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Improved laser linewidth estimation from self-heterodyne
beat note measurements using parametric Wiener filters

Markus Kantner, Lutz Mertenskötter

Abstract

Self-heterodyne beat note measurement techniques are widely used for the experimental char-
acterization of the phase noise power spectral density (PSD) and the spectral linewidth of lasers.
The measured data, however, must be corrected for the transfer function of the interferometer in a
post-processing routine. The standard approach disregards the measurement noise and thereby
induces uncontrolled artifacts in the reconstructed noise PSDs. We introduce an improved data
post-processing routine based on a parametric Wiener filter (power spectrum equalization, PSE),
that is potentially free of reconstruction artifacts provided a good estimate of the signal-to-noise
ratio (SNR) is supplied. Based on the PSE filter, we describe a new method for the estimation
of the intrinsic laser linewidth. Our method yields accurate estimates even in the case of strong
measurement noise, where the intrinsic linewidth plateau is not visible using the standard method.
The method is demonstrated for simulated time series data from stochastic laser rate equations.

1 Introduction

Narrow-linewidth lasers exhibiting low phase noise are core elements of coherent optical communication
systems [1–3], gravitational wave interferometers [4–7] and emerging quantum technologies, including
optical atomic clocks [8–10], matter-wave interferometers [11–13] and ion-trap quantum-computers
[14–16]. For many of these applications, the performance depends critically on the laser’s intrinsic
(Lorentzian) linewidth [17, 18], which is typically obscured by additional 1/f -like technical noise [19–24].
Because of this so-called flicker noise, the laser linewidth alone is not a well-defined quantity and needs
to be specified at least together with the measurement time. For a detailed characterization of the phase
noise exhibited by the laser (or the fluctuations of its instantaneous frequency), the measurement of the
corresponding power spectral density (PSD) is required.

The experimental measurement of the frequency noise power spectral density (FN–PSD) is challenging
as the rapid oscillations of the laser’s optical field cannot be directly resolved by electronic photode-
tectors. A standard method that is widely used for the measurement of the FN–PSD is the delayed
self-heterodyne (DSH) beat note measurement technique [19, 25–30], which allows to extract the phase
fluctuation dynamics from a slow beat note signal in the radio frequency (RF) regime. The evaluation of
the method, however, requires some post-processing of the measured data in order to reconstruct the
FN–PSD of the free-running laser by removing the footprint of the self-heterodyne interferometer. In
this paper we describe an improved post-processing routine based on a parametric Wiener filter (power
spectrum equalization, PSE) that avoids typical artifacts which occur in the standard method.

This paper is organized as follows: In Sec. 2, we describe the experimental setup and provide a model
of the measurement that takes also measurement noise into account. In Sec. 3, we review the Wiener
deconvolution method [31] with particular focus on the application to the DSH measurement. Thereby,
we discuss a family of frequency-domain filter functions and their capabilities in restoring the true
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Fig. 1. Illustration of the experimental setup for the DSH beat note measurement. The laser beam is separated by an
AOM, where one arm of the signal is frequency shifted and delayed by a long fiber. Both beams are superimposed at a
photodetector, which captures only the slow beat note signal in the RF domain.

FN–PSD of the free-running laser. In Sec. 4, we propose a novel method based on the PSE filter, that
allows for a precise estimate of the intrinsic linewidth even at low signal-to-noise ratio, when the onset
of the intrinsic linewidth plateau is overshadowed by measurement noise. The method is demonstrated
for simulated time series of a generic single-mode continuous wave (CW) laser in Sec. 5. We close with
a discussion of the method in Sec. 6.

2 Delayed Self-Heterodyne Beat Note Measurement

In the delayed self-heterodyne (DSH) measurement method, see Fig. 1, the light of a laser is su-
perimposed with the frequency-shifted (heterodyne) and time-delayed light from the same source.
The frequency shift ∆ωAOM (typically several tens of MHz to 100 MHz) is usually realized with an
acousto-optic modulator (AOM) and the delay τd is implemented via long (coiled) fibers (typically several
km). If the delay is larger than the coherence time of the laser, the delayed light can be regarded as a
statistically independent second laser with the same frequency and noise characteristics. The DSH
method allows to down-convert the optical signal to a beat note signal in the RF domain, that can be
resolved by corresponding spectrum analyzers.

Unlike other methods, the DSH method does not require stabilization of the laser to an optical reference
(e.g., a frequency-stabilized second laser, a high-Q optical cavity or an atomic transition). Moreover,
the frequency noise characteristics can be measured over a broad frequency bandwidth. A detailed
description of the experimental setup and the post-processing procedure can be found in [32].

After down-conversion and I–Q demodulation (Hilbert transform) carried out by the spectrum analyzer,
the detected in-phase and quadrature signals read [32]

I (t) = ηdet
√

P (t)P (t− τd) cos (ϕ (t)− ϕ (t− τd)−∆Ω t) + ξI (t) , (1a)

Q (t) = ηdet
√
P (t)P (t− τd) sin (ϕ (t)− ϕ (t− τd)−∆Ω t) + ξQ (t) , (1b)

where ηdet describes the detector efficiency, P is the optical power (or photon number), ϕ is the
optical phase and ∆Ω is the final difference frequency accumulated in the beating of the signal
in the interferometer and the RF analyzer, where the sum frequency components are filtered out.
Moreover, we assume Gaussian white measurement noise with correlation function ⟨ξI (t) ξI (t′)⟩ =
⟨ξQ (t) ξQ (t′)⟩ = σ2

measδ (t− t′).

From the detected time series I (t), Q (t) one easily obtains the phase fluctuation difference

∆ϕ (t) = δϕ (t)− δϕ (t− τd) = arctan

(
Q (t)

I (t)

)
− Ωτd +∆Ω t+ ξϕ (t) (2)

DOI 10.20347/WIAS.PREPRINT.2983 Berlin 2022



Improved laser linewidth estimation using parametric Wiener filters 3

where Ω is the nominal CW frequency and δϕ(t) = ϕ(t) − Ωt. The effective measurement noise
ξϕ (t) (which derives from ξI (t) and ξQ (t)) is approximately white

⟨ξϕ (t) ξϕ (t′)⟩ ≈
(
σmeas

ηdetP

)2

δ (t− t′) , (3)

if the average power P is much larger than the measurement noise level σmeas, see Appendix A. The
evaluation of (2) requires estimation of τd and ∆Ω (detrending), see [32] for details.

From the relation between the phase fluctuations of the single laser δϕ (t) and ∆ϕ (t), see Eq. (2),
which can be written in Fourier space as

∆ϕ̃ (ω) = H (ω) δϕ̃ (ω) , H (ω) = 1− eiωτd , (4)

one derives a simple relation between the phase noise PSDs

S∆ϕ,∆ϕ (ω) = |H (ω)|2 Sδϕ,δϕ (ω) . (5)

In the standard post-processing routine [19, 32], one resolves (5) for Sδϕ,δϕ (ω) by division through
|H (ω)|2 = 2 (1− cos (ωτd)). This approach has two notable shortcomings: First, this procedure
does not take into account the measurement noise and thereby over estimates the phase noise PSD at
increased measurement noise levels. Second, the transfer function has roots at ωn = 2πn/τd, n ∈ Z,
which turn to poles in its inverse |G (ω)|2 = |H (ω)|−2. As a consequence, the reconstructed PSD
features a series of equidistant spurious spikes [33–35], resulting from an uncontrolled amplification of
the measurement noise.

In principle, the DSH technique also provides access to the relative intensity noise (RIN) PSD, by an
analogous post processing routine. This requires, however, a sufficiently long fiber delay exceeding the
coherence length of the laser. We refrain from a discussion of the RIN measurement, since our focus in
this paper is on the identification of the phase or frequency noise PSD.

3 Parametric Wiener Filter

In this section, we recapitulate Wiener deconvolution [31, 36] as a method for the reconstruction of
hidden signals from noisy time series data. Next to the well-known Wiener filter, we present power
spectrum equalization (PSE) as an important representative of the group of parametric Wiener filters.

Let x (t) denote the time series of a hidden signal of interest that is measured by an experimental setup
characterized by a convolution kernel h (t). In the case of the DSH measurement described above,
this is h (t) = δ (t)− δ (t− τd). Furthermore, let ξ (t) denote additive Gaussian white measurement
noise, then the experiment yields an observed time series

z (t) = (h ∗ x) (t) + ξ (t) . (6a)

The process noise and measurement noise are assumed to be uncorrelated ⟨x (t) ξ (t′)⟩ = 0. One
seeks for an estimate x̂ (t) of the hidden signal

x̂ (t) = (g ∗ z) (t) , (6b)

cf. Fig. 2, where the (de-)convolution kernel g (t) satisfies an optimality condition.
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x(t) h(t) z(t)

ξ(t)

g(t)x̂(t)

* +

*

Fig. 2. Schematic illustration of the Wiener deconvolution
method (6) for the computation of an optimal reconstruc-
tion x̂(t) of a hidden time series x(t) from noisy measure-
ment data z(t).

In this paper, our main interest is the reconstruction of PSDs of hidden signals in the frequency domain,
for which we introduce the Fourier space representation of (6)

Z (ω) = H (ω)X (ω) + Ξ (ω) , (7a)

X̂ (ω) = G (ω)Z (ω) . (7b)

From (7b), we obtain the relation between the estimated PSD Sx̂,x̂ (ω) of the hidden signal and the
PSD of the measured time series Sz,z (ω):

Sx̂,x̂ (ω) = |G (ω)|2 Sz,z (ω) . (8)

In the following, we discuss different candidates for the frequency-domain filter function G (ω). Their
performance is evaluated with respect to the reconstruction of the typical FN–PSD of a semiconductor
laser [20, 22, 23] from DSH measurements. We take the transfer function of the interferometer as

H (ω) = 1− eiωτd

and the hidden signal and noise PSDs

Sx,x (ω) =
C

ων
+ S∞, (9)

Sξ,ξ (ω) = σω2. (10)

In (9), S∞ determines the intrinsic laser linewidth, which is obscured by additional colored noise of
power-law type with 0.8 ≲ ν ≲ 1.6 (flicker noise). The functional form (9) is consistent with theoretical
models and experimental observations for frequencies well below the relaxation oscillation (RO) peak
(typically at several GHz). The level of phase measurement noise, see Eq. (3), is specified by σ and the
corresponding frequency measurement noise PSD is a quadratic function of the frequency.1 The model
PSDs (9)–(10) imply the signal-to-noise ratio

SNR (ω) =
Sx,x (ω)

Sξ,ξ (ω)
. (11)

Figure 3 shows that different filters G (ω) can lead to vastly different results for Sx̂,x̂ (ω). In the following
section, we discuss their behavior in more detail.

1The time-domain relation between phase and frequency fluctuations δϕ (t) =
∫ t

dt′ δω (t′) implies the following

relation in the frequency-domain: −iωδϕ̃ (ω) = δω̃ (ω). Thus, it holds Sδω,δω (ω) = ω2Sδϕ,δϕ (ω), such that spectrally
white phase noise (3) implies a quadratic frequency-dependency of the FN–PSD.
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Fig. 3. Comparison of the different filters for PSD reconstruction. (a) Analytical signal (9) and measurement noise (10) PSD
along with the observed spectrum and the exact signal-to-noise ratio. Parameters in the plot are ν = 1.4, C = 1011 Hzν+1,
S∞ = 103 Hz, σ = 10−10 Hz and τd = 10µs. (b) The inverse filter (12) yields a reconstructed PSD with spurious
artifacts at the poles fn = n/τd, n ∈ Z, of (12). The intrinsic linewidth plateau is obscured by noise and can not be
recovered from the inverse filter reconstruction (merely an upper limit can be extracted). (c) The Wiener filter (13) is optimized
for time series reconstruction, but fails in reconstruction of the PSD. The reconstructed PSD features sharp dropouts at
the pole frequencies and does not follow the hidden signal at low SNR < 1. (d) Power spectrum equalization (14) yields
an exact reconstruction of the hidden signal’s PSD if the exact SNR is provided. Here, the singularities at the poles of the
inverse filter are tamed and bounded from above by the SNR, which allows for exact compensation of both the measurement
noise and the effects of the interferometer in the observed signal Sz,z .

3.1 Inverse Filter

In the trivial case of negligible measurement noise, the filter G (ω) is simply given by the inverse of the
transfer function

Ginv (ω) = H−1 (ω) . (12)

The corresponding estimate of the PSD of the hidden signal reads

Sx̂,x̂ (ω) = |Ginv (ω)|2 Sz,z (ω) , |Ginv (ω)|2 =
1∣∣H (ω)
∣∣2 ,

which coincides with the standard post-processing method of the DSH measurement [19, 29, 34]. The
most prominent feature of the inverse filter |Ginv (ω)|2 are singularities at poles ωpole

n = 2πn/τd,
n ∈ Z, where the PSD reconstruction fails, see Fig. 3 (a). Sufficiently far away from these poles,
the reconstructed spectrum matches the hidden signal as long as the signal-to-noise ratio is large
(SNR > 1). If the intrinsic linewidth plateau is obscured by measurement noise, only an upper limit
can be extracted via inverse filtering.
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3.2 Wiener Filter

Wiener filtering achieves an optimal trade-off between inverse filtering and noise removal. It subtracts
the additive noise and reverses the effects of the interferometer simultaneously. The Wiener filter is
obtained from minimizing the mean square error of the time-domain signal at an arbitrary instance of
time, see Appendix B.1. In the frequency domain, the Wiener filter reads

GWiener (ω) =
H∗ (ω)Sx,x (ω)

|H (ω)|2 Sx,x (ω) + Sξ,ξ (ω)

=
1

H (ω)

(
1 +

1

|H (ω)|2 SNR (ω)

)−1 (13)

where in the second line we have introduced the signal-to-noise ratio (11).

Although the Wiener filter provides an optimal reconstruction of the time-domain signal, the corre-
sponding PSD reconstruction deviates significantly from the true spectrum in regions of low SNR, see
Fig. 3 (c). Moreover, we note that the Wiener filter overemphasizes noise reduction at the poles ωpole

n ,
where the reconstructed PSD is zero because of∣∣GWiener

(
ωpole
n

)∣∣2 = 0

such that also Sx̂,x̂

(
ωpole
n

)
= 0. Away from these poles and at high SNR, the Wiener filter asymptotically

approaches the behavior of the inverse filter∣∣GWiener

(
ω ̸= ωpole

n

)∣∣2 SNR→∞∼ 1

|H (ω)|2
.

3.3 Power Spectrum Equalization

Besides the standard Wiener filter, there exist several variants of the method which are collectively
referred to as parametric Wiener filters [31]. An important one is power spectrum equalization (PSE),
which is tailored to minimize the quadratic error of the reconstructed PSD, see Appendix B.2. The
corresponding filter function reads∣∣GPSE (ω)

∣∣2 = Sx,x (ω)

|H (ω)|2 Sx,x (ω) + Sξ,ξ (ω)

=
1

|H (ω)|2

(
1 +

1

|H (ω)|2 SNR (ω)

)−1

.

(14)

The PSE filter yields a very accurate reconstruction of the hidden signal when the true frequency-
dependent SNR is provided, see Fig. 3 (d).

Most remarkably, the reconstructed spectrum is free of artifacts at the poles of the inverse filter function.
This result is easily understood by the following analysis. A straightforward calculation shows that the
filter approaches the SNR at ωpole

n ∣∣GPSE

(
ωpole
n

)∣∣2 = SNR
(
ωpole
n

)
.

As the interferometer is blind for these frequency components (i.e., the transfer function is zero
H
(
ωpole
n

)
= 0), the observed signal contains only measurement noise Sz,z

(
ωpole
n

)
= Sξ,ξ

(
ωpole
n

)
,
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see Eq. (7b). Finally, substitution into Eq. (8), shows that the PSE filter cancels out the measurement
noise exactly and recovers the true signal

Sx̂,x̂

(
ωpole
n

)
=
∣∣GPSE

(
ωpole
n

)∣∣2 Sz,z

(
ωpole
n

)
= SNR

(
ωpole
n

)
Sξ,ξ

(
ωpole
n

)
= Sx,x

(
ωpole
n

)
if the correct SNR is provided. Furthermore, we observe that the PSE filter restores the hidden
signal even in regions of low SNR. This result follows along the same lines as above, starting from∣∣GPSE (ω)

∣∣2 SNR→0∼ SNR (ω). In the opposite case, at very high SNR (ω) ≫ 1, the PSE filter

approaches again (just like the Wiener filter) the inverse filter
∣∣GPSE (ω)

∣∣2 SNR→∞∼ |H (ω)|−2 .

Finally, we note that all the filter candidates discussed in this section can be written in a unified way as
parametric Wiener filters of the following form:

∣∣G (ω)
∣∣2 = 1

|H (ω)|2

(
1 +

1

|H (ω)|2 SNR (ω)

)−m

=


∣∣Ginv (ω)

∣∣2 for m = 0,∣∣GWiener (ω)
∣∣2 for m = 1,∣∣GPSE (ω)

∣∣2 for m = 2.

4 Intrinsic Linewidth Estimation at Low Signal-to-Noise Ratio

In the previous section, it was shown that the PSE filter can provide an excellent reconstruction of the
hidden PSD if the exact SNR is supplied. At first glance, this approach seems to be rather impractical,
since the specification of the exact SNR to a certain extent already anticipates the actual measurement
result. One might therefore worry that arbitrary reconstructions could be enforced by the prescribed
SNR. It turns out, however, that the PSE filter method exhibits very characteristic artifacts when the
specified SNR is incorrect, see Fig. 4. These reconstruction artifacts are easily recognized to be
unphysical, such that the incorrect SNR estimate can be rejected. Based on this observation, in the
following, we develop a method that simultaneously reconstructs both the PSD of the hidden signal as
well as the correct SNR, by minimizing those reconstruction artifacts.

We employ again the analytic model PSDs (9) and (10). For the sake of simplicity, we assume in
the following that the parameters C and ν can be accurately estimated from the data, since the
low-frequency part of the signal is only negligibly affected by the measurement noise. Similarly, we
assume that the noise level σ is known from independent noise floor measurements or from analysis of
the RIN signal (which is typically dominated by measurement noise at increased powers). Then, the
only free parameter is the intrinsic linewidth value S∞, that shall be estimated.

Figure 4 (a)–(b) shows the effects of over- and underestimation of S∞ in the analytical model. Due to
the mismatch between the filter function |GPSE (ω)|2 and the observed spectrum Sz,z (ω), spurious
oscillations (reconstruction artifacts) show up at frequencies ω ≈ ωpole

n in the reconstructed spectrum
Sx̂,x̂ (ω). At large frequencies these oscillations are damped out in both |GPSE (ω)|2 and Sz,z (ω), but
their product yields a wrong value of the intrinsic linewidth plateau. We introduce an objective function
that penalizes the deviation (i.e., the “inconsistency”) between the reconstructed signal Sx̂,x̂ (ω;S∞)
(depending on the assumed SNR as a function of estimated S∞) and the implicitly assumed signal
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Fig. 4. Reconstruction artifacts in the PSE filter method with incorrectly estimated SNR. (a) Overestimation (Sest
∞ = 5S∞)

and (b) underestimation (Sest
∞ = 0.2S∞) of the intrinsic linewidth S∞ leads to spurious oscillations and spikes in the

reconstructed spectrum Sx̂,x̂ (solid red line). In the case of misspecification of the SNR, the maxima of |GPSE|2 (solid black
line) are no longer bounded by the exact SNR (orange dashed line). The assumed Sx,x, which has the functional form (9)
and enters the SNR estimate, is shown as red dashed line. The method described in Sec. 4 aims at minimizing the deviation
between Sx,x and Sx̂,x̂ in order to estimate the true value of the intrinsic linewidth parameter S∞. The corresponding
objective function (15) is shown in (c).

Sx,x (ω;S∞) with the functional form (9) as

D (S∞) =

(∫
dω

Sx̂,x̂ (ω;S∞)− Sx,x (ω;S∞)

Sx,x (ω;S∞)

)2

(15)

=

(∫
dω

|GPSE (ω;S∞)|2 Sz,z (ω)− Sx,x (ω;S∞)

Sx,x (ω;S∞)

)2

,

where the ω–integral runs over a suitable frequency domain. As shown in Fig. 4 (c), the objective
function (15) exhibits a sharp minimum at the exact value, cf. Fig. 3 (c). Hence, S∞ can be estimated
by minimization of D(S∞).

5 Application to Stochastic Laser Dynamics

In this section, we demonstrate the method described in Sec. 4 for simulated time series data. First, in
Sec. 5.1, we describe a stochastic laser rate equation model including non-Markovian colored noise.
The latter generates realistic time series including drifts of the instantaneous frequency as commonly
observed in semiconductor lasers. In Sec. 5.2, we describe the application of the linewidth estimation
method on a sample of DSH measurement data generated from the simulated laser dynamics.

5.1 Stochastic Laser Rate Equations

We consider a single-mode Langevin equation model for the photon number P , the optical phase ϕ
and the charge carrier number N

Ṗ = −γ (P − Pth) + Γvgg (P,N)P + Γvggsp (P,N) + FP , (16a)

ϕ̇ = Ω0 +
αH

2
Γvgg (P,N) + Fϕ, (16b)

Ṅ =
ηI

q
−R (N)− Γvgg (P,N)P − Γvggsp (P,N) + FN . (16c)
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Parameters are listed in Tab. 1.

Here, γ is the inverse photon lifetime (due to background absorption and mirror losses), Pth is the
thermal photon number (Bose–Einstein factor), Γ is the optical confinement factor, vg is the group
velocity, Ω0 is the detuning from the CW reference frequency, αH is the linewidth enhancement factor
(Henry factor), I is the pump current, η is the injection efficiency and q denotes the elementary charge.
The net-gain is modeled as

g (P,N) =
g0

1 + εP
log

(
N

Ntr

)
, (17)

where g0 is the gain coefficient, Ntr is the carrier number at transparency and ε is the gain compression
coefficient. Following [18], the spontaneous emission coefficient is described by

gsp (P,N) =
1

2

g0
1 + εP

log

(
1 +

(
N

Ntr

)2
)
, (18)

which does not require any additional parameters and is consistent with microscopic gain calculations.
Furthermore, (18) avoids the introduction of the population inversion factor [17, 18], that is singular
near transparency. The stimulated absorption coefficient is implicitly determined by Eqs. (17)–(18) as
gabs (P,N) = gsp (P,N)− g (P,N). Non-radiative recombination and spontaneous emission into
waste modes are described by

R (N) = AN +
B

V
N2 +

C

V 2
N3, (19)

where A is the Shockley–Read–Hall recombination rate, B is the bimolecular recombination coefficient,
C is the Auger recombination coefficient and V is the volume of the active region. All parameter values
used in the simulations are listed in Tab. 1.
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symbol description value

γ inverse photon lifetime (cavity decay rate) 5 · 1011 s−1

Pth thermal photon number (Bose–Einstein factor) 2.7 · 10−20

Γ optical confinement factor 0.01
g0 gain coefficient 3.54 · 105m−1

ng group index 3.9
vg group velocity, vg = ng/c0 7.69 · 107ms−1

Ntr transparency carrier number 2.5 · 109
ε gain compression coefficient (inverse saturation photon number) 10−8

Ω0 detuning from CW reference frequency 0Hz
αH linewidth enhancement factor (Henry factor) 3.0
I pump current 200mA
η injection efficiency 0.9
A Shockley–Read–Hall recombination rate 1 · 108 s−1

B bimolecular recombination coefficient 1 · 1016m3s−1

C Auger recombination coefficient 4 · 10−42m6s−1

V active region volume 1.25 · 10−15m3

νP colored noise exponent (photon number and phase) 1.4
σP,0 colored noise amplitude (photon number and phase) 5 · 105 s−(1+νP )/2

νN colored noise exponent (carrier number) 1.0
σN,0 colored noise amplitude (carrier number) 109 s−(1+νN )/2

σmeas detector noise floor level 2 · 103 s1/2 ηdet
τd interferometer delay 10 · 10−6 s

Tab. 1. List of parameter values used in stochastic time series simulation.

The Langevin forces describe zero-mean Gaussian colored noise with the following frequency-domain
correlation functions:

⟨F̃P (ω) F̃P (ω′)⟩ =
(
2
(
Γvggsp

(
P ,N

)
+ γPth

)
P

(
1 +

1

P

)
+ σ2

P

(
P
) 1

ωνP

)
δ (ω − ω′) ,

⟨F̃ϕ (ω) F̃ϕ (ω
′)⟩ =

(Γvggsp (P ,N
)
+ γPth

)(
1 +

1

P

)
+

(
σP

(
P
)

2P

)2
1

ωνP

 δ (ω − ω′) ,

⟨F̃N (ω) F̃N (ω′)⟩ =

(
2R
(
N
)
+ 2Γvggsp

(
P ,N

)
P

(
1 +

1

P

)
+

σ2
N

(
N
)

ωνN

)
δ (ω − ω′) , (20)

⟨F̃P (ω) F̃N (ω′)⟩ = −
(
Γvggsp

(
P ,N

) (
2P + 1

)
− Γvgg

(
P ,N

)
P
)
δ (ω − ω′) ,

⟨F̃P (ω) F̃ϕ (ω
′)⟩ = ⟨F̃N (ω) F̃ϕ (ω

′)⟩ = 0.

The white noise part of the model features a quantum mechanically correct description of fluctuations
due to light-matter interactions [37]. Moreover, we have included three independent 1/f -type noise
sources in (20), with power-law exponents νP and νN , respectively. The noise amplitudes are taken
as σP (P ) = 2PσP,0 and σN (N) =

√
NσN,0 (modeling Hooge’s law [38], cf. [39]). The noise

correlation functions (20) are formulated at the noise-free steady state
(
P ,N

)
. The full nonlinear

system of Itô-type stochastic differential equations (SDEs) used for numerical simulation is stated
in Appendix C. The numerically simulated FN–PSD is shown in Fig. 5 along with (semi-)analytical
approximations from linearization at the noise-free steady state.
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5.2 Intrinsic Linewidth Estimation

We apply the method described in Sec. 4 to intrinsic linewidth estimation from simulated DSH mea-
surements. The simulation is carried out in two steps: First, the stochastic laser rate equations (16)
are simulated using the Euler–Maruyama method (time step ∆t = 50 ps to resolve the internal laser
dynamics) with initial values taken at the noise-free stationary state. In the second step, the DSH
measurement is simulated by evaluating (1), which includes addition of Gaussian white measurement
noise. The simulated I–Q data are finally used to generate the time series ∆ϕ according to (2). The
observed spectrum is computed from Sz,z (ω) = ω2S∆ϕ,∆ϕ (ω) and shown in Fig. 6 (a). For recovery
of the original FN–PSD, the PSE filter method is applied to the simulated FN–PSD Sz,z (ω). In the
estimation procedure, the frequency domain is restricted to frequencies below the RO peak to ensure
validity of the analytical model (9).

The optimal reconstruction of the hidden FN–PSD is shown in Fig. 6 (c) along with corresponding
estimates of the SNR and the measurement noise PSD. Evidently, the PSE filter yields a significantly
better reconstruction than the inverse filter method, which contains the characteristic reconstruction
artifacts and deviates clearly from the hidden signal at increased measurement noise, see Fig. 6 (b).
The evaluation of the objective function (15) for the stochastic time series data is shown in Fig. 6 (d).
Just like in the case of analytical functions in Sec. 4, the objective function features a sharp minimum
near at the exact value.

6 Discussion

The method presented in Sec. 4 not only provides an artifact-free reconstruction of the measured
FN–PSD, but also allows to extract the intrinsic linewidth when it is obscured by measurement noise.
The procedure, however, relies on the specification of the frequency-dependent SNR in the form of
the analytical model (9)–(10). As we have demonstrated in Fig. 4, incorrect SNR estimates lead to
reconstruction errors, which are identified as such via inconsistencies with the assumed functional
form (9) of the hidden PSD. This a priori assumption, however, is well validated both theoretically and
experimentally [20, 22, 23], so that no significant bias is to be expected here. Instead, our method
exploits this additional prior knowledge about the physics of the problem in order to extract additional
information (weak modulations of the measured PSD) from the measurement data which is not used in
the inverse filter method.

Even though we restricted the parameter estimation problem in Secs. 4 and 5.2 to a single unknown
value (the intrinsic linewidth S∞), it should be straightforward to extended the method to a multivariate
minimization problem where all parameters characterizing the SNR are estimated simultaneously.
Furthermore, it would be interesting to apply the estimation method in an analogous way to the
reconstruction of the RIN, which is usually much stronger concealed by measurement noise.

In principle also other estimation methods can be employed for reconstruction of the FN–PSD from
noisy time series data. For example, Zibar et al. [40] have used an extended Kalman filter to estimate
the effect of amplifier noise on the phase noise PSD of a laser. The disadvantage of this method,
however, is that it requires a (comprehensive) mathematical model of the dynamical system under
measurement, which imposes a significant overhead. Moreover, the application of Kalman filters to
problems with large delay (like in the DSH-measurement) where no ab-initio estimates of the two-time
correlation functions are available, is notoriously difficult and computationally heavy [41, 42]. In contrast,
the strength of the PSE filter method is that it is independent of any assumptions on the underlying
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Fig. 6. Application of the linewidth estimation method to simulated time series data. (a) PSDs of the hidden signal, the
measurement noise and the measured data along with their analytic values. (b) Reconstructed PSD using the inverse
filter. The inset zooms in on a region with low SNR, where the reconstructed and the true signal deviate by about one
order of magnitude. Moreover, we observe reconstruction artifacts around the ωpole

n . (c) The PSE filter method yields an
accurate reconstruction of the hidden signal even at low SNR that is free of reconstruction artifacts. Here the analytic model
PSDs were fitted to the PSD to give the SNR according to the method described in Sec. 4. (d) Minimization of the objective
function (15) yields an optimal estimate of the intrinsic linewidth parameter at S∞ ≈ 480Hz.

state space model. Moreover, since the method is formulated in frequency space, it does not suffer
from computational burden due to the large delay. Finally, the method is simple to implement, as it
is basically a straightforward extension of the commonly employed inverse filter method (that is still
contained as a limiting case).

7 Summary

We have presented an improved post-processing routine for time series data evaluation from DSH
linewidth measurements. Our method employs a parametric Wiener filter (power spectrum equalization,
PSE) which removes the typical artifacts at the poles of the inverse transfer function commonly
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observed in experimental studies [33–35]. We have shown that the PSE filter method enables an
accurate estimation of the intrinsic laser linewidth, where the corresponding estimation method is based
on the deliberate suppression of the characteristic spurious reconstruction artifacts in the FN–PSD.
Remarkably, this allows for the reconstruction of the intrinsic linewidth plateau even when it is obscured
by measurement noise. The method has been demonstrated for simulated time series based on a
stochastic rate equation model including non-Markovian 1/f -type noise.

Appendix

A Effective Phase Measurement Noise

We seek for an approximation of the effective phase measurement noise and its two-time correlation
function. Starting from (1), we expand for small noise

arctan

(
Q (t)

I (t)

)
≈ arctan

(
tan (Φ(t)) +

tan (Φ (t))

ηdet
√
P (t)P (t− τd)

(
ξQ (t)

sin (Φ(t))
− ξI (t)

cos (Φ(t))

))
where Φ (t) = ϕ (t)− ϕ (t− τd)−∆Ω t. Expansion to first order yields

arctan

(
Q (t)

I (t)

)
≈ Φ (t) +

1

ηdet
√

P (t)P (t− τd)
(cos (Φ (t))ξQ (t)− sin (Φ (t))ξI (t)) .

Expansion at the CW state with P (t) = P + δP (t) and ϕ (t) = Ωt+ δϕ (t) yields

∆ϕ (t) = δϕ (t)− δϕ (t− τd) ≈ arctan

(
Q (t)

I (t)

)
− Ωτd +∆Ω t+ ξϕ

with the effective phase measurement noise

ξϕ (t) =
1

ηdet
√

P (t)P (t− τd)
(sin (Φ (t))ξI (t)− cos (Φ (t))ξQ (t)) .

The effective measurement noise clearly has zero mean ⟨ξϕ (t)⟩ = 0. We approximate the two-time
correlation function

⟨ξϕ (t) ξϕ (t′)⟩ ≈
1

η2detP
2

(
⟨sin (Φ (t)) sin (Φ (t′))⟩ ⟨ξI (t) ξI (t′)⟩

− ⟨cos (Φ (t)) sin (Φ (t′))⟩ ⟨ξQ (t) ξI (t
′)⟩

− ⟨sin (Φ (t)) cos (Φ (t′))⟩ ⟨ξI (t) ξQ (t′)⟩

+ ⟨cos (Φ (t)) cos (Φ (t′))⟩ ⟨ξQ (t) ξQ (t′)⟩
)
,

where we have neglected photon number fluctuations and factorized the phase and measurement fluc-
tuations. Using ⟨ξI (t) ξI (t′)⟩ = ⟨ξQ (t) ξQ (t′)⟩ = σ2

measδ (t− t′) and stationarity ⟨ξI (t) ξQ (t′)⟩ =
⟨ξI (t′) ξQ (t)⟩, we arrive at

⟨ξϕ (t) ξϕ (t′)⟩ ≈
1

η2detP
2

(
σ2
measδ (t− t′)− ⟨sin (Φ (t) + Φ (t′))⟩ ⟨ξI (t′) ξQ (t)⟩

)
.

The rapidly oscillating cross-correlation term can be neglected such that the effective correlation function
is given by Eq. (3).
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B Derivation of the Frequency Domain Filter Functions

In the following, we derive the expressions (13) and (14) using calculus of variations.

B.1 Wiener Filter

We consider the mean square error between the hidden signal x (t) and its reconstruction (6b) at an
arbitrary instance of time t

E (t) =
〈
(x̂ (t)− x (t))2

〉
.

Fourier transform and substitution of (7) yields

E (t) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
e−i(ω−ω′)t

(
[G∗ (ω′)H∗ (ω′)− 1] [G (ω)H (ω)− 1] ⟨X(ω)X∗(ω′)⟩

+ 2Re (G∗ (ω′) [G (ω)H (ω)− 1] ⟨X (ω) Ξ∗ (ω′)⟩) +G∗ (ω′)G (ω) ⟨Ξ (ω) Ξ∗ (ω′)⟩
)
.

Next we substitute the expressions for the signal and noise PSDs

1

2π
⟨X (ω)X∗ (ω′)⟩ = Sx,x (ω) δ (ω − ω′) ,

1

2π
⟨Ξ (ω) Ξ∗ (ω′)⟩ = Sξ,ξ (ω) δ (ω − ω′) ,

and assume that the process and measurement noise are uncorrelated ⟨X (ω) Ξ∗ (ω′)⟩ = 0. This
leads to

E (t) =

∫ ∞

−∞

dω

2π

(
|G (ω)H (ω)− 1|2 Sx,x (ω) + |G (ω)|2 Sξ,ξ (ω)

)
,

which is entirely independent of the time t. Minimization of the reconstruction error E (t) is achieved by
taking the Gâteaux derivative with respect to G (ω) → G (ω) + εδG (ω)

0
!
= lim

ε→0

E [G+ εδG]− E [G]

ε
=

∫ ∞

−∞

dω

2π

(
(G (ω)H (ω)− 1)H∗ (ω)Sx,x (ω)

+G (ω)Sξ,ξ (ω)
)
δG∗ (ω) + c.c.

where the variation δG (ω) is arbitrary. From this, we extract the expression for the Wiener filter (13).

B.2 Power Spectrum Equalization

We seek for an optimal reconstruction Sx̂,x̂ (ω) of the PSD that minimizes the quadratic error

E =

∫ ∞

−∞
dω (Sx̂,x̂ (ω)− Sx,x (ω))

2 .

Starting from the definition of the reconstructed PSD

Sx̂,x̂ (ω) δ (ω − ω′) =
1

2π
⟨X̂ (ω) X̂∗ (ω′)⟩,
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we substitute Eq. (7) and the assume vanishing correlation between process and measurement noise
⟨X (ω) Ξ∗ (ω′)⟩ = 0. With this, we arrive at

Sx̂,x̂ (ω) δ (ω − ω′) = |G (ω)|2
(
|H (ω)|2 Sx,x (ω) + Sξ,ξ (ω)

)
δ (ω − ω′) .

The last line allows to rewrite the expression for the reconstruction error as

E =

∫ ∞

−∞
dω
((
|G (ω)H (ω)|2 − 1

)
Sx,x (ω) + |G (ω)|2 Sξ,ξ (ω)

)2
.

Minimization of the error by variation of the filter G (ω) → G (ω) + εδG (ω) yields

0
!
= lim

ε→0

E [G+ εδG]− E [G]

ε
= 2

∫ ∞

−∞
dω
(
|H (ω)|2 Sx,x (ω) + Sξ,ξ (ω)

)
×

×
((
|G (ω)H (ω)|2 − 1

)
Sx,x (ω) + |G (ω)|2 Sξ,ξ (ω)

)
× (G (ω) δG∗ (ω) +G∗ (ω) δG (ω)) ,

from which we find (14) to be the optimal filter.

C Itô-Type Stochastic Differential Equations

The Langevin equations (16) can be written as a system of Itô-type stochastic differential equations

dP = (−γ (P − Pth) + Γvgg (P,N)P + Γvggsp (P,N) + σP (P )FP ) dt (21a)

+
√
γ (1 + Pth)P dW P

out +
√

γPth (1 + P ) dW P
in +

√
Γvggsp (P,N)P dW P

st−em

+
√

Γvggabs (P,N)P dW P
st−abs +

√
Γvggsp (P,N) dW P

sp,

dϕ =

(
Ω0 +

αH

2
Γvgg (P,N) +

σP (P )

2P
Fϕ

)
dt (21b)

+
1

2P

(√
γ (1 + Pth)P dW ϕ

out +
√

γPth (1 + P ) dW ϕ
in +

√
Γvggsp (P,N)P dW ϕ

st−em

+
√

Γvggabs (P,N)P dW ϕ
st−abs +

√
Γvggsp (P,N) dW ϕ

sp

)
,

dN =

(
ηI

q
−R (N)− Γvgg (P,N)P − Γvggsp (P,N) + σN (N)FN

)
dt (21c)

+

√
ηI

q
dWI +

√
R (N) dWR −

√
Γvggsp (P,N)P dW P

st−em

−
√

Γvggabs (P,N)P dW P
st−abs −

√
Γvggsp (P,N) dW P

sp.

Here, dW ∼ Normal (0, dt) denotes the increment of the standard Wiener processes (Gaussian
white noise) [43]. Wiener processes with different sub- and superscripts are statistically independent.
Construction of the colored noise sources FP,ϕ,N is described in Appendix D.
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D Colored Noise

Colored noise sources FP,ϕ,N (the subscripts are omitted in the following) are modeled in the standard
way [44] as a Markovian embedding via superposition of independent Ornstein–Uhlenbeck (OU)
fluctuators

F (t) =
√
A

1√
n

n∑
i=1

Xi (t)

where
dXi (t) = −γiXi (t) dt+

√
2γi dWi (t) .

Here, n is the number of OU fluctuators and A is a normalization constant (see below). The fluctuators
are statistically independent, i.e., dWi (t) dWj (t) = δi,jdt. From the stationary covariance

CXi,Xj
(τ) = ⟨Xi (t+ τ)Xj (t)⟩ = δi,j e

−γi|τ |,

we obtain the auto-correlation function of the colored noise

CF ,F (τ) =
A

n

n∑
j=1

e−γj |τ |.

The corresponding PSD is obtained according to the Wiener–Khinchin theorem [45] by Fourier transform

SF ,F (ω) =

∫ ∞

−∞
dτ eiωτCF,F (τ) = A

1

N

N∑
j=1

2γj
ω2 + γ2

j

= A

∫ ∞

0

dγ ρ (γ)
2γ

ω2 + γ2
,

where we introduced the continuous distribution of the relaxation rates

ρ (γ) =
1

n

n∑
j=1

δ (γ − γj) . (22)

In the following, we consider a power-law distribution

ρ (γ) =
Cν

γν
Θ(γ − γ0)Θ (γ∞ − γ) , 0 < ν < 2, (23)

with lower and upper cutoffs denoted as γ0 and γ∞. The normalization constantCν = (1− ν) /
(
γ1−ν
∞ −

γ1−ν
0

)
ensures normalization

∫∞
0

dγ ρ (γ) = 1. From (23), we find that

SF ,F (ω) = 2ACν

∫ γ∞

γ0

dγ
γ1−ν

ω2 + γ2
=

2ACν

ων

∫ γ∞/ω

γ0/ω

dx
x1−ν

1 + x2
.

The integral can formally be solved by a hypergeometric function. More insight, however, is obtained
from consideration of the asymptotic limit γ0 → 0 and γ∞ → ∞, which leads to∫ ∞

0

dx
x1−ν

1 + x2
=

π

2

1

sin
(
πν
2

) .
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Hence, the PSD exhibits a power-law type frequency-dependency in an arbitrary large frequency
window γ−1

∞ ≪ ω ≪ γ−1
0

SF ,F
(
γ−1
∞ ≪ ω ≪ γ−1

0

)
∼ 1

ων

ACνπ

sin
(
πν
2

) .
Finally, the normalization constant A is chosen as

A =
sin
(
πν
2

)
Cνπ

in order to enforce

SF ,F
(
γ−1
∞ ≪ ω ≪ γ−1

0

)
≈ 1

ων
,

cf. Eq. (20). For the practical generation of time series with the desired scaling of the corresponding
PSD, it is necessary to approximate the corresponding distribution function (23) of the relaxation rates
by finitely many γi. The optimal choice of the n relaxation rates is obtained by inverse transform
sampling using the cumulative distribution function of Eq. (23) and a uniform grid on [0, 1].
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