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Spurious four-wave mixing processes in
generalized nonlinear Schrödinger equations

Fenja Severing, Uwe Bandelow, Shalva Amiranashvili

Abstract

Numerical solutions of a nonlinear Schödinger equation, e.g., for pulses in optical fibers, may
suffer from the spurious four-wave mixing processes. We study how these nonphysical reso-
nances appear in solutions of a much more stiff generalized nonlinear Schödinger equation with
an arbitrary dispersion operator and determine the necessary restrictions on temporal and spatial
resolution of a numerical scheme. The restrictions are especially important to meet when an enve-
lope equation is applied in a wide spectral window, e.g., to describe supercontinuum generation,
in which case the appearance of the numerical instabilities can occur unnoticed.

1 Introduction

Resonant interaction of waves in nonlinear wave systems followed by the emergence of new fre-
quencies, is an important field of nonlinear science [1]. A well-known example of this phenomenon
is modulation instability (MI) [2]. It is amazing how many nonlinear waves in totally different systems
experience the same spontaneous growth of small modulations as described mathematically with just
one nonlinear Schrödinger equation (NLSE) [3–10]. In the long run, MI contributes to the formation
of solitons [11], generation of turbulent wave states [12], such as optical supercontimuum [13, 14],
formation of spontaneous extreme waves [15–17], etc. Moreover, NLSE is completely solvable [18].

This paper deals with the numerical aspects of MI. Namely, studies of small wave modulations are so
fundamentally simple, that it is usually possible to perform them directly for the numerical schemes,
which are used to solve NLSE, such as the split-step Fourier method (SSFM) [19–22]. A requirement
that the numerical solution reproduces MI, while avoiding nonphysical numerical instabilities, provides
information on the applicability of the method [19,23,24].

To fix notations, we consider a guided system like an optical fiber, where a harmonic wave (which is
proportional to ei(kz−ωt) and possesses a certain radial structure) is subject to the dispersion relation
k = β(ω). To describe a wave packet Ψei(β0z−ω0t) with a slowly varying complex amplitude Ψ and
central frequency ω0, the dispersion relation is reduced to a set of the dispersion parameters βj such
that

β(ω0 + ν) ≈
J∑

j=0

βj
j!
νj = β0 + β1ν +D(ν), (1)

where β0,1,2 are the carrier wave-vector, group delay, and group velocity dispersion (GVD) respectively.
We have already introduced the notation D(ν), which will be useful later on.

The envelope is given by Ψ = Ψ(z, τ), where τ = t− β1z is the time-delay variable, it is governed
by the equation

i∂zΨ+
β2
2
(i∂τ )

2Ψ+ γ|Ψ|2Ψ = 0, (2)
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which is NLSE in optical notations [25]. Parameter γ accumulates contribution of the (cubic) nonlinear
medium response for a quasi-monochromatic wave-packet.

Equation (2) is somewhat special, informally speaking, it accepts Ψ(0, τ) and returns Ψ(z, τ), i.e., it
is space propagated. Mathematically, however, there is no difference with the time-propagated NLSE
appearing in other systems. Also the numerical values of β2 and γ can be arbitrary, only the sign of β2γ
counts. An accurate derivation of Eq. (2) requires use of the slowly varying envelope approximation
and elimination of the radial degrees of freedom [25].

The simplest solution to Eq. (2)

Ψpump =
√
P0e

iγP0z, P0 = const > 0, (3)

describes a constant-amplitude carrier (pump) wave. It is unstable with respect to modulations if
β2γ < 0 (Lighthill criterion, [26]). The key result for what follows reads:

If NLSE (2) is solved numerically using SSFM with the temporal resolution ∆τ and evolution step h,
the condition

h <
2(∆τ)2

π|β2|
. (4)

is needed to correctly reproduce MI [23].

The condition h < C(∆τ)2 is expected for the pseudospectral NLSE solvers, where the discrete
Fourier transform turns Eq. (2) into a system of coupled ODEs adressed by, e.g., one of the Runge–Kutta
methods [27,28]. The value ofC depends on the method and ensures that the numerical ODE solution
is stable even for the largest discrete frequency ∝ (∆τ)−2.

Inequality (4) follows from a direct analytic study of MI within SSFM. Violation of Eq. (4) results in
additional spurious instability domains for any β2γ. After a proper scaling and possible exchange of
space and time variables, inequality (4) can be used for other systems experiencing MI, but only as
long as NLSE applies. The point is that an accurate description of a specific wave system may require
modifications of the standard NLSE, e.g., in the form of Dysthe equation for water waves or generalized
nonlinear Schrödinger equation (GNLSE) for optical fibers [25] such that the limitation (4) may become
insufficient.

In what follows, we consider the optical GNLSE and generalize Eq. (4). For now, we ignore both the
radial effects [29] and dispersion of the nonlinearity [30], i.e., we concentrate on numerical instabilities
caused by a general linear dispersion law (1). The following fiber-specific aspects will be taken into
account:

(A). GNLSE accounts for several (e.g., J = 10) dispersion coefficients in terms of the dispersion
operator D̂, where

i∂zΨ+ D̂Ψ+ γ|Ψ|2Ψ = 0, D̂ =
J∑

j=2

βj
j!
(i∂τ )

j, (5)

cf. Eq. (2). In return, GNLSE does not require the slowly varying envelope approximation [31–33].
However, the change to a general polynomial dispersion requires a more restrictive condition than
Eq. (4).

(B). GNLSE is not necessarily associated with a single pump wave, it perfectly describes a sequence
of wave packets with considerably different carrier frequencies, in which case ω0 is just a suitable
reference frequency within the total spectrum [34]. It is then natural to require that the numerical
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Spurious four-wave mixing processes 3

instabilities do not appear for all involved wave-packets. By doing so, we will see that certain waves
cannot be properly described, no matter how small is h.

(C). Last but not least, inequality (4) was derived for the simplest Lie-Trotter splitting, whereas more
involved splittings are often used in practical calculations. We will then extend the analysis for an
arbitrary splitting. As we will see, more involved schemes do not help much in avoiding the numerical
instabilities.

The paper is organized as follows. We briefly revisit MI theory in the context of GNLSE and then study
to which extent the true MI is properly reproduced by SSFM, first for the simplest Lie-Trotter splitting. In
this way we derive the generalized criterion (4). It turns out, that certain numerical instabilities cannot
be avoided by the decrease of h. To address this problem, one needs to apply a proper spectral
filter before imposing any restrictions on h. We give examples and summarize by discussing how to
deal with all these numerical instabilities in a situation, where MI leads to a considerable spectral
broadening. The theory is extended to an arbitrary SSFM in Appendix.

2 Modulation instability

To fix notations we assume that γ > 0. The GNLSE (5) is then focusing if β2 < 0 and defocusing
if β2 > 0, it is centered at the zero-dispersion frequency if β2 vanishes in which case MI depends
on β4. Recall that ω0 is just a reference (circular) frequency at which GNLSE coefficients are known,
other frequencies are counted from ω0. Pump frequency is ν, frequencies of the blue- and red-shifted
satellite waves will be denoted by ωb = ν + Ω and ωr = ν − Ω.

It is convenient to replace Ψ by ψeiγP0z, such that Eq. (5) takes the form

i∂zψ + D̂ψ + γ(|ψ|2 − P0)ψ = 0. (6)

A general (i.e., frequency-shifted) pump-wave is described by ψ =
√
P0e

iD(ν)z−iντ , it reduces to
Eq. (3) for ν = 0. A perturbed pump wave will be taken in the form

ψ = (
√
P0 + δψ)eiD(ν)z−iντ ,

it yields a linear equation involving both δψ and δψ∗. The equation can be addressed by the two-color
Ansatz,

δψ = u(z)e−iΩτ + v∗(z)eiΩτ , (7)

which yields two coupled ODEs

i∂zu+
(
D(ν + Ω)−D(ν)

)
u+ γP0(u+ v) = 0,

i∂zv +
(
D(ν)−D(ν − Ω)

)
v − γP0(u+ v) = 0.

(8)

We introduce notations

Nν(Ω) =
D(ν + Ω)−D(ν − Ω)

2
,

Mν(Ω) =
D(ν + Ω) +D(ν − Ω)

2
−D(ν),

(9)

and write ODEs (8) in the matrix form

∂z

(
u
v

)
= i

(
Nν(Ω)I+Mν(Ω)J+ γP0K

)(
u
v

)
, (10)
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where

I =

(
1 0
0 1

)
, J =

(
1 0
0 −1

)
, K =

(
1 1
−1 −1

)
.

The general solution of the system (10) reads

(
uz
vz

)
= e

iz

(
Nν(Ω)I+Mν(Ω)J+γP0K

) (
u0
v0

)
= eizNν(Ω)e

iz

(
Mν(Ω)J+γP0K

) (
u0
v0

)
, (11)

where u(z), v(z) are replaced by uz, vz for brevity.

In order to compare Eq. (11) with the SSFM results, we reformulate it for one evolution step h(
uz+h

vz+h

)
= eihNν(Ω)eihMν(Ω)J+ihγP0K

(
uz
vz

)
. (12)

The first factor in Eq. (12) does not affect stability. The second (matrix) factor has determinant of 1,
such that instability develops if |Tr(eihMν(Ω)J+ihγP0K)| > 2, which yields∣∣∣cos(h√Mν(Ω)(Mν(Ω) + 2γP0)

)∣∣∣ > 1. (13)

The radicand should then be negative, which is a general MI condition. Since we have agreed that
γ > 0, the instability develops if

−2γP0 < Mν(Ω) < 0. (14)

Given the pump frequency ν, Eq. (14) defines the possible unstable intervals on Ω-axis.

Fixing ν and taking P0 → 0, we see that all unstable intervals shrink into points (resonant frequencies)
at which Mν(Ω) vanishes. One such frequency always exists because Mν(0) = 0, it corresponds
to the classical MI [25, 26, 29, 30]. Others can appear in dispersion-flattened fibers in which case
one deals with the so-called four-wave-mixing (FWM) instability [35–39]. Existence of the resonance
frequencies is necessary but not sufficient, the sufficient conditions ensure thatMν(Ω) takes negative
values in the vicinity of resonances [40]. The classical MI develops if β2 < 0.

Now we will figure out to which extent equations (13) and (14) are reproduced by SSFM, first for the
simplest Lie-Trotter splitting and then for a general one.

3 Lie-Trotter splitting

Solving Eq. (6) by the Lie-Trotter splitting, one advances from ψ(z, τ) to ψ(z + h, τ) in two steps.
For definiteness, we will always start with the non-dispersive nonlinear step followed by the dispersive
linear step. So, in the first step, ψ is advanced using just i∂zψ + γ(|ψ|2 − P0)ψ = 0. The result
provides an initial condition for the second step, which employs i∂zψ + D̂ψ = 0. For the case at
hand, one can apply this procedure directly to Eq. (10), where we have(

uz+h

vz+h

)
= eihγP0K

(
uz
vz

)
,
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Figure 1: Inequality (16) is illustrated for the NLSE dispersion with ν = 0 and hγP0 = 0.2. MI exists
for β2 < 0 (top), but not for β2 > 0 (bottom). Numerical instabilities are present anyway, to avoid them
one can fix the numerical spectral window and reduce h, in which case the unwanted peaks move
away from the origin. This is how Eq. (4) appears.

for the non-dispersive part of the GNLSE and(
uz+h

vz+h

)
= e

ih

(
Nν(Ω)I+Mν(Ω)J

) (
uz
vz

)
,

for the dispersive part. Therefore, Lie-Trotter’s approximation to the exact relation (12) reads(
uz+h

vz+h

)
= eihNν(Ω)eihMν(Ω)JeihγP0K

(
uz
vz

)
, (15)

and the difference with Eq. (12) arises from the fact that J and K do not commute.

Equation (15) can be investigated by analogy with (12). The first factor does not affect stability, both
matrix factors have determinant of 1, such that the instability condition is |Tr(eihMν(Ω)JeihγP0K)| > 2.
The condition is reduced to ∣∣∣cos(hMν(Ω))− hγP0 sin(hMν(Ω))

∣∣∣ > 1, (16)

which is Lie-Trotter’s approximation to the exact Eq. (13).

In all practically relevant cases, h is much smaller than the characteristic nonlinear length (γP0)
−1

and Eq. (16) contains a dimensionless power parameter hγP0 ≪ 1. With respect to the phase
parameter hMν(Ω), we have a harmonic oscillation with the amplitude

√
1 + (hγP0)2. Unstable

domains always exist, they are localized where hMν(Ω) ∈ πZ. Specifically, solutions of Eq. (16) for
γ > 0 are given by

πn− 2 arctan(hγP0) < hMν(Ω) < πn, n ∈ Z, (17)

where the exact MI condition (14) is recovered for n = 0.

The point is that hMν(Ω) is not necessarily small for a given small hγP0, because ν and Ω are
arbitrary and limited only by the applicability of GNLSE, which is a very weak restriction [31–33].
Solutions of Eq. (17) with n ̸= 0 may come into play and yield instabilities with no physical counterpart,
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F. Severing, U. Bandelow, Sh. Amiranashvili 6

the spurious FWM instabilities (Fig. 1). The latter manifest itself as growing high-frequency oscillations
on top of the carrier wave [19, 23], they can be confused with the true FWM instabilities, showing a
similar behavior [35–39].

Inequality (4) is necessary to avoid the nonphysical instabilities for the simplest NLSE dispersion and
ν = 0. Let us now discuss what to do in a general case. It turns out that the change from NLSE to
GNLSE is relatively straightforward, whereas a correct description of the pump waves with ν ̸= 0 is
much more involved.

4 Filtering

A natural way to eliminate the spurious instabilities is to employ a filter. For now, the filter is just
arbitrary, later on it will be related to the numerical discretization. So, we introduce a limiting circular
frequency ω, define the temporal resolution ∆τ such that

ω ·∆τ = 2π, (18)

and impose the restriction

ω ∈ [−1
2
ω, 1

2
ω], (19)

upon all circular frequencies. Given ω, it turns out that all nonphysical solutions of Eq. (16) are avoided
for a sufficiently small h.

Indeed, Eq. (17) indicates that the numerical instabilities from Section 3 are avoided if−π < hMν(Ω) <
π − 2hγP0. Performing a similar calculation for γ < 0, we get the second requirement −π +
2h|γ|P0 < hMν(Ω) < π. The sufficient condition reads then

h|Mν(Ω)| < π − 2h|γ|P0,

and it should be satisfied on the domain (19). By changing to the satellite frequencies ωb = ν + Ω
and ωr = ν − Ω, we obtain the following statement:

If a GNLSE with the dispersion function D(ν) is solved with the temporal resolution ∆τ , calculate the
quantity

∥D∥ = max
|ωb,r|< π

∆τ

∣∣∣∣D(ωb) +D(ωr)

2
−D

(
ωb + ωr

2

)∣∣∣∣ .
The evolution step h shall obey the inequality

h <
π

∥D∥+ 2|γ|P0

, (20)

where P0 is a characteristic power of the waves in question.

An evident inequality

max
|Ω|< π

∆τ

∣∣∣∣D(Ω) +D(−Ω)

2

∣∣∣∣ ≤ ∥D∥,

shows that it is insufficient to consider only the “main” pump with ν = 0, as in criterion (4), this results
in a too optimistic limitation on h. For instance, by a proper dispersion manipulation one can create a
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Figure 2: Criterion (20) in the form hmax = π/∥D∥ is illustrated for a tenth-orderD(ν). The dispersion
coefficients are borrowed from [34].

fiber where just one higher-order coefficient βJ ̸= 0, e.g., for J = 10, see [41]. In this case Eq. (20)
yields

∥D∥ = CJ
|βJ |(ω/2)J

J !
,

{
C2n = 1,

C2n+1 =
1
2
(1− 3−2n),

with the scaling h ∝ (∆τ)J . The result for an even J is a simple generalization of Eq. (4), whereas
the result for an odd J can be derived only by considering pumps with ν ̸= 0.

Next, consider a GNLSE in the vicinity of a zero-dispersion frequency by taking D(ν) = 1
2
β2ν

2 +
1
6
β3ν

3, where the smallness of β2 necessitates the use of the cubic term, e.g., for studies on Cherenkov
radiation [42]. A little more involved calculation yields

∥D∥ =

{
1
8
|β2|ω2 for ω < 4|β2/β3|,
2
27
|β3|(12ω + |β2/β3|)3 for ω > 4|β2/β3|.

We see how the scaling h ∝ (∆τ)2, which is predicted by Eq. (4), is replaced by h ∝ (∆τ)3

with the increase of the spectral window. It is an undesirable scenario, even more so when D(ν) is
approximated by a higher-order polynomial, as illustrated in Fig. 2 for a tenth-order approximation to a
real dispersion law.

A reasonable strategy for a numerical solution is to remain in the domain where h ∝ (∆τ)2, e.g.,
to use ∆τ ≳ 3 fs for the dispersion law from Fig. 2. If a better resolution is necessary, a polynomial
approximation of D(ν) should be replaced by the full dispersion law. If the latter is not available, a
rational approximation to D(ν) should be used [43].

However, this is not the full story. As we will see in the next Section, Eq. (16) and criterion (20) does
not cover all spurious FWM instabilities. The remaining ones cannot be defeated by the decrease of h.
One should reduce ∆τ before choosing h but even so the spurious instabilities cannot be eliminated
completely.

5 Time-discretization effect

Solving GNLSE by SSFM, we impose a periodicity condition ψ(τ, z) = ψ(τ + T, z) for a sufficiently
large T and are left with the discrete frequencies ωn = (2π/T )n for n ∈ Z. The interval [0, T ] is
then uniformly divided byN +1 points with, so to speak, the first-same-as-last property. The temporal
resolution reads ∆τ = T/N , it defines ω = ωN = 2π/∆τ in accord with Eq. (18).
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Note that e−iωτ = 1 for all discrete τ . Two harmonic oscillations are then indistinguishable if their
difference frequency is a multiply of ω. All discrete frequencies are automatically projected onto the
interval [0, ω], again, with the first-same-as-last property. Note that the second half of the interval
[0, ω] (and [0, T ]) can be interpreted as a container for negative frequencies (and times). We then
shift both intervals to the more convenient base ones [−1

2
ω, 1

2
ω] and [−1

2
T, 1

2
T ].

To proceed, we have to revisit the MI theory and to take the imposed periodicity into account. The
dispersion operator in Eq. (5) changes as follows

D̂e−iωτ = D({ω})e−iωτ ,

where {ω} refers to the projection of ω onto the base interval. The new dispersion function is periodic
because by construction {ω + ω} = {ω}. Ansatz (7) takes the form

δψ = u(z)e−iΩbτ + v∗(z)e−iΩrτ , (21)

Ωb + Ωr = 0 mod ω, (22)

and the quantities Nν(Ω), Mν(Ω) from Eq. (9) should be replaced by

Nν(Ωb,Ωr) =
D({ν + Ωb})−D({ν + Ωr})

2
,

Mν(Ωb,Ωr) =
D({ν + Ωb}) +D({ν + Ωr})

2
−D({ν}).

Finally, the continuous Eq. (14) is now approximated by

−2γP0 < Mν(Ωb,Ωr) < 0, (23)

and the Lie-Trotter MI condition (16) becomes∣∣∣cos(hMν(Ωb,Ωr))− hγP0 sin(hMν(Ωb,Ωr))
∣∣∣ > 1. (24)

Both Eq. (23) and (24) assume that the sideband frequencies are constrained by Eq. (22).

The resulting hierarchy of the MI conditions is summarized as follows:

continuous Eq. (14) h→ 0 Ωb + Ωr = 0,
z-discrete Eq. (16) h ̸= 0 Ωb + Ωr = 0,
τ -discrete Eq. (23) h→ 0 Ωb + Ωr = 0 mod ω,
z, τ -discrete Eq. (24) h ̸= 0 Ωb + Ωr = 0 mod ω.

Equation (24) is the main one to compare with Eq. (14), because both z and τ are discrete in a
numerical solution. As long as Ωb + Ωr = 0 and solutions of (24) solve (14), they describe the
true MI. In addition, Eq. (24) contains spurious instabilities of two types. One is due to the discrete z
and appears already in Eq. (16), as described in the Section 4. Another is due to the discrete τ and
appears already in Eq. (23), it comes from the solutions with Ωb + Ωr = ±ω.

Both Eq. (23) and (24) can be simplified considerably. It is natural to assume that the input pump
frequency belongs to the interval (19), such that {ν} is replaced by ν. If both ωb,r = ν +Ωb,r belong
to the interval (19) as well, Eq. (23) reduces to Eq. (14). If it is not the case, we replace ωr, ωb by
ωr + ω and ωb − ω. The procedure is repeated until at least one of the satellite frequencies does
not fall into the interval (19). We denote the frequency by ω. The other frequency, 2ν − ω, is either
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0

-0.2

0.2

835 nm

884 nm
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Figure 3: Solutions of Eqs. (23–24) are shown for two sample dispersion laws using Eq. (25). We
take NLSE (GNLSE) with β2 (all β coefficients) from [34] and a pump wave with γP0 = 2.75m−1.
In all examples the x axis is centered at 835 nm and covers the frequency band of 100 THz (∆τ =
2π/ω = 10 fs). Frequency offset of the pump is shown on the y axis. For a given ν (dashed lines)
one looks for the instability intervals. Intersections of the dashed lines with the thick gray domains
describe the true MI, in agreement with Eq. (14). The other instabilities are spurious. Decrease of h
removes some but not all of them. The remaining ones are related to spurious FWM processes with
Ωb + Ωr = ±ω. They are always present but can be shifted from the frequency band of interest by
reducing ∆τ .

inside or outside the interval (19) such that we have to keep {2ν − ω}. Altogether, one can make a
replacement

Mν(Ωb,Ωr) 7→ D(ω) +D({2ν − Ω})
2

−D(ν), (25)

in both Eq. (23) and (24). Their solutions can be plotted as domains on (ω, ν) plane, it is sufficient to
plot them inside the square |ω|, |ν| < 1

2
ω.

Two typical examples are shown in Fig. 3. The left column shows solutions of Eq. (24), they should be
compared to the solutions of Eq. (23), for which h → 0, in the right column. The gray domains solve
both discrete equations as well as the continuous Eq. (14), they describe the true MI.

In contrast with the Section 4, certain spurious instabilities survive even for h → 0. They are related
to the discrete Fourier transform, such behavior is known both for optical fibers [44] and for other
systems [45].

To conclude, SSFM automatically induces a spectral filter, however, the outside frequencies are not
truly eliminated, they are rather projected onto the base interval (19). Such behavior is a common
feature of all discrete systems with a periodic arrangement (e.g., crystals), yet in our case it is artificial
and yields spurious instabilities.
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NLSE (Fig.3a) GNLSE (Fig.3c)
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Figure 4: Spurious four-wave mixing is illustrated using the split-step solutions of NLSE (left column)
and GNLSE (right column) for three pump waves (gray boxes, P0 = 25W). Log-plots of the spectral
density are shown, the x-axis shows the discrete frequencies [Eq. (19) with ∆τ = 10 fs], the y-axis
shows the propagation length. The GNLSE refers to a nonlinear fiber with γ = 0.11W−1m−1. It is
centered at 835 nm, β-coefficients are taken from [34]. NLSE accounts only for β2, otherwise using
the same parameters. Both equations are solved with h = 0.02/(γP0). The spurious resonances in
the left (right) column are as predicted by Fig. 3a (Fig. 3c).

For instance, the GNLSE from Fig. 3d (i.e., even in the ideal case of h → 0) properly describes
the possible pump waves only as long as |ν| < 0.2ω. If it is not enough, one should decrease the
temporal resolution ∆τ . Thereafter one should apply Eq. (20) to determine the largest h.

Spurious instabilities that are predicted by Fig. 3, are illustrated by SSFM solutions of NLSE and
GNLSE in Fig. 4. The pump frequency for Fig. 4a,b is chosen such that the spurious satellites are
on one side of the pump. This happens because the blue-shifted satellite appears outside the base
interval (18) and is therefore represented by its projection. Such situation requires decrease of ∆τ .
Fig. 4c,d describes spurious instabilities that disappear after a proper decrease of h. The pump wave
in Fig. 4e accidentally gets into a gap with no spurious resonances. However, the latter reappear
for a slightly different value of ν. Finally, Fig. 4d demonstrates simultaneous excitation of numerous
spurious resonances, again, from one side of the pump. In all cases the numerical artifacts are properly
predicted by the solutions of Eq. (24), as shown in Fig. 3a,c.
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6 Conclusions

How should one proceed with a numerical solution of a GNLSE, given the information reported above?
One needs a clear idea of the spectral interval of interest. This might be tricky, especially in a turbulent
situation when new spectral components are constantly arising, experiencing MI and taking part in
other nonlinear interactions. The temporal resolution ∆τ should be sufficiently small such that the
spurious resonances shown in Fig. 3b,d do not appear for the frequency offsets of interest. That is,
the numerical spectral interval should be at the very least two times larger then the one we would like
to investigate. Having ∆τ , one applies Eq. (20) to get the largest possible solution step h, preferably
in a domain where h ∝ (∆τ)2, see Fig. 2. Finally, one should correctly execute the nonlinear step,
which at the very least requires that hγP0 ≪ 1, see discussion in [20].

One more point should be mentioned. It is broadly accepted that a properly “long” GNLSE, one that
additionally accounts for the Raman self-scattering and includes the shock derivative, applies to nearly
any pulse, e.g., to a single-cycle one. This point of view is supported by the perfect agreement between
the GNLSE solutions and numerical solutions of the full wave equation [31–33]. Quite naturally, the
input pulse frequency of these calculations coincides with the reference frequency of the GNLSE. As
for pulses with a considerable frequency offset, e.g., resulting from nonlinear interactions, applicability
of the GNLSE might be an issue. This problem needs further research.

Appendix

In this Appendix we generalize the results of Section 3 for an arbitrary splitting scheme. Recall that we
agreed to start with the non-dispersive nonlinear step followed by the dispersive linear step. A generic
splitting is determined by a set of constants a1≤s≤S and b1≤s≤S , where S is the number of stages and∑

s as =
∑

s bs = 1. Equation (6) is written as

i∂zψ +
S∑

s=1

(
bsD̂ψ + asγ(|ψ|2 − P0)ψ

)
= 0.

One advances from ψ(z, τ) to ψ(z + h, τ) in 2S steps, two steps per stage. In the the first stage
the nonlinear step is performed using i∂zψ + a1γ(|ψ|2 − P0)ψ = 0. The result provides the initial
condition for the linear step which employs i∂zψ + b1D̂ψ = 0. We get the initial condition for the
second stage, the procedure is repeated with a2 and b2, and so on. A proper choice of the splitting
coefficients increases accuracy of the approximation, see [46] for a rich collection of known splittings.

Studying MI with a generic splitting, it is easy to see that Eq. (15) takes the form(
uz+h

vz+h

)
= eihNν(Ω)

∏
s

eibshMν(Ω)JeiashγP0K

(
uz
vz

)
,

where the product runs over S ≥ s ≥ 1 from left to right. Stability of the pump wave is determined by
the matrix

M = eySJexSKeyS−1JexS−1K · · · ey1Jex1K,

xs = iashγP0, ys = ibshMν(Ω).

In a full analogy with Section 3, we have detM = 1 and the instability condition is |TrM| > 2.
Calculation of the trace is simplified by the fact that K2 = 0, i.e., one can easily expand Tr(M) with
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respect to x1 . . . xS
M = M0 +M1 +M2 +M3 + · · · ,

where

M0 = ey
S
1 J,

M1 =
∑
p

xpe
ySp JKey

p−1
1 J

M2 =
∑
p>q

xpxqe
ySp JKey

p−1
q JKey

q−1
1 J,

M3 =
∑

p>q>r

xpxqxre
ySp JKey

p−1
q JKey

q−1
r JKey

r−1
1 J,

etc. Here ypq denotes yp + yp−1 + · · ·+ yq and all indices in the above sums run from S to 1.

Note that Mn = O(hγP0)
n. One can calculate that Eq. (16) is replaced by∣∣∣cos(hMν(Ω))− ε sin(hMν(Ω)) +O(ε2)

∣∣∣ > 1,

where ε = hγP0 ≪ 1 for any reasonable numerical solution of the GNLSE. We conclude that the
spurious FWM resonances, e.g., those shown in Fig. 1, are practically unaffected by the use of a more
advanced splitting method. This general result is confirmed by the direct calculation for a four-stage
Yoshida splitting applied to NLSE, see [19].
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