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Risk-sensitive partially observable Markov decision processes as fully
observable multivariate utility optimization problems

Arsham Afsardeir, Andreas Kapetanis,

Vaios Laschos, Klaus Obermayer

Abstract

We provide a new algorithm for solving Risk Sensitive Partially Observable Markov Decisions Processes,
when the risk is modeled by a utility function, and both the state space and the space of observations are fi-
nite. This algorithm is based on an observation that the change of measure and the subsequent introduction
of the information space, which is used for exponential utility functions, can be actually extended for sums
of exponentials if one introduces an extra vector parameter that tracks the “expected accumulated cost” that
corresponds to each exponential. Since every increasing function can be approximated by sums of expo-
nentials in finite intervals, the method can be essentially applied for any utility function, with its complexity
depending on the number of exponentials.

1 Introduction

In the classical theory of Markov Decision Processes (MDPs), one deals with controlled Markovian stochastic
processes (Sn) taking values on a Borel space S . These processes are controlled via a series of actions (An),
according to a policy π, that changes the underlying state transition probabilities P(Sn+1|Sn, An) of (Sn). The
goal is to find a policy π that optimizes the expected value

IN (s0, π) = Eπs0

[
N−1∑
n=0

C(Sn, An)

]
,

where C : S × A → R is the cost function, s0 ∈ Sn is the initial state , and N ∈ N. The inclusion of
risk-sensitivity and partial observability are natural extensions to this standard model.

In classical MDPs, one makes the assumption that the controlled process (Sn) takes values on a set of states S
which is always accessible to the controller. However, in several real-life applications the real state is not directly
observable and only secondary information dependent on the state, can be observed. Partially Observable
Markov Decision Processes (POMDPs) are a generalization of MDPs towards incomplete information about
the current state. POMDPs extend the notion of MDPs by a set of observations Y and a set of conditional
observation probabilities Q(·|s) given the “hidden” state s ∈ S . Q(y|s) namely represents the probability of
observing y while being in state s. In risk-neutral POMDPs, one can introduce a new state space, called belief
(state) space X = P(S), the set of probability measures on S , and a stochastic process (Xn) taking values
in X , such that Xn(s) is the probability of Sn being equal to the “hidden” state s ∈ S at time n, conditioned
on the accumulated observations and actions up to time n. One can treat this new process on the belief space
like a Completely Observable Markov Decision Process (COMDP) on X with classical tools, retrieve optimal or
ε-optimal polices (i.e. policies with expected value at most ε-far from the optimal value), and then apply them to
the original problem. It is remarkable that, due to the linearity of the expectation operator, the belief state is a
so-called sufficient statistic. Broadly speaking, a sufficient statistic carries adequate information for the controller
to make an optimal choice at a specific point in time. It also allows to separate the present cost from the future
cost through a Bellman-style equation. For an introduction to sufficient statistics, we refer to (Hinderer, 1970).
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To introduce risk-sensitivity we will work with the classical theory of expected utility (Jaquette, 1973), where one
tries to optimize

IN (s0, π) = Eπs0

[
U

[
N−1∑
n=0

C(Sn, An)

]]
, (1.1)

for some increasing and continuous function U : R → R. When risk is involved, extra or alternative information
is necessary to make an optimal decision. In the case of expected utilities, additional information on the accu-
mulated cost is necessary to make an optimal choice, even in the fully observable case (Bäuerle & Rieder, 2014;
Marecki & Varakantham, 2010). An exception to that, is the exponential utility function U = exp which enjoys
nice properties that allow to make optimal choices regardless of the past. Due to these properties, the exponen-
tial utility function generates a performance index that belongs to several models of risk at the same time, and it
has been extensively studied in many different settings (Borkar & Meyn, 2002; Cavazos-Cadena, 2010; Chung &
Sobel, 1987; Di Masi & Stettner, 2007; Dupuis, Laschos & Ramanan, 2019; Fleming & Hernández-Hernández,
1997; Hernández-Hernández & Marcus, 1996; Howard & Matheson, 1972; Levitt & Ben-Israel, 2001).

To our best knowledge, there is only partial progress (Baras & James, 1997; Bäuerle & Rieder, 2017; Bäuerle &
Rieder, 2017; Cavazos-Cadena & Hernández-Hernández, 2005; Fan & Ruszczyński, 2018; Fernandez-Gaucherand
& Marcus, 1997; Hernández-Hernández, 1999; Marecki & Varakantham, 2010) when it comes to combining risk-
sensitivity and partial observability, and most articles study the specific case of the exponential utility function.
As it was mentioned in the previous paragraph, this is due to the fact that the extra information of the accu-
mulated cost is needed to make optimal choices. A common workaround to this problem is to assume that the
controller is aware of the running cost through some mechanism. For example, the controller observes either
the running cost directly (Marecki & Varakantham, 2010), or a part of the whole process that is responsible
for the cost (Bäuerle & Rieder, 2017). Fan und Ruszczyński (2018) study cost functions that depend on both
observable quantities and beliefs. In Bäuerle und Rieder (2017), a general approach for treating problems with
risk measured by a utility function is introduced. It is shown there, that one can use probability measures on the
product space S ×R as state space. This way, the authors end up with an MDP on the state space P(S ×R).
As we will explain in the sequel, we take a different route that is computationally less demanding in several
cases.

1.1 Our Contribution

It was shown in Bäuerle und Rieder (2017), that by using an exponential function as the utility function, the
problem space would shrink dramatically. This proposition is incline to the concept of information vector which
Cavazos-Cadena and Hernandez-Hernandez discussed (Cavazos-Cadena & Hernández-Hernández, 2005).
Both papers show, in two different conceptual systems, that this property of exponential utility function which
transforms summation of costs to the product of their utilities, can be exploited to provide sufficient statistics for
decision making in a much smaller representation. Consequently the model with exponential utility function has
a computational advantage, however, it losses its generality due to the much narrower range of utility functions
it can accept.

To extend the ideas related to exponential utility models, in this work we employ the idea of multi-variate op-
timization and show that by applying exponentials on a finite set of different running costs, we can use the
information space approach in a more general way. More specifically, our multi-variate exponential utility model
is able to reproduce more complex utility functions and at the same time benefit from simplicity of exponential
utilities according to computation burden as well. In our method the exponential running costs are independent
from each other, therefore, each term can represent an independent component of a target multivariate utility
function. These components can be seen either as building blocks of a target function’s formulation (in the case
of utility functions equal to sum of exponential terms) or more generally as the elements of function approximator
series (in case of approximating the target function).
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Risk-sensitive partially observable Markov decision processes 3

In comparison to the purely exponential case, the utility functions we treat can be more behaviorally plausible
as well. In behavioral economics and finance disciplines it is a common approach to assume people to use
a mapping from objective values to subjective utilities and subsequently either apply maximization on the ex-
pected value of the utilities (Von Neumann & Morgenstern, 1947) or their other distributional properties (Tversky
& Kahneman, 1992) (Al-Nowaihi, Bradley & Dhami, 2008). Consequently, the shape of people’s utility function
has a significant effect on their attitude toward risky choices. The shape of human utility function (Kalyanaram
& Winer, 1995; Mosteller & Nogee, 1951) and the effect of contextual parameters on that, like amount of wealth
(Markowitz, 1952) and emotions (Bertram, Schulz & Nelson, 2021) has been investigated by different experi-
mental paradigms. For a review see Edwards (1954). In their influential work, prospect theory, Kahneman and
Tversky proposed an S-shaped utility function which is risk-averse (concave) in gains and risk-seeker(convex)
in losses (Kahneman & Tversky, 1979, 2013). They also addressed a set of experiments that confirm different
risk tendencies in gain and loss situations. As one can expect, the flexibility of an exponential utility model is
not sufficient to produce different risk tendencies between loosing and winning situations by a single function.
In contrast, privileging the computational advantage of exponential utility functions, our risk-sensitive model can
also address this phenomenon by exploiting either utility functions which are defined by linear combinations of
multiple exponential forms (like sinh(.)) or utility functions which can be approximated by linear combinations of
exponential terms in a specific interval of values (like Sigmoid function, see section 4). Therefore, it becomes
possible to shape functions which have both positive and negative second order derivatives on the distinct in-
tervals of their domain simultaneously. Capturing the dissimilarity of risk tendencies among losses and gains is
a major advantage of the multi-variate model which gives us more explanatory ability in respect to behavioral
modeling in comparison to exponential utility function.

In what follows we argue that it is actually possible to apply similar arguments to treat utility functions that are
sums of exponentials, i.e. utility functions of the form

Û(t) =

imax∑
i=1

wieλ
it. (1.2)

With slight abuse of notation, we observe that for a probability distribution θ0 on S, we can write

ÎN (θ0, π̂) = Êπ̂θ0

[
imax∑
i=1

wieλ
i(
∑N−1

n=0 Ĉ(Sn,An))

]
=

imax∑
i=1

Êπ̂θ0
[
wieλ

i(
∑N−1

n=0 Ĉ(Sn,An))
]
.

Then, similar to Cavazos-Cadena und Hernández-Hernández (2005), by applying a change of measure argu-
ment, we identify a new state space X = P(S)imax × Y, a controlled transition matrix P (x′|x, a), and a
collection of running costs Ci : X ×A×X → R, that depend on the next stage as well, such that for the re-
sulting completely observable controlled processes (Xn). With x0 = (θ0, . . . , θ0, y0) and a fixed but arbitrary
y0 ∈ Y , we have

ÎN (θ0, π̂) = IN (x0, π) = Eπx0

[
imax∑
i=1

wieλ
i(
∑N−1

n=0 C
i(Xn,An,Xn+1))

]
. (1.3)

Note that (π,E) and (π̂, Ê) are connected in a straightforward manner, see Section 2.

To establish our method we exploit the results of Bäuerle und Rieder (2014) and extend that model to introduce
multivariate utility functions U : Rd → R, which are component-wise monotone and each variable corresponds
to a different running cost. The resulting optimality metric is of the form:

IN (x, π) := Eπx

[
U

(
N−1∑
n=0

C(Xn, An, Xn+1)

)]
. (1.4)

Note that here C is a vector of different running costs. Criteria like (1.4) can arise when one is trying to solve
a multi-objective task, with different running costs, each of the costs contributing in a different manner to a total
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cost. As an example, one can think of a policy maker allocating tax money to different public sectors (education,
infrastructure, health, etc). For each of them, we get a different cost which can be the position in the global chart
or any other comparison metric. However, the total utility, depends on how much each government prioritizes
each of these aspects, something that is encoded in the choice of the utility function. In a similar manner to
Bäuerle und Rieder (2014), we augment the space to keep track of each accumulated cost term. To provide
a more general treatment of the multivariate case, in the lines of Bäuerle und Rieder (2014), we treat the
discounted case, i.e.

IN (x, π) := Eπx

[
U

(
N−1∑
n=0

βn ·C(Xn, An, Xn+1)

)]
, (1.5)

where the dot product denotes the point-wise multiplication. Furthermore we prove that the finite time discounted
problem converges to the infinite time one, without the extra assumption demanding that the utility function is
either convex or concave, appearing in Bäuerle und Rieder (2014). This also enables the consideration of even
more general problems of the form

I∞(x, π) := Eπx

[
U

( ∞∑
n=0

βn ·C(Xn, An, Xn+1)

)]
. (1.6)

Remark 1.1. For any two utility functions Û1, Û2 that are ε-close on some interval [N mins,a Ĉ(s, a), N maxs,a Ĉ(s, a)],

an ε-optimal policy for Û1 is a 2ε-optimal policy for Û2 . Therefore, one can apply the method to solve RSPOMDPs
with utility functions that can be approximated by functions of the form (1.2). One can easily show that this in-
cludes all increasing real functions, by approximating F (t) = U(log(t)), by a polynomial P (t) =

∑k
i=1wkx

k

in the interval [exp(N mins,a Ĉ(s, a)), exp(N maxs,u Ĉ(s, a))], and the composing with the exponential on
both sides.

The rest of the paper is structured as follows: In section 2 our multi-variate utility function and its mathemati-
cal modeling and construction are presented. Next, in section 3 we show and prove solution methods for this
model and the utility functions from section 2 in both finite and infinite horizon cases. In section 4, we provide
an extended version of a famous POMDP, the tiger problem, as a numerical example to explain the model and
compare it with the general model of Bäuerle and Rieder. And finally, we discuss about the computational ad-
vantage of our model.

2 RSPOMDPs for sums of exponentials

In this section, we consider risk sensitve POMDPs with a class of utility functions that can be written as weighted
sums of exponentials. We will show that it is possible to reformulate the problem in terms of a multi objective
risk sensitive MDP with a new performance index that, in turn, can be treated with tools described in the next
section.

2.1 The original setting

We start by describing the model for a risk sensitive POMDP, i.e. (S,Y,A, P̂ , Q, Ĉ, Û). S,Y,A will be three
finite sets equipped with the discrete topology. In the sequel, S is the hidden state space, Y the set of ob-
servations, and A the set of controls. For every a ∈ A, we define a transition probability matrix P̂ (a) =[
P̂ (s′|s; a)

]
s,s′∈S

. Finally, we denote by Q = [Q(y|s)]y∈Y,s∈S , with Q(y|s) > 0,∀y ∈ Y, s ∈ S, the

signal matrix and by Ĉ : S ×A → R the cost function.
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Risk-sensitive partially observable Markov decision processes 5

Now, for each n ∈ N, let Ĥn be the set of histories up to time n,where Ĥ0 = P(S), and Ĥn = Ĥn−1×A×Y.
We denote by ΠĤ :=

{
π̂ =

(
f̂0, f̂1, . . .

) ∣∣∣ f̂n : Ĥn → A,n ∈ N
}

the set of deterministic polices that are

functions of the history ĥn = (θ, a0, y1, . . . , an−1, yn) up to time n. Given θ ∈ P(S), and π̂ ∈ ΠĤ, due to

the Ionescu-Tulcea theorem, there exists a unique measure P̂π̂θ on the Borel sets of Ω := S × (A×S ×Y)∞

that satisfies:

P̂π̂θ (s0, a0, s1, y1, a1, . . . , an−1, sn, yn) := θ(s0)
n−1∏
k=0

(
P̂
(
sk+1|sk; f̂k

(
ĥk

))
Q (yk+1|sk+1)

)
,

The corresponding expectation operator is denoted by Êπ̂θ . Finally, for each n ∈ N, we define the σ-fields F̂n,

Ĝn, by

F̂n := σ ((Ak, Yk+1) , k = 0, 1, . . . , n− 1) , Ĝn := σ (S0, (Ak, Sk+1, Yk+1) , k = 0, 1, . . . , n− 1) .

It is straightforward to see that the set of policies ΠĤ, contains exactly the elements
(
f̂n
)
n∈N, where f̂n are

F̂n-measurable functions from Ĥn to A.

2.2 Utility functions that are sums of exponentials

Let {λi, i = 1, . . . , imax} ⊆ R \ {0} be a finite collection of risk parameters, and {wi, i = 1, . . . , imax} ⊆ R
be a collection of weights. We define the utility function Û : R → R by

Û(t) :=

imax∑
i=1

wieλ
it, (2.1)

and introduce the performance index

ÎN (θ0, π̂) =
imax∑
i=1

wiÊπ̂θ0
[
eλ

i[
∑N−1

n=0 Ĉ(Sn,An)]
]
, (2.2)

and the corresponding value fuction

V̂N (θ0) := inf
π̂∈ΠĤ

ÎN (θ0, π̂). (P̂ )

The goal is to minimize ÎN (θ0, π̂) over all policies π̂ ∈ ΠĤ. We want to show that we can instead work on the
completely observable risk sensitive MDP on the space X with performance index

IN (x0, π) =
imax∑
i=1

wiEπx0
[
eλ

i[
∑N−1

n=0 C
i(Xn,An,Xn+1)]

]
, (2.3)

for some reconstructed cost functions Ci ,measure and expectation operator Pπθ , Eπθ and corresponding value
function

VN (x) := inf
π∈ΠH

IN (x, π), (P )

for set of histories H. The following subsection will establish these constructions and prove the claim. Now
problem (P ) falls in the framework of Section 3.1 that provides the means to calculate the optimal value and
optimal policies as presented in the next chapter.
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2.3 Towards a completely observable problem

The aim of this subsection is to prove the following:

Theorem 2.1. Let a risk sensitive POMDP (S,Y,A, P̂ , Q, Ĉ, Û), with stochastic dynamics as in subsection
2.1 and performance index given in (2.2). Then, there exist operators Gi : P(S) × A × Y → R, F i :
P(S) × A × Y → P(S), i ∈ {1, . . . , imax}, and η : ΠĤ → ΠH, such that the following Completely
Observable MDP Xn with performance index IN (x0, π) is equivalent the original, i.e.

IN (x0, η(π̂)) = ÎN (θ0, π̂).

The completely observable MDP is defined by the following:

1 The state space is X = P(S)imax × Y and the set of actions is A

2 The evolution of the information state θin is given by:

θin+1 = F i(θn, An, Yn+1)

and under the assumption that Yn are uniformly distributed on the set Y we arrive at the following transi-
tion rule for x = (θ1, . . . , θimax , y) ∈ X , a ∈ A,:

P (x′|x; a) :=

{
1
|Y| , if x′ = (F 1(θ1, a, y′), . . . , F imax(θimax , a, y′), y′),

0, otherwise.

3 The cost functions are given by: C : X ×A×X → R, with:

Ci(x, a, x′) = Gi(θi, a, y′) + log(|Y|
1

λi )

4 The set of histories is given by H0 = X , and Hn = Hn−1 ×A×X . A policy π ∈ ΠH takes the form
π = (f0, . . . , fn, . . . ), where fn : Hn → A.

5 The optimization problem is governed by the performance index:

IN (x0, π) =
imax∑
i=1

wiEπx0
[
eλ

i[
∑N−1

n=0 C
i(Xn,An,Xn+1)]

]
,

We remark that although η is not a bijection, it essentially behaves like one in the same way as the one explained
in Section 3.2.3.

Proof. The transformation to the completely observable problem will be done by introducing a sufficient statistic
information space realized through information state measures ψ and θ. The goal is to eliminate the unobserv-
able quantities appearing in

Êπ̂θ0
[
eλ

i[
∑N−1

n=0 Ĉ(Sn,An)]
]
.

Towards this goal a new probability measure that eliminates the dependencies that hold the previous measure
to the partially observable case is introduced. Namely, following Cavazos-Cadena und Hernández-Hernández
(2005) and Fleming und Hernández-Hernández (1997) there exists a unique probability measure Pπ̂θ on Ĝn,
with expectation operator Eπ̂θ , given by:

Pπ̂θ (s0, a0, s1, y1, a1, . . . , an−1, sn, yn) := θ(s0)

n−1∏
k=0

(
1

|Y|
P̂
(
sk+1|sk; f̂k(hk)

))
,
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Risk-sensitive partially observable Markov decision processes 7

for some θ ∈ P(S), π̂ ∈ ΠĤ. Note that θ(s0) = θ0 in our current set-up.

In what follows a relationship between Êπ̂θ0 and Eπ̂θ0 is constructed, in order for the latter to replace the former
in the optimization problem.

The first important milestone in that direction makes use of the Radon-Nikodym theorem: Namely it can be noted
that on the σ-field Ĝn, the Radon-Nikodym derivative of P̂ π̂θ with respect to P π̂θ is given by

∂P̂π̂θ
∂Pπ̂θ

∣∣∣∣
Ĝn

=
n−1∏
k=0

(|Y|Q(Yk+1|Sk+1)) =: Zn,

and therefore
Êπ̂θ0

[
eλ

i[
∑n

k=0 Ĉ(Sk,Ak)]
]
= Eπ̂θ0

[
eλ

i[
∑n

k=0 Ĉ(Sk,Ak)]Zn

]
. (2.4)

After establishing the defining relationship between the two measures for the change of measure in equation
(2.4) we now focus on the right part of the equation. This process will also lead to the construction of an infor-
mation vector, on which the information space of the transformed MDP will be based, following the next steps:

1 First, let us define the positive and F̂n-measurable random variable ψin, by

ψin(s) := Eπ̂θ0
[
1{Sn=s}e

λi[
∑n

k=0 Ĉ(Sk,Ak)]Zn

∣∣∣F̂n] .
ψn is a a measure on S, i.e. ψn ∈ M(S). Intuitively it can be understood, as (random) average
accumulated cost up to time n of all outcomes that share the same observations and choices of controls
leading to final state Sn = s, given the information observable to or controlled by the agent up to this
time step.

2 Using ψn, the notation
∫
ψin =

∑
s∈S ψ

i
n(s), the linearity of the expectation operator, and the tower

property of conditional expectation we can then rewrite the right side of 2.4:

Eπ̂θ0
[
eλ

i[
∑n

k=0 Ĉ(Sk,Ak)]Zn

]
=

Eπ̂θ0

[∑
s∈S

Eπ̂θ0
[
1{Sn=s}e

λi[
∑n

k=0 Ĉ(Sk,Ak)]Zn

∣∣∣F̂n]] = Eπ̂θ0

[∫
ψin

]
= Eπ̂θ0

[∫
ψi0

n∏
k=1

∫
ψik∫
ψik−1

]
.

(2.5)

3 Then note that setting ψi0 = θ0, ψin satisfies the following recursion:

ψin = |Y|M i(An−1, Yn)ψ
i
n−1 (2.6)

for the matrix M(a, y) ∈ R|S|×|S| given by:

M i(a, y)[s, s′] :=
(
eλ

iĈ(s,a)P̂ (s′|s; a)Q(y|s′)
)⊺
.

Inserting the recursion 2.6 in 2.5 yields:

Eπ̂θ0

[∫
ψin

]
= Eπ̂θ0

[
|Y|n

∫
ψi0

n∏
k=1

∫ [
M i(Ak−1, Yk)

ψik−1∫
ψik−1

]]
. (2.7)
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Note that the integral
∫ [

M i(Ak−1, Yk)
ψi
k−1∫
ψi
k−1

]
is to be understood in the same way as the previously

introduced notation for
∫
ψin. Also

∫
ψi0 = 1 per definition.

4 Finally we normalize the information measure ψin by introducing θin, so that we arrive at an information
state that is an element of P(S):

θin =
ψin∫
ψin
,

Replacing ψin with θin in 2.7 yields:

Eπ̂θ0

[∫
ψin

]
=Eπ̂θ0

[
|Y|n

n∏
k=1

∫
M i(Ak−1, Yk)θ

i
k−1

]
=Eπ̂θ0

[
e
λi

(∑n
k=1

(
1

λi
log(

∫
[M i(Ak−1,Yk)θ

i
k−1])+log |Y |

1
λi

))]
,

(2.8)

where in the last step we have used the properties of the exponential and logarithmic functions in order
to rewrite the operation in a more suitable form.

In steps 1-4 we have thus achieved our goal of rewriting 2.4 only using quantities known to the agent. Namely
we have shown:

Êπ̂θ0
[
eλ

i[
∑n

k=0 R̂(Sk,Ak)]
]
= Eπ̂θ0

[
e
λi

(∑n
k=1

(
1

λi
log(

∫
[M i(Ak−1,Yk)θ

i
k−1])+log |Y |

1
λi

))]
In addition we have constructed an information state θin ∈ P(S) for the transformed MDP.

As a last step we introduce the notation for the new optimization problem that leads to the direct claim of this
theorem. First consider G : P(S)×A× Y → R, given by:

Gi
(
θi, a, y

)
:=

1

λi
log

(∫
M i(u, y)θi

)
.

This lets us rewrite 2.8:

Eπ̂θ0

[
e
λi

(∑n
k=1

(
1

λi
log(

∫
[M i(Ak−1,Yk)θ

i
k−1])+log |Y |

1
λi

))]
= Eπ̂θ0

[
e
λi

(∑n
k=1

(
G(θik−1,Ak−1,Yk)+log |Y |

1
λi

))]

Furthermore we use use 2.6 on θin:

θin =
ψin∫
ψin

=
|Y|M i(An−1, Yn)ψ

i
n−1∫

|Y|M i(An−1, Yn)ψin−1

=
M i(An−1, Yn)θ

i
n−1∫

M i(An−1, Yn)θin−1

We this recursion we can now write F : P(S) × A × Y → P(S) as a forward operation for the information
state:

F i
(
θi, a, y

)
:=

M i(a, y)θi∫
M i(a, y)θi

.

For the reformulation of the MDP we can now use the cost functions: C : X ×A×X → R, with:

Ci(x, a, x′) = Gi(θi, a, y′) + log(|Y|
1

λi )

Furthermore, for the policies we have η : ΠĤ → ΠH such that (fn)n∈{0,...,N−1} = η((f̂n)n∈{0,...,N−1})
satisfies

fn(x0, a0, . . . , xn−1, an−1, xn) = f̂n(θ0, a0, . . . , yn−1, an−1, yn).
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3 MDP with Multivariate Utility Function

In this section, we describe a model for risk sensitive multi-objective sequential decision making on a Borel
state and action space with multiple costs and a multivariate utility function. The performance index is the
expected multivariate utility, where each variable corresponds to a different running cost. As a generalization
to the classical MDP model, we allow for the cost to depend on the subsequent state in addition to the current
state-action pair. We thereby follow and extend ideas from Bäuerle und Rieder (2014) and Hernández-Lerma
und Lasserre (1996).

3.1 Notation and Assumptions

Throughout this section, we assume that an N -step Markov Decision Process is given by a Borel state space
X , a Borel action space A, a Borel set D ⊆ X × A, and a regular conditional distribution P from X × D to
[0, 1]. Given the current state x ∈ X , we assume that an action a ∈ D(x) may be chosen, where D(x) :=
{a ∈ A | (x, a) ∈ D} is the set of feasible actions. The transition probability to the next state is then given by
the distribution P(·|x; a), according to the chosen action. The set of histories from up to time n is defined by

H0 := X , Hn := Hn−1 ×A×X , n ∈ N

and hn = (x0, a0, . . . , xn) ∈ Hn is a historical outcome up to time n.

Definition 3.1. The set of (history-dependent) policies is defined by

ΠH := {π = (f0, f1, . . . ) | fn : Hn → A, ∀hn ∈ Hn : fn(hn) ∈ D(xn), n ∈ N} .

Similarly, the set of Markovian policies is defined by

ΠX := {π = (g0, g1, . . . ) | gn : X → A, ∀x ∈ X : gn(x) ∈ D(x), n ∈ N} .

Given an initial state x ∈ X and a history-dependent policy π = (f1, f2, . . . ) ∈ ΠH, due to the Ionescu-
Tulcea theorem, there exists a probability measure Pπx on H∞ and two stochastic processes (Xn)n, (An)n
such that

Pπx(X0 ∈ B) = δx(B), Pπx(Xn+1 ∈ B | Hn, An) = P(Xn+1 ∈ B | Xn, An)

and
An = fn(Hn)

for all Borel setsB ⊆ X . Canonically,Hn,Xn,An are the history, state and action at time n. By Eπx we denote
the expectation operator corresponding to Pπx. For more details of this construction, we refer to Bäuerle und
Rieder (2014).

Throughout the whole section, we have the following standing assumptions:

Assumption 3.2.

1 The utility function U : Rimax → R is continuous, and it exists 0 ≤ iτ ≤ imax , such that U is
component-wise increasing in {i < iτ} and component-wise decreasing in {i > iτ}.

2 ∥U∥∞ <∞ (Read remark below).

3 The sets D(x), x ∈ X are compact.

4 The map x 7→ D(x) is upper semi-continuous, i.e. if xn → x ∈ X and an ∈ D(xn), then (an) has
an accumulation point in D(x).
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5 The maps (x, a, x′) 7→ Ci(x, a, x′), i = 1, . . . , imax, are continuous, and it holds c ≤ Ci(·, ·, ·) ≤ c̄
for some fixed c, c̄ ∈ R.

6 P is weakly continuous.

Remark 3.3. Due to uniform boundedness of the cost functions Ci, and the fact that we work on finite horizon
problems with N < ∞ or infinite horizon problems with discount, we can observe that assumption 2 can be
removed without any loss of generality.

For notational convenience, we define the vector valued function C : X ×A×X → Rimax by

C(x, a, x′) :=
(
C1(x, a, x′), . . . , Cimax(x, a, x′)

)
.

3.2 Finite Horizon Problems

3.2.1 Performance Index

After we have set the stage for Markov Decision Processes and their policies, we can now define a performance
index that is the expected utility of several running costs.

Definition 3.4. Denote byN the number of steps of the MDP. We define the total cost IN (x, π) given an initial
state x ∈ X , and a history dependent policy π ∈ ΠH by

IN (x, π) := Eπx

[
U

(
N−1∑
n=0

C(Xn, An, Xn+1)

)]
,

and the corresponding value function by

VN (x) := inf
π∈ΠH

IN (x, π). (P )

3.2.2 Augmented problem

The aim of what follows is to determine VN , and optimal policies in (P ). To this end, we augment the state space
of the MDP to X × Rimax . The second component models the so-far accumulated cost of the advancing MDP.
In particular, X̃n := (Xn,Rn) ∈ X ×Rimax taking the value (x, r) = (x, r1, . . . , rimax) implies that the MDP
has advanced to state x and accumulated a cost amounting to ri in the i-th objective after the first n steps.
In order to define transition probabilities of the augmented problem, we introduce the notion of a pushforward
measure.

Definition 3.5. Given measurable spaces (S,F), (S̃, F̃), a measurable mapping T : S → S̃ and a measure
µ : F → [0,∞], the pushforward of µ is the measure induced on (S̃, F̃) by µ under T , i.e., the measure
T#µ : F̃ → [0,∞] is given by

(T#µ)(B) = µ
(
T −1(B)

)
for B ∈ F̃ .

In particular, if a function f is F̃ -measurable and T#µ-integrable, and f ◦ T is µ-integrable, then∫
f dT#µ =

∫
f ◦ T dµ.

Now, we define the transition kernel P̃ of the augmented problem by

P̃(·|x̃; a) = P̃(·|(x, r); a) = (T(x,r))#P(·|x, a), (3.1)
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where

T(x,r)(x′) = (x′,C(x, a, x′) + r). (3.2)

If X is finite, this leads to

P̃(x̃′|x̃; a) =

{
P(x′|x; a), if x̃ = (x, r), x̃′ = (x′, r +C(x, a, x′)),

0, otherwise.
(3.3)

The histories for the augmented MDP are given by

H̃0 := X × Rimax , H̃n := H̃n−1 ×D ×
(
X × Rimax

)
, n ∈ N.

The definition of history-dependent policies π̃ ∈ ΠH̃, Markovian policies π̃ ∈ ΠX̃ , and the corresponding
decision rules are changed accordingly.

Similar to the previous section, there exist a probability measure P̃πx on H̃∞ and a coupled stochastic process
(X̃)n∈N with X̃n = (Xn, Rn), and a stochastic process (An)n∈N, such that

P̃π̃x̃(X̃0 ∈ B) = δx̃(B), P̃π̃x̃(X̃n+1 ∈ B | H̃n, An) = P̃(X̃n+1 ∈ B | X̃n, An)

and

An = f̃n(H̃n)

for all Borel sets B ⊆ X , and Hn, Xn, An are the history, state and action at time n, given an initial state
x̃ ∈ X × Rimax and a history-dependent policy π̃ ∈ ΠH̃. By induction, it is easy to prove that Rn =∑n−1

k=0 C(Xk, Ak, Xk+1) + r, P̃π̃x̃-almost surely.

Definition 3.6. Denote by N ∈ N the number of steps of the MDP. For n = 1, . . . , N , we define the total
cost Ĩn((x, r), π̃) for the augmented problem, given the initial state x ∈ X , initial cost r ∈ Rimax , and policy
π̃ ∈ Π̃ by

Ĩn(x̃, π̃) = Ĩn((x, r), π̃) := Ẽπ̃x̃

[
U

(
n−1∑
k=0

C(Xk, Ak, Xk+1) + r

)]
= Ẽπ̃x̃ [U (Rn))] , (3.4)

and the corresponding value function by

ṼN (x̃) := inf
π̃∈ΠH̃

ĨN (x̃, π̃). (P̃ )

3.2.3 Policy bijection

For the sequel, let x ∈ X , and x̃ = (x,0). Note that policies π = (f0, f1, . . . ) ∈ ΠH of the original problem
consist of functions fn that are defined on Hn, and policies π̃ ∈ ΠH̃ consist of functions f̃n defined on H̃n.
Therefore there is no simple bijectional correspondence between the two sets. However, the set of histories

H̃−
n = {h̃n ∈ H̃n| (∃k ∈ {1, . . . , n− 1} : rk ̸= rk−1 +C(xk, ak, xk+1)) ∨ (r0 ̸= 0)}, (3.5)

is not accessible in the sense that these histories cannot occur. In a more rigorous manner, we have that
P̃π̃x̃(H̃−

n ) = 0, for all π̃ ∈ ΠH̃. For every policy π̃ ∈ ΠH̃, we may define a new “reduced” policy π̃red by

f̃ redn (h̃n) =

{
ared(xn), if h̃n ∈ H̃−

n ,

f̃n(h̃n), otherwise,
(3.6)
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where ared can be any arbitrary but fixed point in D(xn). Then for the set Πred
H̃ = {π̃red ∈ ΠH̃ : π̃ ∈ ΠH̃},

we can define a bijection to ΠH. To do so, for π = (f0, f1, . . . ) ∈ ΠH, we define π̃red = (f̃ red0 , f̃ red1 , . . . ) ∈
Πred

H̃ , by

f̃ redn

(
(x0, 0) , a0, . . . ,

(
xn−1,

n−1∑
i=0

C(xi, ai, xi+1)

)
, an−1,

(
xn,

n∑
i=0

C(xi, ai, xi+1)

))
={

ared, if h̃n ∈ H̃−
n ,

fn(x0, a0, . . . , xn−1, an−1, xn), otherwise.

(3.7)

It is easy to see that the value function of (P ) coincides with the value function of (P̃ ) with r = 0, i.e.

VN (x) = inf
π∈ΠH

IN (x, π) = inf
π̃∈Πred

H̃

ĨN ((x,0), π̃) = inf
π̃∈ΠH̃

ĨN ((x,0), π̃) = ṼN ((x,0)).

The next step is to derive a Bellman-style equation for the augmented problem (P̃ ). It can be shown that the
minimizer of (P̃ ) is a Markovian policy.

3.2.4 Bellman operator and first theorem

First, for a fixed m ∈ R, we define the set

∆ :=
{
v : X × Rimax → R

∣∣ v is lower semi-continuous, v(x, ·) is continuous, ∥v∥∞ <∞, inf
x,d

{v(x, r)} ≥ m,

and for all x ∈ X is component-wise increasing (decreasing) in {i < iτ} (in {i > iτ})
}
.

For v ∈ ∆ and a Markovian decision rule g̃ ∈ ΠX̃ , we define the operators

Tg̃[v](x̃) = Tg̃[v](x, r) =

∫
v
(
x̃′
)
P̃
(
dx̃′ | x̃, g̃(x̃)

)
=

∫
v
(
(x′, r′)

)
(T(x,r))#P

(
dx′ | x, g̃(x, r)

)
=

∫
v
(
x′,C(x, g̃(x, r), x′) + r

)
P(dx′ | x, g̃(x, r)),

and

T [v](x, r) = inf
a∈D(x)

∫
v(x′,C(x, a, x′) + r)P (dx′ | x, a),

whenever the integrals exist. T is called the minimal cost operator. We say that a Markovian decision rule g̃ is a
minimizer of v if Tg̃[v] = T [v]. In this situation, g̃(x, r) is a minimizer of

D(x) ∋ a 7→
∫
v
(
x′,C(x, a, x′) + r

)
P (dx′ | x, a)

for every (x, r) ∈ X × Rimax . We may now state the main result of this section:

Theorem 3.7. Let Ṽ0(x, r) := U(r). Then, the following holds:

a) For any Markovian policy π̃ = (g̃0, g̃1, . . . ) ∈ ΠX̃ , we have the cost iteration

Ĩn((x, r), π̃) = Tg̃0 [. . . [Tg̃n−1
[Ṽ0]]](x, r)

for all n = 1, . . . , N.
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b) If an optimal policy exists it is Markovian, i.e.

inf
π̃∈ΠH̃

IN (x̃, π̃) = inf
π̃∈ΠX̃

IN (x̃, π̃).

c) The operator T : ∆ → ∆ is well-defined, and for every v ∈ ∆, there exists a minimizer of T [v].

d) We get the Bellman-style equation

Ṽn(x, r) = T [Ṽn−1](x, r) = inf
a∈D(x)

∫
Ṽn−1(x

′,C(x, a, x′) + r)P (dx′ | x, a)

for all n = 1, . . . , N .

e) If g̃∗n is a minimizer of Ṽn−1 for n = 1, . . . , N , then the history-dependent policy π∗ = (f∗0 , . . . , f
∗
N−1),

defined by

f∗n(hn) :=


g̃∗N (x0, 0) if n = 0,

g̃∗N−n

(
xn,

n−1∑
k=0

C(xk, ak, xk+1)

)
otherwise,

is an optimal policy for problem (P ).

For the proof of Theorem 3.7, we need the following lemma:

Lemma 3.8. Let v : X × Rimax → R be bounded and lower semi-continuous. Suppose

1 D(x) is compact,

2 x 7→ D(x) is upper semi-continuous,

3 (x, r, g̃, x′) 7→ v(x′,C(x, g̃(x, r), x′) + r) is lower semi-continuous.

Then, Tv is is lower semi-continuous and there exists a minimizer g̃∗ such that Tg̃∗v = Tv.

Proof. By Lemma 17.11 in Hinderer (1970), (x, r, g̃) 7→ Tg̃v(x, r) is lower semi-continuous. The claim then
follows from a similar argument to Proposition 2.4.3 in Bäuerle und Rieder (2011).

Proof of Theorem 3.7. The proof is similar to Theorem 2.3.4 and Theorem 2.3.8 in Bäuerle und Rieder (2011)
with a different state space, see also Bäuerle und Rieder (2014).

ad a) An easy calculation shows that

Ĩ1((x, r), π̃) = Eπ̃x
[
U (C(X0, A0, X1) + r)

]
=

∫
U
(
C(x, g̃0(x, r), x

′) + r
)
P (dx′ | x, g̃1(x, r)) = Tg̃1 [Ṽ0](x, r).

Now, let π̃+ = (g̃2, . . . ). For n = 2, . . . , N , we get

Ĩn((x, r), π̃) = Eπ̃x

[
U

(
n−1∑
k=0

C(Xk, Ak, Xk+1) + r

)]

=

∫
Eπ̃

+

x′

[
U

(
n−2∑
k=0

C(Xk, Ak, Xk+1) + r +C(x, g̃1(x, r), x
′)

)]
P (dx′ | x, g̃0(x, r))

=

∫
Ĩ((x′, r), π̃+)P (dx′ | x, g̃1(x, r)) = Tg̃1 [Ĩn−1(·, π̃+)](x̃) = Tg̃1 [. . . [Tg̃n−1

[Ṽ0]]](x, r).

The claim follows then by induction.
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ad b) This follows from Theorem 2.2.3 in Bäuerle und Rieder (2011).

ad c) Note that every v ∈ ∆ is bounded from below by m. By our assumptions, we get that (x, r, g̃, x′) 7→
v(x′,C(x, g̃(x, r), x′)+r) is lower semi-continuous, and bounded from below, i.e. we are in the setting
of Lemma 3.8. Thus, T [v] is lower semi-continuous and there exists a minimizer g̃∗ such that Tg̃∗ [v] =
T [v].

For fixed x ∈ X , and a ∈ D(x), the map r 7→
∫
v(x′,C(x, a, x′) + r)P (dx′ | x, a) has the

same monotonicities with respect to r′is as v and it is continuous for every a ∈ D(x). The continuity
can be proven with the dominated convergence theorem since ∥v∥∞ < ∞. Therefore, the infimum of
these maps over all a ∈ D(x) is upper semi-continuous in r. With this, we have shown that Tv(x, ·)
is upper and lower semi-continuous, and therefore continuous, and respects the same monotonicities as
v for all x ∈ X . Because v(x, ·) ≥ m, we have T [v](x, ·) ≥ m. The boundness assumption follows
from the definition of T and the corresponding property of v. We have then shown that T : ∆ → ∆ is
well-defined.

ad d) Let g̃∗n be a minimizer of Vn−1 for n = 1, . . . , N and denote by π∗ = (g̃∗1, . . . , g̃
∗
N ) the associated

policy.

For n = 1, we get that

Ṽ1(x, r) = inf
π̃∈ΠX̃

Eπ̃x
[
U (C(X0, A0, X1) + r)

]
= inf
a∈D(x)

∫
U(C(x, a, x′) + r)P (dx′ | x, a) = T [Ṽ0](x, r),

and obviously, Ṽ1(x, r) = Ĩ1((x, r), π̃∗). Now, assume that Ĩn((x, r), π̃∗) = Ṽn(x, r) for a fixed
n ∈ {1, . . . , N}. Then,

Ĩn+1((x, r), π̃
∗) = Tg̃∗1 [Ĩn(·, (π̃

∗)+)](x, r) using (a),

= Tg̃∗1 [Ṽn](x, r) by the induction hypothesis,

= T [Ṽn](x, r) by definition of g̃∗1 .

By taking the infimum, we get

inf
π̃∈ΠX̃

Ĩn+1((x, r), π̃) = Ṽn+1(x, r) ≤ Ĩn+1((x, r), π̃
∗) = T [Ṽn](x, r). (3.8)

On the other hand, with an arbitrary policy π̃ = (g̃1, . . . , g̃N ),

Ĩn+1((x, r), π̃) = Tg̃1 [Ĩn(·, π̃
+)](x, r) using (a),

≥ Tg̃1 [Ṽn](x, r) by the monotonicity of T ,

≥ T [Ṽn](x, r) by taking the infimum.

By taking the infimum, we get

inf
π̃∈ΠX̃

Ĩn+1((x, r), π̃) = Ṽn+1(x, r) ≥ T [Ṽn](x, r). (3.9)

From (3.8) and (3.9), it follows by induction that

Ṽn(x, r) = T [Ṽn−1](x, r) = Ĩn((x, r), π̃∗)

for all n = 1, . . . , N .

ad e) Consider the Markovian policy π̃∗ = (g̃∗1, . . . , g̃
∗
N ) as defined in (d). We have just shown that ṼN (x, r) =

ĨN ((x, r), π̃∗), i.e. π̃∗ is a minimizer of (P̃ ), and therefore an optimal policy for the N -step MDP with
states in X × Rimax . The claim follows by (3.7) in Section 3.2.3 where the policy bijection is explored.
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3.3 Discounted finite horizon problems

We now consider finite horizon problems with a discount vector β ∈ (0, 1)imax , and prove the corresponding
analogon to Theorem 3.7. The techniques used are similar to those from Bäuerle und Rieder (2014), where
they are applied to univariate utility functions. Similar to the previous setting, we define the total cost IN (x, π),
given an initial state x ∈ X , and a history dependent policy π ∈ ΠH, by

IN (x, π) := Eπx

[
U

(
N−1∑
n=0

βn ·C(Xn, An, Xn+1)

)]
, (3.10)

and the corresponding value function, by

VN (x) := inf
π∈ΠH

IN (x, π). (P )

We remark that the dot product appearing in (3.10) is a componentwise product, i.e.

a · b = (a1b1, . . . , anbn) for a = (a1, . . . , an),b = (b1, . . . , bn).

3.3.1 Augmented problem

Again, we consider an augmented state space X ×Rimax × (0, 1)imax , where the new components keep track
of the decreasing discount factor. Policy augmentation is done similar to the previous section. The new transition
kernel P̃ of the augmented problem is given by

P̃(·|x̃; a) = P̃(·|(x, r, z); a) = (T(x,r,z))#P(·|x, a), (3.11)

where
T(x,r,z)(x′) = (x′, z ·C(x, a, x′) + r, z · β). (3.12)

On the augmented state space, given an initial state x ∈ X , initial cost r ∈ Rimax , initial discount rates
z ∈ (0, 1)imax , and a policy π̃ ∈ ΠH̃ the total cost Ĩn((x, r, z), π̃) for n = 1, ..., N is given by

Ĩn(x̃, π̃) = Ĩn((x, r, z), π̃) := Ẽπ̃x̃

[
U

(
z ·

n−1∑
k=0

βk ·C(Xk, Ak, Xk+1) + r

)]
. (3.13)

The corresponding value function is
Ṽn(x̃) := inf

π̃∈ΠH̃

Ĩn(x̃, π̃). (P̃ )

3.3.2 Bellman operator and second theorem

Let

∆ :=
{
v : X × Rimax × (0, 1)imax → R

∣∣ v is lower semi-continuous,

v(x, ·, ·) is continuous, and componentwise increasing for all x ∈ X ,
v(x, r, z) ≥ U(r) for all (x, r, z) ∈ X × Rimax × (0, 1)

}
.

For v ∈ ∆ and a Markovian decision rule g̃, we define the operators

Tg̃[v](x̃) = Tg̃[v](x, r, z) :=

∫
v
(
x̃′
)
P̃
(
dx̃′ | x̃, g̃(x̃)

)
=

∫
v
(
(x′, r′, z′)

)
(T(x,r,z))#P

(
dx′ | x, g̃(x, r, z)

)
=

∫
v
(
x′, z ·C(x, g̃(x, r, z), x′) + r, z · β

)
P(dx′ | x, g̃(x, r, z)),
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and

T [v](x, r, z) = inf
a∈D(x)

∫
v(x′, z ·C(x, a, x′) + r, z · β)P(dx′ | x, a),

whenever the integrals exist. T is again called the minimal cost operator. We may now state the main theorem
of this section.

Theorem 3.9. Let Ṽ0(x, r, z) := U(r). The following holds:

a) For any Markovian policy π̃ = (g̃1, . . . ) ∈ ΠX̃ , we have the cost iteration

Ĩn((x, r, z), π̃) = Tg̃1 [. . . [Tg̃n−1
[Ṽ0]]](x, r, z)

for all n = 1, . . . , N.

b) The optimal policy is Markovian, i.e.

inf
π̃∈ΠH̃

IN (x̃, π̃) = inf
π̃∈ΠX̃

IN (x̃, π̃).

c) The operator T : ∆ → ∆ is well-defined, and for every v ∈ ∆, there exists a minimizer of T [v].

d) We get the Bellman-style equation

Ṽn(x, r, z) = T [Ṽn−1](x, r, z) = inf
a∈D(x)

∫
Ṽn−1(x

′, z ·C(x, a, x′) + r, z · β)P (dx′ | x, a)

for all n = 1, . . . , N .

e) If g̃∗n is a minimizer of Ṽn−1 for n = 1, . . . , N , then π̃∗ = (g̃∗1, . . . , g̃
∗
N ) is an optimal policy for (P̃ ). In

this situation, the history-dependent policy π∗ = (f∗0 , . . . , f
∗
N−1), defined by

f∗n(hn) :=


g̃∗N (x0, 0, 1) if n = 0,

g̃∗N−n

(
xn,

n−1∑
k=0

βk ·C(xk, ak, xk+1),β
n

)
otherwise,

is an optimal policy for problem (P).

Proof. The proof is similar to the derivation of Theorem 3.7. We will only prove (a) by induction. To that end,
note that

Ĩ1((x, r, z), π̃) = Ẽπ̃x
[
U(z ·C(X0, A0, X1) + r)

]
=

∫
U(z ·C(x, g̃0(x, r, z), x

′) + r)P (dx′ | x, g̃0(x, r, z))

= Tg̃1 [Ṽ0](x, r, z).

Let π̃+ = (g̃2, g̃3, . . . ). For n = 2, . . . , N , we get

Ĩn((x, r, z), π̃) = Eπ̃x

[
U

(
z
n−1∑
k=0

βkC(Xk, Ak, Xk+1) + r

)]

=

∫
Eπ̃

+

x′

[
U

(
z ·

n−2∑
k=0

βk+1 ·C(Xk, Ak, Xk+1) + z ·C(x, g̃1(x, r, z), x
′) + r

)]
P (dx′ | x, g̃1(x, r, z))

=

∫
Ĩn−1((x

′, z ·C(x, g̃1(x, r, z) + r,β · z), π̃+)P (dx′ | x, g̃1(x, r, z))

= Tg̃1 [Ĩn−1(·, π̃+)](x̃) = Tg̃1 [Tg̃2 [. . . [Tg̃n−1
[Ṽ0]]]](x, r, z).

The claim follows then inductively.
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3.4 Infinite horizon problems

In this section, we study the infinite horizon problem with discount factor β ∈ (0, 1)imax . For a vector a ∈ Rimax ,
we will denote with a = min{a1, . . . , aimax}, a = max{a1, . . . , aimax}. The notion of T and ∆ from the
previous section is unchanged. The total cost in this situation reads as

I∞(x, π) := Eπx

[
U

( ∞∑
n=0

βn ·C(Xn, An, Xn+1)

)]
,

and Ṽ∞ is defined accordingly. We shall use the following definition:

Definition 3.10. For a continuous function F : Rd → R, we define the modulus of continuity ωF (δ,R) on the
ball B(0, R), by

ωF (δ,R) = sup
{
|F(x)−F(y)|

∣∣∣ x, y ∈ B(0, R), ∥x− y∥2 < δ
}

(3.14)

Note that the modulus of continuity is increasing in both variables, and it holds limδ→0 ωF (δ,R) → 0.

Theorem 3.11. Let b(r, z) := U
(
z · c

1−β + r
)

and b̄(r, z) := U
(
z · c̄

1−β + r
)
,where 1

a =
(

1
a1
, . . . , 1

aimax

)
.

a) LetK be a compact subset of Rimax . Then, Tn[b] ↗ Ṽ∞, Tn[U ] ↗ Ṽ∞, and Tn[b̄] ↘ Ṽ∞ as n→ ∞
uniformly on X ×K × (0, 1)imax .

b) Ṽ∞ is the unique solution of
v = T [v],
v ∈ ∆,
b(·, ·) ≤ v(x, ·, ·) ≤ b̄(·, ·) for all x ∈ X .

c) There exists a decision rule g∗ that minimizes Ṽ∞.

d) The history-dependent policy f∗ = (f∗0 , f
∗
1 , . . . ) given by

f∗n(hn) = g∗

(
xn,

n−1∑
k=0

βkc(xk, ak, xk+1),β
n

)

is an optimal policy for V∞.

Proof. ad a) For n ∈ N and (x, r, z) ∈ X̃ , it holds

U

(
z ·

∞∑
k=0

βk ·C(xn, an, xn+1) + r

)
− U

(
z ·

n∑
k=0

βk ·C(xn, an, xn+1) + r

)

≤ ωU

(∥∥∥∥∥z · βn
∞∑
k=n

βk−n ·C(xk, ak, xk+1)

∥∥∥∥∥
2

,

∥∥∥∥∥z ·
∞∑
k=0

βk ·C(xn, an, xn+1) + r

∥∥∥∥∥
2

)

≤ ωU

(
imaxzβ

n c̄

1− β
, imaxz

c

1− β
+ r

)
. (3.15)
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Now, we get

Ṽn(x, r, z) ≤ Ĩn,π̃(x, r, z) ≤ Ĩ∞,π̃(x, r, z) = Eπ̃x

[
U

(
z ·

∞∑
k=0

βk ·C(Xn, An, Xn+1) + r

)]

≤ Eπ̃x

[
U

(
z ·

n∑
k=0

βk ·C(Xn, An, Xn+1) + r

)]
+ ωU

(
imaxzβ

n c̄

1− β
, imaxz

c

1− β
+ r

)
≤ Ĩn,π̃(x, r, z) + ωU

(
imaxzβ

n c̄

1− β
, imax

(
z

c

1− β
+ r

))
︸ ︷︷ ︸

=:εn(x,r,z)

.

Since K is compact, there exists R > 0 such that d̄ < R. Then, we have

εn(x, r, z) ≤ ωU

(
imaxβ

n c̄

1− β
, imax

c

1− β
+R

)
,

and since β ∈ (0, 1), we have εn ↘ 0 uniformly. Because π̃ was arbitrary, the previous inequality also
holds for the infimum, i.e.

Ṽn(x, r, z) ≤ Ṽ∞(x, r, z) ≤ Ṽn(x, r, z) + εn(x, r, z), (3.16)

and therefore Ṽn ↗ Ṽ∞.

Recall that C is componentwise bounded by c, c̄ > 0, and therefore, independent of the process
(Xn), (An), the infinite time cost

∑∞
n=0 β

n·C(Xn, An, Xn+1) is componentwise bounded by c
1−β ,

c̄
1−β .

We have therefore b ≤ Ṽ∞ ≤ b̄. Since T is increasing, we have with the previous result Ṽn+1 =
T [Ṽn] ≤ T [Ṽ∞], i.e. Ṽ∞ ≤ T [Ṽ∞]. Since z ∈ (0,∞)imax , we observe that for every triple (x, r, z)
and a ∈ D(x), we have

ε′n(x, r, z, a) :=

∫
εn(x

′, z ·C(x, a, x′) + r, z · β)P(dx′ | x, a)

≤ ω

(
imaxzβ

n+1 c̄

1− β
, imax

(
zβ

c

1− β
+ r + z c

))
≤ ω

(
imaxzβ

n+1 c̄

1− β
, imaxz

c

1− β

)
= εn+1(x, r, z).

(3.17)

Now, we get with (3.16)

T [Ṽ∞](x, r, z) ≤ T [Ṽn + εn](x, r, z) ≤ T [Ṽn](x, r, z) + sup
a∈D(x)

ε′n(x, r, z, a)

≤ Ṽn+1(x, r, z) + εn+1(x, r, z),

(3.18)

but the last term converges to zero as n ∈ ∞. Therefore we have, Ṽ∞ ≥ T [Ṽ∞], i.e. Ṽ∞ = T [Ṽ∞].

We next show that Tn[b̄] ↘ Ṽ∞, and Tn[b] ↗ Ṽ∞ as n→ ∞. First, observe that

T [b̄](x, r, z) = inf
a∈D(x)

∫
U
(
z · β · c̄

1− β
+ z ·C(x, a, x′) + r

)
P (dx′|x, a)

≤ U
(
z · c̄

1− β
+ r

)
≤ b̄(r, z),

and the same holds true for
T [b](x, r, z) ≥ b(r, z).
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Since T is increasing, the sequences (Tn[b̄])n and (Tn[b])n are pointwise monotone and bounded, and
therefore their pointwise limit exists. By iteration,

Tn[U ](x, r, z) = inf
π∈ΠX̃

Eπx

[
U

(
z ·

n−1∑
k=0

βk ·C(Xk, Ak, Xk+1) + r

)]

Tn
[
b̄
]
(x, r, z) = inf

π∈ΠX̃

Eπx

[
U

(
z · βn c̄

1− β
+ z ·

n−1∑
k=0

βk ·C(Xk, Ak, Xk+1) + r

)]
.

We obtain

0 ≤ Tn[b̄](x, r, z)− Tn[b](x, r, z) by monotonicity of T and T (0) = 0

≤ Tn[b̄](x, r, z)− Tn[U ](x, r, z) by monotonicity of T andU(r) ≤ b(x, r, z)

≤ sup
π∈ΠH̃

Eπx

[
U

(
z · βn c̄

1− β
+ z

n−1∑
k=0

βk ·C(Xk, Ak, Xk+1) + r

)
− U

(
z ·

n−1∑
k=0

βk ·C(Xk, Ak, Xk+1) + r

)]
= εn(x, r, z).

For n→ ∞, we obtain

lim
n→∞

Tn[b] = lim
n→∞

Tn[b̄] = lim
n→∞

Tn[U ] = Ṽ∞,

uniformly on compact sets. This proves (a).

ad b) Ṽ∞ is lower semi-continuous as a uniform limit on sets of the form X ×K × (0, 1)imax , where K is a
compact subset of Rimax , of lower semi-continuous function. As proved in Theorem 3.7, Tn[b̄](x, ·, ·) is
continuous and componentwise monotonous for all x ∈ X . Since Tn[b̄] ↘ Ṽ∞, Ṽ∞(x, ·, ·) is upper
semi-continuous and therefore continuous, and also preserves the same monotonicities for each x ∈ X .
We have thereby shown Ṽ∞ ∈ ∆.

It remains to show the uniqueness. To that end, suppose that there is v ∈ ∆, v ̸= Ṽ∞ such that
v = T [v] with b ≤ v ≤ b̄. Then, because T is increasing, Tn[b] ≤ Tn[v] = v ≤ Tn[b̄], and with
n ∈ ∞, we get Ṽ∞ ≤ v ≤ Ṽ∞, i.e. v = Ṽ∞, a contradiction. This proves (b).

ad c) The claim follows similar to Theorem 3.7.

ad d) Since Ṽ∞(x, y, z) ≥ U(y), we obtain

Ṽ∞ = lim
n→∞

Tng∗ [Ṽ∞] ≥ lim
n→∞

Tng∗ [U ] = lim
n→∞

Ĩn(·, (g∗, g∗, . . . )) = Ĩ∞(·, (g∗, g∗, . . . )) ≥ Ṽ∞,

Hence f∗ is optimal for Ĩ∞. This finally proves (d).

4 Numerical example

4.1 Task design

To illustrate our method, we present a generalized version of the repetitive Tiger problem (Kaelbling, Littman &
Cassandra, 1998). In the classic Tiger problem, a decision-maker is faced with two close doors, behind one of
which is a tiger (punishment) and behind the other is a treasure (reward). In the original version, the agent can
either open a door or listen to tiger sound in order to gain more information about the true place of the tiger. The
sound signal however, is not fully reliable and with a smaller probability (20%) it can be heard from the wrong
door. Each time that agent opens a door, it takes the reward/punishment and the problem resets to the initial
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Figure 1: MDP of the Extended Tiger task. The states of the MDP are Tiger_right(TR) and Tiger_left(TL). After
each opening action (red and blue arrows), the environment would set to a state randomly and based on either
choosing tiger door or treasure door as well as choosing either high stake or low stake action (thickness of the
arrows), the non-observable reward will receive by agent. By doing listen action, the agent will pay a small cost
and takes an informative signal about the position of the tiger. There is also a small chance that tiger changes
its position.

setting. By resetting the problem, the position of the tiger and the treasure would be determined randomly and
would remain fixed for the entire next trial.

The version we will discuss here, has been generalized in three aspects: First, the constraint of deterministic
state space has been relaxed and the position of the tiger can change during a trial. Here, there is a 10 % chance
to change its position at the start of each epoch. In the second extension, the immediate reward (punishment)
of opening the doors would not be observable for the agent during the repeats of the problem. Therefore, at any
time before the end of the all trials, the agent can only have an estimation about its gains. Only at the end of
all trials, the agent would observe the whole accumulated reward and punishments. And third, the action space
is expanded in a way that makes the agent able to not only choose the correct option (treasure door) but also
bet on its own decision in different levels of investment. Here, we define that the agent can open each door
either conservatively (low stake actions), to gain a lower amount of reward and punishment (low stake rewards:
Rewardcorr_low andRewardincorr_low), or rush to the doors (high stake actions), to gain a bigger reward if it
is the treasure, and to take more damage if the tiger is behind the door. (high stake rewards:Rewardcorr_High

and Rewardincorr_High).

The underlying MDP of the experiment is depicted in fig 1. Here, the probabilities of getting observations
(Ytiger_right and Ytiger_left) are depend on the agent’s actions and the successive new state. As mentioned
before, by doing the listen action there is a smaller probability that agent takes a false signal. Also, by doing each
of open actions (regardless of their correctness or their stake type) the MDP will be reset and a random signal,
with probability of 0.5 for pointing to each state, would be received. In other words, the signal which received
after the re-initializing the problem, is uninformative in purpose of detecting the tiger’s position. The observation
function of the experiment’s POMDP is shown in table 1.
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y1: y2:
Action Next_state Tiger_right Tiger_left

listen tiger_right 0.8 0.2

listen tiger_left 0.2 0.8

open_right(low/high) or open_left(low/high) tiger_right 0.5 0.5

open_right(low/high) or open_left(low/high) tiger_left 0.5 0.5

Table 1: Tabular representation of the Observation Function.

4.2 Simulation results

In order to illustrate the competency of our method in replicating different risk sensitive behaviors, in this sec-
tion we have tested our method on the extended tiger task by using four different utility functions which are
composed by linear combinations of of exponential functions. Three out of them are adjusted to address risk-
neutral, risk-seeking and risk-aversion decision-making. It means the utility functions are (near-)linear, convex
and concave in the interval of possible rewards respectively. It should be mentioned that as in our method e0

is not a valid term, linear combinations cannot replicate an exact linear function (d
2U
dx2

̸= 0). However, for the
sake of being more intuitive we used a utility function with an infinitesimal second derivative in the interval of
rewards to show the ability of the model to mimic different patterns of risk sensitivity (fig 2.a). Last but not least,
we have tested our model on the task with a sigmoid utility function. As mentioned before, it is assumed that
human uses S-shaped utility functions, like sigmoid function, in face with losses and gains. Therefore, regarding
computational modeling of behavior, it is a crucial ability for a risk sensitive model to mimic such functions. Like
the linear case, sigmoid function cannot be expressed by linear combinations of exponential functions. However,
we can approximate the sigmoid in a specific interval by using a combination which contains enough numbers of
exponential functions. Here, We fitted weighted sum of five exponential terms: 0.381 ∗ e0.2906, 0.404 ∗ e0.2876,
−0.427 ∗ e−0.0091, −0.182 ∗ e0.6537, 0.322 ∗ e0.2982(fig 2.b).

The simulation results have been presented in table 2. The results clearly show the effect of utility functions’
shape on the risk attitude of the simulated agent. In table 2 2 we only present selected actions in trials with depth
of planning equal to either one or two steps. As we have used deterministic greedy policy in our simulations,
choosing between different action types (listening, low stake door openings and high stake door openings) in
plannings with maximum depth of one or two only depends on environment dynamics, utility function, discount
factor and initial wealth. In other words, in planning with depth one or two, choosing the type of actions(and
not their directions) is independent from the observations from the environment side. Therefore, we can easily
fix the other dynamics and examine only the effect of utility functions. In this simulations, we have fixed the
environments dynamics to the above-mentioned values, with no discounting and the initial wealth equals to
zero.

In the extended tiger problem, one can assume that high/low stake opening actions represent riskiness of the
decisions. While the expected reward of them are equal, the deviation of outcomes in high stake cases are
higher. Table 2 shows that in the maximum planning-depth of two, risk-neutral agent prefers to gather more
information (and pay its cost) in the first step, and then in the second step open the door with higher probability
of being treasure in high stake mode. However, the risk averse agent(u3) prefers to do the second action more
conservatively and open the door in the low stake mode while in contrast with them, the risk-seeker agent (u2)
prefers to perform risky actions in each step. The sigmoid-agent also behaves like the risk-neutral case, however
it should be considered that S-shaped utilities make agents risk-averse toward positive accumulated outcomes
and risk-averse in face with negative valuations of total expected rewards. In one step planning conditions,
paying the certain cost of listening rather than doing a risky action with higher expected return seems irrational
for all of used utility functions. However, risk-averse and risk-neutral cases prefer to choose low stake actions in
a fifty-fifty situation while the risk-seeker and sigmoid agents prefer to risk more.
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Figure 2: Utility functions. a. Utility functions produce risk_neutral, risk_seeking and risk_aversion decisions in
the showed interval respectively. risk_neutral: U1 = 1.5e0.3 − 1.5e−0.3, risk_seeker: U2 = e1.5 − 0.5e−0.1,
risk_avers:U3 = 0.6e0.05−0.6e−2.5. b. Approximation of Sigmoid function by weighted sum of five exponential
functions.

5 Discussion

The method we introduced works for problems which have finite set of states while using any increasing utility
function. Our method calculates the exact utility values in case of weighted sum of exponential utility functions
and approximate them for any other monotone function, contrasting Bäuerle und Rieder (2017) which is more
general and doesn’t need to approximate values. However the resulting augmented state space in Mutlivariate
utility method is P(X )imax×Y×Rimax ⊂ R|X |×2×imax×Y , where imax is the number of exponential functions
that make up the utility function, see (1.2). In Bäuerle und Rieder (2017), the resulting state space is P(X ×R)
which is an infinite dimensional space, and even in cases where the wealth space is discretized appropriately,
one ends up with a dimension of |X |·(partition size). Our method therefore has a clear computational advantage
when imax is small. In the general case of approximating utility function, the lower dimensionality of Multivariate
method brings the trade-off between accuracy of approximation and computational tractability to attention. One
can expect that by increasing the number of exponential terms in the approximated utility function, the accu-
racy of approximated utility values would improve (become more similar to their exact non-approximated values)
but in the cost of an increase in state space dimensionality. Moreover by increasing the depth of planning, the
method introduced by Bäuerle und Rieder (2017) would also face with the trade-off between lack of accuracy and
increase of state space complexity in case of using partitioned wealth-axis. Because, when the maximum depth
of planning grows the possible amounts of wealth would also increase. Both mentioned accuracy/complexity
trade-offs are heavily dependent on the dynamics of the problem as well as the utility function and can be sub-
ject of further studies. Last but not least, our proposed model is eligible to apply on problems which would be
defined in a multi-variate manner. In this work we only discussed the ability of the Multivariate model to address
monotone utility functions in a class of problems which only have one objective (wealth), however the problems
with different separate running costs like: resource allocation in different governmental sectors or maximizing
the overall utility of an economic actor while she uses different diminishing marginal utility functions in different
goods or aspects of life are another area that our method can address and could be investigated more in terms
of computational efficiency.
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Table 2: Actions with best value for each step under different utility functions
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