
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Using deep neural networks for detecting spurious oscillations in

discontinuous Galerkin solutions of convection-dominated

convection-diffusion equations

Derk Frerichs-Mihov1, Linus Henning2, Volker John1,2

submitted: December 20, 2022

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: derk.frerichs-mihov@wias-berlin.de

volker.john@wias-berlin.de

2 Freie Universität Berlin
Department of Mathematics and Computer Science
Arnimallee 6
14195 Berlin
Germany
E-Mail: linus.henning@fu-berlin.de

No. 2986

Berlin 2022

2020 Mathematics Subject Classification. 65N30, 68T07.

Key words and phrases. Convection-diffusion equations, discontinuous Galerkin methods, spurious oscillations, deep
neural networks, slope limiter.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

Using deep neural networks for detecting spurious oscillations in
discontinuous Galerkin solutions of convection-dominated

convection-diffusion equations
Derk Frerichs-Mihov, Linus Henning, Volker John

Abstract

Standard discontinuous Galerkin (DG) finite element solutions to convection-dominated con-
vection-diffusion equations usually possess sharp layers but also exhibit large spurious oscillations.
Slope limiters are known as a post-processing technique to reduce these unphysical values. This
paper studies the application of deep neural networks for detecting mesh cells on which slope
limiters should be applied. The networks are trained with data obtained from simulations of a
standard benchmark problem with linear finite elements. It is investigated how they perform when
applied to discrete solutions obtained with higher order finite elements and to solutions for a
different benchmark problem.

1 Introduction

Convection-diffusion equations are a basic model to describe the distribution of a scalar quantity
in fluids. Besides modeling the heat distribution in a room (energy balance), they can describe the
concentration of drugs in blood and the propagation of chemical substances in water (mass balance) to
name just a few. Mathematically speaking, they are given in a bounded domain Ω ⊂ Rd, d ∈ {2, 3},
with polyhedral Lipschitz boundary Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅. The steady-state convection-
diffusion-reaction problem with homogeneous Neumann boundary conditions on ΓN then reads as
follows: Find a sufficiently smooth function u such that

−ε∆u+ b · ∇u+ cu = f in Ω,
u = g on ΓD,

ε∇u · n = 0 on ΓN,
(1)

where the coefficient ε ∈ R, ε > 0, is the diffusion coefficient, the convection field is denoted by
b ∈ [W 1,∞(Ω)]d, c ∈ L∞(Ω) describes the reaction coefficient, and f ∈ L2(Ω) models sources. On
the Dirichlet boundary ΓD Dirichlet conditions g are prescribed and the outer unit normal vector on
the boundary of Ω is denoted by n. At the inflow boundary Γ− = {x ∈ Γ : b(x) · n(x) < 0 },
Dirichlet boundary conditions have to be prescribed, i.e., Γ− ⊂ ΓD.

Especially in practical applications, the so-called convection-dominated regime is of particular interest
that is mathematically characterized by ε� L‖b‖L∞(Ω), where L is a characteristic length scale of
the problem. In this regime, usually the size of occurring layers is much smaller than the mesh width
on computationally feasible grids. In this sense, the convection-dominated situation is a multiscale
problem, where the layers are the small scales that cannot be resolved. It is well known that in this case
the discrete solution to Equation (1) obtained by classical numerical schemes, like the central finite
difference method and Galerkin finite element method, exhibits huge so-called spurious oscillations,

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 2

i.e., unphysical values such as negative concentrations or an unreasonable amount of energy, e.g., see
[46, 31, 32, 3].

Besides conforming finite element methods also the attention for discontinuous Galerkin (DG) methods
to discretize second order elliptic equations has risen during the last decades [44, 14, 15], even though
they already have been invented in 1973 [43]. They allow, for instance, easily, compared conforming
finite elements, to perform hp-refinement on both simplicial and also polygonal and polyhedral meshes
[18, 8]. With respect to convection-diffusion equations, DG methods with a standard upwind flux are
stable discretizations in the convection-dominated regime. It was shown in [25, 4, 34, 14] that they even
control the streamline derivative without needing an additional term, as it is the case for conforming
finite elements. Furthermore, DG methods are known to produce very sharp layers in the convection-
dominated regime. But on the other hand these methods also have the flaw of producing large over-
and undershoots [3, 19, 20].

A computational cheap way to significantly reduce spurious oscillations in a post-processing step are
so-called slope limiters. In a first step, they identify so-called troubled-cells where over- and undershoots
occur and, in a second step, replace the solution locally by a polynomial of lower degree. The solution is
usually replaced by a constant approximation [17, 16] or a (at most) linear one [10, 44]. This approach
is typical for appropriate numerical methods for multiscale problems in the sense that different schemes
are applied for the different scales. Using low order finite elements in a vicinity of layers is fine since
error bounds for higher order elements contain the norm of the solution in a higher order Sobolev space
and these norms scale (locally at layers) with inverse powers of the diffusion coefficient. The power
increases with the order of the Sobolev space and finally there is a huge constant in the error bound
such that it cannot be expected to obtain a better accuracy in a neighborhood of layers when using
higher order elements there. In [19, 20] several of these methods have been numerically investigated
for convection-dominated convection-diffusion equations. These methods share the advantage that they
are computationally cheap, keep the higher order approximation away from layers, and most important
that most of the methods also reduce the oscillations significantly, but not completely [19, 20].

Within the last decades the interest in deep neural networks as a form of deep learning has risen
sharply. Thanks to their ability to be universal function approximators [28, 11, 24, Chapter 6.4.1] and
classifiers [45], they have also been used to detect troubled-cells. In 2018, Ray and Hesthaven have
trained a multilayer perceptron (MLP) to identify troubled-cells for one-dimensional scalar and systems
of conservation laws [41]. They have observed that their MLP detector can mimic a classical limiter but
without the need of fine-tuning a parameter. Their results have been extended by the authors to two-
dimensional problems in [42]. Liu et al. have trained a convolutional neural network (CNN) based shock
detector for Euler’s Gas equations and saw that their detector was significantly faster than classical
ones [37]. In 2018 and 2020, Han Veiga and Abgrall have trained a MLP detector based on data from
a Runge–Kutta DG scheme and tested how well it can then be transferred to a residual distribution
(RD) scheme without retraining it [47, 2]. Again, they have used scalar transport equations and Euler’s
Gas equations. Morgan et al. have trained and tested a MLP detector with a Lagrangian RD method to
detect troubled-cells in the two-dimensional Taylor–Green vortex and Triple-point vortex [40]. Beck et al.
have trained a CNN based limiter in 2020 for a DG spectral element method to approximate the solution
of Euler’s Gas equations [7]. Their limiter is able to both detect cells and also locate the position of
the shock inside the cell. As it can be seen, all these results are for different numerical schemes for
the discretization of scalar or hyperbolic systems of equations, mainly Euler’s Gas equations. Neural
networks have been applied also with respect to other aspects of the numerical solution of partial
differential equations, e.g., see [33, 38, 48, 39, 6].

The goal of this paper is to create a MLP based limiter for convection-dominated convection-diffusion

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 3

problems and hence extending the aforementioned results. To this end, a limiter is going to be trained
with data that is obtained by applying classical limiters to the lowest order discrete solution of a standard
benchmark problem defined in [29]. Several architectures are tested and it will be investigated how well
the resulting limiter can be applied to higher order solutions and to another benchmark problem, the
so-called Hemker example from [26]. We like to emphasize that it is not the goal to speed up simulations
with the MPL based limiter, since standard limiters are already very efficient. It is investigated whether
or not a MLP based limiter can be constructed at all that works equally well (or even better) with respect
to the reduction of spurious oscillations.

The remainder of the paper is structured as follows: In Section 2, both the standard DG method for
discretizing Equation (1) and relevant classical slope limiters are introduced. Section 3 follows with
explaining the multilayer perceptron model and how the data is created with which the MLP limiter is
trained. Several architectures are trained in Section 4 and are tested numerically. The paper concludes
with a short summary and outlook. All data and code created and used for this work can be found at
www.doi.org/10.20347/40vd-f944 [21].

In what follows the usual notation is used for Lebesgue and Sobolev spaces and their respective norms.
The inner product in L2(Ω) is denoted by (·, ·), a norm of a space X is denoted by ‖ · ‖X and a
seminorm by | · |X .

2 Discontinuous Galerkin methods and Slope Limiter for convec-
tion-diffusion equations

2.1 Discontinuous Galerkin methods

Equation (1) can be transformed to its weak formulation in a standard way which then reads as follows:
Find u ∈ H1(Ω) such that u = g on ΓD and

(ε∇u,∇v) + (b · ∇u+ cu, v) = (f, v) ∀v ∈ H1
D,0(Ω), (2)

where H1
D,0(Ω) := { v ∈ H1(Ω) : v = 0 on ΓD }. Under the assumptions that

c− 1

2
∇ · b ≥ 0, ΓD 6= ∅, b · n ≥ 0 on ΓN,

by applying the Lax–Milgram Lemma it can be proven that problem (2) possesses a unique weak
solution, e.g., see [46, Section III.1.1].

To introduce the DG discretization of (2), some notation needs to be fixed. Let { Th }, 0 < h, be a
quasi-uniform family of decompositions of Ω into simplicial or quadrilateral/hexahedral meshes such that
for any h it holds Ω = ∪K∈ThK and the cells have pairwise disjoint interiors. As usual the triangulations
should be admissible, see [9, p. 38, p. 51], i.e., among other properties, each facet of a mesh cell that
lies on Γ is either contained in ΓD or ΓN. The set of all facets is denoted by Eh := ∪K∈ThEh(K),
where Eh(K) is the set of all facets E ⊂ ∂K of a cell K . Furthermore, this set can be decomposed
into the set of all interior facets E I

h and boundary facets ∂Eh := Eh ∩ ∂Ω. The inflow boundary facets
are called E−h := Γ− ∩ Eh, the set of Dirichlet boundary facets is denoted by ED

h := ∂Eh ∩ ΓD and the
notation E ID

h := E I
h ∪ ED

h is set. In addition to that, |K| denotes the d-volume and hK the diameter of
a cell K ∈ Th and h := maxK∈Th hK is defined. Due to the regularity of the family of triangulations
there exists a constant C > 0 such that for all Th and K ∈ Th it holds hE ≤ hK ≤ ChE , where hE
is the diameter of a facet E ∈ Eh(K).

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

www.doi.org/10.20347/40vd-f944

D. Frerichs-Mihov, L. Henning, V. John 4

If there exists a facet E ∈ Eh(Ki) ∩ Eh(Kj) that is shared by the cells Ki, Kj ∈ Th, then the cells
are called neighbors. Under the assumption that there is a fixed numbering of the mesh cells K0, K1,
. . .∈ Th, the unit normal vector nE on a facet E ∈ Eh is defined by

nE :=

{
nK , if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th,
nKi

, if Ki and Kj are neighbors along facet E and i < j,

where nK denotes the outward unit normal vector of the cell K ∈ Th.

The below defined DG space is a subspace of the broken Sobolev space

Hk(Th) = { v ∈ L2(Ω) : v|K ∈ Hk(K) for any K ∈ Th } ⊃ Hk(Ω), k ∈ N,

that is equipped with its piecewise-defined norm and semi-norm

‖v‖2
Hk(Th) :=

∑
K∈Th

‖v‖2
Hk(K), |v|

2
Hk(Th) :=

∑
K∈Th

|v|2Hk(K).

Given a fixed p ∈ N, the finite element space is defined by

Vh,p :=
{
vh ∈ L2(Ω) : vh|K ∈ Rp(K) for any K ∈ Th

}
⊂ Hk(Th),

where Rp(K) := Pp(K) is the space of polynomials of at most degree p on simplicial mesh cells
andRp(K) := Qp(K) is the tensor product space of polynomials of at most degree p on quadrilat-
eral/hexahedral cells.

Both Hk(Th) and Vh,p contain functions that are discontinuous along interior facets E ∈ Eh. Hence, a
given function v ∈ Vh,p itself is not well-defined on E but its jump JvK and average 〈v〉 can be defined
for any x ∈ E by

JvK (x) :=

v|Ki

(x)− v|Kj
(x), if Ki and Kj are neighbors along facet E and

i < j,

v|K(x), if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th,

and

〈v〉 (x) :=

1
2
(v|Ki

(x) + v|Kj
(x)), if Ki and Kj are neighbors along facet E

and i 6= j,

v|K(x), if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th.

Finally, the DG discretization of (1) reads as follows: Find uh ∈ Vh,p such that

aDG(uh, vh) = fDG(vh) ∀ vh ∈ Vh,p, (3)

where the bilinear form aDG : H1(Th) × H1(Th) → R is defined as aDG(v, w) := aε(v, w) +
abc(v, w), where v, w ∈ H1(Th), with

aε(v, w) =
∑
K∈Th

∫
K

ε∇v · ∇w dx

−
∑

E∈EIDh

ε

∫
E

(
〈∇v · nE〉 JwK + κ 〈∇w · nE〉 JvK

)
ds

+
∑
E∈EIh

σ

hE

∫
E

JvK JwK ds+
∑
E∈EDh

2σ

hE

∫
E

vw ds

(4)

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 5

and

abc(v, w) =
∑
K∈Th

∫
K

(
b · ∇vw + cvw

)
dx−

∑
E∈EIh

∫
E

b · nE JvK 〈w〉 ds

+
∑
E∈EIh

∫
E

η

2
|b · nE| JvK JwK ds−

∑
E∈E−h

∫
E

b · nEvw ds.

(5)

The discrete right-hand side fDG : H1(Th)→ R of (3) is defined by

fDG(w) =
∑
K∈Th

∫
K

fw dx−
∑
E∈E−h

∫
E

b · nEgw ds

−
∑
E∈EDh

εκ

∫
E

∇w · nEg ds+
∑
E∈EDh

2σ

hE

∫
E

gw ds.

(6)

The discrete scheme (3) contains three user-chosen parameters. The parameter κ controls the sym-
metry of (4) where κ = 1 corresponds to the symmetric interior penalty Galerkin (SIPG), κ = 0
to the incomplete (IIPG), and κ = −1 to the non-symmetric (NIPG) discretization of the Laplacian.
The stability parameter σ, also called penalty parameter, in (4) and (6) that is incorporated as in [34,
Section 2.2] influences the coercivity of aε: The bilinear form for the SIPG and IIPG method is coercive if
σ is sufficiently large, where σ is proportional to ε, and for the NIPG method it is coercive for any σ > 0,
e.g., see [44, Chapter 2.7.1]. Last but not least, the stabilization parameter η ≥ 0 appearing in (5) has
to be chosen by the user. The choice η = 0 corresponds to a centered flux and η = 1 to an upwind
flux discretization across the facet E, e.g., see [14, p. 55, p. 65]. It can be proven that DG methods
converge asymptotically with an optimal rate in the DG norm, with an optimal rate in the L2-norm only
for the SIPG variant and suboptimally for the IIPG and NIPG method, e.g., see [34, 44, 14, 15] and the
references therein.

2.2 Slope Limiters

Slope limiters are a cheap post-processing technique to reduce spurious oscillations in the discrete
solution. After the solution uh of (3) is computed, the solution is adapted as follows:

1 Identify and mark cells in which the function might show spurious oscillations by

1.1 computing (cell wise) a set of features of the solution and

1.2 based on these features deciding whether to mark or not to mark a cell.

2 Approximate the solution locally on the marked cells by a polynomial of lower degree.

These steps can be translated into mathematics by introducing some mappings. Let Fl : Vh,p × Th →
Rnl be a function that maps locally a discrete function to nl ∈ N features, andMl : Rnl → { 0, 1 } be
a decision maker function. The post-processing techniques can then be seen as mappings l : Vh,p →
Vh,p defined cell wise on a cell K ∈ Th for uh ∈ Vh,p by

l(uh)|K :=

{
uh|K , ifMl(Fl(uh, K)) = 0,

Πl,K(uh), else,

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 6

where Πl,K : Vh,p|K → Rp(K) reconstructs the solution in marked cells.

Different methods differ only in their respective functions Fl,Ml, Πl,K . Several of these methods
are described in detail and were tested numerically in [19, 20] and they will be briefly recalled here.
Since for what comes later onlyMl and Fl are important, Πl,K is only mentioned in passing. For the
sake of presentation, the methods are described in two dimensions on triangles, but they can be easily
extended to three dimensions or to quadrilateral/hexahedral meshes.

It is worth to emphasize that for all the methods presented below, the mappings Fl andMl act locally,
i.e., they are cell wise defined. Especially Fl can be computed using only information of the discrete
solution on a cell and possibly neighbors, and globally defined quantities like a tolerance or reference
values. The mappingMl then takes cell wise features and returns locally the decision whether to mark
a cell or not.

LinTriaReco This method was proposed in [10] and described again in [44, pp. 103-104] and [19].

Let K ∈ Th be a simplicial cell with facets Ei ∈ Eh(K), i = 0, 1, 2, and neighbors Ki ∈ Th along
these edges. Using the notation mi, i = 0, 1, 2, for the edge mid points and uh,K :=

∫
K
uh dx/|K|

for the integral mean of uh in K , the feature mapping of LinTriaReco is defined by

FLTR(uh, K) := {uh,K0 , uh|K(m0), uh,K1 , uh|K(m1), uh,K2 , uh|K(m2), uh,K , tol }, (7)

where tol ∈ R, tol� 1 is a fixed positive tolerance. Hence, nLTR = 8.

Let ba, bc := min{ a, b } and da, be := max{ a, b } for a, b ∈ R. The decision makerMLTR is given
by

MLTR(FLTR(uh, K)) :=

1, if Eh(K) ∩ ∂Eh = ∅ ∧(
uh|K(m0) /∈ [buh,K0 , uh,Kc − tol, duh,K0 , uh,Ke+ tol] ∨
uh|K(m1) /∈ [buh,K1 , uh,Kc − tol, duh,K1 , uh,Ke+ tol] ∨
uh|K(m2) /∈ [buh,K2 , uh,Kc − tol, duh,K2 , uh,Ke+ tol]

)
0, else.

(8)

The tolerance tol is introduced to prevent marking of cells due to numerical round-off errors. Hence
roughly speaking, LinTriaReco marks an interior cell K if for at least one edge the value of the solution
at the edge midpoint is not between the cell averages of the function in the cell and the corresponding
neighbor.

For the reconstruction ΠLTR,K, three affine functions are constructed based on the cell averages of the
discrete solution in the cell and its neighbors of which one is chosen, e.g., see [19, 44, p. 104].

ConstTriaReco This method was proposed in [19] and is a modification of LinTriaReco. Instead
of evaluating the function at the edge midpoint the integral mean uE

h,K :=
∫
E
uh|K ds/hE is used.

Furthermore, for boundary edges E ∈ Eh ∩ ∂Eh, i.e., edges along which the cell has no neighbor, a
virtual neighbor is constructed by mirroring the opposite vertex along the edge E. Then, on this virtual
neighbor the discrete function is defined to be the continuation of uh|K which exists and is well-defined
since uh|K is a polynomial of degree at most p. In this way every triangle has three neighbors and a
cell average in each neighbor can be computed.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 7

The feature mapping is then given by

FCTR(uh, K) := {uh,K0 , u
E0
h,K , uh,K1 , u

E1
h,K , uh,K2 , u

E2
h,K , uh,K , tol }, (9)

and hence nCTR = 8.

ConstTriaReco’s decision maker is then analogously defined by

MCTR(FCTR(uh, K)) :=

1, if uE0

h,K /∈ [buh,K0 , uh,Kc − tol, duh,K0 , uh,Ke+ tol] ∨
uE1
h,K /∈ [buh,K1 , uh,Kc − tol, duh,K1 , uh,Ke+ tol] ∨
uE2
h,K /∈ [buh,K2 , uh,Kc − tol, duh,K2 , uh,Ke+ tol]

0, else.

(10)

To reconstruct the solution, ΠCTR,K(uh) := uh,K is used, which led often to good results in the
numerical studies of [19].

ConstJumpMod A different approach is taken by ConstJumpMod that was proposed in [19] and
improved in [20]. Based on the marking criterion of [17, 16] ConstJumpMod tries to approximate the
local order of convergence along each edge and marks a cell if this order is smaller than some reference
value.

Let 0 < C0 ∈ R be a positive constant, L be a characteristic length scale of the problem and u0 a
characteristic scale of the solution. For each edge E ∈ Eh the quantity

αE :=

{
ln
(

1
C0Lu2

0

∫
E

JuhK
2 ds

)/
ln
(
hE

L

)
, if E ∈ E I

h,

αref , else,

can be computed, where αref ∈ R is a fixed positive reference value. These values are used to define
the feature mapping that is given by

FCJM(uh, K) := {αE0 , αE1 , αE2 , αref } (11)

and it follows that nCJM = 4.

To mark a cell K , the decision maker

MCJM(FCJM(uh, K)) :=

{
1, if mini=0,1,2 αEi

< αref ,

0, else,
(12)

is used. Note, to prevent having infinite values in the feature set before computing MCJM, these
values can be replaced by αref without changing the result ofMCJM, which might be beneficial for the
implementation.

The solution in the marked cells is again replaced by the cell integral mean, i.e., ΠCJM,K(uh) := uh,K .

ConstJumpNorm Based on the previous approach, the method ConstJumpNorm was introduced in
[20] that depends on the mean L∞(E)-norm of the jump of the function uh. The L1- and L2-norms
have been investigated as well but significant differences could not be observed [20]. If this jump is
larger than a fixed positive reference value 0 < βref ∈ R the cell is marked.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 8

To be precise, for each edge E ∈ Eh the quantity

βE :=

{
‖JuhK‖L∞(E) , if E ∈ E I

h,

0, else,

can be defined. Based on this quantity, the feature mapping

FCJN(uh, K) := { βE0 , βE1 , βE2 , βref } (13)

can be computed, so that nCJN = 4.

The decision maker function of ConstJumpNorm is given by

MCJN(FCJN(uh, K)) :=

{
1, if maxi=0,1,2 βEi

≥ βref ,

0, else,
(14)

and the solution is approximated by ΠCJN,K(uh) := uh,K .

3 Deep neural networks as spurious oscillations detector

Deep learning techniques such as deep (neural) networks are a subpart of machine learning which
try to approximate a possibly unknown function by learning it from data [24, p. 1-8]. In the following,
multilayer perceptrons (MLPs) also known as feed forward neural networks are briefly introduced; see
also [27, 24, Chapter 6] for detailed information.

Mathematically speaking, MLPs can be seen as functions that map an input domain X to some output
domain Y by composing a sequence of functions g1, g2, . . . , g`, i.e.,

x 7→ g`(g`−1(. . . g1(x)) . . .) ∈ Y (x ∈ X).

Here each gi, i = 1, 2, . . . , `, also called i-th layer has the form gi(•) = σi(Wi • +bi), where
Wi is a rectangular matrix called weight matrix, bi is a vector called bias vector, σi is a component
wise defined nonlinear function called activation function. The first layer is called input layer, the last
layer is called output layer and the layers in between hidden layers. In other words, starting with
x as value(s) of the input layer each following layer takes as input all the output of the previous
layer, also called nodes, performs an affine transformation and applies component wise an activation
function. MLPs can be therefore characterized or rather parametrized by their corresponding weights,
biases and activation functions, which is why they are often referred to as parameters. Different
activation functions can be used, but what they all have in common is that they are nonlinear, which
is crucial to approximate nonlinear functions [24, p. 168]. Possible choices are the sigmoid function
σ(x) = 1/ (1 + e−x), the rectified linear unit (ReLU) function σ(x) = max{ 0, x } or the hyperbolic
tangent σ(x) = tanh(x) = (ex − e−x)/(ex + e−x). To reach the goal that a MLP approximates a
given function, the parameters need to be chosen accordingly. They are chosen in an optimization
process that is called training.

Let F : X → Y be the function that will be approximated by a MLP. During the training the parameters
are optimized to minimize a given loss function L over a given finite data set D ⊂ X × Y which
consists of pairs (xi, yi) ∈ X × Y of features xi and labels yi = F (xi)

1.

1This is so-called supervised learning. See [24, p. 103-105] for unsupervised and reinforcement learning.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 9

In this work, different approaches are investigated to approximate (combinations of) the decision maker
functionsMLTR,MCTR,MCJM, andMCJN by MLPs, see below. The concrete choice F =MLTR,
X = FLTR, Y = { 0, 1 },

L(D) := − 1

N

N∑
i=1

yi ln(ŷi) + (1− yi) ln(1− ŷi), (15)

where N is the number of training data in D and ŷi is the prediction of the MLP, may serve as a simple
example and is used in Section 4.2.

During the training the parameters p are updated by

p→ p− η∇pL(p),

where 0 < η ∈ R is a positive step width, also called learning rate, and ∇p denotes the partial
derivatives with respect to the parameters. In this work the minibatch stochastic gradient descent [27, 24,
Chapter 8.1.3] is used together with the Adam algorithm [35] to adapt the step width automatically.

3.1 Generating the data set

To enable the MLP to approximate a given function training data is needed. As stated above, decision
maker functions are approximated that take as input a feature vector of the solution on a single cell and
return either 1 (mark the cell) or 0 (do not mark a cell). To generate training data the following problem
is fixed.

Example 1 (HMM example). Let Ω = (0, 1)2 be the unit square and b = (cos(−π/3), sin(−π/3))T ,
c = f = 0. On the whole boundary Dirichlet boundary conditions are prescribed, i.e., ΓD = ∂Ω, by
choosing

g =

{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.75),

0 else.

This example is a modification of a classical benchmark problem stated in [29] in which the discontinuity
point of the Dirichlet boundary conditions is chosen slightly different to match the requirements of
applying a DG method on a uniform grid.

For small diffusion coefficients ε, the solution possesses two boundary layers at the outflow boundary
and an interior layer in the direction of the convection, see Figure 1 for a sketch of the solution.

To generate training data, the discrete problem (3) can be solved on a series of uniformly refined
meshes starting with the initial meshes depicted in Figure 2. On each level, the discrete solution is
calculated and afterwards on each cell the features of LinTriaReco, ConstTriaReco, ConstJumpMod ,
ConstJumpNorm and the corresponding labels are computed and stored, see Equations (7)–(13). Since
a data point for each cell is created, a lot of data can be generated easily since the number of cells
scales quadratically when the grid is refined. Here it comes in handy that the decision maker functions
act locally.

The data is generated using discontinuous piecewise linear finite elements P1 for the above mentioned
problem with a diffusion coefficient ε = 10−8. The SIPG discretization is chosen with upwind stabi-
lization, i.e., κ = 1 and η = 1 in Equations (4) to (6). Let n0 be the number of vertices in each cell,

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 10

Figure 1: Sketch of the solution to Example 1 for ε = 10−8 obtained with a nonlinear algebraic
flux-corrected (AFC) finite element method with Kuzmin limiter, see [5].

Figure 2: Initial meshes for Example 1. The grid on the left-hand side is referred to as regular and the
grid on the right-hand side as irregular grid.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 11

i.e., n0 = 3 on the triangular grids depicted in Figure 2. Guided by [44, Chapter 2.7.1], the penalty
parameter σ = 2εn0(p+ 1)(p+ 2)/2 = 18ε is used. All simulations are performed with ParMooN
[22, 49] and the direct solver UMFPACK [12] is used to solve the linear systems of equations. In
LinTriaReco and ConstTriaReco the tolerance tol is set to 10−11. For ConstJumpMod the parameters
C0 = 1, L = 1.5 and u0 = 1, and αref = 4 are chosen. Lastly, the reference value βref is set to be
the arithmetic mean of all βE in ConstJumpNorm.

3.1.1 Rotation invariance of the data

Unfortunately, the features defined in Equations (7), (9), (11) and (13) depend on the numbering of the
edges and hence, so does the data. To overcome this problem, or in other words to introduce some sort
of rotation invariance, each data point point in the data set is stored three times, one for each particular
counter clockwise numbering of the edges.

3.1.2 Magnitude invariance

In [2] the authors have decided to scale the features to introduce some form of magnitude invariance. In
contrast to this, here the features are not scaled. The reason for this is that all decision maker functions
essentially compare the magnitude of a feature with other features. If features are scaled feature-wise
as in [2], the ratio of the magnitude of features can be changed. In this way inconsistent data can
be created, i.e., the label does not fit to the data anymore. To prevent this situation, a scaling of the
features is therefore not applied.

3.2 Restricting the data set

Following the above describe procedure a lot of data can be generated, e.g., refining the regular grid
nine times and the irregular grid eight times leads to 4.456.437 data points. Unfortunately, a lot of
duplicates exist in the data, e.g., due to the fact that the solution of the problem is piecewise constant in
huge parts of the domain and hence, the features can be equal. This can be the case for an individual
limiter but also for any combination of limiters, e.g., also for all limiters at the same time. Our approach
consists in removing the duplicates to prevent the MLP from learning a pattern specific to the duplicates
and to prevent overfitting to the duplicates and hence, ending up in a MLP that does not generalize
well to unseen data. That is, either the duplicates in the data of a single limiter are removed if a single
limiter is learned, or duplicates of the data of all limiters if all limiters are learned at the same time, see
also the numerical examples below.

After having removed the duplicates it can further be noted that there are for each limiter individually
significantly less marked cells than not-marked cells, e.g., for LinTriaReco after removing the duplicates
there are around 77% cells that are not marked and 23% marked cells. When inspecting the whole
data set it can be seen that cells that are not marked by any limiter are more common (ca. 93.6%)
than cells that are marked at least by one limiter (ca. 6.4%). It is well known that care has to be taken
when it comes to such unbalanced data sets [36, Chapter 11.2]. To have a better balance between
marked cells and not-marked cells, resp., in the distribution of the label combinations, the data set is
further restricted to have either as many marked cells as cells that are not marked in the case that
a single limiter is approximated or the amount of the combination where no limiter marks a cell is
reduced to equal the amount of the second most occurring label combination in the case all limiters are

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 12

approximated at a single time. The rows that are removed are chosen randomly using a fixed random
seed to guarantee reproducibility.

3.3 Splitting the data set

Even after deleting duplicates and decreasing the amount of cells that are not marked, resp., the
amount of the most occurring label combination, a lot of training data remains, e.g., 379.539 when
all limiters are learned at the same time, and 260.436 if only ConstJumpNorm is considered. On the
one hand, the more data exists the more likely it is that the network approximates the function that
lies behind the data, but on the other hand, more training data increases the optimization time when
the network is trained. Hence, it is recommended to have less data of higher quality, i.e., showing
relevant features of the function, than more data with lower quality. In this data set it might be difficult to
choose “good” data points a priori but it might be still useful to choose only a subset of the data points
for performance reasons. Therefore, a subset of only 7500 data points is randomly chosen to be the
training data for the networks.

Furthermore, to prevent overfitting of the data, another 1875 are chosen to be the validation data set,
see also [24, Chapter 5.3] for an introduction to overfitting and validation sets. During the training the
validation set is evaluated as well to see how well the network generalizes to unseen data. At some
point the networks might only fit better the training data but they become worse on the validation data
set, which is why the optimization can be stopped at this point to prevent overfitting.

Last but not least, a third set is introduced with which the trained networks are rated how well they
work. The so-called test set consists of the validation set and all remaining data. After the training has
finished the networks are applied on the test set to measure the overall performance of the networks.

3.4 Measuring the performance of the networks

To measure the performance of the trained networks the measures

accuracy acc :=
tp + tn

tp + fp + tn + fn
,

precision prc :=
tp

tp + fp
,

recall rec :=
tp

tp + fn
,

are used, where tp denotes the true positive, tn the true negative, fp the false positive and fn the false
negative classifications. The measure accuracy is the ratio of correct classified data to all data, i.e.,
it measures how good the networks performs overall. While the second measure gives information
about the proportion of positive classifications that was actually correct, recall answers what proportion
of actual positives was identified as such. Since for reducing spurious oscillations it is worse to not
detect a cell that should be marked than to mark a cell that should not, recall might be considered
more important than precision. Therefore, the total rating rtot of the limiters is set to be a weighted
combination of the measures, namely

rtot :=
2

5
acc +

1

5
prc +

2

5
rec,

where acc, prc and rec are computed based on the test set.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 13

Table 1: Hyperparameters that are tested resulting in 648 different combinations.

hidden layers [256, 128, 64], [128, 128, 128], [256, 128, 64, 32],
[100, 100, 100, 100], [256, 128, 64, 32, 16], [90, 90, 90, 90, 90]

learning rate 0.005, 0.001, 0.0005, 0.0001, 5 · 10−5, 1 · 10−5

batch size 32, 64, 128
activation ReLU, tanh
initialization seed 40, 41, 42

4 Numerical studies

For the implementation of the MLP networks the open source library TensorFlow is used [1, 13]. As
stated above, the finite element computations are performed with ParMooN [22, 49] and CppFlow
[30] is used to open and deploy stored TensorFlow models in ParMooN. Note that the data and most
parts of the code that are used in this section are publicly available at www.doi.org/10.20347/
40vd-f944 [21].

4.1 Architecture of the MLPs

Given a specific mapping that should be approximated by a MLP, it is in general almost impossible to
come up a priori with the optimal architecture of the MLP, i.e., the number of layers, activation functions,
number of nodes per layer. To find a suitable architecture, in this work, different architectures are tested.
Six different combinations of number of hidden layers and number of nodes which corresponds to the
number of columns in the weight matrices Wi, two different activation functions, three different batch
sizes, six different learning rates and three different initializations of the parameters are used which are
coded by different seeds, resulting in 648 different architectures that are investigated, see Table 1. Each
combination therefore can also be identified by a number between one and 648 which is done below.
The size of the input and the output layer are determined by the task to solve. While for all hidden layers
the same activation function is used, i.e., one of the functions given in Table 1, the activation function
for the output layer depends on the experiment and is therefore stated in the experiments below. The
parameters of the layers are initialized using the Glorot normalized initialization [23] with different seeds
for each layer based on the seeds given in Table 1. Also the loss function L depends on the experiment
and hence is given below.

The networks are trained for at most 10000 epochs and the training is stopped earlier, if the loss of the
validation set does not decrease for 100 epochs. The model with the best accuracy is then saved as
trained model.

4.2 Learning single limiters

The first experiment figures out whether the individual feature mappings (8), (10), (12), and (14) can
by approximated by a MLP. Since for all functions Y = { 0, 1 }, the output layer consists of a single
node and uses the sigmoid activation function. The size of the input layer is defined by the input of the
decision maker functions, i.e., eight for LinTriaReco and ConstTriaReco, and four for ConstJumpMod
and ConstJumpNorm. As loss the binary cross entropy loss L(D) given in (15) is applied. The data
is prepared as described in Sections 3.1 to 3.3 and the measures defined in Section 3.4 are used to

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

www.doi.org/10.20347/40vd-f944
www.doi.org/10.20347/40vd-f944

D. Frerichs-Mihov, L. Henning, V. John 14

measure the performance of the networks.

The total rating rtot for the networks for each limiter is plotted in Figure 3, where MLP (lim) denotes
the MLP networks that approximate the decision maker function of lim. In general it can be seen
that the results of MLP (LinTriaReco) and MLP (ConstTriaReco) look similar as well as the results
of MLP (ConstJumpMod) and MLP (ConstJumpNorm). On the one hand, all architectures are able
to approximate ConstJumpMod very well and ConstJumpNorm can be approximated by almost all
architectures. On the other hand, LinTriaReco and ConstTriaReco cannot be approximated that well with
the investigated architectures. The best total rating for MLP (LinTriaReco) and MLP (ConstTriaReco)
is still around 0.253 worse than the mean of MLP (ConstJumpMod) and MLP (ConstJumpNorm),
see also Table 2. As indicated by the standard deviation, the quality of the approximation of MLP
(LinTriaReco) and MLP (ConstTriaReco) depends more on the choice of the architecture than of MLP
(ConstJumpNorm), which in turn is more dependent than the approximation of MLP (ConstJumpMod).
It can further be noted that in Figure 3 there is a pattern indicating which architectures work worse for
MLP (LinTriaReco), MLP (ConstTriaReco) and MLP (ConstJumpNorm). But since this experiment is
intended to check if the decision maker functions can be approximated at all, it is not further investigated
which parameters are responsible for the loss in quality.

Table 2: Statistics about the total rating of the trained networks of Section 4.2. Standard deviation is
abbreviated by std.

rtot LinTriaReco rtot ConstTriaReco rtot ConstJumpMod rtot ConstJumpNorm

max 0.744 0.737 0.999 0.997
mean 0.669 0.670 0.997 0.994

std 0.034 0.035 0.001 0.019

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

0.6

0.7

0.8

0.9

1

configuration

ra
ti

n
g
r
t
o
t

MLP (LinTriaReco) MLP (ConstTriaReco)

MLP (ConstJumpMod) MLP (ConstJumpNorm)

Figure 3: Rating for all architectures for all limiters for Section 4.2.

4.3 Overcoming the difficulties when learning LinTriaReco and ConstTriaReco

As seen in the previous experiment, the decision maker functions of LinTriaReco and ConstTriaReco
could not be approximated well and ConstJumpMod and ConstJumpNorm could be approximated
by the chosen architectures if only the features of the respective limiter are used. This experiment
investigates if enriching the feature set enables the architectures to fit the decision maker function of
LinTriaReco. To this end, the output layer consists again of a single node and the sigmoid activation
function is used. The idea in this experiment is to use all features of LinTriaReco, ConstTriaReco,

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 15

ConstJumpMod , and ConstJumpNorm. Hence, the input layer, in contrast to the previous experiment,
is now larger and consists of nLTR + nCTR + nCJM + nCJN = 24 nodes. Again the binary cross
entropy loss (15) is applied to train the networks. The data is loaded, restricted and split as before and
the measure rtot is used to rate the trained MLPs.

Figure 4 shows the result for the tested architectures. All tested architectures have a similar good
rating, i.e., it seems that there is a mapping from all features to the label of LinTriaReco that can be
approximated with the used architectures. The best rating (0.979) is slightly worse than the best results
for ConstJumpMod (0.999) and ConstJumpNorm (0.997) of the previous experiment but could increase
the rating of LinTriaReco by around 0.235. Also all architectures are stable in the sense of producing
similar good results as shown by the mean that is close to the best rating and the small standard
deviation, see Table 3.

Table 3: Statistics about the total rating of the trained networks of Section 4.3. Standard deviation is
abbreviated by std.

rtot LinTriaReco

max 0.979
mean 0.977

std 0.002

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

0.96

0.97

0.98

0.99

1

configuration

ra
ti

n
g
r
t
o
t

MLP from all features to label of LinTriaReco

Figure 4: Results for all architectures from Section 4.3.

4.4 Learning all limiters simultaneously based on vectors

The previous experiment raises the questions whether it is possible to learn all decision maker functions
at once. The idea is to train a network that approximates the map from all features to all labels
simultaneously, i.e., the size of the input layer is nLTR + nCTR + nCJM + nCJN = 24 and the output
size is four, since we want to approximate four decision maker functions at once. In this sense the
problem is a multi-label classification task. As in Section 4.2, the activation function of the output layer
is set to be the sigmoid function such that the output of the network is in [0, 1]4. This means that by
construction the networks return a vector of four predicted labels at once. Furthermore, the loss

L(D) :=
1

4

4∑
j=1

(
− 1

N

N∑
i=1

yi,j ln(ŷi,j) + (1− yi,j) ln(1− ŷi,j)

)

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 16

is used, whereN is again the number of training data inD, yi,j is the j-th component of the i-th training
data point and ŷi,j is the j-th component of the prediction ŷi of the MLP. Comparing with Equation (15),
this loss is the average of the binary cross entropy loss of the four decision maker functions that are
learned at once. The data is prepared following the procedure described in Section 3.1 to Section 3.3
and the total measure rtot from Section 3.4 is used to rate the trained MLPs. The measures are
evaluated element-wise and not vector-wise for the output of the MLPs.

Table 4: Statistics about the total rating of the trained networks of Section 4.4. Standard deviation is
abbreviated by std.

rtot

max 0.950
mean 0.938

std 0.007

The results for all configurations are depicted in Figure 5. It can be seen that almost all configurations
are able to approximate all decision maker functions at once. As indicated also by Table 4 the best
network achieves a total rating of around 0.95 which is slightly lower than the best rating in Section 4.2
but can still considered to be a good result. Both the mean of 0.938 that is close to the maximal total
rating and the small standard deviation (0.007) indicate that there are only few configurations that work
worse than the best one. There seems to be again a pattern of those configurations but it is not further
investigated since only the best configuration is of interest in this study.

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

0.87

0.89

0.91

0.93

0.95

0.97

0.99

configuration

ra
ti

n
g
r
t
o
t

MLP from all features to all labels vector

Figure 5: Results for all architectures from Section 4.4.

4.5 Learning all limiters simultaneously based on classes

The multi-label problem of the previous section can be transformed to a multi-class problem. After
preparing the data as before, every unique label combination is assigned to a unique number, e.g.,

[0, 0, 0, 0] 7→ 0, [0, 0, 0, 1] 7→ 1, [0, 0, 1, 0] 7→ 2

and so on. This number j is then assigned to a probability vector, i.e., the components are non-negative
and sum to 1, by mapping j to the vector [0, . . . , 0, 1, 0, . . . , 0] that has the 1 at the j-th component.
Every entry in this vector gives the probability that the input belongs to the respective class. The input
layer size is again 24 and the output layer size is the number of classes which are in this experiment
12 since not all possible label combinations occur in the dataset. After splitting the data into training,

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 17

validation, and test set it can be observed that not all label combinations occur in the training set since
some combinations are very rare. The activation function of the output layer is chosen to be the softmax
function σ(x)i = exp(xi)/

∑12
j=1 exp(xj), i = 1, . . . , 12, such that the output is a probability vector.

Hence, in contrast to the previous section, the output gives probabilities that the input belongs to the
possible label combinations and does not return a specific combination. The usual loss for multi-class
problems is used, namely the categorical cross entropy

L(D) := −
N∑
i=1

12∑
j=1

yi,j ln(ŷi,j),

where N is the number of training data points, yi,j is the j-th component of the i-th training data
vector and ŷi,j the prediction of the network. Note that yi,j is 0 for all except one entry where it is 1.
To measure the performance of the networks the outputs of the networks are mapped back to label
vectors by multiplying the probability of the classes with the corresponding label vectors of the classes
and summing up the results. In other words, a weighted sum of all label vectors is computed where the
weights correspond to the predicted propabilities. Afterwards the measures given in Section 3.4 can be
computed.

In Figure 6 the total rating of the trained networks is plotted. The results are similarly to the results of
Section 4.4 as also indicated by the values in Table 5. The best and the mean are negligibly smaller
than the values obtained in the previous experiment. Hence, it does not matter whether to deal with the
problem as a multi-label or a multi-class problem, at least in this particular setting with the used training
set and the measures.

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

configuration

ra
ti

n
g
r
t
o
t

MLP from all features to all labels based on classes

Figure 6: Results for all architectures from Section 4.5.

Table 5: Statistics about the total rating of the trained networks of Section 4.5. Standard deviation is
abbreviated by std.

rtot

max 0.949
mean 0.937

std 0.007

4.6 Applying a MLP limiter to higher polynomial degrees

Until here the experiments have investigated how good the MLPs can approximate the data but
they have not been applied to the DG solution of (other) convection-dominated convection-diffusion

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 18

equations. To this end, the MLP from Section 4.4 with the best total rating is used, which has four
hidden layers of 100 nodes and the hyperbolic tangent as activation function, and is trained with a
learning rate of 0.0005, a batch size of 128, and is initialized with seed 42. After the DG solution of
a convection-diffusion problem is solved, all features of the conventional limiter are calculated and
the MLP is asked to predict the label combination given these features. A cell is finally marked if at
least n ∈ [1, 2, 3, 4] of the four predicted labels are true, i.e., larger than 0.5. If a cell is marked then
the solution is locally replaced by its integral mean, i.e., ΠMLP,K(uh) := uh,K since this choice has
produced the best results in [19] and [20]. This limiter is below called MLP limiter.

4.6.1 Determining the minimum number of predicted marks n

Since it is not a priori clear which value of n to choose, this is determined in a first step. The smaller
n, the more cells are marked, which on the one hand hopefully leads to less spurious oscillations
but on the other hand, marking too many cells might reduce the order of accuracy and leads to
unnecessary computational overhead. Therefore, n should be chosen in such a way that enough but
not too many cells are marked. To find the optimal n, Example 1 is used with exactly the same setting
as in Section 3.1, i.e., the setting with which the data is created. Since the limiter is trained with this
data it can be expected that it predicts the labels of the traditional limiter correctly in most of the cases.
Since for Example 1 an analytical solution is not known, the discrete solution uh cannot be compared
against the exact solution. As in [19, 20], to assess the quality of the limited discrete solution therefore
the measures

oscmax(uh) = max
(x,y)∈Ω

uh(x, y)− umax + umin − min
(x,y)∈Ω

uh(x, y),

oscmean(uh) =
1

|Th|
∑
K∈Th

[
max{0, max

(x,y)∈K
uh(x, y)− umax}

+ max{0, umin − min
(x,y)∈K

uh(x, y)}
]
,

are used to measure the maximal size and a mean value of spurious oscillations, where umax and umin

are the largest and smallest value of the weak solution, resp., and |Th| denotes the number of cells in
the triangulation. In Example 1 it is umin = 0 and umax = 1. To compute the desired quantities, uh is
evaluated at certain points, which are the points of the nodal functionals defining continuous Pp finite
elements of the same order.

The results of the MLP limiter with n = 1, 2, 3, 4 on both the regular and the irregular grid are shown
in Figure 7 and compared with ConstJumpMod and ConstJumpNorm, which are the classical limiters
that works best for this problem [20].

It can be seen that the MLP limiter with n = 1 and n = 2 behaves similarly as well as those with n = 3
and n = 4. While the former ones are as good as the classical ConstJumpMod and ConstJumpNorm
limiters, the latter ones behave much worse, meaning they lead to larger mean and maximal oscillations.
As a consequence, in what follows, the MLP limiter with n = 2 is used since it produces better results
than the ones with n = 3, 4 and should by definition mark less or the same amount of cells than the
one with n = 1.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 19

10−3

10−2
regular

o
sc

m
e
a
n
(u

h
)

irregular

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

regular

number dof

o
sc

m
a
x
(u

h
)

103 104 105 106

irregular

number dof

ConstJumpMod ConstJumpNorm MLP (n=1)

MLP (n=2) MLP (n=3) MLP (n=4)

Figure 7: Results of oscmean and oscmax for Example 1 on the regular and irregular grid depicted in
Figure 2 for P1 finite elements with two classical limiters and various versions of the MLP limiter.

10−4

10−3

10−2

P2

o
sc

m
e
a
n
(u

h
)

P3 P4

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5 P2

number dof

o
sc

m
a
x
(u

h
)

102 103 104 105 106

P3

number dof
102 103 104 105 106

P4

number dof

Galerkin ConstJumpMod ConstJumpNorm MLP

Figure 8: Results for measures for various limiters and various polynomial degrees obtained for
Example 1 on the regular grid from Figure 2.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 20

10−5

10−4

10−3

10−2

P2

o
sc

m
e
a
n
(u

h
)

P3 P4

103 104 105 106 107
0

0.1

0.2

0.3

0.4

0.5

0.6
P2

number dof

o
sc

m
a
x
(u

h
)

103 104 105 106 107

P3

number dof
103 104 105 106 107

P4

number dof

Galerkin ConstJumpMod ConstJumpNorm MLP

Figure 9: Results for measures for various limiters and various polynomial degrees obtained for
Example 1 on the irregular grid from Figure 2.

4.6.2 Higher polynomial degrees

Since the MLP limiter is fixed it can be applied to other problems. To start, again Example 1 is used
but the limiter is applied to the discrete solution obtained with finite elements with higher polynomial
degrees, namely P2, P3, and P4 finite elements. The rest of the problem is not varied, i.e., ε = 10−8,
κ = 1, η = 1. As in Section 3.1 the penalty parameter is chosen to be σ = 2εn0(p+ 1)(p+ 2)/2,
where again n0 denotes the number of vertices a cell has. Also the parameters used in the classical
limiters are kept the same. The problems are solved on the series of uniformly refined grids starting as
above with the initial meshes depicted in Figure 2. In what follows Galerkin denotes the DG solution
from Equation (3) without being limited.

The results for the measures oscmean and oscmax for the best conventional limiter as well as the MLP
limiter on both types of meshes are shown in Figures 8 and 9. It can be seen that the MLP limiter
reduces both the mean and the maximal oscillations significantly compared to Galerkin. While on
coarser grids it acts worse than ConstJumpNorm but better than ConstJumpMod , on finer grids all
limiters almost coincide. A reason for this could be the fact that way more training data obtained on
finer grinds is available compared to data from coarser grids, since the number of available data scales
exponentially with the number of the refinement.

4.7 Applying a MLP limiter to the Hemker problem

Finally, in this section the MLP limiter is applied to a different example, namely the Hemker benchmark
problem. It was proposed in [26] and it is a very popular benchmark problem for convection-dominated
convection-diffusion equations. It models the transport of energy from a body through a channel and
shows many features of problems that are also relevant in applications. The structure of the solution is
similar to the solution of the HMM example, e.g., it is constant in most regions, and hence there is hope
that the MLP limiter is able to limit the solution in a reasonable way.

Example 2 (Hemker example). The problem is stated in Ω = {(−3, 9) × (−3, 3)} \ {(x, y) :

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 21

x2 + y2 ≤ 1}, and has the coefficients b = (1, 0)T , c = f = 0. If x = −3 and at the circular
boundary, Dirichlet boundary conditions are prescribed by setting

g = 0 if x = −3, g = 1 at the circle.

Everywhere else homogeneous Neumann conditions are applied. The solution is sketched in Figure 10
and takes values in [0, 1].

Figure 10: Sketch of the solution to Example 2 for ε = 10−8 obtained with a nonlinear algebraic
flux-corrected (AFC) finite element method with Kuzmin limiter, see [5].

Figure 11: Initial mesh for Example 2 used in Section 4.7.

As before, the diffusion coefficient is set to ε = 10−8 and κ = 1, η = 1, and σ = εn0(p+ 1)(p+ 2)
are used as parameters in the DG method. The problem is solved on a series of grids starting from
the one depicted in Figure 11. The characteristic length scale for this problem is L = 13.5 and the
remaining parameters of the limiter stay the same.

In Figure 12 the results for both measures for the limited solution and the original solution for various
polynomial degrees are shown. As before ConstJumpMod , ConstJumpNorm, and the MLP limiter are
able to reduce the oscillations significantly compared to Galerkin. For P1 and P2 the MLP limiter is
slightly worse than the traditional ones on coarser grids but on finer grids it behaves equally well. For
P3 and P4 it is worse than the classical companions, except for the finest grid and except for P4 for
oscmax on one coarser level. We observed that the MLP limiter is always better than LinTriaReco in
both measures, better than ConstJumpNorm for oscmax for all polynomial degree, and for oscmean for
P1 and for P2 to P4 on the two finer levels, but these results are not presented for the sake of brevity.
A visualization of the limited P4 solution with ConstJumpNorm and MLP on the second finest grid is

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

D. Frerichs-Mihov, L. Henning, V. John 22

shown in Figure 13. It can be observed that the MLP limiter limits most of the cells correctly but forgets
to mark some cells with undershoots. This is also is the reason why it has worse oscmean and oscmax

values compared to ConstJumpNorm.

10−4

10−3

10−2

P1

o
sc

m
e
a
n
(u

h
)

P2 P3 P4

104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P1

number dof

o
sc

m
a
x
(u

h
)

104 105 106

P2

number dof
104 105 106

P3

number dof
104 105 106

P4

number dof

Galerkin ConstJumpMod ConstJumpNorm MLP

Figure 12: Results for measures for various limiters and various polynomial degrees obtained for
Example 2.

Figure 13: Discrete P4 solution to Example 2 limited by the ConstJumpNorm limiter (left) and the MLP
limiter (right).

5 Summary and outlook

This paper is a contribution to deeper understanding how neural network based slope limiters can
be created and applied. In contrast to previous papers, it was focussed on constructing a multilayer
perceptron model for limiting the discrete solution of an elliptical problem, namely convection-diffusion
equations in the convection-dominated regime. It was shown how data from a lowest order discretization
can be used to train a limiter that then can be applied to the discrete solution of higher order methods.
The results have indicated that the limiter works almost equally well as classical methods for higher

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 23

order methods for the same problem but somewhat worse than these methods when applied to the
solution of a different problem.

In the future the impact of the features will be considered. Open questions include: Can the feature
space be made smaller? Can the local degrees of freedom of the discrete solution be the features, i.e.,
can a MLP find a mapping between the local degrees of freedom and the labels from the decision maker
functions? Can this MLP limiter also be used to mark cells for either adaptive refinement strategies or
for adjusting the stabilization parameters in stabilized discretizations? These and other topics will be
investigated in future work.

Acknowledgement

The authors express their gratitude to Dr. Ulrich Wilbrandt for many time consuming but always valuable
discussions.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems, 2015. Software available from https://www.tensorflow.
org/.

[2] Rémi Abgrall and Maria Han Veiga. Neural Network-Based Limiter with Transfer Learning.
Communications on Applied Mathematics and Computation, Sep 2020.

[3] Matthias Augustin, Alfonso Caiazzo, André Fiebach, Jürgen Fuhrmann, Volker John, Alexander
Linke, and Rudolf Umla. An assessment of discretizations for convection-dominated convec-
tion–diffusion equations. Computer Methods in Applied Mechanics and Engineering, 200(47):3395–
3409, 2011.

[4] Blanca Ayuso and L. Donatella Marini. Discontinuous Galerkin methods for advection-diffusion-
reaction problems. SIAM J. Numer. Anal., 47(2):1391–1420, 2009.

[5] Gabriel R. Barrenechea, Volker John, Petr Knobloch, and Richard Rankin. A unified analysis of
algebraic flux correction schemes for convection-diffusion equations. SeMA J., 75(4):655–685,
2018.

[6] Andrea Beck, David Flad, and Claus-Dieter Munz. Deep neural networks for data-driven les
closure models. Journal of Computational Physics, 398:108910, 2019.

[7] Andrea D. Beck, Jonas Zeifang, Anna Schwarz, and David G. Flad. A neural network based shock
detection and localization approach for discontinuous Galerkin methods. Journal of Computational
Physics, 423:109824, 2020.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

https://www.tensorflow.org/
https://www.tensorflow.org/

D. Frerichs-Mihov, L. Henning, V. John 24

[8] Andrea Cangiani, Zhaonan Dong, Emmanuil H. Georgoulis, and Paul Houston. hp-version discon-
tinuous Galerkin methods on polygonal and polyhedral meshes. SpringerBriefs in Mathematics.
Springer, Cham, 2017.

[9] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in applied mathe-
matics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002.

[10] Bernardo Cockburn and Chi-Wang Shu. The Runge–Kutta Discontinuous Galerkin Method for Con-
servation Laws V: Multidimensional Systems. Journal of Computational Physics, 141(2):199–224,
Apr 1998.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989.

[12] Timothy A. Davis. Algorithm 832: UMFPACK V4.3–an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Software, 30(2):196–199, 2004.

[13] TensorFlow Developers. TensorFlow, May 2022. v2.9.1, https://doi.org/10.5281/
zenodo.6574233.

[14] Daniele Antonio Di Pietro and Alexandre Ern. Mathematical Aspects of Discontinuous Galerkin
Methods, volume 69 of Mathématiques et Applications. Springer Verlag, Berlin, Heidelberg, 1st
edition, 2012.

[15] Vít Dolejší and Miloslav Feistauer. Discontinuous Galerkin Method: Analysis and Applications
to Compressible Flow, volume 48 of Springer Series in Computational Mathematics. Springer
International Publishing, Cham, 1 edition, 2015.

[16] Vít Dolejší, Miloslav Feistauer, and Christoph Schwab. On some aspects of the discontinuous
Galerkin finite element method for conservation laws. Mathematics and Computers in Simulation,
61(3–6):333–346, Jan 2003.

[17] Vít Dolejší, Miroslav Feistauer, and Christoph Schwab. On discontinuous Galerkin methods for
nonlinear convection-diffusion problems and compressible flow. In Proceedings of EQUADIFF 10,
volume 127, page 163–179, Prague, 2002.

[18] Vít Dolejší and Pavel Solin. hp-discontinuous Galerkin method based on local higher order
reconstruction. Appl. Math. Comput., 279:219–235, 2016.

[19] Derk Frerichs and Volker John. On reducing spurious oscillations in discontinuous Galerkin (DG)
methods for steady-state convection–diffusion equations. Journal of Computational and Applied
Mathematics, 393:113487, Sep 2021.

[20] Derk Frerichs-Mihov and Volker John. On a technique for reducing spurious oscillations in DG
solutions of convection–diffusion equations. Applied Mathematics Letters, 129:107969, Jul 2022.

[21] Derk Frerichs-Mihov, Ulrich Wilbrandt, Linus Henning, and Volker John. Data and code for using
deep neural networks for detecting spurious oscillations in discontinuous Galerkin solutions of
convection-dominated convection-diffusion equations, 2022. This work is licensed under CC BY
4.0, https://doi.org/10.20347/40vd-f944.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

https://doi.org/10.5281/zenodo.6574233
https://doi.org/10.5281/zenodo.6574233
http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://doi.org/10.20347/40vd-f944

Using DNNs for detecting spurious oscillations in DG solutions of convection-diffusion equations 25

[22] S. Ganesan, V. John, G. Matthies, R. Meesala, S. Abdus, and U. Wilbrandt. An object oriented
parallel finite element scheme for computing PDEs: Design and implementation. In IEEE 23rd
International Conference on High Performance Computing Workshops (HiPCW) Hyderabad, pages
106–115. IEEE, 2016.

[23] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy, 2010. PMLR.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[25] J. Gopalakrishnan and G. Kanschat. A multilevel discontinuous Galerkin method. Numer. Math.,
95(3):527–550, 2003.

[26] P. W. Hemker. A singularly perturbed model problem for numerical computation. J. Comput. Appl.
Math., 76(1-2):277–285, 1996.

[27] Catherine F. Higham and Desmond J. Higham. Deep Learning: An Introduction for Applied
Mathematicians. SIAM Review, 61(4):860–891, Jan 2019.

[28] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[29] Thomas J. R. Hughes, Michel Mallet, and Akira Mizukami. A new finite element formulation
for computational fluid dynamics. II. Beyond SUPG. Comput. Methods Appl. Mech. Engrg.,
54(3):341–355, 1986.

[30] Sergio Izquierdo. CppFlow, Sep 2022. v2.0.0, https://github.com/serizba/
cppflow, https://serizba.github.io/cppflow/.

[31] Volker John and Petr Knobloch. A computational comparison of methods diminishing spurious
oscillations in finite element solutions of convection-diffusion equations. In T. Vejchodsky J. Chle-
boun, K. Segeth, editor, Proceedings of the International Conference on Programs and Algorithms
of Numerical Mathematics 13, pages 122–136, Prague, 2006. Academy of Science of the Czech
Republic.

[32] Volker John and Petr Knobloch. On Discontinuity-Capturing Methods for Convection-Diffusion
Equations. In Alfredo Bermúdez de Castro, Dolores Gómez, Peregrina Quintela, and Pilar Salgado,
editors, Numerical Mathematics and Advanced Applications, pages 336–344, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[33] Subodh M. Joshi, Thivin Anandh, Bhanu Teja, and Sashikumaar Ganesan. On the choice of
hyper-parameters of artificial neural networks for stabilized finite element schemes. International
Journal of Advances in Engineering Sciences and Applied Mathematics, 13:278–297, 2020.

[34] Guido Kanschat. Discontinuous Galerkin Methods for Viscous Incompressible Flow. Advances in
numerical mathematics. Teubner Research, Dt. Univ.-Verl, Wiesbaden, 1st edition, 2007.

[35] Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method For Stochastic Optimization. In ICLR
2015, page 13. arXiv, 2014.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/serizba/cppflow
https://github.com/serizba/cppflow
https://serizba.github.io/cppflow/

D. Frerichs-Mihov, L. Henning, V. John 26

[36] Miroslav Kubat. An introduction to machine learning. Springer Nature Switzerland, Cham, 3rd
edition, 2021.

[37] Yang Liu, Yutong Lu, Yueqing Wang, Dong Sun, Liang Deng, Fang Wang, and Yan Lei. A
CNN-based shock detection method in flow visualization. Computers & Fluids, 184:1–9, 2019.

[38] Nils Margenberg, Christian Lessig, and Thomas Richter. Structure preservation for the deep
neural network multigrid solver. ETNA - Electronic Transactions on Numerical Analysis, 56:86–101,
2021.

[39] Rômulo Montalvão Silva and Alvaro Coutinho. PINNs for Parametric Incompressible Newtonian
Flows. In Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in
Engineering and III Pan-American Congress on Computational Mechanics, ABMEC-IACM, 11
2021.

[40] Nathaniel R. Morgan, Svetlana Tokareva, Xiaodong Liu, and Andrew Morgan. A machine learning
approach for detecting shocks with high-order hydrodynamic methods. In AIAA Scitech 2020
Forum, 2020.

[41] Deep Ray and Jan S. Hesthaven. An artificial neural network as a troubled-cell indicator. Journal
of Computational Physics, 367:166–191, Aug 2018.

[42] Deep Ray and Jan S. Hesthaven. Detecting troubled-cells on two-dimensional unstructured grids
using a neural network. Journal of Computational Physics, 397:108845, 2019.

[43] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron Transport Equation. Technical
Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

[44] Béatrice Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations:
Theory and Implementation, volume 35 of Frontiers in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, Jan 2008.

[45] Raul Rojas. Networks of width one are universal classifiers. In Proceedings of the International
Joint Conference on Neural Networks, volume 4, pages 3124–3127, 2003.

[46] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska. Robust Numerical Methods for Singularly
Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, volume 24 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg, 2nd edition,
2008.

[47] Maria Han Veiga and Rémi Abgrall. Towards a general stabilisation method for conservation laws
using a multilayer perceptron neural network: 1d scalar and system of equations. In European
Conference on Computational Mechanics and VII European Conference on Computational Fluid
Dynamics, number 1, pages 2525–2550. ECCM, Juni 2018.

[48] Henry von Wahl and Thomas Richter. Using a deep neural network to predict the motion of
underresolved triangular rigid bodies in an incompressible flow. International Journal for Numerical
Methods in Fluids, 93(12):3364–3383, 2021.

[49] Ulrich Wilbrandt, Clemens Bartsch, Naveed Ahmed, Najib Alia, Felix Anker, Laura Blank, Alfonso
Caiazzo, Sashikumaar Ganesan, Swetlana Giere, Gunar Matthies, Raviteja Meesala, Abdus
Shamim, Jagannath Venkatesan, and Volker John. ParMooN–A modernized program package
based on mapped finite elements. Comput. Math. Appl., 74(1):74–88, 2017.

DOI 10.20347/WIAS.PREPRINT.2986 Berlin 2022

	Introduction
	Discontinuous Galerkin methods and Slope Limiter for convection-diffusion equations
	Discontinuous Galerkin methods
	Slope Limiters

	Deep neural networks as spurious oscillations detector
	Generating the data set
	Rotation invariance of the data
	Magnitude invariance

	Restricting the data set
	Splitting the data set
	Measuring the performance of the networks

	Numerical studies
	Architecture of the MLPs
	Learning single limiters
	Overcoming the difficulties when learning LinTriaReco and ConstTriaReco
	Learning all limiters simultaneously based on vectors
	Learning all limiters simultaneously based on classes
	Applying a MLP limiter to higher polynomial degrees
	Determining the minimum number of predicted marks n
	Higher polynomial degrees

	Applying a MLP limiter to the Hemker problem

	Summary and outlook

