
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Generative adversarial learning of Sinkhorn algorithm initializations

Jonathan Geuter,1 Vaios Laschos 2

submitted: December 2, 2022

1 Department of Mathematics TU- Berlin
Straße des 17. Juni 136
10623 Berlin
Germany
E-Mail: jonathan.geuter at gmx.de

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: vaios.laschos@wias-berlin.de

No. 2978

Berlin 2022

2020 Mathematics Subject Classification. 68T07.

Key words and phrases. Machine learning, optimal transport.

Vaios Laschos was supported by DFG under Germany’s Excellence Strategy – The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689).



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Generative adversarial learning of Sinkhorn algorithm
initializations

Jonathan Geuter, Vaios Laschos

Abstract

The Sinkhorn algorithm [Cut13] is the state-of-the-art to compute approximations of optimal
transport distances between discrete probability distributions, making use of an entropically
regularized formulation of the problem. The algorithm is guaranteed to converge, no matter its
initialization. This lead to little attention being paid to initializing it, and simple starting vectors
like the n-dimensional one-vector are common choices. We train a neural network to compute
initializations for the algorithm, which significantly outperform standard initializations. The network
predicts a potential of the optimal transport dual problem, where training is conducted in an
adversarial fashion using a second, generating network. The network is universal in the sense that
it is able to generalize to any pair of distributions of fixed dimension. Furthermore, we show that for
certain applications the network can be used independently.

1 Introduction

Optimal Transport [Vil09, PC19] plays an increasing role in various areas. Besides economics [Gal16], it
thrives in machine learning applications, and has been used in domain adaptation [CFHR17], single-cell
genomics [SST+19], imitation learning [DHGP20], imaging [SHB+18] and signal processing [KPT+17].
The discrete optimal transport problem can be solved as a linear program; however, this approach
proves to be prohibitively expensive, particularly in high dimensions. Adding an entropic regularizer to
the problem, one can solve it using the well-known Sinkhorn algorithm [Cut13], which is computationally
efficient, more robust to outliers, differentiable, and easily parallelizable. Furthermore, it is guaranteed
to converge to the solution of the entropic problem, which is unique by strict convexity of the problem.
Hence, little attention has been paid to initializing the Sinkhorn algorithm. We will show that good
initializations can speed up the algorithm significantly. To this end, we learn initializations to the algorithm
with a neural network, which, given two distributions, predicts a potential of the optimal transport dual
problem, which is closely linked to the limit point of the Sinkhorn algorithm. In Section 5, we will see
that for certain problems, the network can also be used independently as an approximation function
of optimal dual potentials. Importantly, this approach preserves all the important advantages of the
Sinkhorn algorithm, such as efficiency, differentiability, and parallelizability.

Training will be supervised, where the true potential is computed for each training sample. The crucial
question is: What is the best way to generate training samples? The training dataset needs to be rich
enough to allow the network to generalize to any dataset during testing. We tackle this issue with a
two-network approach, where one network (the generator ) learns to generate training samples from a
Gaussian prior while the other network (the approximator ) learns to predict dual potentials given the
generating network’s outputs. The generator, denoted by gθ with parameters θ, is a one-layer ResNet
[HZRS16], and the approximator, denoted by hϕ with parameters ϕ, is a three-layer fully connected
network. The networks will be trained in an adversarial fashion, similar to a GAN, where the generator’s

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 2

loss is negative the approximator’s loss. The generator and approximator will be trained in alternation,
such that the generator consistently aims at producing those samples which the approximator has
most problems with. To our knowledge, this is the first universal approach to initializing the Sinkhorn
algorithm.

2 Related Work

Initializing Sinkhorn. There exists very little literature on initializing the Sinkhorn algorithm. [TC22]
propose using dual vectors recovered from the unregularized 1D optimal transport problem, or from
known transport maps in a Gaussian setup, and were able to significantly speed up convergence. In
[ACLR22], a learned approach is taken as well. However, the authors restrict themselves to the case
of particular datasets such as MNIST, on which both training and testing is performed. They also do
not use a generator in their training. Furthermore, the loss function they use for the approximator on a
sample of two distributions (µ, ν) is

loss(µ, ν) = −(⟨net(µ, ν), µ⟩+ ⟨net(µ, ν)C , ν⟩),

where net(µ, ν)C denotes the C-transform (cmp. [Vil09]), C being the cost matrix; i.e., they try to
maximize the optimal transport dual, cf. section 3. This approach is more elegant than ours in the sense
that it allows for unsupervised training, as no ground-truth dual potentials are needed in the training
data. However, as we will see in section 5, it it significantly worse at learning to approximate potentials
than our supervised approach.

Generative Modelling. In generative modelling, the goal is usually to find a parametrized distribution
ρθ which minimizes, in some metric, the distance to a target distribution ρdata. Typically, this means
minimizing some functional F (ρθ) = d(ρθ, ρdata), where d measures the discrepancy between the
distributions, and samples from ρdata are usually available. While our generator also tries to learn such
a parametrized distribution ρθ, our approach differs from this framework in that we do not have access
to a given target distribution. Another similarity can be found in our loss function, which resembles
the loss function of Generative Adversarial Networks [GPAM+14], or GANs for short. Given samples
z ∼ ρz from a (Gaussian) prior and samples x ∼ ρdata from the target distribution, the GAN loss is

min
G

max
D

Ex∼ρdata [logD(x)] + Ez∼ρz [log(1−D(G(z)))] ,

where G is the generator and D the so-called discriminator, which predicts the probability that a sample
came from the target distribution rather than the generator. Similarly, our loss will be of the form

max
θ

min
ϕ

Ez∼ρz

[
MSE

(
hϕ(gθ(z)), fg(z)

)]
,

where fg(z) denotes a dual potential of the sample (µ, ν) = g(z), and MSE denotes the mean squared
error. For more details, see section 4. Within the area of generative modelling, a fast-growing line
of work is that of Normalizing Flows [KPB21, PNR+21], which are compositions of parametrized,
invertible transformations pushing a (typically Gaussian) probability distribution to a target distribution.
Our approach shares some common characteristics; however, we do not need invertibility, which is
crucial to Normalizing Flows. This allows us to simply use a (non-invertible) ResNet as a generator
instead.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 3

3 Optimal Transport

In this section, we recall some properties of optimal transport in the discrete case. We will write vectors in
bold and matrices as capital letters. By JnK we refer to the set {1, 2, ..., n}. By 1n ∈ Rn we denote the
vector where all entries are equal to 1. The n− 1 dimensional simplex in Rn will be denoted by ∆n−1,
and all elements in the simplex with positive entries are denoted by ∆n−1

>0 . In the following, let µ and
ν be two discrete, m- resp. n-dimensional probability measures on some spaces X = {x1, ..., xm}
and Y = {y1, ..., yn} equipped with the discrete topologies. We will oftentimes abuse notation by

considering µ and ν to be the vectors
[
µ1 . . . µm

]⊤ ∈ ∆m−1 resp.
[
ν1 . . . νn

]⊤ ∈ ∆n−1.

3.1 Unregularized Optimal Transport

The discrete optimal transport problem, also referred to as the Kantorovich problem, is defined as
follows.

Problem 1 (Optimal Transport Problem).

L(µ, ν) := min
Γ∈Π(µ,ν)

⟨C,Γ⟩

Here, Π(µ, ν) denotes the set of all transport plans between µ and ν, i.e. matrices Γ ∈ Rm×n
≥0 s.t.

Γ1n = µ and Γ⊤1m = ν. The problem has a dual formulation:

Problem 2 (Dual Optimal Transport Problem).

D(µ, ν) := max
f∈Rm, g∈Rn

f+g≤C

⟨f , µ⟩+ ⟨g, ν⟩

Here, f + g ≤ C is to be understood as fi + gj ≤ Cij for all i ∈ JmK, j ∈ JnK. In the special case
where X = Y and C corresponds to a metric, i.e. Cij = d(xi, yj), the Wasserstein distance of order
p between µ and ν for p ∈ [1,∞) is defined as:

Wp(µ, ν) =

(
min

γ∈Π(µ,ν)

∑
i,j

Cp
ijΓij

) 1
p

.

3.2 Entropic Optimal Transport

A common regularization of the problem consists of adding an entropic regularizer. We define entropy
as follows:

Definition 3 (Entropy). For a matrix P = [pij]ij ∈ Rm×n, we define its entropy H(P ) as

H(P ) := −
m∑
i=1

n∑
j=1

pij(log pij − 1)

if all entries are positive, and H(P ) := −∞ if at least one entry is negative. For entries pij = 0, we

use the convention 0 log 0 = 0, as x log x
x→0−−→ 0.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 4

The entropic optimal transport problem is defined as follows.

Problem 4 (Entropic Optimal Transport Problem). For ε > 0, the entropic optimal transport problem is
defined as:

Lε(µ, ν) := min
Γε∈Π(µ,ν)

⟨C,Γε⟩ − εH(Γε).

The term −εH(Γε) is referred to as the entropic regularizer, and ε as the regularizing constant.

Note that this is identical to the regular optimal transport problem, except that the regular one does
not contain the regularization term −εH(Γ). As the objective in Problem 4 is ε-strongly convex, the
problem admits a unique solution (see [PC19]).

The Gibbs kernel is defined as K = exp(−C/ε). Then the entropic dual problem reads:

Problem 5 (Entropic Dual Problem). The entropic dual problem is defined as:

Dε(µ, ν) := max
fε∈Rm, gε∈Rn

⟨fε, µ⟩+ ⟨gε, ν⟩ − ε
〈
efε/ε, Kegε/ε

〉
.

Again, without the regularization term −ε
〈
efε/ε, Kegε/ε

〉
, this equals the regular optimal transport

dual; note, however, that the unregularized dual is subject to the constraint f + g ≤ C . The following
proposition holds (see, e.g., [PC19]).

Proposition 6. The unique solution of Problem 4 is given by

Γε = diag(u)Kdiag(v)

for two positive scaling vectors u and v unique up to a scaling constant (i.e. λu, 1
λ
v for λ > 0).

Furthermore, (u,v) are linked to the solution (fε,gε) from Problem 5 via

(u,v) = (exp(fε/ε), exp(gε/ε)) .

A solution to the entropic dual can be approximated by a solution to the regular dual in the following
sense.

Proposition 7. Let (f ,g) be optimal for the unregularized dual problem and (f ε,gε) be optimal for the
regularized dual problem for some ε > 0. Then (f ε,gε) is feasible for the unregularized problem, i.e.
f ε + gε ≤ C , and

0 ≤ Dε(µ, ν)−
[
⟨f , µ⟩+ ⟨g, ν⟩ − ε

〈
ef/ε, Keg/ε

〉]
≤ mnε,

i.e. the value the entropic dual takes at (f ,g) differs from the optimal value by at most a factor of mnε.
In particular, if ε→ 0, the optimum of the entropic dual converges to its value at (f ,g).

A proof can be found in the appendix.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 5

Algorithm 1 Sinkhorn Algorithm

1: in C ∈ Rm×n, ε > 0, µ ∈ ∆m−1
>0 , ν ∈ ∆n−1

>0

2: initialize v0 (e.g. v0 ← 1n), l← 0, K ← exp(−C/ε)
3: repeat
4: ul+1 ← µ./Kvl

5: vl+1 ← ν./K⊤ul+1

6: l← l + 1
7: until stopping criterion is met
8: Γ← diag(ul)Kdiag(vl)
9: out Γ, ⟨C,Γ⟩

3.3 Sinkhorn Algorithm Initializations

The Sinkhorn algorithm – see Algorithm 1 – is an iterative procedure based on the original work of
Sinkhorn and Knopp [SK67]. It was first applied to the optimal transport setting in the seminal work
Sinkhorn distances: lightspeed computation of optimal transport [Cut13].

In the algorithm, ./ is to be understood as element-wise division. Note that the algorithm requires
both input distributions to be positive everywhere to prevent division by zero. As Sinkhorn and Knopp
showed in their original work, the iterates ul and vl from the algorithm converge to the vectors u and
v from Proposition 6. By the same proposition, we know that v = exp(gε/ε) for a solution gε of
the regularized dual, and by Proposition 7 we know that we can approximate gε by a solution g of
the unregularized dual. Hence, we can make a neural network learn such g to initialize the Sinkhorn
algorithm via v0 = exp(g/ε). Furthermore, optimal (f ,g) of the unregularized dual are linked via
g = fC , where fC is the C-transform of f , defined via gj = miniCij − fi. As both f and g are
C-concave functions – meaning they are the C-transform of some other function, in this case of each
other – whenever they’re optimal (see [Vil09]), we can also instead learn f and compute g from it via
g = fC . This has the advantage that in enforces C-concavity of g.1 In the following section, we will
see how this learning is performed.

4 Learning Initializations

We will train and test the algorithm on 28× 28-dimensional images, i.e. 784-dimensional distributions.
We will always use the squared euclidean distance in the unit square as the cost function for our
experiments; however, other cost functions could also be considered. Our choice yields the squared
Wasserstein-2 distance as the optimal transport cost. Hyperparameter values can be found in the ap-
pendix. All code is available at https://github.com/j-geuter/SinkhornNNHybrid.

4.1 Generator

The generator is a one-layer ResNet-like network, where inputs z come from a 128-dimensional
Gaussian prior, z ∼ ρz. This yields an 8× 8 input image for each of the two distributions. The output

1One could also make the network learn fε directly. However, then one is faced with the problem of having to choose a
regularizing constant ε for training, while during testing, this constant might change; also, as the entropic problem is only
solved approximately by the Sinkhorn algorithm, one would have to use ground truth labels for fε during training that are
mere approximations. Empirically, learning f works slightly better.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022

https://github.com/j-geuter/SinkhornNNHybrid


J. Geuter, V. Laschos 6

of the generator is
(µ, ν) = gθ(z) = λReLU(T (z)) + netgθ(z) + c,

where T transforms the 8×8-dimensional input images to 28×28-dimensional images via interpolation,
and λ is a constant controlling the impact of the skip connection. The network netgθ is a single fully
connected linear layer with ReLU activation. The small, positive constant c ensures that all inputs are
active during training. Apart from vastly improving learning, this is not even restricting the samples as
the Sinkhorn algorithm requires distributions to be positive anyways. In the end, gθ(z) will be normalized
such that it contains two distributions which both sum to one. In Figure 1, images generated by g after
no training, training on 50k unique samples, and training on 100k unique samples are shown.

4.2 Approximator

The approximator is a three-layer fully connected network, where the first layer has 2 · 784-dimensional
in- and 6 · 784-dimensional output, the second layer has 6 · 784-dimensional in- and output, and the
last layer has 6 · 784-dimensional in- and 784-dimensional output. The first two layers contain ReLU
activations and batch normalizations, while the last layer has neither.

4.3 Training

As we have seen before, our training objective is

max
θ

min
ϕ

Ez∼ρz

[
MSE

(
hϕ(gθ(z)), fg(z)

)]
,

where fg(z) denotes a dual potential of the sample (µ, ν) = g(z). Note that it does not have a θ
subscript, because this is the target value and we do not backpropagate through it.

Algorithm 2 Training Algorithm

1: in cost C ∈ Rn×n, prior ρz, learning rates α, β, epochs
2: for i = 1, 2, ... until stopping criterion do
3: z← sample(ρz)
4: (µ, ν)← gθ(z)
5: f ← DualPotential((µ, ν), C)

6: f ← f −
∑

i fi
n

7: for e = 1, 2, ..., epochs do
8: f⋆ ← hϕ((µ, ν))
9: ϕ← ϕ− αi∇ϕMSE(f⋆, f)

10: fC⋆ ← hϕ((ν, µ))
11: ϕ← ϕ− αi∇ϕMSE(f⋆

C , fC)
12: end for
13: θ ← θ + βi∇θMSE(f⋆, f)
14: end for

Furthermore, as discussed in Section 3, optimal potentials (f ,g) are C-transforms of one another.
Hence, if the network’s output of (µ, ν) is f , its output of (ν, µ) should be fC . This allows us to
easily double the available training data. Additionally, it drives the network towards being more "C-
symmmetricïn its inputs. Another property of the optimal transport dual is that its value is invariant

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 7

Figure 1: Generated images after no training (top two rows), training on 50k unique samples (middle
two rows), and on 100k unique samples (bottom two rows), for 5 epochs resp. For all three, the first
row corresponds to µ and the second row to ν.

under adding a constant to f and subtracting it from g; cf. [PC19]. Hence, to make learning more stable,
we will only consider dual potentials that sum to 0. The training algorithm can be seen in Algorithm 2. In
practice, we use the Adam optimizer for updating parameters.

De facto, z in Algorithm 2 will contain a batch of samples. DualPotential denotes any algorithm that
computes a dual potential for the unregularized problem; in practice, we use ot.emd from the POT
package [FCG+21]. Also, as computing these potentials is the most expensive part of the algorithm,
we let each batch of samples run through hϕ for multiple epochs. During each such epoch, all samples
in the batch are shuffled randomly and fed to hϕ in minibatches.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 8

5 Experiments

In all plots in this section, we will always plot the 95% confidence intervals alongside the mean values;
however, oftentimes, the confidence intervals are too narrow to be visible.

5.1 Test Sets

We test the network on four different test datasets. The first one is generated by assigning each point in
the distribution a random value (see the appendix for more details), the second one consists of teddy
bears from the Google Quick, Draw! dataset, the third one is MNIST, and the last one a greyscale
version of CIFAR10. Figure 2 shows the test datasets.

Figure 2: Test datasets ’random’, ’teddies’, ’MNIST’ and ’CIFAR’.

5.2 Loss Function Comparison

As discussed in Section 2, [ACLR22] use a loss on the transport distance. In Figure 3, we can see how
training compares to our loss function.2

2In this figure, the number of samples on the x-axis refers to the number of unique samples multiplied by the number of
epochs.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022

https://github.com/googlecreativelab/quickdraw-dataset


Generative adversarial learning of Sinkhorn algorithm initializations 9

Figure 3: Comparison of loss functions on the transport distance (’WS’) vs. on the potential (’pot’).

5.3 Initialization Performance

We compare the Sinkhorn algorithm convergence for our learned initialization to the default one (i.e.
128 ∈ R28). We initialize it as outlined in section 3.3; however, to prevent entries from being too small or
two large, we bound v0 from below by 1e-35 and from above by 1e35. This means for input measures
µ and ν, we set

v0 ← max
{
1e-35,min

{
1e35, exp(hϕ(µ, ν)

C/ε)
}}

.

The network is trained on 100.000 unique training samples, each of which is trained on epochs = 5
times. Training takes just over 3 hours on a NVIDIA Telsa T4 GPU with 16 GB; however, we note that
almost all training time is needed to compute ground truth potentials with ot.emd. In all experiments,
we set ε = 0.00025. Figures 4 and 5 show the relative error on the transport distance, with respect to
the number of Sinkhorn iterations and the computation time resp.

As one can see from the figures, the two plots look very similar; this is because the time needed to

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 10

Figure 4: Relative errors on the transport distances w.r.t. the number of Sinkhorn iterations.

compute the initialization vector is negligible compared to the time needed by the Sinkhorn algorithm.

However, in practice, one does not have access to the true transport distances, hence a loss on the
marginal constraint violation is oftentimes used as a stopping criterion for the Sinkhorn algorithm. The
marginal constraint violations measure how far the plan Γε

(l) computed by the Sinkhorn algorithm after l

iterations is from fulfilling the two marginal constraints 1⊤mΓ
ε
(l) = ν⊤ and Γε

(l)1n = µ. Different flavours
to measure this violation exist; we use(∥∥∥1⊤mΓε

(l) − ν⊤
∥∥∥
1

)
+
(∥∥∥Γε

(l)1n − µ
∥∥∥
1

)
2

.

The average marginal constraint violations with respect to the number of Sinkhorn iterations can be

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 11

Figure 5: Relative errors on the transport distances w.r.t. computation time.

seen in Figure 6.

In Tables 1 and 2, the average number of iterations needed to achieve 1e-2 and 1e-3 marginal constraint
errors is reported.3

3Measured with an accuracy of 25 Sinkhorn iterations.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 12

Figure 6: Average marginal constraint violations.

default net
random 3355± 38 2725± 52
teddies 2473± 48 2067± 49
MNIST 1528± 32 1225± 23
CIFAR 3555± 36 3195± 34

Table 1: Average number of iterations needed to achieve a 1e-3 marginal constraint error.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 13

default net
random 1330± 29 755± 41
teddies 1083± 30 735± 39
MNIST 528± 17 322± 10
CIFAR 1738± 20 1422± 29

Table 2: Average number of iterations needed to achieve a 1e-2 marginal constraint error.

5.4 Wasserstein Barycenters

Wasserstein barycenters are barycenters with respect to the Wasserstein distance. Namely, a Wasser-
stein barycenter of measures {ν1, ..., νn} is any measure µ such that

µ = argmin
µ′

n∑
i=1

W p
p (µ

′, νi).

By duality, we can compute this as

µ = argmin
µ′

n∑
i=1

⟨fi, µ′⟩+ ⟨gi, νi⟩

for solutions (fi,gi) of the dual problem of µ′ and νi with cost function dp. In this section, we have
a look at how Wasserstein barycenters can be computed using only the approximator. Usually, the
dual potential approximations of the approximator are not accurate enough to use them on their
own, hence we used them to initialize the Sinkhorn algorithm. However, in applications such as
barycenter computations, where the potentials are integrated with respect to the measures, some of the
approximation errors tend to cancel out: Assume the true potential is f and the network’s approximation
of it is f + σ, where σi ∼ Zi with E[Zi] = 0, then

Eσ[⟨f + σ, µ⟩] = ⟨f , µ⟩+ Eσ

[∑
i

σiµi

]
= ⟨f , µ⟩.

In Figure 7, we can see the barycenters computed with the network only of 20 samples for each of the
digits 0, 2, 5, and 7 from the MNIST dataset. They were computed using a simple gradient descent
with respect to µ′ on the sum

n∑
i=1

⟨fi, µ′⟩+ ⟨gi, νi⟩.

6 Summary

We showed that it is possible to learn universal initializations to the Sinkhorn algorithm via the optimal
transport dual problem. We used a two-network approach, where one network is used to generate
training samples for the second network. Both networks are trained in an adversarial manner similar to
GANs. When comparing the convergence speed of the Sinkhorn algorithm for its default initialization vs.
the network initialization, the network initialization significantly outperforms the default initialization on
all test datasets. This is true both when considering relative errors on the transport distance, as well

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 14

Figure 7: Barycenters of 20 MNIST samples for the digits 0, 2, 5, and 7.

as for the marginal constraint violations. To achieve a marginal constraint violation error of 1e-3, the
network initialization needs 16% less iterations averaged over all test datasets; to achieve an error
of 1e-2, it needs 33% less iterations on average, and even up to 43% less depending on the dataset,
almost doubling convergence speed. The network is easy to train and universal as it successfully
generalizes to arbitrary datasets, and the computation time needed to compute the initialization is
negligible compared to the time needed by the Sinkhorn algorithm. Hence, we propose initializing the
Sinkhorn algorithm using such a network.

Acknowledgements

The authors would like to thank Paul Hagemann for very insightful discussions, particularly regarding
the generator. Furthermore, we thank Nicolas Courty for helpful comments and ideas on how to train
the approximator.

References

[ACLR22] Brandon Amos, Samuel Cohen, Giulia Luise, and Ievgen Redko. Meta optimal transport,
2022.

[CFHR17] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distri-
bution optimal transportation for domain adaptation. In Advances in Neural Information

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 15

Processing Systems, volume 30, 2017.

[Cut13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[DHGP20] Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal wasser-
stein imitation learning, 2020.

[FCG+21] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard,
Alexander Tong, and Titouan Vayer. Pot: Python optimal transport. Journal of Machine
Learning Research, 22(78):1–8, 2021.

[Gal16] Alfred Galichon. Optimal Transport Methods in Economics. Princeton University Press,
2016.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[KPB21] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduc-
tion and review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11):3964–3979, 2021.

[KPT+17] Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K. Rohde.
Optimal mass transport: Signal processing and machine-learning applications. IEEE
Signal Processing Magazine, 34(4):43–59, 2017.

[PC19] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to
data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[PNR+21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
Journal of Machine Learning Research, 22(57):1–64, 2021.

[SHB+18] Morgan A. Schmitz, Matthieu Heitz, Nicolas Bonneel, Fred Ngolè, David Coeurjolly, Marco
Cuturi, Gabriel Peyré, and Jean-Luc Starck. Wasserstein dictionary learning: Optimal
transport-based unsupervised nonlinear dictionary learning. SIAM Journal on Imaging
Sciences, 11(1):643–678, jan 2018.

[SK67] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochas-
tic matrices. Pacific Journal of Mathematics, 21(2), 1967.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



J. Geuter, V. Laschos 16

[SST+19] Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh
Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen,
Justin Brumbaugh, Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, ,
and Eric S. Lander. Optimal-transport analysis of single-cell gene expression identifies
developmental trajectories in reprogramming. Cell, 176(4):928–943, 2019.

[TC22] James Thornton and Marco Cuturi. Rethinking initialization of the sinkhorn algorithm,
2022.

[Vil09] Cédric Villani. Optimal Transport Old and New. Springer, 2009.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022



Generative adversarial learning of Sinkhorn algorithm initializations 17

Appendix A Theory Background

Proof of Proposition 7. In this proof we will write ε as superscripts. Let γ be the solution of the entropic
primal problem. As we have

1 ≥ Γij = e(f
ε
i +gε

j−Cij)/ε for all i ∈ JmK, j ∈ JnK,

it follows that f εi + gε
j − Cij ≤ 0 for all i and j, i.e. f ε + gε ≤ C . This makes (f ε,gε) feasible for the

unregularized dual. From optimality of (f ,g) we get

⟨f , µ⟩+ ⟨g, ν⟩ ≥ ⟨f ε, µ⟩+ ⟨gε, ν⟩.

This gives us

Dε(µ, ν)−
[
⟨f , µ⟩+ ⟨g, ν⟩ − ε⟨ef/ε, Keg/ε⟩

]
=⟨f ε, µ⟩+ ⟨gε, ν⟩ − ε⟨efε/ε, Keg

ε/ε⟩ −
[
⟨f , µ⟩+ ⟨g, ν⟩ − ε⟨ef/ε, Keg/ε⟩

]
≤ε
[
⟨ef/ε, Keg/ε⟩ − ⟨efε/ε, Keg

ε/ε⟩
]

≤ε
∑
i,j

e(fi+gj−Cij)/ε ≤ mnε,

where in the last step we used the fact that f + g ≤ C . Also note that the starting expression is always
greater or equal to 0 by optimality of (f ε,gε).

Appendix B Training Details

Hyperparameters. In the generator, we set λ = 0.3 and c = 1e − 2. The learning rate for the
generator is set to 0.2352 initially, while the approximator’s learning rate starts at 2.352. Both are
updated via

αi ← 0.99 · αi−1

βi ← 0.99 · βi−1.

The batches are of size 500, and each minibatch of size 100. The number of epochs is set to 5.

Test datasets. For the ’random’ test dataset, each pixel was assigned a value r3, where r is a random
number between 0 and 1, before the distributions where normalized. Additionally, for each sample in all
test datasets, a small constant was added to the distribution before normalization such that they did not
contain any zeros.

Code. All code used for experiments is available at https://github.com/j-geuter/
SinkhornNNHybrid.

DOI 10.20347/WIAS.PREPRINT.2978 Berlin 2022

https://github.com/j-geuter/SinkhornNNHybrid
https://github.com/j-geuter/SinkhornNNHybrid

	Introduction
	Related Work
	Optimal Transport
	Unregularized Optimal Transport
	Entropic Optimal Transport
	Sinkhorn Algorithm Initializations

	Learning Initializations
	Generator
	Approximator
	Training

	Experiments
	Test Sets
	Loss Function Comparison
	Initialization Performance
	Wasserstein Barycenters

	Summary
	Theory Background
	Training Details

