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Mapping atomic trapping in an optical superlattice onto the
libration of a planar rotor in electric fields

Marjan Mirahmadi, Bretislav Friedrich, Burkhard Schmidt, Jesús Pérez-Ríos

Abstract

We show that two seemingly unrelated problems – the trapping of an atom in a one-dimensional
optical superlattice (OSL) formed by the interference of optical lattices whose spatial periods differ
by a factor of two, and the libration of a polar polarizable planar rotor (PR) in combined electric
and optical fields – have isomorphic Hamiltonians. Since the OSL gives rise to a periodic po-
tential that acts on atomic translation via the AC Stark effect, it is possible to establish a map
between the translations of atoms in this system and the rotations of the PR due to the coupling
of the rotor’s permanent and induced electric dipole moments with the external fields. The latter
system belongs to the class of conditionally quasi-exactly solvable (C-QES) problems in quan-
tum mechanics and shows intriguing spectral properties, such as avoided and genuine crossings,
studied in details in our previous works [our works]. We make use of both the spectral charac-
teristics and the quasi-exact solvability to treat ultracold atoms in an optical superlattice as a
semifinite-gap system. The band structure of this system follows from the eigenenergies and their
genuine and avoided crossings obtained as solutions of the Whittaker-Hill equation. Furthermore,
the mapping makes it possible to establish correspondence between concepts developed for the
two eigenproblems individually, such as localization on the one hand and orientation/alignment on
the other. This correspondence may pave the way to unraveling the dynamics of the OSL system
in analytic form.

1 Introduction

The spatial patterns imprinted upon ensembles of gaseous atoms by optical lattices have served as
platforms for quantum simulation of condensed matter systems as well as for quantum information
processing, including quantum computation [9, 29, 49, 36, 15, 13, 78, 12, 41, 28, 55, 40, 65]. Super-
imposed commensurate lattices (or superlattices for short) whose spatial periods are in integer ratios
have enabled patterned loading key to achieving versatile atom-lattice architectures [51], quantum
computing with atom transport [6], atom-pair manipulation [62], and topologically protected transport
[43]. The engineering of optical lattices and superlattices has been recently reviewed in Ref. [76].

Herein, we show that the translational confinement of atoms in an optical superlattice (OSL) formed by
the interference of optical lattices whose spatial periods differ by a factor of two can be mapped onto
the libration of a planar rigid rotor (PR). This system is realized by subjecting a planar rotor to combined
orienting and aligning interactions that arise due to the coupling of the rotor’s permanent and induced
dipole moments with collinear external electric fields [17, 18, 63, 16, 24, 5, 67, 64, 8, 30, 38, 53, 58, 32].

Interestingly, pulsed optical traps had been used earlier to simulate the kicked rotor [48, 1, 31] as a
way of modelling quantum chaos and Anderson localization [14, 21, 26, 70, 22]. In contradistinction,
our present study makes use of the previously established features of the driven rotor to shed light on
the behavior of ultracold atoms confined in an optical superlattice. Among these features is the con-
ditional quasi-exact solvability (C-QES) of the former system eigenproblem: under certain conditions
(i.e., for particular ratios of the strengths of the orienting and aligning interactions), many (but not all)
eigenfunctions and eigenenergies are available in analytic form. These can be then used, inter alia, to
obtain the analytic form of several lattice band-edge states.
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Moreover, the time-independent Schrödinger equation (TISE) of the planar rotor interacting with com-
bined orienting and aligning fields is the Whittaker-Hill equation, i.e., a special case of the Hill dif-
ferential equation [44]. This equation has very interesting spectral characteristics which leads to the
semifinite-gap structure (every second gap is eventually closed) of the OSL system. To our knowledge,
despite its intriguing spectral properties, the Wittaker-Hill equation has not been considered in the op-
tical lattice literature. This is in contrast to the Mathieu equation (another special case of the Hill family)
which is very well-known in the study of atoms in one-dimensional optical lattices consisting of single
wells (only cos term). As a result we provide a new tool (perspective) to control the lattice configuration
by using its depth and independent of the relative phase which has been subject of several previous
works (see, e.g., Refs. [15, 6, 74, 43].

In addition, we have established a relationships between the main physical characteristics of the two
eigenproblems such as localization on the one hand and directionality (orientation and alignment) on
the other.

We note that also the Hamiltonian for molecular torsion in polyatomics [25], whether or not subject to
coherent control [52, 50, 3], is isomorphic with the Hamiltonians of the two systems under considera-
tion, see Fig. 1. However, in what follows we focus on the OSL and PR systems only.

This paper is organized as follows: In Sec. 2, we introduce the Hamiltonian of a single atom subject to
an optical superlattice. The isomorphism of this Hamiltonian with that of the planar rotor in combined
fields is established in Sec. 3. In Sec. 4, we provide a survey of the conditional quasi-exact solvability
of the Schrödinger equation for either Hamiltonian. In Sec. 5, we make use of the spectral properties
of the PR system to investigate the band structure of the atoms trapped in an optical superlattice.
The spatial localization of the band-edge Bloch states and its relation to the orientation and alignment
of the planar rotor is treated in Sec. 6. Finally, Sec. 7 provides a summary of the present work and
outlines prospects for its future applications. A details the analytically obtainable band-edge states
while B outlines the spectral properties of the Hill equation.

2 An atom interacting with a one-dimensional optical superlat-
tice

A one-dimensional (1D) optical lattice, generated by the interference of two linearly polarized laser
beams of the same wavelength λ counter-propagating along the x axis, produces, via the AC Stark
effect, an optical trapping potential for atoms that is proportional to cos2(kx), with k = 2π/λ the
wave-number of either of the laser beams. Superimposing two such optical lattices, characterized by
wavevectors ki = 2π/λi with i = 1, 2, leads to a superlattice that produces an optical potential
[51, 29, 6, 28]

V (x) = V0 + V1 cos(2k1x) + V2 cos(2k2x− ϕ) (1)

with Vi = d2E2
i /(2~∆i) the depth of the 1D lattice i, Ei the amplitude of the corresponding electric

vector of the laser field, d the projection of the atomic dipole moment ~d on the electric field ~Ei (note that
d can be different for each lattice based on the atomic states involved), ∆i the detuning of the laser
field i from the nearest atomic resonance, and ~ the reduced Planck constant. The relative phase of
the two superimposed lattices is characterized by the angle ϕ. The constant AC Stark shift V0 between
the two constituent lattices i = 1 and i = 2 will be omitted.

Provided the laser fields are sufficiently far detuned from any atomic resonance, i.e., ∆i � Γ, with Γ
the spontaneous emission rate, we can invoke the adiabatic approximation [68] and write the effective
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Mapping atomic trapping onto librations in an optical superlattic of a planar rotor 3

Hamiltonian for atoms in a 1D superlattice as1

HOSL = − ~2

2m

d2

dx2
+ V (x) (2)

withm the atomic mass. Furthermore, as long as the scattering length of the atoms is small compared
to the interatomic distance, we can treat the system as a non-interacting quantum gas.

In what follows, we consider a superlattice generated by the interference of two optical lattices whose
spatial periods differ by a factor of two, i.e., ks ≡ k1 = 2k2, where the subscript s labels the lattice
with the shorter wavelength, λs. For now, we set the relative phase ϕ = 0. However, the effect of a
non-zero relative phase on the properties of the superlattice and the solvability of the corresponding
eigenvalue problem is the subject of our forthcoming work. Thus, Eq. 1 can be recast in the form

V (x) = Vs cos2(ksx) + V` cos(ksx) (3)

which is suitable for establishing the mapping of the OSL onto the planar rigid rotor under the orienting
(∝ cos) and aligning (∝ cos2) interactions, i.e., onto the PR system. Note that in Eq. 3, we have
neglected a constant shift of Vs/2 due to the transformation from cos to cos2. The amplitudes Vs ad
V`, with the subscript ` pertaining to the lattice with the longer wavelength, λ`, are proportional to the
depths of the “short” lattice, V1, and “long” lattice, V2, via

Vs = 2V1 =
~Ω2

1

4∆1

(4)

and

V` = V2 =
~Ω2

2

8∆2

(5)

respectively, wherein Ωi = −2~d · ~Ei/~ is the Rabi frequency.

The optical potential 3 due to the superlattice is a periodic function with period (or “lattice constant”)
a = 2π/ks whose shape depends on the relative magnitude and sign of the amplitudes V` and Vs.
As shown in Fig. 2, for Vs < 0 the shape of the OSL potential can be varied from a single-well (SW)
potential in the case |V`| > 2|Vs| to an asymmetric double-well (DW) potential when |V`| < 2|Vs|
over the unit cell of the superlattice. For |V`| = 2|Vs|, the potential has a flat maximum where the
first, second, and third derivatives of the potential are zero. Hence the shape of the OSL potential for
a given atom can be tailored by changing the ratio of the laser intensity to the detuning of the two
constituent optical lattices.

The choice of the sign of V` is arbitrary since it is equivalent to a shift of V (x) by half a period (= π/ks)
in x. Thus, without a loss of generality, we can assume V` > 0, although the results and discussion
presented below apply to both cases: for a blue-detuned (∆2 > 0) as well as a red-detuned long
lattice (∆2 < 0). In contrast, the lattice geometry and its band structure are qualitatively different
depending on whether Vs is positive or negative, as illustrated in Fig. 3. Hereafter, we consider the
short lattice to have a red detuning, ∆1 < 0 (Vs negative), giving rise to an OSL potential consisting
of an asymmetric double well with a local minimum, (Vs + V`), a global minimum, (Vs − V`), and a
maximum,−V 2

` /(4Vs), as shown in panel (a) of Fig. 3. Panel (b) shows what the OSL potential looks
like for Vs positive.

1In this scenario, the atom can be treated as a two-level system whose evolution is described by that of its ground state.
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Table 1: Correspondence between the interaction parameters of the OSL and PR eigenproblems.

System Parameters
Atom in an optical superlattice (OSL) θa Vs V` ER

Planar rotor in external fields (PR) θ −ζ −η B

3 Comparing an atom subject to an optical superlattice with a
planar rotor subject to combined orienting and aligning inter-
actions

The Hamiltonian of a planar (2D) rigid rotor subject to collinear orienting and aligning interactions is
given by [57, 4, 46]

HPR = −B d2

dθ2
− η cos θ − ζ cos2 θ (6)

where B = ~2/(2I) is the rotational constant, with I the moment of inertia, and 0 ≤ θ < 2π
is the polar angle between the axis of the rotor and the direction of the external collinear fields. It
is the couplings of the permanent and induced dipole moments, fixed to the axis of the rotor, with
the external collinear fields that give rise to the orienting and aligning interactions, see panel (b) of
Fig. 1. The strengths of the orienting and aligning interactions are characterized, respectively, by the
parameters η and ζ . For either a vanishing η or ζ , the time-independent Schrödinger equation (TISE)
pertaining to the resulting Hamiltonian becomes isomorphic with the Mathieu equation, which satisfies
different boundary conditions for the purely orienting and purely aligning interactions, cf. Table III of
Ref. [18]. When both η and ζ vanish, the eigenproblem becomes that of a planar rotor.

In order to establish the isomorphism of Hamiltonians (2) and (6), we introduce a dimensionless vari-
able θa ≡ ksx (= 2πx/a) whose substitution transforms Hamiltonian (6) into

HOSL = −ER
d2

dθ2
a

+ Vs cos2 θa + V` cos θa (7)

with ER = ~2k2
s/(2m) the atomic recoil energy. Note that the recoil energy is related to the lattice

constant a via ER = 2π2~2/(ma2). Comparing Hamiltonians 6 and 7 makes it possible to establish
a correspondence between the interaction parameters of the OSL and PR eigenproblems, see Tab. 1.

Note that, unlike the polar angle θ, the variable θa in Eq. 7 is not defined on a circumference but on
a line1. In particular, the interval 0 ≤ θa < 2π describes a unit cell consisting of an asymmetric
double-well with a local minimum at θa = 0 or 2π and a global minimum at θa = π.

In order to explore the spectral properties of the two Hamiltonians given by Eq. 2 and 6, we divide
the Schrödinger equation pertaining to each Hamiltonian through its characteristic energy, ER or B.
Thus, for the OSL system we obtain

H̃OSLψ(θa) = Eψ(θa) (8)

1In classical mechanics, the dynamics of a particle subject to a linear periodic potential is identical to that of a rotor,
which is not the case for its quantum mechanical counterpart.
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with HOSL/ER → H̃OSL. Hence the eigenvalues E of H̃OSL pertaining to eigenfunctions ψ(θa) are
rendered in units of recoil energy ER.

On the other hand, the reduced eigenvalue problem for the PR system becomes

H̃PRφ(θ) = εφ(θ) (9)

with HPR/B → H̃PR. The eigenvalues ε of H̃PR then come out in units of the rotational constant B.
The corresponding eigenfunctions are φ(θ).

Despite the above similarity of the OSL and PR eigenproblems, the physically meaningful boundary
conditions on the two systems lead to different structures of the energy levels of Eqs. 8,9.

Due to its spatial periodicity, Eq. 8 can be treated via Floquet’s theorem (or equivalently Bloch’s theo-
rem), with solutions obeying the boundary condition

ψ(θa + 2π) = µψ(θa) (10)

where µ = exp(i2πq) is the Floquet multiplier and 2π~q/a is the quasi-momentum. Consequently,
the eigenvalues of Eq. 8 are energy bandsE ≡ En(q) with n = 0, 1, 2, · · · the band index. Note that
the parameter q is continuous and confined to the first Brillouin zone (in the reduced-zone scheme),
i.e., −1/2 ≤ q < 1/2. For physically meaningful solutions, the modulus of µ must be equal to one,
i.e., the parameter q must be real (see B).

In the case of the planar rotor interacting with combined fields, the TISE (9) may be solved either for a
periodic boundary condition,

φ(θ + 2π) = φ(θ) (11)

or an antiperiodic boundary condition1,

φ(θ + 2π) = −φ(θ) (12)

Given that Eqs. 11,12 are equivalent to Eq. 10 for µ = 1 and µ = −1, respectively, the (pendular)
eigenstates of the planar rotor in combined fields correspond to Bloch waves for atoms in an opti-
cal superlattice with integer and half-integer wave numbers. In other words, the eigenfunctions and
eigenvalues of the PR Hamiltonian are equivalent to those at the edges of the first Brillouin zone: the
periodic solutions to q = 0 and the antiperiodic ones to |q| = 1/2.

4 Conditional quasi-exact solvability (C-QES) of the time-inde-
pendent Schrödinger equation (TISE)

The solvability of the TISE (9) as well as its spectral properties have been studied by means of super-
symmetry and Lie-algebraic methods in our previous work [57, 58, 4, 56, 46]. In this section, we make
use of the results obtained therein to study the trapping of atoms in an optical superlattice. Based on
the relation between Hamiltonians Eqs. 8,9, we provide analytic insights into the band-gap structure
of the optical superlattice.

1We include these 2π-antiperiodic (or, equivalently, 4π-periodic solutions as they may prove useful for problems involv-
ing BerryâĂŹs geometric phase or systems with 4π rotational symmetry.

DOI 10.20347/WIAS.PREPRINT.2972 Berlin 2022



M. Mirahmadi, B. Friedrich, B. Schmidt, J. Pérez-Ríos 6

The TISE (9) for the PR system can be mapped onto the Whittaker-Hill differential equation [42, 75] (a
special case of the Hill differential equation [44]),

d2f(y)

dy2
+
[
λ+ 4κβ cos(2y) + 2β2 cos(4y)

]
f(y) = 0 (13)

by making use of the definitions of the angular variable y ≡ θ/2, the eigenvalues λ ≡ (4ε+ 2ζ), and
the real parameters κ and β via

η/B = κβ ζ/B = β2 (14)

In the same way, we can map Eq. 8 for the OSL system onto the Whittaker-Hill differential equation by
setting y ≡ θa/2, λ ≡ (4E − 2Vs), and

V`/ER = −κβ Vs/ER = −β2 (15)

The parameter κ has been termed the topological index [57, 58].

For ζ > 0, the PR system belongs to the class of conditionally quasi-exactly solvable (C-QES) eigen-
problems. This means that it is possible to obtain a finite number of its eigenvalues and eigenfunctions
analytically (quasi-exact solvability, QES) [72, 71, 66, 19]), but only if the interaction parameters η
and ζ satisfy a particular condition (conditional exact solvability, CES) [11, 27, 54]). Specifically, ana-
lytic solutions of Eq. 9 for the PR system only obtain for integer values of the topological index κ. In
addition, the integer values of κ specify the number of obtainable analytic solutions.

Due to the PR 7→ OSL mapping, we see that the band-edge wavefunctions and energies of the optical
superlattice with TISE (8) are analytically obtainable only for integer ratios

κ =
|η|√
ζ

=
|V`|√
−Vs

(16)

Note that this statement is only valid for Vs < 0 as TISE (8) is not C-QES if the short-lattice is
blue-detuned.

If κ is an odd integer, the first κ states obeying the periodic boundary condition (i.e., band-edge states
with q = 0 or integer wavenumbers) are analytically obtainable. If κ is an even integer, the κ lowest
antiperiodic solutions (i.e., band-edge states with |q| = 1/2 or half-integer wavenumbers) can be
obtained analytically. In Refs. [4, 46], analytic expressions for forty PR eigenenergies ε(β) have been
found. Those obtained for κ = 1 to κ = 4 are listed in Tab. 2 as band-edge energies E(β) = ε. In
addition, more details, including the analytic expressions for the band-edge eigenfunctions, are given
in A.

We note that if β → 0 as κ → ∞ and, at the same time, κβ remains finite, then the Whittaker-Hill
equation (13) reduces to the Mathieu equation. As the above conditions of quasi-exact solvability do
not apply to the Mathieu equation, it has no analytic solutions.

5 Atoms subject to an optical superlattice as a semifinite-gap
system

The spectrum of a periodic Schrödinger operator consists of regions of allowed eigenvalues (bands)
where the corresponding eigenfunctions are bounded, and forbidden eigenvalues (gaps), where the
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Table 2: Analytically obtained lowest band-edge energies of the optical superlattice (eigenenergies
ε(Γ)) for the first four values of κ defined in Eq. 16. Here Γ stands for the irreducible representations
of the C2v point group of HPR.

κ Γ E = ε(Γ)

1 A1 −β2

2
B1 −β2 − β + 1/4
B2 −β2 + β + 1/4

3
A1 −β2 − 1

2

√
16β2 + 1 + 1/2

A1 −β2 + 1
2

√
16β2 + 1 + 1/2

A2 −β2 + 1

4

B1 −β2 − β −
√

4β2 + 2β + 1 + 5/4

B1 −β2 − β +
√

4β2 + 2β + 1 + 5/4

B2 −β2 + β −
√

4β2 − 2β + 1 + 5/4

B2 −β2 + β +
√

4β2 − 2β + 1 + 5/4

eigenfunctions do not have a finite norm and, therefore, are not physically meaningful. As shown
in Sec. 3, for the TISE (8) of the OSL system, the bands only obtain for q real (in which case q
corresponds to the Bloch wavenumber). The q parameter as a function of E can be determined from
the Hill discriminant, D(E), by making use of the relation,

2 cos(2πq) = D(E) (17)

This procedure is commonly used to describe the band structure of a periodic differential equation
such as the Hill equation [33, 34, 44, 69]. In B, we summarize the procedure resulting in Eq. 17, which
is valid for any real and smooth periodic potential.

By making use of Eq. 17, it is straightforward to locate the allowed and forbidden energy regions: if
q is real, |D(E)| ≤ 2, which defines the energy bands; if q is not real, |D(E)| > 2, which defines
the energy gaps. In particular, the eigenvalues that satisfy |D(E)| = 2, define the band-edge states
whose parameter q takes integer or half-integer values. In general, the Hill discriminant is an oscillating
function of the (real) variable E that intersects the linesD(E) = ±2 in the course of each oscillation.
Consequently, the energy bands implied by the Hill equation obey the inequality |D(E)| ≤ 2. The
bands are separated by forbidden regions (gaps) where |D(E)| > 2. However, for the TISE (8) of the
OSL system, after a few oscillations, the Hill discriminant intersects only one of these two±2 lines and,
eventually, touches but one of them without crossing it, as depicted in Fig. 4. A system with a spectrum
whose every second gap is eventually closed is referred to as a semifinite-gap system [7, 23]. While
the optical superlattice with potential V (x) of Eq. 3 represents such a system, a system described by
the Mathieu equation does not.

Since the eigenvalues E of the OSL system satisfying D(E) = ±2 correspond to the spectrum of
PR’s TISE with periodic (+2) and antiperiodic (-2) boundary conditions, the knowledge of the PR spec-
trum provides a new perspective on the band structure of ultracold atoms in an optical superlattice, as
encapsulated in Fig. 4.

As the symmetries of PR system are isomorphic with those of the C2v point group [4], the solutions
of the corresponding Schrödinger equation (9) fall into four categories, each corresponding to one
of the irreducible representations Γ ∈ {A1, A2, B1, B2} of C2v [4, 46]. The solutions associated
with the A1 and A2 symmetries are, respectively, even and odd functions (with respect to θ = π),
satisfying the periodic boundary condition on the interval θ ∈ [0, 2π]. The solutions corresponding to
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B1 and B2 symmetries are, respectively, odd and even functions (with respect to θ = π), satisfying
the antiperiodic boundary condition1. In accordance with Sturm’s oscillation theorem [44, 69], the
eigenvalues form a monotonously increasing infinite sequence of real values ε(A)

0 < ε
(B)
0 ≤ ε

(B)
1 <

ε
(A)
1 ≤ ε

(A)
2 < ε

(B)
2 ≤ ε

(B)
3 < . . . , where {ε(A)

i } is the energy set corresponding to the periodic

solutions (either A1 or A2), and {ε(B)
i } corresponds to the antiperiodic solutions (either B1 or B2).

Furthermore, the number of nodes of the corresponding eigenfunctions in the interval [0, 2π] is equal
to 0, 1, 1, 2, 2, 3, 3, . . . , where the odd (even) number of nodes corresponds to antiperiodic (periodic)
eigenfunctions.

Fig. 5 shows the energy levels of the planar rotor in combined fields as a function of the orienting
parameter η for a constant value of the aligning parameter ζ = 50B. The energy levels that lie beyond
the C-QES interval, i.e., above the local minimum of the potential (marked by the upper dashed lines),
have been obtained numerically by means of the Fourier grid Hamiltonian method [45] as implemented
within the WavePacket software package [61, 59, 60]. For more details regarding the C-QES interval
see A and Refs. [4, 46]. All eigenvalues below the local minimum of the potential, either analytic
(integer κ) or numerical (non-integer κ), pertain to singlet states with a specific symmetry Γ. However,
the energy differences between some pairs of the A and B levels in this part of the spectrum are
small and hardly discernible on the scale of panel (a), which is why they are shown once more but
separately: A levels in panel (b) and B levels in panel (c). Note that the ground state always pertains
to the A1 symmetry.

The most striking feature of the eigenenergies shown in Fig. 5 is their rich pattern of genuine and
avoided crossings. As expected from the Wigner-von Neumann non-crossing rule [73, 35], levels per-
taining to the same symmetry (i.e., to the same irreducible representations Γ) exhibit avoided crossings
whereas levels of different symmetry exhibit genuine crossings.

For odd integer κ values, all eigenenergies corresponding to the periodic eigenstates A are two-fold
degenerate, see panel (b) of Fig. 5. These degenerate states cannot be labeled by one of the specific
symmetries, A1 or A2. Similarly, for even integer κ, the genuine crossings occur for the antiperiodic
states B1 and B2, see panel (c) of Fig. 5. In other words, if κ is an odd (even) integer, the TISE (9)
has two linearly independent solutions obeying the periodic (antiperiodic) boundary condition. This
is referred to as coexistence of two linearly independent solutions with the same periodicity and is
a peculiarity of the Whittaker-Hill equation (arising only for ζ > 0) [10, 77, 44]. We note that the
coexistence (degeneracy) of two Mathieu functions has been proved to be impossible [77].

On the other hand, the avoided crossings occur between pairs of states with the symmetry B1 or B2

(i.e., between the energy curves with the same colors in panel (c) of Fig. 5) for odd integer κ. For
even integer κ, the avoided crossings occur between pairs of the A1 or A2 levels (i.e., between the
energy curves with same colors in panel (b) of Fig. 5). Note that some of the avoided crossings cannot
be discerned on the scale of the figure. Therefore, one may conclude that the energy curves show
extrema at even κ. Although this is valid for the lower energy levels, it is not always true for higher
energy levels and larger κ values.

The discussion above regarding the energy levels of the PR system can be extended to the case
of ultracold atoms in an optical superlattice, completing the picture of its semifinite-gap structure. In
particular, the energy bands (|D(E)| ≤ 2) of Eq. 8 are intervals

[ε
(A)
0 , ε

(B)
0 ], [ε

(B)
1 , ε

(A)
1 ], [ε

(A)
2 , ε

(B)
2 ], · · · (18)

1Note that the correlation between the even functions and B2 (or odd functions and B1) is valid for η < 0 and will
change to the correlation between even functions and B1 (odd functions and B2) for η > 0. For more details, see
Refs. [4, 46]

DOI 10.20347/WIAS.PREPRINT.2972 Berlin 2022



Mapping atomic trapping onto librations in an optical superlattic of a planar rotor 9

separated by the gaps (|D(E) > 2) whose edges correspond to the PR’s eigenfunctions of the same
periodicity: A-type gaps for periodic (|q| = 0) and B-type gaps for the antiperiodic (|q| = 1/2)
boundary conditions, i.e.,

(ε
(B)
0 , ε

(B)
1 ), (ε

(A)
1 , ε

(A)
2 ), (ε

(B)
2 , ε

(B)
3 ), · · · (19)

Therefore, the genuine crossings in PR’s spectrum correspond to the closed gaps in the optical su-
perlattice band structure. For even integer κ, all B-type gaps are closed except for the first κ/2. In
addition, using the analytical energies (see Secs. 4,A), it is possible to derive analytic expressions for
the widths of these κ/2 open B-type gaps. If κ is an odd integer, all A-type gaps vanish except for
the first (κ − 1)/2, whose widths can be calculated analytically. The semifinite-gap structure for two
examples, κ = 2 and κ = 3, are shown, respectively, in panels (a) and (b) of Fig. 4.

The band structure of atoms in an optical superlattice for constant Vs = −5 ER and different V` is
shown in Fig. 6. Note that while the energy bands below the maximum of the potential (i.e., below
the upper black dashed line) are hardly discernible, those sufficiently above the potential’s maximum
exhibit a significant width. However, the gaps shrink with the energy of the band. These differences
are more prominent when the optical superlattice has deeper wells, as can be seen by comparing
Fig. 5 with Fig. 6. Furthermore, guided by the color-coding assigned to different Γ symmetries, we
can see that with every transition from a genuine crossing (i.e., V` corresponding to closed gaps), the
symmetry of the lower and upper band-edge states involved is interchanged (A1 ↔ A2 orB1 ↔ B2).
We note that even though the gaps decrease in the high energy limit, the gaps become zero only at the
loci of integer κ. Although further into the single-well regime (on the right from the red dotted vertical
line in Fig. 6) the avoided and genuine crossings in principle still occur, the characteristic features of
the double-well regime fade out, see Fig. 6.

Fig. 7 complements the overview of the above phenomena by displaying the band structure for a long-
lattice well-depth V` = 60 ER. The rich energy structure in the double-well regime (|Vs| > 30 ER, to
the left of the red dotted vertical line) compared to the single-well regime (|Vs| < 30 ER) is clear in
this figure where the closed gaps located at Vs = −144 ER, Vs = −(60/7)2 ≈ −73.47 ER, and
Vs = (60/9)2 ≈ −44.44 ER (i.e., κ = 5, 7, 9 are indicated by vertical dotted blue lines).

6 Correspondence between orientation/alignment of a planar ro-
tor and spatial localization (squeezing) of an atom in an optical
superlattice

The concept of directionality (orientation and alignment) of a planar rotor subject to orienting and
aligning combined fields corresponds to the spatial squeezing of atoms in an optical superlattice (see,
e.g., Refs. [37, 38]). In order to illustrate this correspondence, we make use of the common measures
of orientation and alignment defined, respectively, as the expectation values 〈cos θ〉 and 〈cos2 θ〉. A
fully oriented and fully anti-oriented planar rotor is characterized, respectively, by 〈cos θ〉 = 1 and
〈cos θ〉 = −1. A fully aligned planar rotor satisfies 〈cos2 θ〉 = 1 whereas the spatial distribution of
the axis of a free planar rotor (when the orienting and aligning interactions are absent) is characterized
by the isotropic value 〈cos2 θ〉 = 1/2.

Therefore, when the planar rotor is oriented, θ ≈ 0, whereas when it is anti-oriented, θ ≈ π. Similarly,
we find alignment when θ ≈ 0 or π and anti-alignment for θ ≈ π/2. Fig. 8 shows a schematic repre-
sentation of the relationship between orientation and alignment of the rotor and the spatial squeezing
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of atoms in an optical superlattice with V` > 0 and Vs < 0. As illustrated in the figure, an oriented
planar rotor is equivalent to the case of θa ≈ 0, i.e., the spatial localization of the atomic wavefunction
(probability density) at the local minimum of the lattice. On the contrary, an anti-oriented planar rotor
is analogous to the case of spatial localization at the global minimum1.

Fig. 9 shows the probability densities |ψ(θa)|2 of two different bound states of an atom in an optical
superlattice and their analogues in the PR system |φ(θ)|2: (a) a highly localized state around the
global minimum, and (b) a nearly delocalized state. Panel (a) corresponds to 〈cos θ〉 = −0.964 and
〈cos2 θ〉 = 0.931, which can be characterized as an anti-oriented and aligned pendular state. Panel
(b), on the other hand, corresponds to 〈cos θ〉 = 0.095 and 〈cos2 θ〉 = 0.459, a characteristic of an
almost isotropic state (〈cos θ〉 ≈ 0).

As mentioned before, the band-edge state at the closed gaps (i.e., a doubly degenerate state) results
from a superposition of two driven rotor’s states with different Γ symmetries and hence, different local-
izations. An example is shown in Fig. 10, where the probability densities |φ(A2)

1 (θ)|2 and |φ(A1)
2 (θ)|2

corresponding to the lowest closed gap at κ = 1 are depicted. In this case, orientation and alignment
of the state associated with A2 symmetry (the light blue curve localized around the global minimum
of the lattice) are 〈cos θ〉 = −0.886 and 〈cos2 θ〉 = 0.793, respectively. However, for the A1 sym-
metry (the purple curve localized around local minimum of the lattice) we find 〈cos θ〉 = 0.9603 and
〈cos2 θ〉 = 0.925. Consequently, the superposition will be still (nearly) aligned but does have approx-
imately zero orientation (double-arrow like). Note that the discussion given above also applies to the
antiperiodic states.

Based on the correspondence between the PR and OSL systems, we introduce the expectation val-
ues 〈cos θa〉 and 〈cos2 θa〉 as quantitative measures of the spatial localization of the Bloch states
in an optical superlattice. This makes it possible to use the Hellmann-Feynman theorem to estab-
lish a relationship between the spatial dependence of the band-edge energies, such as those shown
in Figs. 5,6,7, and the spatial localization of the corresponding eigenstates [46, 47]. According to the
Hellmann-Feynman theorem, 〈ψn |∂χH(χ)|ψn〉 = ∂χEn for χ a parameter in the Hamiltonian, which
in our case is either V` or Vs. Hence we obtain (over a single unit cell and for a constant q),

〈cos θa〉n =
∂En
∂V`

〈
cos2 θa

〉
n

=
∂En
∂Vs

(20)

Therefore, the Hellmann-Feynman theorem implies that variations of the band energy in the vicinity of
the genuine and avoided crossings will result in significant changes in the spatial localization of the
atoms (see Ref. [46] for further details in the case of the PR system). From Eq. 20 and given that
the global minimum of the potential V (x) rises whereas the local minimum of the potential drops at
the avoided crossings (see Sec. 2), the localization of band-edge states around θa = 0 and θa = π
interchanges, although the symmetry of the states involved remains the same.

We note that the abrupt changes in the localization of the wavefunctions at these intersections are
characteristic of energy levels well below the maximum of the potential but still above the local mini-
mum. Indeed, for higher excited states, those changes occur more smoothly.

1Note that by choosing V` < 0, localization around the local/global minimum would be analogous to antiorienta-
tion/orientation.
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7 Conclusions and prospects

We have shown that two seemingly unrelated systems – an atom under the potential of an optical
superlattice and a planar rigid rotor under combined orienting and aligning interactions (also known as
the generalized planar pendulum in our previous works) – have isomorphic Hamiltonians. We made
use of this isomorphism and applied the extensive results obtained previously for the latter case based
in part on the theory of the Whittaker-Hill equation [4, 46] to treat atoms in an optical superlattice. Given
that the eigenproblem of a planar rotor in combined fields is conditionally quasi-exactly solvable, we
have been able to obtain analytic results for atoms in an optical superlattice as well. These analytical
solutions correspond to the edge states of the OSL band structure.

In particular, we have obtained in analytic form a finite number of eigenstates corresponding to the
deep-lying band edges around the global minimum of the superlattice potential. Thereby, we prepared
the soil for obtaining exact expressions for tunneling amplitudes between the sites of the superlat-
tice (such as two global minima) and hence the hopping term in the corresponding Hubbard model
Hamiltonian or the Landau-Zener tunneling probabilities [49]. By invoking the spectral properties of the
Whittaker-Hill equation, we have shown that the motion of ultracold atoms in an optical superlattice
gives rise to a semifinite-gap system that can be used to study topological properties of the atoms’
energy spectra [43, 7, 23]. Finally, we have shown how orientation and alignment of the planar rotor
in interacting with external fields translate into the localization (squeezing) of the ultracold atoms in
an optical superlattice. This treatment of atom squeezing offers itself to studying transport in optical
superlattices [6].

Conversely, the isomorphism between the Hamiltonians of two systems would make it possible to
simulate the planar rotor in the presence of external fields by the optical superlattice. In particular,
ultracold atoms in an optical superlattice could be used to simulate the semifinite-gap spectrum of the
supersymmetric partners of the planar rotor under the orienting and aligning interactions as well as
under more involved potentials [39, 58, 57]. Therefore, the present study can be viewed as a proposal
for a quantum simulator of a planar rotor subject to external fields.

In future work, the available analytic solutions will be used to develop analytic dynamical models of
the trapping of atoms in an optical superlattice. In addition, in the case of non-zero relative phase, the
QES condition provided here should be reconsidered and the topological index κ should be redefined.
The solvability of this problem is the subject of our forthcoming work.

We note that ultracold atoms in optical lattices are generally studied via the properties of the Mathieu
equation that the time-independent Schrödinger equation for a simple 1D optical lattice ∝ cos2(kx)
[76] reduces to. However, as we have shown herein, using the Whittaker-Hill equation instead, with its
intriguing spectral features as well as its conditional quasi-exact solvability, reveals new perspectives
on the optical superlattice eigenproblem that could prove useful in band structure engineering of ul-
tracold quantum gases. This is a further indication that the fields of ultracold atoms, coherent control,
and condensed matter physics are coming closer together.

A Analytically obtainable band-edge states

The eigenstates of the PR Hamiltonian can be obtained in analytic form by diagonalizing the four finite-
dimensional symmetry-adapted matrix representations of this Hamiltonian. The solutions that satisfy
the q = 0 (periodic boundary condition) can be written as
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ψ(A1)(θa) =
(
N (A1)

)−1/2
eβ cos θa

(κ−1)/2∑
`=0

v` cos2` θa
2

ψ(A2)(θa) =
(
N (A2)

)−1/2
eβ cos θa sin θa

(κ−3)/2∑
`=0

ṽ` cos2` θa
2

(21)

which are normalized by (on the 2π interval of θa)

N (A1) = 2π
∑
`,`′

1

22L
v`v`′

{(
2L

L

)
I0(2β) + 2

L−1∑
j=0

(
2L

j

)
IL−j(2β)

}

N (A2) = 2π
∑
`,`′

1

22L+1
ṽ`ṽ`′

{(
2L

L

)
I1(2β)/β +

L−1∑
j=0

(
2L

j

)
[2IL−j(2β)− IL−j+2(2β)

− IL−j−2(2β)]

}
(22)

The constants v` and ṽ` are components of the eigenvectors of the matrix representations correspond-
ing to the A1 or A2 symmetries (see Refs. [4, 46]). Iρ is the modified Bessel function of the first kind
and ρth order [2, 20],

(
b
a

)
is the binomial coefficient, and L := `+ `′.

The 2π-antiperiodic solutions can be written as

ψ(B1)(θa) =
(
N (B1)

)−1/2
eβ cos θa cos

θa
2

(κ−2)/2∑
`=0

w` cos2` θa
2
,

ψ(B2)(θa) =
(
N (B2)

)−1/2
eβ cos θa sin

θa
2

(κ−2)/2∑
`=0

w̃` cos2` θa
2

(23)

where, the constants w` and w̃` are components of the eigenvectors of the matrix representations
associated with the B1 and B2 symmetries given in Refs. [4, 46]. The normalization constants are

N (B1) = 2π
∑
`,`′

1

22L+1
w`w`′

{(
2L

L

)
[I0(2β) + I1(2β)] +

L−1∑
j=0

(
2L

j

)
[2IL−j(2β)

+ IL−j+1(2β) + IL−j−1(2β)]

}

N (B2) = 2π
∑
`,`′

1

22L+1
w̃`w̃`′

{(
2L

L

)
[I0(2β)− I1(2β)] +

L−1∑
j=0

(
2L

j

)
[2IL−j(2β)

− IL−j+1(2β)− IL−j−1(2β)]

}
(24)

A total of 40 analytic solutions are given in Refs. [4, 46]. Note that these analytic solutions are limited
to the so-called interval of quasi-exact solvability. Above this interval all the solutions are only obtain-
able by means of the numerical methods. However, those on the loci of integer κ maintain the same
expression given by Eqs. 21,23 but with coefficients calculated numerically.

DOI 10.20347/WIAS.PREPRINT.2972 Berlin 2022



Mapping atomic trapping onto librations in an optical superlattic of a planar rotor 13

Fig. 11 displays 24 of the analytic energy curves as a functions of β for different values of κ. It is
important to keep in mind that the superlattice geometry changes from a single-well for β < κ/2 to a
double-well per site for β > κ/2.

B The Hill discriminant

Consider the differential equation

d2f

dy2
+ [λ+Q(y)]f(y) = 0 (25)

where Q(y + T ) = Q(y) is a real-valued smooth periodic function and λ is the eigenvalue. This
periodic differential equation (often called the Hill equation [44]) has a band-gap structure. Due to the
translational symmetry, functions f(y) should fulfil the following boundary condition

f(y + T ) = µf(y) (26)

where µ is known as the Floquet multiplier.

In order to study its spectrum, we choose a basis set consisting of two linearly independent solutions
f1(y, λ) and f2(y, λ) corresponding to the same eigenvalue λ and obeying the conditions f1(0, λ) =
f ′2(0, λ) = 1 and f2(0, λ) = f ′1(0, λ) = 0 (prime denotes the derivative with respect to y). Defining
the general f function corresponding to the eigenvalue λ as

f(y, λ) = αf1(y, λ) + βf2(y, λ) (27)

and substituting it into Eq. 26 and its derivative, we have[
f1(T, λ) f2(T, λ)
f ′1(T, λ) f ′2(T, λ)

] [
α
β

]
= µ

[
α
β

]
(28)

The 2-by-2 matrix on the left hand side of Eq. 28 is the transpose of the monodromy matrix with a
constant (y-independent) determinant equal to one [69, 7, 44]. It is known that the eigenvalues of the
monodromy matrix, µ, are Floquet multipliers and that the trace of the monodromy matrix,

D(λ) = f1(T, λ) + f ′2(T, λ) , (29)

is the discriminant associated with the Hill equation (25), the so-called Hill discriminant or Floquet
discriminant [7, 23]. Note that some authors defineD(λ) as half of this value (see e.g. Refs. [33, 69]).
Thus, from Eq. 28, the characteristic equation for the eigenvalues µ reduces to

µ2 −D(λ)µ+ 1 = 0 (30)

By substituting µ = exp(iT q) in Eq. 30, we obtain the relation between the Hill discriminant and the
q parameter as

D(λ) = 2 cos(Tq(λ)) (31)

Finally, the spectral properties of Eq. 25 can be explained by using the oscillation properties of its
associated Hill discriminant D(λ) [34, 33, 44, 7]: (i) for |D(λ)| ≤ 2, the parameter q is real and so
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the modulus of µ is equal to one. Therefore, the solutions f(y) are bounded and the corresponding
λ values are allowed (bands). (ii) for |D(λ)| > 2, the parameter q is not real and so the solutions
f(y) do not have a finite norm and thus are not physically admissible. The corresponding λ values
are forbidden (gaps). Furthermore, the λ values withD(λ) = 2 are the spectral edges corresponding
to the periodic solutions (µ = 1), and those with D(λ) = −2 to the antiperiodic solutions (µ = −1).
Therefore, these values describe the edges of the allowed regions (band-edges).

We note that the oscillations of the discriminant D(λ) as a function of real eigenvalues λ and their
intersections with lines D(λ) = ±2 depend on the shape of the periodic function Q(y) in Eq. 25.
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(a)

(b) (c)

Figure 1: Three different eigenproblems whose Hamiltonians are isomorphic: (a) trapping of ultracold
atoms in an optical superlattice; (b) libration of a planar rigid rotor in collinear external electric fields;
(c) the torsional motion in a molecule such as CCl3CH(OH)2.

Figure 2: Superlattice optical potential, Eq. 3, for different relative magnitudes of the parameters
V` > 0 and Vs < 0. Note that choosing V` < 0 results in a shift in x of V (x) by π/ks.
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(a)

(b)

Figure 3: Superlattice optical potential, Eq. 3, for V` > 0 and (a) Vs < 0 whose local minimum,
global minimum, and maximum are marked by the black dashed, blue dashed and black dotted lines,
respectively. (b) Vs > 0. In either panel, |V`| < 2 |Vs|.

(a)

(b)

Figure 4: Schematic diagram of the Hill discriminant for atoms in an optical superlattice treated as a
semifinite-gap system for (a) κ = 2 and (b) κ = 3. The shaded areas indicate the allowed energy
(E) regions for |D(E)| ≤ 2. Note that the widths of the bands and gaps depend on the choice of the
values of the Vs and V` parameters.
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Figure 5: (a) Energies of the planar rotor interacting with combined fields as functions of η for constant
ζ = 50 B. The vertical blue dotted lines mark the η values associated with the integer values of κ
from κ = 1 (η = −

√
50) to 14 (η = −14

√
50). Panels (b) and (c) show the energies of the periodic

(A1, A2) and antiperiodic (B1, B2) states, respectively. Here, the potential is an asymmetric double
well with local and global minima indicated by black dashed lines, and a maximum shown by the black
dotted curve.

DOI 10.20347/WIAS.PREPRINT.2972 Berlin 2022



M. Mirahmadi, B. Friedrich, B. Schmidt, J. Pérez-Ríos 22

Figure 6: The band-gap structure of the optical superlattice with respect to the long-lattice depth when
the short-lattice depth is constant Vs = −5 ER. The allowed bands are shaded in grey. Blue vertical
dotted lines mark V` corresponding to κ = 1 to κ = 13. The black dashed vertical line at V` =
2|Vs| = 10 ER distinguishes the double-well (left side) and single-well (right side) regimes. For the
single-well regime, black dashed lines indicate the maximum and minimum of the potential. For the
double-well regime, see Fig. 5.
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Figure 7: The band-gap structure of atoms in an optical superlattice with respect to the short-lattice
depth when the long-lattice depth is constant V` = 60 ER. Blue dotted lines mark Vs corresponding
to κ from κ = 5 to κ = 10. The black dashed vertical line at −Vs = V`/2 = 30 ER separates
the single-well (left side) and double-well (right side) regimes. In the single-well regime, black dashed
lines indicate the maximum and minimum of the potential. For the double-well regime, the local and
global minima are shown, respectively, by black dashed lines, and the maximum by the black dotted
curve, cf. Fig. 5. The color-coding is the same as in Fig. 6.
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ො𝒛

(a)

(b)

Figure 8: Correspondence between orientation of a planar rotor and spatial localization (squeezing)
of an atom in an optical superlattice with V` > 0 and Vs < 0. Panel (a) shows the oriented rotor
(θ = 0) and panel (b) the anti-oriented rotor (θ = π). Here, ẑ indicates the direction of the collinear
external fields.
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(a) |φ(A1)
0 (θ)|2 (ground state) for η = −7 B equivalent

to V` = 7 ER (i.e., κ = 1).
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6 (θ)|2 for η = −14 B equivalent to V` =

14 ER (i.e., κ = 2).

Figure 9: Plots of the probability density |ψ(θa)|2 in the unit cell of an optical superlattice for Vs =
−49 ER, together with the polar plots of a planar rotor subject to external fields, |φ(θ)|2 with ζ =
49 B.
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Figure 10: Same as in Fig. 9 but for a genuine crossing at ζ = 49 B and η = −7 B or, equivalently,
a closed gap at Vs = −49 ER, V` = 7 ER. The color coding is the same as in Fig. 6.
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Figure 11: The lowest available analytic eigenvalues of planar rotor in the combined fields (band-edge
energies in optical superlattice) as functions of β =

√
ζ/B =

√
−Vs/ER for different integer values

of the topological index κ given by Eq. 16.
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