind, a diffuse continuous far-
field intensity function, we suppose Asm. 5.1. Then, for any given ε>0, there is an R0>0 such that,
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rough surface

incoming beam u

diffuse reflection u

inc

reflected beam upw

sm

Figure 6: Reflected beam and diffuse scattering pattern for rough surface.

for any R≥R0, the supremum norm ‖IB−IBR ‖L∞ of the far-field intensities is less than ε. Finally,
suppose the convergence of the periodized finite-section method in the sense of Asm. 3.4. Then there
is a per0 =per0(R0)>0 such that, for any per≥per0, the supremum norm ‖IBR0

−IBper,R0
‖L∞ is

less than ε, and ‖IB−IBper,R0
‖L∞≤2ε.

Remark 5.5. Instead of an estimate with a small ε, a convergence rate can be derived. To get an
estimate depending on R for the term ‖IB−IBR ‖L∞ an additional smoothness assumption for the
function IDn−13q′ 7→

[
F(u|Rn0 )

](
kq′/(2π)

)
is required. To estimate the deviation ‖IBR0

−IBper,R0
‖L∞

a convergence rate w.r.t. per for the finite section method is needed (cf. the rate for the non-periodic
finite section method in [7]).

6 Scattering with additional plane-wave beam irradiated into the
direction of the mirror reflection

Experimental observations show that, in the case of shallow roughness corrugations, the reflected
field is the superposition of a beam propagating in the reflection direction of a perfect mirror plus
a diffusively scattered wave (cf. Fig. 6 and the model presented in [32]). Therefore, we extend the
scattering far-field of Sect. 5 in this section by an additional beam. Though, from the theoretical point
of view, a representation without this beam and with a peak in the function uB (cf. (5.3)) might be
the correct approach, the additional plane-wave term will improve the approximation in numerical
calculations.

The assumption and the precise notation of the above mentioned representation of the wave solution
u are as follows (for the plausibility, compare Remarks 5.2 and 5.3).

Assumption 6.1. We assume u=upw+usm is a reasonable far-field approximation with a plane
wave upw(~x ) :=cpw e

i~α0′ ·~x (cf. (3.4)) and with a wave usm of the form (5.1), where the restriction of
the function q′ 7→

[
F(usm|Rn0 )

](
kq′/(2π)

)
q3 to the closed disc IDn−1 is continuous.

For the modified field (cf. the terms in the sum of (3.3) and replace l′ by 0′, and cf. Fig. 6),

uB = uBpw + uBsm, uBpw(~x ) := cpw e
i~α0′ ·~xχ~α0′

cs

(
~x− ~x · ~α0′

~α0′ · ~α0′
~α0′

)
. (6.1)
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Here the smooth part uBsm is a wave scattered diffusively by a finite part of the rough surface and can
be treated like in (5.7) and (5.8). The plane-wave part can be treated like in (4.7) and (4.5).

In accordance with the representation (6.1), we get the splitting ΦB =ΦB
pw+ΦB

sm, where ΦB
pw and ΦB

sm

are defined following (4.7) and (5.7), respectively. The intensity of the total field is the superposition of
the intensities for the reflected plane-wave beam and that for the diffusively scattered wave (cf. (4.5)
and (3.10) as well as (5.8)).

IB = IBpw+IBsm, IBpw(~p ) := |cpw|2δ~α0′/k
(~p ), IBsm(~p ) :=

1

C2
A[αinc,n/k]pn

|ΦB
sm(~p )|2, (6.2)

Indeed, if we argue as in (4.4)-(4.5) and (5.4)-(5.5) and look at the limit for r→∞ of the integral of
the smooth part of the intensity over the intersection of the tube{

~x ∈ Rn : χα0′
cs

(
~x− ~x · ~α0′

~α0′ · ~α0′
~α0′

)
6= 0

}
in the direction ~α0′/k with the sphere of radius r, then the O(1/r) asymptotics of this diffusion part
leads to no term of interaction at the mirror direction.

Now by uBper and ΦB
per we denote the functions of (4.3) (cf. (3.2) and (3.3)) and (4.8) (cf. (3.5)), respec-

tively. These are the functions corresponding to the periodized boundary and to the same plane-wave
incidence as for the rough surface. Defining the smoothed patterns (compare Equs. (2.10) and (2.11))

ΦB
per,R,sm(~p ) := p2

n

[
[ΦB

per − ΦB
pw](·, qn(·))
q2
n(·)

∗ ψ̂Rk/2π

]
(~p ), (6.3)

ΦB
R,sm(~p ) := p2

n

[
ΦB

sm(·, qn(·))
q2
n(·)

∗ ψ̂Rk/2π
]
(~p )

and using the supremum norm convergence of uBper−uBpw to uBsm over bounded domains (cf. the ar-
guments after Asm. 3.4), we obtain the convergence ΦB

per,R,sm→ΦB
R,sm for per→∞ in any Sobolev

norm (cf. the convergence ΦB
per,R→ΦB

R at the end of Sect. 3). For large R, the pattern ΦB
R,sm is close

to the smooth pattern ΦB
sm such that ΦB

per,R,sm is close to ΦB
sm for large periods per=per(R). Hence

(cf. (6.2)), the intensity functions IBsm and IB can be approximated by IBper,R,sm and IBper,R, respectively.

IBper,R,sm :=
1

C2
A[αinc,n/k]pn

|ΦB
per,R,sm|2, IBper,R := IBpw +

1

C2
A[αinc,n/k]pn

|ΦB
per,R,sm|2,

IBR,sm :=
1

C2
A[αinc,n/k]pn

|ΦB
R,sm|2.

Recall that, for the rough surface with small corrugations (small amplitudes of the corrugations of
function F ), we experimentally observe that the scattered wave is a ray in the direction of the mirror
reflection plus a wave scattered diffusively in all other direction (cf. the model in [32]). We assume that
the corresponding intensity function is a continuous density. In accordance with this, for the periodic
approximation, we split the Rayleigh coefficient c0′ into c0′=c0′,pw+c0′,sm. In the case of small corru-
gations, c0′,pw should be a “small” perturbation of c0′ . The remainder value c0′,sm is part of a diffuse
reflection, i.e., c0′,sm is the “smooth continuation” of the remaining reflection orders cl′,sm :=cl′ with
l′ 6=0′. More precisely, we assume that, for large periods per, the cl′,sm substituted into (4.8) lead to a
smooth approximation of the regular far-field pattern ΦB

sm, i.e, the pattern is ΦB
per =ΦB

per,pw+ΦB
per,sm

with (cf. (4.8))

ΦB
per,pw := CAp

2
n(c0′−c0′,sm)δα′

0′/k
, ΦB

per,sm := CAp
2
n

∑
l′∈Zn−1:|α′

l′ |≤k

cl′,sm δα′
l′/k

. (6.4)
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The value c0′,sm is chosen such that ΦB
per,sm or, equivalently, 1

p2n
ΦB

per,sm is a “nice” generalized function,
i.e., the coefficients cl′,sm of the uniformly distributed Dirac delta functions δα′

l′/k
are the values of a

smooth function restricted to the points α′l′/k. The smoothing of such distributions by convolution with
a smooth function of smaller support leads to smooth function with no spikes.

In view of (6.4) and

1 =

∫
ψ̂Rk/2π(p′ − q′)dq′ = lim

per→∞

∑
l′∈Zn−1

ψ̂Rk/2π(p′−α′l′/k)

[
2π

k per

]n−1

, (6.5)

we get

ΦB
per,R,sm ≈ ΨB

per,R,sm := CAp
2
n

∑
l′∈Zn−1\{0′}: |α′

l′ |≤k

cl′,sm δα′
l′
∗ψ̂Rk/2π∑

l′∈Zn−1\{0′}: |α′
l′ |≤k

[
2π
k per

]n−1
δα′

l′
∗ ψ̂Rk/2π

. (6.6)

By Equ. (6.4) and the definitions (4.9) and (6.3), we conclude

c0′,pw =
(c0′ − c0′,sm)ψ̂Rk/2π(0′)

ψ̂Rk/2π(0′)
=

ΦB
per,R,pw(α′0′/k)

CA[pn(α′0′/k)]2ψ̂Rk/2π(0′)

=
ΦB

per,R(α′0′/k)− ΦB
per,R,sm(α′0′/k)

CA[pn(α′0′/k)]2ψ̂Rk/2π(0′)
,

c0′,pw ≈ c0′,R,pw :=
ΦB

per,R(α′0′/k)−ΨB
per,R,sm(α′0′/k)

CA[pn(α′0′/k)]2ψ̂Rk/2π(0′)
. (6.7)

Substituting (6.7), with ΨB
per,R,sm defined in (6.6), into the ΦB

pw of Equ. (6.3) and replacing ΦB
sm by

ΦB
per,R,sm in (6.2), we arrive at the numerical approximation IBper,R,sm for IBsm.

Collecting all the results, we arrive at the following generalization of Thm. 5.4. Remark 5.5 holds in this
case as well.

Theorem 6.2. Suppose Asm. 2.1 is satisfied such that unique wave solutions are guaranteed for the
scattering problem. Further suppose Asm. 4.1, i.e., that our beam model applies. To model a reflected
beam in specular direction together with a diffuse continuous far-field intensity function, suppose Asm.
6.1. Then, for any given ε>0, there is an R0>0 such that, for any R≥R0, the supremum norm
‖ΦB

sm−ΦB
R,sm‖L∞ of the far-field patterns is less than ε. Finally, suppose the convergence of the

periodized finite-section method in the sense of Asm. 3.4. Then there is a per0 =per0(R0)>0 such
that, for any per≥per0, the supremum norm ‖IBsm−IBper,R0,sm

‖L∞ as well as the deviation of the
zeroth order Rayleigh coefficients |c0′,pw−c0′,R0,pw| are less than 2ε.

On the other hand, we can also use a formula based on the efficiencies instead of the Rayleigh
coefficients. For this we observe (cf. (6.3), (6.4), and (6.5)) that ΦB

per,R,sm is equal to p2
n times the

quasi-interpolant of the complex values
[
k per
2π

]n−1
cl′,sm. Indeed,

ΦB
per,R,sm(~p ) = p2

n

∑
l′∈Zn−1: |α′

l′ |≤k

[
k per

2π

]n−1

cl′,sm ψ̂Rk/2π(p′−α′l′/k)

[
2π

k per

]n−1

, (6.8)
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where, for sufficiently large R, the function values of ψ̂Rk/2π(·−α′l′/k) are concentrated in a small
neighbourhood of α′l′/k. Of course, the approximation error of ΦB

per,R,sm by the quasi-interpolation is
larger close to the boundary of IDn−1, since the values at the interpolation points outside of IDn−1 are
set to zero. However, the corresponding approximation error of ΦB is improved due to multiplication
by p2

n.

By the representation of ΦB
per,R,sm(~p ) as quasi-interpolant, the values |ΦB

per,R,sm(~p )|2 can be approx-
imated by p4

n times the quasi-interpolant of the values

[
k per

2π

]2(n−1)

|cl′,sm|2 =

[
k per

2π

]2(n−1)
α0′,n

αl′,n
Eper,l′,sm, l′∈Zn−1 with |α′l′|≤k , (6.9)

Eper,l′,sm :=

{
Eper,l′ =

αl′,n
α0′,n
|cl′|2 if l′ 6= 0′

|c0′,sm|2 =
α0′,n
α0′,n
|c0′,sm|2 if l′ = 0′

. (6.10)

Here Eper,0′,sm := |c0′,sm|2 is the efficiency of the difference wave of the 0′th order reflected wave in
uper (cf. (3.3)) minus the wave upw. Surely, the quasi-interpolant of |ΦB

per,R,sm(~p )|2 can be replaced
by an average value of all the numbers in (6.9) with l′, for which α′l′/k∈ IDn−1

+ is close to p′.

Recall that, for the rough surface with small corrugations (small amplitudes of the corrugations of
function F ), we experimentally observe that the scattered wave is a ray in the direction of the mirror
reflection plus a wave scattered diffusively in all other direction (cf. the model in [32]). We assume that
the corresponding intensity function is a continuous density. In accordance with this, for the periodic
approximation, we split Eper,0′ into Eper,0′=Eper,pw+Eper,0′,sm, where Eper,pw is the energy portion
transmitted by an approximate plane-wave reflection. In the case of small corrugations, this should
be a “small” perturbation of Eper,0′ . The remainder value Eper,0′,sm is part of a diffuse reflection, i.e.,
Eper,0′,sm is the “smooth continuation” of the remaining reflection orders Eper,l′ with l′ 6= 0′. More
precisely, we assume that, for large periods per, the Eper,l′,sm substituted into (4.5) lead to a smooth
approximation of the regular intensity distribution IBsm, i.e, the total intensity is IBper =IBper,pw+IBper,sm

with (cf. (4.5))

IBper,pw := (Eper,0′−Eper,0′,sm)δ~α0′/k
, IBper,sm :=

∑
l′∈Zn−1:|α′

l′ |≤k

Eper,l′,sm,l′δ~αl′/k

:= pn
∑

l′∈Zn−1:|α′
l′ |≤k

Eper,l′,sm,δα′
l′/k

.

The value Eper,0,sm with 0≤Eper,0,sm≤Eper,0 is chosen such that IBper,sm or, equivalently, 1
pn
IBper,sm

is a “nice” generalized function (compare the “nice” function 1
p2n

ΦB
per,sm). In view of (6.2), (6.8), and
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(6.5), we get

1

pn
IBper,R,sm :=

∑
l′∈Zn−1\{0′}: |α′

l′ |≤k
Eper,l′,sm δα′

l′
∗ψ̂Rk/2π∑

l′∈Zn−1\{0′}: |α′
l′ |≤k

[
2π
k per

]n−1

δα′
l′
∗ ψ̂Rk/2π

(6.11)

≈
[

1

qn(·)
IBper,sm

]
∗ψ̂Rk/2π ,[

2π

k per

]n−1
1

pn
IBper,R,sm(~p ) = EB

per,R,sm(p′), ~p = (p′, pn)>∈ S2
+ , (6.12)

EB
per,R,sm(p′) :=

∑
l′∈Zn−1\{0′}: |α′

l′ |≤k

Eper,l′,sm ψ̂Rk/2π

(
p′− α′

l′
k

) [
2π
k per

]n−1

∑
l′∈Zn−1\{0′}: |α′

l′ |≤k

ψ̂Rk/2π

(
p′− α′

l′
k

) [
2π
k per

]n−1 .(6.13)

HereEB
per,R,sm(p′) is a quasi-interpolation of the valuesEB

per,l′,sm such thatEB
per,R,sm(α′0′/k) approx-

imates Eper,0′,sm, which is equal to [Eper,0′−Eper,pw]. For Eper,pw, we arrive at the approximation

Eper,R,pw := Eper,0′ − EB
per,R,sm

(
α′0′

k

)
. (6.14)

For the measured intensity in (2.9) with I replaced by IB , we get the approximation

Imeas
per,R := Eper,R,pw +

∫
{~p∈S2+: ~p ·[~α0′/k]>cos ζ}

IBper,R,sm(~p ) d~p

≈ Eper,R,pw + π tan2(ζ)IBper,R,sm

(
~α0′

k

)
= Eper,R,pw + π tan2(ζ)

[
k per

2π

]n−1
α0′,n

k
EB

per,R,sm

(
α′0′

k

)
. (6.15)

The formulae (6.13), (6.14), and (6.15) provide us a way to simulate the measured values from solving
the boundary value problem above the periodized surface.

7 Stochastic simulation of gratings with rough surfaces

In this section we describe how to construct gratings with stochastic surfaces. Each of this can be con-
sidered as a periodization of a non-periodic rough surface structure. So we can compute the smoothed
intensities of these gratings and consider them as approximations of non-periodic rough surfaces. We
can study the mean values of these entities, which provide us the simulated measurement data for the
inverse problem of Sect. 8. In any case, we restrict our consideration to the simplest model.

In comparison with −hF ≤F (x′)<0 required in Sect. 2.1, we now shift the coordinates of the rough
surface in xn direction such that the coordinate xn is zero for the points of the ideal planar surface
without roughness and such that F (x′) is fluctuating around zero. To get a grating with rough interface,
we define the interface height F (x′) depending on x′ as a realization of a stochastic field. We consider
the model
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i) Suppose that Fper : Rn−1→R is periodic for n=2 and biperiodic for n=3 with the periods
equal to per.

ii) For each x′∈R2, we assume that Fper(x
′) is a random variable ω 7→Fper(x

′, ω) with mean
value E

[
Fper(x

′)
]
=0 and standard deviation ŝ :=

√
E[(Fper(x′)−0)2] independent of x′.

iii) For each x′, y′∈R2, we assume that the random variables F (x′) and F (y′) are correlated

such that corr(F (x′), F (y′)) :=E[(F (x′)−0)(F (y′)−0)]/ŝ2 =e−|x
′−y′|2∗/l̂ 2 with the period-

ized Euclidean distance |x′−y′|∗ := min{|x′−y′+per l′| : l′∈Zn−1} and with the correlation
length l̂ independent of x′ and y′.

The correlation function (x′, y′) 7→corr(F (x′), F (y′)) is the Fourier transform of the power spectral
density, the standard deviation ŝ is the root mean square height, and the reciprocal correlation length
1/l̂ determines the frequency level of the corrugations due to roughness (cf. [13]). Equivalently to i)-
iii), by the Karhunen-Loève expansion (compare the representation of coefficients for stochastic partial
differential equations in [4]), we get the representation

F (x′, ω) = ŝ

∞∑
m′∈Zn−1:mj≥0

√
λm′

2(n−1)∑
m0=1

Ym′,m0(ω)ϕcorr
m′,m0

(x′) , (7.1)

where, by Ym′,m0(ω), we denote independent normally distributed random numbers with mean value
zero and standard deviation one. The convergence holds in the L2 norm w.r.t. the random vari-
able ω (even almost surely) and uniformly w.r.t.x′. The values λm′ and the functions ϕcorr

m′,m0
with

1≤m0≤2(n−1) in (7.1) are the eigenvalues and the eigenfunctions of the integral operator over

the periodic domain [0, per]n−1 with correlation kernel k(x′, y′)=e−|x
′−y′|2∗/l̂ 2 . The eigenfunctions

ϕcorr
m1,m0

for n= 2 and ϕcorr
m′,m0

for n= 3, respectively, of the operator with a general correlation kernel
k(x′, y′)=corr(F (x′), F (y′))=cor(|x′ − y′|∗) are given by

ϕcorr
m1,m0

(x1) :=

√
2π

per

 cos
(

2π
per
x1

)
if m0 = 1

sin
(

2π
per
x1

)
if m0 = 2

,

ϕcorr
m′,2(j1−1)+j2

(x′) := ϕcorr
m1,j1

(x1)ϕcorr
m2,j2

(x2), j1, j2 = 1, 2 .

The corresponding eigenvalues of this convolution operator are the Fourier coefficients

λm′ :=


∫ per/2

−per/2
cor(|z1|∗)eiz1m1dz1 if n = 2∫ per/2

−per/2

∫ per/2

−per/2
cor(|z′|∗)eiz

′·m′dz2dz1 if n = 3 .

In particular, for k(x′, y′)=e−|x
′−y′|2∗/l̂ 2 , we get

λm′ :=
n−1∏
j=1

λmj , λmj :=

∫ per/2

−per/2

e−t
2/l̂ 2eitmjdt = 2

∫ per/2

0

e−t
2/l̂ 2 cos(tmj) dt

=

√
π

4
l̂e−[l̂mj ]

2/4 +O

(
e−[per/l̂ ]2/8

[per/l̂ ]

)
, per→∞ .

In our numerical computations we consider the case n=2 only. For simplicity and for easier
implementation, we replace the normally distributed Ym′,m0 by uniformly distributed random numbers,
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Figure 7: Example of rough periodic 2D grating.

though not all fields with uniformly distributed F (x′) (cf. condition ii)) can be represented by the (7.1)
with independent Ym′,m0 . Furthermore, we restrict the infinite sum to a sum over M=16 terms.
Finally, we replace the correlation function with the eigenvalues λm′ by a similar one with the simpler
eigenvalues a2

m. Altogether, for the x1 =x′∈Rn−1, we use the representation

F (x′, ω) = ŝ

M∑
m=1

am

{
sin

(
m

2π

per
x′
)
Y2m(ω) + cos

(
m

2π

per
x′
)
Y2m+1(ω)

}
, (7.2)

am :=
e−m

2 l̂ 2/2√∑16
n=1 e

−n2 l̂ 2
,

with independent random numbers Ym(ω) uniformly distributed in (−1, 1). A realization of (7.2) over
a period of per=8µm with standard deviation ŝ= 0.25 µm and correlation length l̂= 0.125 µm is
shown in Fig. 7.

The Dirichlet boundary condition at the rough surface in the preceding sections has been chosen
since this is the condition with the best theoretical results. For the numerical experiments it is not
essential. We only have to suppose that our assumptions on the solutions are satisfied, that the unique
solvability is guaranteed, and that the periodized finite section converges. So we use a more practical
boundary condition in our computations, i.e., we consider a TE-polarized electro-magnetic wave, air as
cover material above the rough surface, and silicon as substrate material below. This means that the
Dirichlet condition is replaced by continuous transmission conditions for u and for its normal derivative
over the rough surface. A second radiation condition for u in the lower half space is added.

Next we consider irradiation from above, i.e., the reflection u of an incoming plane wave with incidence
angle θinc =0◦ such that k′inc =α′0′=0 (cf. (2.1) and (3.4)). We irradiate a single rough surface of
period per=128 µm, with a standard deviation of the heights F (x1) equal to ŝ=0.25 µm, and with
correlation length l̂ = 0.50 µm by a plane wave beam of wavelength λ= 400 nm. On the left-hand
picture of Fig. 8, the red points present the symmetric efficiencies (Eper,l′+Eper,−l′)/2 depending on
the angle θl′ of the propagation direction with sin θl′=αl′/k (cf. (3.4)). The points of efficiency values
are not located, as eventually expected, close to the graph of a smooth function. However, considering
smoothed efficiencies (6.13) and simplifying the quasi-interpolation by taking the average

Eper,avg(θ) :=

∑
l′:|θl′−θ|<θavg

max
{[
θavg − |θ − θl′ |

]
, 0
}
Eper,l′∑

l′:|θl′−θ|<θavg
max

{[
θavg − |θ − θl′|

]
, 0
}

with average angle θavg =10◦, we obtain the smooth curve in green. Note that we multiplied the
efficiencies by cos θ and a constant. The factor cos θ corresponds to the factor pn in (6.12), and the
multiplied efficiency is really a constant multiple of the intensity. The average angle θavg corresponds
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Figure 8: Reflected intensity for a single surface (left) and average of 100 realizations (right).

to the parameter 1/R in (6.13). We have tested several values of θavg starting from 30◦ going to zero.
This results in smooth curves, which do not really change anymore for θavg≤10◦ unless θavg is so
small that the average function follows the jumps of the efficiency points. So θavg =10◦ turns out to be
a reasonable choice.

In most applications, we are not really interested in a single realization. Think of the roughness of
the surface of the ocean or think of the roughness of the planar surface of a workpiece, which ideally
should be planar. We are more interested in finding the character of the roughness, i.e., in finding the
parameters of the stochastic field modeling the surface. Moreover, it seems natural that our measure-
ment data is not the intensity of the reflection by a single surface but the mean of intensities for many
realizations. If we get the measurement data from an air plane flying over the ocean, the see surface
changes with the location or by the time running. If we employ special measurement devices, using
beams with “big” cross-section diameter irradiating larger parts of the workpiece and if the aperture
of the detector is large, then ergodicity arguments suggest mean values as data. Lastly, if really the
reflection of single rough surfaces are measured, then the measurement can be repeated at different
places and mean values can be computed. So, following the spirit of the Monte Carlo method, we
started to simulate several realizations of the rough surfaces and computed the mean values. Using
this, we observe that the average efficiencies on the right-hand picture of Fig. 8 accumulate around the
smoothed curve, and the smooth curve looks similar to that on the left-hand side, if the scaling would
be harmonized. In our figure, we have used a hundred realizations. Without presenting the pictures
here, we mention that the higher the number of realizations, the closer are the red mean values to the
points of the smoothed curve (dotted green line).

Now we check the dependence on the period per. There is a rule of thumb to choose the per at
least ten times larger than the correlation length l̂ (cf. [38, Sect. 2.5]). We generate a big grating with
per=128µm or 200µm, ŝ=0.25µm, and l̂=0.5µm and reduce the period to smaller values by
(3.1). Again we fix λ=400 nm and θinc =0◦. On the left-hand side of Fig. 9, we present the smoothed
reflected intensities for various periods and a single representation. On the right we present the in-
tensities for various periods averaged over many representations. The greater the period the closer
is the intensity curve to that of the largest period. We remark that an equally good approximation of
the intensity can be determined by rough surfaces with huge period and a few number of realizations
and by a rough surfaces with period of medium size but with a larger number of realizations (compare
Fig. 10 for per=8µm and 10 000 realizations with the left picture of Fig. 8 for per=128µm and 100
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Figure 9: Reflected intensities by periodic approximation of the surface. Single surface (left) and
average of many realizations (right)
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Figure 10: Reflected intensity averaged over 10 000 realizations.

realizations).

Finally, we look at rough surfaces, where an additional plane-wave reflection in accordance to Sect. 6
appears. We generate gratings with per running between 1µm and 128µm, fix λ=400 nm, θinc =0◦,
as well as l̂=0.5 µm. The additional plane-wave reflection is expected for small corrugations in the
roughness, so we choose ŝ=0.0625 µm. For example, in Fig. 11 we choose per=16µm and see,
clearly, the outlier of order zero (propagation angle θ0 =0◦) for the efficiencies of a single realization
on the left and for the average over 1 000 samples at the right. The convergence of the values Eper,0

andEper,pw :=Eper,0−Eper,0,sm (cf. (6.10)) is shown in the plots of Fig. 12 on the left and on the right,
respectively.
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Figure 11: Efficiencies and smoothed efficiencies for rough surface with small amplitudes in the cor-
rugations. For single realization (left) and average over a thousand samples (right).

100 101 102 103
4

5

6

7

8

9

period (nm)

ef
fic

ie
nc

y 
(%

)

Zero order efficiency: st.de.=0.0625 nm,co.le.=0.5 nm

1 sample
1000 samples

100 101 102 103
4

5

6

7

8

9

period (nm)

ef
fic

ie
nc

y 
(%

)

Plane wave efficiency: st.de.=0.0625 nm,co.le.=0.5 nm

1 sample
1000 samples

Figure 12: Convergence of the efficiencies for per→∞. Zero order efficiency of periodic surface (left)
and efficiency of plane-wave reflection (right).

8 An inverse problem for rough surfaces: Bayesian approach

Now we turn to the inverse problem of reconstructing the random-field parameters of the rough surface
from measured scatterometric data, where, as mentioned in Sect. 7, the mean of the usual intensity
data is used (cf. [40]). We formulate the problem and report a numerical experiment, where a numerical
solution is provided by Bayesian inversion. Note that the measurement setting for the rough surface is
just the same as that used for the scatterometric measurement of non-stochastic gratings in [24].

The usual measurement values of the intensity have been introduced in (2.9) and can be simu-
lated by (6.15). Clearly, these values depend on the wavelength λ and on the rough surface, i.e.,
Imeas =Imeas(F (·, ω), λ) with F (·, ω) the stochastic realization by the representation (7.1). For an
incident wave from above (θinc =0◦) with wavelengths λ=λ1, λ2, · · · , λM , our measurement data is
the vector of the stochastic mean values (expectation, numerically approximated by the mean value
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Figure 13: Spectra E[Eper,0′(λ)] averaged over nMC =512 realizations with per=8µm for fixed

correlation length l̂=0.5µm (left) and for fixed standard deviation ŝ=0.5µm (right).

over nMC realizations)

Im := E
[
Imeas(F (·, ω), λm)

]
, m = 1, · · · ,M. (8.1)

Note that a rough surface can have stochastic corrugations on several “frequency” levels (superpo-
sition of random fields with different reciprocal correlation lengths, cf. [38, Sect. 2.2]). The inspecting
wave sees only the corrugations, which are close to the wavelength or larger. So it would be natural to
adapt the wavelength of the scatterometric measurement to the coarsest corrugations and to recon-
struct these first. The unknown data describing the random-field parameters of F , defined by (7.1) or
(7.2), is in our simple case the pair (ŝ, l̂ ) of standard height deviation ŝ and correlation length l̂.

In more difficult cases the random-field parameters could be a set of parameters describing func-
tions in a class of possible distributions for the i.i.d. random variables F (x′) and in a class of possible
correlation functions R2×R23(x′, y′) 7→corr(F (x′)F (y′)). Additional unknown parameters could
describe the measurement uncertainty, and, in addition to (8.1), one could measure the intensity in
several directions or for several directions of incidence. Besides the intensity values, there could be
measured phase shifts of the reflected beams or, for electro-magnetic waves, polarization data. How-
ever, we restrict our numerical tests to the couple (ŝ, l̂ ) to be recovered from measured data (8.1)
with M=13 and λm :=400µm+(m−1)20µm. Fig. 13 proves that the spectral data (8.1) is sensi-
tive w.r.t. the stochastic parameters, i.e., to the standard deviation ŝ (left) and to the correlation length
l̂ (right).

To simulate measurement data, we fix the solution (ŝsol, l̂sol) :=(0.25, 0.25)∈ [0.1, 1]×[0.1, 1] of the
inverse problem and compute measurement data for realizations of (7.2) with per=8µm by an FEM
method (software package DiPoG, cf. e.g. [14,20]). In order to avoid unrealistically good reconstruction
results, i.e., to avoid the so called inverse crime, we use a very fine FEM grid and a big number
of realizations (nMC =4 096) to compute the stochastic mean values. The numerical reconstruction
algorithm, which is based on simulations by FEM as well, uses smaller numbers (nMC =128) for the
mean evaluation and coarser FEM grids such that a sufficient accuracy of approximation is reached in
an acceptable amount of computing time. In this case the values of ŝ are sufficiently large such that the
extra plane-wave reflection ppw is zero (cf. Sects. 6 and 7), and the intensity distribution IBper,R is the
smooth IBper,R,sm (cf. (6.11)). The latter is the product of a constant times the quasi-interpolant of the
efficiency values Eper,l′ (cf. (6.13)). Neglecting the constant, we can assume that the measurement
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Figure 14: Posterior density dπδ for noise level η̂=0.1. Correlation length and standard deviation are
given in µm.

values are

Emeas
0′ (λm) = E

[
Eper,0′(F (·, ω), λm)

]
, m = 1, · · · ,M. (8.2)

Finally, we replaceEper,0′ in (8.2) by a noisyEno
per,0′ , adding a simulated stochastic measurement error

to the computed measurement data.

Eno
per,0′(F (·, ω), λm) := Eper,0′(F (·, ω), λm) + η, (8.3)

The values of η depend on m and ω. Thus the measurement error η in (8.2)-(8.3) is supposed to
be normally distributed without systematic error. The standard deviation η̂ is the measurement uncer-
tainty, or, in other words, it is the noise level of the measurement.

For the reconstruction of the unknown pair (ŝsol, l̂sol), i.e., for the solution of the inverse problem, we
follow the Bayesian approach (cf. [23]). Choosing the uniformly distributed (non-informative) prior den-
sity dπ0(ŝ, l̂ ) of the values ŝ and l̂ to be reconstructed from measurement data (8.2), we determine
the non-normalized posterior density

dπδ
(
ŝ, l̂
)

= exp

(
− 1

2η̂

M∑
m=1

∣∣∣Emeas
0′ (λm)− E

[
Eper,0′(ŝ, l̂, λm)

]∣∣∣2) dπ0

(
ŝ, l̂
)
.

Normalizing this to 1
Z
πδ([0.1, 1]×[0.1, 1])=1, for any subset D⊆ [0.1, 1]×[0.1, 1] the measure

1
Z
πδ(D) is the approximate probability that the true solution (ŝsol, l̂sol) is in D. The plots in the Figs.

14-15 present the scans (30×30 grid points) of the densities of πδ for the noise levels η̂=0.1, 1, 10.
The probability measure is concentrated close to the point (ŝsol, l̂sol) = (0.25, 0.25). The smaller the
noise, the closer are the concentration points to the true solution. Note that even in the best case
η̂=0.1, there is a deviation from the true solution, which can be attributed to the approximation errors
of the FEM and of the mean-value computation.
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Figure 15: Posterior densities dπδ for noise level η̂=1 (left) and for η̂=10 (right). Correlation length
and standard deviation are given in µm.

9 Surrogate model by tensor-train representation.
MCMC method

Typically, for the solution of the inverse problem, a huge number of FEM simulations is needed. Such a
simulation of the observation function, mapping the unknown parameters to the observable measure-
ment values, requires long computation times. This is a problem for our Bayesian inversion and for
most of the alternative inverse solvers. It cannot be avoided by using alternative simulation tools like
scattering matrix methods (RCWA, FMM) or integral equation methods instead of the FEM. Moreover,
if the random-field description is sought for many different surfaces and if the result of the reconstruc-
tion is needed in times less than a second (e.g. for in-situ measurements to control a manufacturing
process, cf. e.g. [24]), then the simulation should be replaced by a faster surrogate model. The do-
main of unknown parameters should be scanned, and, for each scanning point a simulation should
be performed. Using such a library of simulation values, any further simulation for an arbitrary point
in the domain can be replaced by an interpolation of precomputed library values. This is fine for our
simple problem with only two unknowns. However, if instead of a single parameter ŝ for the normally
distributed rough-surface functions F a completely unknown distribution function is sought or if instead
of the length l̂ of the Gaussian correlation function a generally unknown correlation function is sought,
then, after discretization, we end up with many parameters. Due to what is called curse of dimension,
a simple computation of a huge library is not possible anymore. A faster algorithm based on adaptive
approximation is needed. We suggest a tensor-train approximation (cf. [28]) of the library and show,
for out tiny test problem, that such a method works.

The observation is modeled by the mapping M : [0.1, 1]×[0.1, 1]→RM , which defines for each
(ŝ, l̂ ) the vector of observed (averaged) measurements. To obtain an efficient sampling for the under-
lying inverse problem, we employ a tensor surrogateMT ≈M (cf. [28] and [15]) which admits a fast
evaluation procedure and moderate memory dependency. The approximationMT is obtained by an
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Figure 16: Mapping of observationM : (ŝ, l̂ ) 7→Eper,0′ for λ5 =480 nm simulated by FEM (left) and
surrogate modelMT of (9.1) (right). Correlation length and standard deviation are given in µm.

optimization approach. For that, the RM valuedMT is modeled as

[
MT (ŝ, l̂ )

]
i

=

r1∑
k1=1

r2∑
k2=1

U0[i, k1]

(
n1∑
i1=1

U1[k1, i1, k2]P 1
i1

(l̂ )

)(
n2∑
i2=1

U2[k2, i2]P 2
i2

(ŝ)

)
, (9.1)

which is a functional extension of the Schmidt or singular value decomposition. In particular, we choose
Legendre polynomials for the basis functions P 1

i and P 2
i , and fix a low polynomial degree of order

n1 =n2 =5. Accordingly, the parameter r=[r1, r2] is called rank of the tensor. The component ten-
sors U0∈RM,r1 , U1∈Rr1,n1,r2 and U2∈Rr2,n2 are obtained by minimizing the cost functional

J (U0, U1, U2) =
1

900

900∑
i=1

|MT (ŝi, l̂i)−M(ŝi, l̂i)|2,

where the (ŝi, l̂i) form the points of a uniform grid in [0.1, 1]×[0.1, 1] (random samples would be
suitable as well). The rank parameter r is chosen adaptively during the optimization procedure.

Even though, the creation of the surrogate model is characterized by an L2 type minimization, we
obtain a favorable convergence in the L∞ sense due to the regularity of the modelM and due to the
compactness of the parameter space [0.1, 1]×[0.1, 1]. The usual choice of Legendre polynomials of
order less than five yield a suitable approximation as seen in Figs. 16-17 for λ5 =480 nm. On the left
of Figs. 16 the full FEM model is shown. The approximation by the surrogate tensor approximation is
on the right and the relative, point-wise approximation error is shown in Fig. 17. The nonsmoothness of
the full FEM model does not correspond to a nonsmooth observation function of the true observation
function but rather to the nonsmooth approximation by FEM and mean value computation.

The dimension of the tensor representation is given by the amount of degrees of freedom incorporated.
Here, for a full tensor representation Mn1n2 =325 parameters are needed, whereas in the tensor-
train formulation Mr1+r1n1r2+r2n2 =329 parameters are used. Actually, this means no model
order reduction and is due to the relatively high rank r=[8, 5]. This behaviour can be explained by
a high correlation between ŝ and l̂ w.r.t. the observed quantity. On the other hand, the tensor-train
approximation is accurate, and, for higher dimensional versions of the inverse problem, an essential
model reduction is to be expected.
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Figure 17: Relative difference of the values in Fig. 16, i.e., of the values simulated by FEM and their
approximate values obtained by the surrogate model (9.1). Correlation length and standard deviation
are given in µm.

Finally, we consider an alternative way to find the posterior density. Namely, we employ a Markov-Chain
Monte-Carlo type algorithm (cf. [5, 16]). For this, the approximate modelMT is evaluated 8.8×105

times (eight chains in parallel over 104 samples including a burn in phase of 1 000 samples). This
computation was done for the three choices of measurement noise and took about 210 seconds. Note
that the computation of the 900 measurements from the true model took about 3 days of computation.
The results can be seen in Figs. 18-20. Again, for the low-noise level the true parameter (0.25, 0.25) is
correctly recovered with a moderately concentrated posterior density. In the other cases, the estimation
is a bit off, but the true parameter lies within the range of a 95% coverage interval.
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Figure 18: Parameter densities determined by MCMC for noise level η̂=0.1. Red lines and marker
indicate mean of sample set. Dotted lines correspond to 15% and 85% quantiles. Correlation length
and standard deviation are given in µm.
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Figure 19: Parameter densities determined by MCMC for noise level η̂=1. Red lines and marker
indicate mean of sample set. Dotted lines correspond to 15% and 85% quantiles. Correlation length
and standard deviation are given in µm.
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Figure 20: Parameter densities determined by MCMC for noise level η̂=10. Red lines and marker
indicate mean of sample set. Dotted lines correspond to 15% and 85% quantiles. Correlation length
and standard deviation are given in µm.

DOI 10.20347/WIAS.PREPRINT.2989 Berlin 2022



Rough surfaces 35

Acknowledgment

We are grateful to Manuel Marschall for the fruitful discussion and for providing us with the results of
the inverse problem, presented in Sects. 8 and 9.

References

[1] T. Arens and T. Hohage, On radiation conditions for rough surface scattering problems, IMA J.
Appl. Math. 70 (2005), pp. 839–847.

[2] T. Arnold and A. Rathsfeld, Reflection of plane waves by rough surfaces in the sense of Born
approximation, Mathematical Methods in the Applied Sciences 37 (14), (2014), pp. 2091–2111.

[3] P. Beckmann and A. Spizzichino, The scattering of electromagnetic waves from rough surfaces,
Artech House Inc., Norwood, MA, 1987.

[4] M. Bieri and Ch. Schwab, Sparse high order FEM for elliptic sPDEs, Computer Methods in Applied
Mechanics and Engineering 198 (13-14), (2009), pp. 1149–1170.

[5] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook of Markov chain Monte Carlo, CRC
press, 2011.

[6] D.H. Chambers (ed.), Proceedings on the LLNL Workshop on Scattering from Rough Surfaces
at Low Grazing Angles (LGA) of Incidence, Lawrence Liver- more National Laboratory: CONF-
9405252, 1994.

[7] S.N. Chandler-Wilde and J. Elschner, Variational approach in weighted Sobolev spaces to scat-
tering by unbounded rough surfaces, SIAM J. Mathem. Analysis 42 (2010), pp. 2554–2580.

[8] S.N. Chandler-Wilde and M. Lindner, Boundary integral equations on unbounded rough surfaces:
Fredholmness and the finite section method, J. Int. Equs. Appl. 20 (1), (2008), pp. 13–48.

[9] S.N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering
by unbounded rough surfaces, SIAM J. Mathem. Analysis 37 (2005), pp. 598–618.

[10] S.N. Chandler-Wilde, C.R. Ross, and B. Zhang, Scattering by infinite one-dimensional rough sur-
faces, Proc. R. Soc. London Ser. A 455 (1999), pp. 3767–3787.

[11] S.N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite rough surfaces,
SIAM J. Appl. Math. 58 (1998), pp. 1774–1790.

[12] D. Colton and R. Kress, Inverse acoustic and electromagnetic Scattering theory, Appl. Math. Sci-
ences, Vol. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1998.

[13] J.A. DeSanto, Scattering by rough surfaces, in Scattering: Scattering and inverse scattering in
pure and applied science, R. Pike and P. Sabatier, eds., Academic Press, New York, 2002, pp.
15–36.

[14] J. Elschner, R. Hinder, and G. Schmidt, Finite Element Solution of Conical Diffraction Problems,
Adv. Comput. Math. 16 (2002), pp. 139–156.

DOI 10.20347/WIAS.PREPRINT.2989 Berlin 2022



A. Rathsfeld 36

[15] M. Eigel, R. Schneider, P. Trunschke, and S. Wolf, Variational Monte Carlo - Bridging concepts of
machine learning and high dimensional partial differential equations, Advances in Computational
Analysis 45 (2019), pp. 2503–2532.

[16] D. Foreman-Mackey, D.W. Hogg, D. Lang, and J. Goodman, The MCMC hammer, Publications of
the Astronomical Society of the Pacific 125, (925), IOP Publishing (2013), pp. 306.

[17] H. Harbrecht, M. Peters, and M. Siebenmorgen, Analysis of the domain mapping method for el-
liptic diffusion problems on random domains, Numer. Math. 134 (4), (2016), pp. 823–856.

[18] Y. Harness, Wave scattering by randomly shaped obstacles, PhD Thesis, Tel Aviv University,
Department of Applied Mathematics, 2013.

[19] R. Hiptmair, L. Scarabosio, C. Schillings, and Ch. Schwab, Large deformation shape uncertainty
quantification in acoustic scattering, Advances in Comput. Maths. 44 (5), (2018), pp. 1475–1518.

[20] G. Hu and A. Rathsfeld, Convergence analysis of the FEM coupled with Fourier-mode expansion
for the electromagnetic scattering by biperiodic structures, Electr. Trans. Numer. Anal. 41 (2014),
pp. 350–375.

[21] G. Hu, W. Lu, and A. Rathsfeld, Time-harmonic acoustic scattering from locally perturbed periodic
curves, SIAM J. Appl. Math. 81 (2021), pp. 2569–2595.

[22] L. Li, C.H. Chan, and L. Tsang, Numerical simulation of conical diffraction of tapered electromag-
netic waves from random rough surfaces and applications to passive remote sensing, Radio Sci.
29 (1994), pp. 587–598.

[23] J. Kaipio and E. Somersalo, Statistical and computational inverse problems, Appl. Math. Sci. 160,
Springer-Verlag, Berlin, Heidelberg, New York, 2005.

[24] W.M. Klesse, A. Rathsfeld, C. Groß, E. Malguth, O. Skibitzki, L. Zealouk, Fast scatterometric mea-
surement of periodic surface structures in plasma-etching processes, Measurement 170 (2021),
108721.

[25] L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press,
Cambridge, 1995.

[26] M. Nieto-Vesperinas, Scattering and diffraction in physical optics, World Scientific Publishing Co.
Pte. Ltd., Singapore, 2006.

[27] J.A. Ogilvy, Theory of wave scattering from random rough surfaces, Adam Hilger, Bristol, 1991.

[28] I.V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33 (5), (2011),
pp. 2295–2317.

[29] H. Ogura and N. Takahashi, Scattering, radiation and propagation over two-dimensional random
surfaces, �Progress in Electromagnetics Research 14, (1996), pp. 89–190.

[30] R. Petit (ed.), Electromagnetic theory of gratings, Topics in Current Physics 22, Springer-Verlag,
Berlin, Heidelberg, New York, 1980.

[31] A. Rathsfeld, On a half-space radiation condition, WIAS Preprint 2669, Berlin, 2019.

DOI 10.20347/WIAS.PREPRINT.2989 Berlin 2022



Rough surfaces 37

[32] D.G. Stearns, The scattering of x rays from nonideal multilayer structures, Journal of Applied
Physics 65 (2), (1989), pp. 491–506.

[33] D. Sunday, S. List, J. Chawla, and R. Kline, Determining the shape and periodicity of nanostruc-
tures using small angle x-ray scattering, Journal of Applied Crystallography 48 (5), (2015), pp.
1355–1363.

[34] L. Tsang, J.A. Kong, and K.-H. Ding, Scattering of electromagnetic waves: Theory and Applica-
tions, John Wiley & Sons, Inc., New York, 2000.

[35] L. Tsang, J.A. Kong, K.-H. Ding, and Ch.O. Ao, Scattering of electromagnetic waves: Numerical
Simulations, John Wiley & Sons, Inc., New York, 2001.

[36] A. Ulyanenkov, Grazing-incidence X-ray diffraction from multilayers, taking into account diffuse
scattering from rough interfaces, Appl. Phys. A 66, (1998) pp. 193–199.

[37] A.G. Voronovich, Wave Scattering from Rough Surfaces, Springer, Berlin, 1994.

[38] K.F. Warnick and W. Cho Chew, Numerical solution methods for rough surfaces, Waves Random
Media 11, (2001) pp. R1–R30.

[39] D.L. Windt, IMD-Software for modelling the optical properties of multilayer films, Computers in
Physics 12 (4), (1998), pp. 360–370.

[40] Y.P. Zhao, H.-N. Yang, G.-C. Wang, and T.-M. Lu, Extraction of real-space correlation function of
a rough surface by light scattering using diode array detectors, Appl. Phys. Lett. 68 (22), (1996),
pp. 3063–3065.

DOI 10.20347/WIAS.PREPRINT.2989 Berlin 2022


	Introduction
	Scattering by rough surfaces
	Boundary value problem and radiation condition
	Far field pattern, intensity, and measurement values

	Periodic and biperiodic finite sections of the rough surface
	Far-field beam model over periodized surfaces
	Far-field beam model for rough surface and its approximation
	Scattering with additional plane-wave beam irradiated into the direction of the mirror reflection
	Stochastic simulation of gratings with rough surfaces
	An inverse problem for rough surfaces: Bayesian approach
	Surrogate model by tensor-train representation. MCMC method

