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Chase-escape in dynamic device-to-device networks
Alexander Hinsen, Benedikt Jahnel, Elie Cali, Jean-Philippe Wary

Abstract

The present paper features results on global survival and extinction of an infection in a multi-
layer network of mobile agents. Expanding on a model first presented in [CHJW22], we consider
an urban environment, represented by line-segments in the plane, in which agents move accord-
ing to a random waypoint model based on a Poisson point process. Whenever two agents are at
sufficiently close proximity for a sufficiently long time the infection can be transmitted and then
propagates into the system according to the same rule starting from a typical device. Inspired by
wireless network architectures, the network is additionally equipped with a second class of agents
that is able to transmit a patch to neighboring infected agents that in turn can further distribute the
patch, leading to a chase-escape dynamics.

We give conditions for parameter configurations that guarantee existence and absence of
global survival as well as an in-and-out of the survival regime, depending on the speed of the
devices. We also provide complementary results for the setting in which the chase-escape dy-
namics is defined as an independent process on the connectivity graph. The proofs mainly rest
on percolation arguments via discretization and multiscale analysis.

1 Introduction and setting

In the past decades we have seen a tremendous increase in demand for data exchange on a global
scale creating significant pressure on network operators to maintain a good quality of service. One
particularly interesting concept in this development is device-to-device (D2D) communications. The
idea is that network components can exchange data in a peer-to-peer fashion over a wireless channel
and thereby constitute a decentralized ad-hoc network. Among the many potential benefits of these
networks, such as robustness, communication speed, cost efficiency etc., one of the key challenges
is their high complexity and unpredictability.

In order to cope with these challenges, since the early sixties, probabilistic modeling and analysis has
been developed and employed to provide qualitative and quantitative insights for D2D networks, see
for example [Hae12,FM08,BB09] and many more. In this context, one of the most fruitful approaches
is based on stochastic geometry, where network components are conceived as point point processes
in space [BHKM18,JK20]. Such a random point cloud is then often seen as the vertex set of a random
spatial graph in which edges are drawn according to some rule that reflects the peer-to-peer communi-
cation paradigm. In its purest form this is the classical Poisson–Gilbert graph [Gil61], which serves as
a prototypical model for the spatial clustering behavior of a D2D network in a non-dynamical setting.
In particular, already in this model, one can observe the celebrated phase transition of percolation in
the following sense. Let λ > 0 be the intensity of the underlying homogeneous Poisson point process
X and r > 0 the connectivity threshold, i.e., the Poisson–Gilbert graph has vertex set X and any
pair of vertices is connected by an edge iff their Euclidean distance is less than r. Then, there exists a
finite and positive λc = λc(r) such that for λ < λc the graph does not contain any infinite connected
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component almost surely and for λ > λc such an infinite connected component exists with probabil-
ity one. In the context of D2D networks, the parameter regime in which an infinite component exists,
the so-called percolation regime, is a regime in which data can in principle be transmitted over long
(infinite) distances via multiple hops.

In the past 60 years since the first proof of continuum percolation in the Poisson–Gilbert graph, this field
has expanded tremendously and presence as well as absence of percolation has been established
in a great variety of static spatial models that extend the classical setting in various ways. Keeping
the application area of D2D communication systems in mind, we highlight percolation results in so-
called signal-to-interference-to-noise-ratio graphs [DFM+06, Tób20, JT22] (SINR graphs), where the
existence of an edge not only depends on the mutual distance but also on the density of other devices
in the vicinity. Notably, in SINR graphs one can observe an in-and-out of percolation in the intensity
parameter, since for large intensities, the interference reduces the connectivity. On the other hand,
let us mention Cox-percolation results [HJC19, JTC22, HJM22], where the underlying point cloud is
a Poisson point process with a random intensity measure that can for example be used to model
urban environments such as street systems. Going further in this direction, in [CHJW22] sub- and
supercritical regimes of percolation are established in a static spatial random graph model where the
edge-drawing mechanism is designed to reflect realistic features of a connectivity network of moving
devices in an urban environment. In short terms, any pair of devices, given by a Cox point process in
which the environment is a planar random segment process, is connected by an edge iff, on their path
through the environment, they spend enough time on the same segment in sufficiently close proximity.
A variety of phase transitions in the different parameters can be observed, where again the speed
parameter for the device movement, in certain settings, features an in-and-out of percolation.

Going beyond the setting of static random graphs and their percolation behavior, the next natural step
is to investigate data transmission on random graphs. Here the starting point is to consider growth
processes in which a message is present at initial time at some (typical) vertex and then crosses
the edges of the graph according to some passage times. This is the setting of first-passage per-
colation (FPP) [ADH17, Kes03] and results often concern the speed of the data transmission over
large (Euclidean) distances and the associated (asymptotic) shape of the set of vertices that have
received the message up to some fixed time. In [CdLH+21] such a shape theorem is presented for
FPP on the supercritical Poisson–Gilbert graph. Conceiving the message as some infection, these
growth models are often presented in the context of spatial probabilistic epidemiology and then it is
natural to generalize the pure growth process of FPP to processes in which infected devices can
also spontaneously heal (or messages can be dropped), giving rise to contact processes on random
graphs [Lig85,Lig13]. In this setting the main concern usually becomes to show survival and extinction
of the infection and results are available also for contact processes on random graphs in the con-
tinuum [MS16, BNNS21, NS22]. In the context of D2D networks however, another antagonist of the
pure growth mechanism is important. Regarding the infection as some malware, there can be special
devices in the network that have the property to remove the malware from infected devices, but are
otherwise indistinguishable from the infected or susceptible devices. This gives rise to chase-escape
processes [DJT20,TKL18,BHJR22,BCE+21,HTJRR22] in which malware is transmitted from infected
to susceptible devices and infected devices are patched. Again, main results are concerned with ex-
hibiting regimes of survival and extinction of the malware in the system and such regimes have been
established also in the continuum [HJCW20b,HJCW20a].

In the present manuscript we present two sets of results for chase-escape dynamics on supercritical
percolation models in the continuum. In the first set of results we use the construction of [CHJW22],
as mentioned above, and consider a system of moving particles in an environment of line-segments
in R2. However, we now go substantially beyond the setup in [CHJW22] and not only consider the
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resulting connectivity graph but introduce a chase-escape dynamics that respects the mobility and
connectivity behavior of the network components. Controlling the long-range dependencies we prove
results on survival and extinction of malware in certain parameter regimes and in particular feature
again a phenomenon of in-and-out of survival with respect to the speed parameter. In the second
set of results we complement these findings and present similar results in hybrid models in which
the infection and patching processes are defined as an independent process on top of the (static)
percolation model from [CHJW22].

The paper is organized as follows. In the remainder of this section we reproduce and extend our
connectivity model from [CHJW22]. That is, the first network layer, described in Section 1.1, is given
by the street system. In Section 1.2 we describe the system of initial device positions on the street
system and we introduce the paradigmatic mobility model for the devices given by the random waypoint
model. In Section 1.3 we introduce our notion of connectivity in the system and in Section 1.4 establish
local connectedness in the sense that almost-surely all devices have a finite degree. In Section 2 we
introduce the chase-escape dynamics and exhibit our main results for the global survival and absence
of global survival of the malware including a theorem that establishes an in-and-out of survival with
respect to the speed parameter. Next, Section 3 features the hybrid model where the chase-escape
dynamics is defined as an independent process on the connectivity graph and we present statements
about global survival and absence of global survival under a variety of parameter regimes. Finally, in
Section 4 we present the proofs.

1.1 Street systems

As a first layer of the system, we consider a stationary random planar segment process

S =
⋃
i∈I

{Si} ⊂ R2

where each Si is a line segment in R2 of finite length. The line segments may intersect and we call
each maximal unintersected interval in S a street. The endpoints of each street are called crossings
(even if they are dead-ends). In order to have something specific in mind, S can could be for example
some planar tessellation process like the Poisson–Voronoi tessellation (PVT) or the Poisson–Delaunay
tessellation (PDT), see Figure 1 for an illustration. We think of S as to be an urban street system
and note that for example the PVT indeed shares some common characteristics with medieval city
topologies, see [Cou12].

In order to control spatial dependencies in S, we will almost exclusively work with systems that satisfy
a quantitative mixing property called stabilization [Lee97, PY02, PY03]. Additionally, we will assume
that the system is connected in large regions with high probability and call this asymptotic essential
connectedness [HJC19, JTC22]. More precisely, let us define the square with side length n ≥ 1
centered at x ∈ R2 by

Qn(x) = x+ [−n/2, n/2]2,

and abbreviateQn = Qn(o) and denote by dist(ϕ, ψ) = inf{|x− y| : x ∈ ϕ, y ∈ ψ} the distance
between sets ϕ, ψ ⊂ R2.

Definition 1.1 (Stabilization and asymptotic essential connectedness). A stationary random segment
process S is called stabilizing if there exists a random field of stabilization radii R = {Rx}x∈R2 that is
measurable with respect to S and (S,R) is jointly stationary. Moreover, forR(Qn) = supy∈Qn∩Q2 Ry
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Figure 1: Realization of a street system given by a Poisson–Voronoi tessellation.

we have limn↑∞ P(R(Qn) < n) = 1 and for all n ≥ 1, the random variables{
f(S ∩Qn(x))1{R(Qn(x)) < n}

}
x∈ϕ

are independent for all non-negative bounded measurable functions f and finiteϕ ⊂ R2 with dist(x, ϕ\
{x}) > 3n for all x ∈ ϕ.

Furthermore, S is called asymptotically essentially connected if it is stabilizing and for all sufficiently
large n ≥ 1, whenever R(Q2n) < n/2, we have that |S ∩Qn| > 0 and S ∩Qn is contained in one
of the connected components of S ∩Q2n.

We note that PVTs and PDTs are stabilizing [HJC19] but Manhattan grids or (rectangular) Poisson-line
tessellations are not stabilizing.

Finally, in what follows, we will always assume that the expected number of streets and the expected
number of crossings in the unit square is finite and that the intensity of the street system is normalized,
i.e., E[|S ∩Q|] = 1, where | · | denotes the total edge length.

1.2 Mobile devices

As a second layer of our model we represent initial positions of devices via a Cox point processes
Xλ = {Xi}i≥1. That is, Xλ is a Poisson point process with a random intensity measure

ΛS(A) = λ|S ∩ A|, A ⊂ R2 measurable,

where λ ≥ 0 is a parameter that represents the expected number of devices per unit of street length,
see Figure 2. Note that if S is stationary so is Xλ.

Having defined the initial positions of the devices via a Cox point process on the street system, we
now present our model for the device mobility. We start by considering the probability kernel

κS(x, dy), x ∈ S,
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Figure 2: Realization of initial device positions (blue) confined to a street system given by a Poisson–
Voronoi tessellation.

which depend on S, and assume that the support of κS(x, dy), defined via

supp(κS(x, dy)) = {y ∈ S : κS(x,Bε(y)) > 0 for all ε > 0},

is contained in S for any x ∈ S. We say that κ has (uniformly) bounded support if there exists K > 0
such that

|supp(κS(x, dy))| < K almost all S,

where, with a slight abuse of notation | · | denotes the Lebesgue measure on R2. Moreover, we will
always assume that κ is translation covariant, i.e.,

κS(x,A) = κS−x(o, A− x) almost all S, measurable A ⊂ R2, x ∈ R2.

The kernel κS(x, dy) serves as a waypoint kernel [BHPC04] and an example is given by the uniform
distribution on S ∩BL(x), see [CHJW22], where BL(x) ⊂ R2 denotes the disc of radius L centered
at x ∈ R2. Furthermore, we require that the kernel is finitely dependent, i.e., that there is a constant
H > 0 such that for almost-all S and x ∈ S, κS(x, dy) = κS

′
(x, dy) for all S ′ with S ∩ BH(x) =

S ′ ∩BH(x).

It will become useful to consider waypoint kernels that allow for very small displacements. In order to
formalize this, we call the kernel c-well behaved if

Bc(x) ∩ S ⊂ supp
(
κS(x, dy)

)
almost all S, x ∈ S,

where κS(x, y) is the density and say that it is well behaved if it is c-well behaved for some c > 0.

Then, each device Xi ∈ Xλ picks independently a target location Yi ∈ S according to κS(Xi, dy).
Further, we equip each device Xi ∈ Xλ with an i.i.d. velocity Vi, drawn from the distribution µ for
which we assume that 0 < vmin ≤ vmax < ∞, where vmin := sup{v : µ([v,∞)) = 1} and
vmax := inf{v : µ([0, v]) = 1}. Then, the path of the device Xi is defined iteratively as follows. Xi

moves with speed Vi to Yi along the shortest route in S that connects Xi and Yi. If there are multiple
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shortest routes, the devices chooses one such route independently and uniformly at random. It then
immediately returns to its starting position with the same velocity along the same shortest path. This
procedure is then repeated indefinitely, see Figure 3 for an illustration.

Figure 3: Realization of initial device positions (dotted blue) confined to a street system given by a
Poisson–Voronoi tessellation and their respective positions at a fixed positive time (blue), with arrows
indicating the corresponding displacement.

1.3 Connectivity of mobile devices

By a slight abuse of notation, we also denote by Xi = (Xi,t)t≥0 the trajectory of device Xi in S. For
any pair of devices Xi and Xj we then consider the set of contact times

Z(Xi, Xj) = {t ≥ 0: |Xi,t −Xj,t| < r and Xi,t, Xj,t are on the same street},

as the times where the devices are on the same street and r− close together, where r > 0 is another
parameter in the model, the connectivity threshold. Let us note that the constraint that contact times
require the devices to be on the same street can be seen as a very strict shadowing assumption [GB-
CEN21].

Next, we assume that any pair of devices Xi and Xj has an iid infection time ρ(Xi, Xj), drawn from
the distribution % on (0,∞). Then, we say that a transmission from Xi to Xj is possible at time t ≥ 0
if

[t− ρ(Xi, Xj), t] ⊂ Z(Xi, Xj),

see Figure 4 for an illustration of the resulting space-time connectivity network. Let us note that
the introduction of random transition times is a substantial generalization compared to the setup
in [CHJW22], where only the case % = δρ is considered for some fixed ρ ≥ 0.
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1 1 1

1 1 1

Figure 4: Realization of initial device positions (blue) on a street system given by a Poisson–Voronoi
tessellation (red, only drawn in the initial picture, visually suppressed otherwise). Between two devices
Xi and Xj an edge is drawn if t ∈ Z(Xi, Xj) for t = 0, 1, . . . , 5. We highlight that the total number
of edges in this sequence of realizations stays roughly constant, however the edges become longer.
This is due to the fact that we plot initial positions, but devices move and hence, over time, connect to
more distant devices.

DOI 10.20347/WIAS.PREPRINT.2969 Berlin 2022



A. Hinsen, B. Jahnel, E. Cali, J.-P. Wary 8

1.4 Degree of devices

In order to avoid scenarios in which a single device can transmit to infinitely many devices in the infinite
time horizon that we consider, let us finally introduce a convenient condition for the local connected-
ness of the connectivity graph. For this, let `S(x, y) ⊂ R2 be the shortest path between x and y on
S and write

`S(x) = sup{|`S(x, y)| : y ∈ supp(κS(x, dy))}+ r/2

for the length of the shortest path starting in x towards any reachable target on S plus half the con-
nectivity range. Then, consider the following Cox–Boolean model with geostatistical markings in which
Xi, Xj ∈ Xλ are connected whenever

|Xi −Xj| ≤ `S(Xi) + `S(Xj)

and note that this can be seen as a Boolean model in which the (random) discs, associated to each
Cox point, depend on the underlying environment S. In particular, if Xi can transmit to Xj , there
also exists an (undirected) edge between Xi and Xj in the Cox–Boolean model with geostatistical
markings. Using this, for Xi ∈ Xλ, we define its degree

deg(Xi) = #{Xj ∈ Xλ \Xi : |Xi −Xj| ≤ `S(Xi) + `S(Xj)},

which serves as an upper bound for the degree of Xi in the original model. Now, we call the model
locally connected if

P(∃Xi ∈ Xλ such that deg(Xi) =∞) = 0 (1)

and, in the sequel, we will always assume that our system is locally connected. Let us also mention
that, in order to ease notation, we use generic symbols P and E for the distribution and expectation of
our model, even under changing parameters.

The following proposition establishes a condition under which the network is locally connected.

Proposition 1.2 (Local connectedness). If κ has bounded support, S is exponentially stabilizing and
|S ∩Q1| has exponential moments, then the network is locally connected.

The proof rests on a contradiction that follows from a first-moment method for the expected degree
of a typical point using the good control on stabilization and moment properties of the street system.
We present the details in Section 4.1. Let us note that the conditions are satisfied for our standard
examples for street systems given by PVT and PDT, since they are exponentially stabilizing [HJC19]
and have exponential moments, see [JT20]. Also, as can be seen from the proof, the moment condition
can be substantially relaxed.

Having defined now our system of moving devices in an urban street system and their connectivity
relations, in the following section, we introduce a malware into the network that propagates like an
infection starting from a single typical device.

2 Chase-escape on the dynamic graph

In the final model layer, we introduce an infection into the system, which is carried by one device Xo

that is chosen at random and will be referred to in the sequel as the typical device. The remaining de-
vices are, at time zero, susceptible to the infection. As a counter measure we introduce an independent
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(Cox) point process of so-called white knights, which is, at time zero, a homogeneous Poisson point
process Y λW with linear intensity λW ≥ 0 conditioned on S and following the same mobility scheme
as devices in Xλ. From a modeling perspective, we are here guided by the idea that white knights are
also regular devices and their general behavior is indistinguishable from other devices. However, white
knights are not susceptible to the infection. Even more, each white knight carries a patching software
that allows it to remove the infection from any device that wants to infect it with malware and update
the defensive mechanism on the attacking device. Let us highlight, that there is no interaction between
susceptible devices and white knights. Moreover, the process of susceptible devices is decreasing
and the process of white knights is increasing, while the process of infected devices is non-monotone.
More formally, let us introduce the Palm version of susceptible devices via

E∗[f(Xλ, Y λW)] =
1

λ
E
[ ∑
Xi∈Xλ∩Q1

f(Xλ −Xi, Y
λW −Xi)

]
(2)

bounded, measurable testfunctions f , and note that under P∗, there exists a device at the origin with
probability one. We call this the typical device Xo and assume that it is infected at time zero.

In order to describe the infection and patching mechanism, instead of a single infection time distribution
%, we consider two distributions %I, respectively %W, for the infection times, respectively the patching
times, and assume that they both have a density with respect to the Lebesgue measure on (0,∞).
We denote by %I,min = inf{x ≥ 0: x ∈ supp(%I)} the minimal infection time and analogously
by %W,min the minimal patching time. Now, the infection will be transmitted from an infected device
Xi to a susceptible device Xj after completion of the first infection time ρI(Xi, Xj), drawn from %I.
Analogously, the patch will be transmitted from a white-knight deviceXi to an infected deviceXj after
completion of the first infection time ρW(Xi, Xj), drawn from %W. In order to formalize the whole
process, let St, It, and Wt denote the sets of susceptible, infected and white-knight devices at time
t ≥ 0, where S0 = Xλ \Xo, I0 = Xo, and W0 = Y λW . In particular,

(
(Is)0≤s<t, (Ws)0≤s<t

)
fully

describes the state of the system up to time t. Then, at time t, we add new infected devices

It \
⋃

0≤s<t

Is =
{
Xi ∈

⋃
0≤s<t

Ss : ∃Xj ∈
⋂

s∈[t−ρI(Xj ,Xi),t)

Is such that [t− ρI(Xj, Xi), t) ⊂ Z(Xj, Xi)
}
,

and then add also new white knights

Wt \
⋃

0≤s<t

Ws =
{
Xi ∈ Xλ : ∃Xj ∈ Wt−ρW(Xj ,Xi) such that

[t− ρW(Xj, Xi), t) ⊂ Z(Xj, Xi) and Xi ∈ It−ρW(Xi,Xj) \
⋃

0≤s<t

Ws

}
.

With this construction the process is well-defined since %I and %W put no mass on zero and the
number of devices that is infected is finite for any finite time by the local connectedness condition.
Note that indirectly we have implemented a tie-breaker rule that favors the infection. This can be seen
by considering a situation where a device Xj becomes a white knight at time t, however it can still
finish a transmission of the infection at time t. We present a realization of the chase-escape dynamics
in Figure 5.

We say that the infection survives locally if |It| > 0 for all t ≥ 0, it survives globally if |It| > 0 for
all t ≥ 0 and |

⋃
t≥0 It| = ∞, and the infection goes extinct if |It| = 0 for some t ≥ 0. Note that,

even if the street system is connected, with positive probability, there can be isolated sets of devices
that are not able to form connections to the rest of the devices. If the typical device Xo is contained in
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1 1 1

Figure 5: Propagation of infected devices (red) on a street system given by a Poisson–Voronoi tes-
sellation. In the initial state (left) there is exactly one infected device present in the center and the
remaining devices are either susceptible (blue) or white knights (green). At some small positive time
(middle) further devices in the vicinity of the initially infected device have become infected and have
started to make contact to white knights. At some later time (right) infected devices are only present
along the boundary of the set of white knights in the center region.

such a cluster and the cluster contains no white knight, the infection survives indefinitely, but no global
outbreak can be observed.

Our goal is to isolate regimes of global survival and extinction of the infection using the transmission
mechanism we just described. Let us start with regimes that ensure global survival of the infection
even in the presence of white knights. For this, we guarantee the existence of a sequence of streets
on which the infection can be transmitted to infinity with positive probability.

Note that, due to the transmission mechanism, streets need a certain minimal length in order to be
useful for transmissions. We thus define the thinned system Sa = {s ∈ S : |s| ≥ a} that only
contains streets of length greater or equal than a ≥ 0. Let us further denote by Ra

x the distance of the
furthest point from x ∈ R2 that is reachable without crossing Sa, i.e., we define the cell of x by

Ca
x = sup{y ∈ R2 : there exists a continuous function f : [0, 1] 7→ R2 \ Sa with f(0) = x, f(1) = y}

and define Ra
x = sup{|y − x| : y ∈ Ca

x}. We say that the thinned graph is Ra-connected if
limn↑∞ P

(
supx∈Qn∩Q2 Ra

x < n
)

= 1 and define

ac := sup{a > 0: Sa is Ra-connected}. (3)

In words, for a < ac, the thinned street system satisfies a slightly stronger version of asymptoti-
cally essentially connectedness, and we have some control over the cell sizes. Note that ac > 0 for
asymptotically connected street systems, see [CHJW22, Theorem 2.8].

In order to exhibit a regime of global survival, we will furthermore require a slightly stronger version of
well behavedness. We say that a kernel κ is c-continuous if, for almost-all S and x ∈ S, the uniquely
defined absolutely-continuous part of κS(x, dy) is non trivial and its density κS(x, y) with respect to
the Lebesgue measure on S satisfies

inf
y∈Bc(x)

κS(x, y) > 0.

Note that c-continuous implies c-well behaved.

Using these definitions, we can state our first main result on global survival of the infection.
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Theorem 2.1 (Global survival). Let κ be c-continuous for some c > 0 and %W,min > %I,min > 0.
Then, for all sufficiently small vmin such that 0 < vmin%I,min < min(ac/2, r, c/2), there exists λc
such that for all λ > λc and all λW ≥ 0,

P(infection survives globally) > 0.

The punchline of the preceding statement is the fact that the critical device intensity is independent
of the white-knight intensity. In other words, no matter how dense we can pack white knights into the
system, survival is guaranteed as long as we have sufficiently many devices in the system. Roughly,
the reason for this phenomenon is that the white knights simply act too slow since %W,min > %I,min >
0 when there are sufficiently many devices that can transmit the infection to their neighbors before
white knights are able to eliminate it. The idea of the proof is to establish an infinite cluster of good
streets that have the property that, if the malware enters the street on one side, it must also exit the
street on the other side. We present the details in Section 4.2.

Next, we present our result on the extinction of the infection in infinite components.

Theorem 2.2 (Extinction). Consider a street system given by a Poisson–Voronoi or Poisson–Delaunay
tessellation. Let κ be well behaved with bounded support and assume that r > vmax%W,min and
%I,min > %W,min > 0. Then, for all λ ≥ 0, there exists λW,c such that for all λW > λW,c we have that

P(infection survives globally) = 0.

The proof rests on a multi-scale argument and will be given in Section 4.3.

Finally, we present a result that features the remarkable non-monotone behavior of our model with
respect to the speed parameter. More precisely, the following result states that both, too high and too
low velocities, are detrimental for the propagation of the infection. We state the result only for fixed
velocities and infection and patch times and note that a corresponding result for general µv, %I and
%W also holds.

Theorem 2.3 (Speed-dependent survival and extinction). Consider a street system given by a Poisson–
Voronoi or Poisson–Delaunay tessellation. Let κ have bounded support and be c-well behaved for
some c > 0. Assume further that %W = δρW and %I = δρI with ρW > ρI, and let 0 < vo <
min(ac/2, r, c/2)/ρI. Then, there exists λc > 0 and λW,c > 0 (independent of λc and vo), such that
for all λ > λc and all λW > λW,c we have that

(1) there exists vo > vc(λ, λW) > 0 such that for all µ = δv with v < vc(λ, λW) we have

P(infection survives globally) = 0,

(2) for µ = δvo we have P(infection survives globally) > 0, and

(3) there exists∞ > vc > vo (independent of λ and λW), such that for all v > vc we have

P(infection survives globally) = 0.

In words, the choice λ > λc puts us in a parameter regime in which survival of the infection is
possible, as described in Theorem 2.1. However, in the presence of sufficiently many white knights
and sufficiently large or small velocity we are again in regimes of extinction. One important aspect here
is that sufficiently small velocities and large white-knight intensities lead to absence of global survival
also in the case where the infection is faster than the patching. We present the proof in Section 4.4.
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3 Chase-escape on the connectivity graph

In the previous Section 2 we exhibited rigorous results for chase-escape on the dynamic graph. One
important feature here is that the device mobility is intimately linked to the transmission mechanism,
both of the infection as well as the patching, leading to a highly correlated non-Markovian space-time
process. As a consequence, currently it seems out of reach to derive approximate values for the var-
ious critical parameters predicted by our rigorous analysis, in ways other than computer simulations
as presented for example in [BGC+22b, BGC+22a]. As it turns out, for this a major part of the com-
putational effort has to go into simulating the movement of the devices in the environment. In an effort
to produce large numbers of sample paths of the chase-escape dynamics it is therefore desirable to
uncouple the connectivity graph and the epidemiological process and derive corresponding results in
this mean-field type setting. This is our primary goal in this section.

To start, recall the connectivity rule, introduced in Section 1.3, where for every pair of devices Xi, Xj

the set of connection times is denoted Z(Xi, Xj). Now, we want to fix the infection time ρ ≥ 0, i.e.,
assume that % = δρ and define the connectivity graph

gρ,r(S,X
λ ∪ Y λW),

in which any two vertices Xi, Xj ∈ Xλ ∪ Y λW are connected by an edge if there exists a t ≥ 0
such that [t, t + ρ] ⊂ Z(Xi, Xj). Let us highlight that this connectivity graph is static even though
the edge-drawing mechanism is based on an underlying space-time process. The main computational
advantage of this connectivity graph lies in the fact that the connections can be determined purely
from the device trajectories and speeds without the need to simulate in which connection interval the
connection is realized. This avoids the computationally expensive collective movement of the devices.

Now, we consider the chase-escape model as an independent space-time process on realizations
of the connectivity graph. This also brings us much closer to the existing literature on chase-escape
dynamics on fixed and random graphs, see for example [DJT20,TKL18,BHJR22,BCE+21,HTJRR22,
HJCW20b, HJCW20a]. More precisely, we consider
gρ,r(S,X

λ ∪ Y λW) under the Palm distribution with respect to the Xλ as described in (2) and let
N(Xi) denote the set of direct neighbors of vertex Xi. Further, we consider two transmission-time
distributions %I and %W on [0,∞) that govern the iid time ρI(Xi, Xj), respectively ρW(Xi, Xj), that
is needed to pass an infection, respectively a patch, from device Xi to Xj . Then, at time zero, the set
of infected devices I0 is given by the typical device Xo, which is positioned at the origin o ∈ R2 with
probability one, i.e., I0 = {Xo}. For the initial set of white knights we have W0 = Y λW . Then, as in
Section 2, we define the process iteratively by considering the system

(
(Is)0≤s<t, (Ws)0≤s<t

)
up to

time t > 0 and then define the newly infected devices at time t by

It \
⋃

0≤s<t

Is = {Xi ∈
⋃

0≤s<t

Ss : N(Xi) ∩
⋂

s∈[t−ρW(Xj ,Xi),t)

Is 6= ∅},

where Ss = Xλ \ Is, and the newly patched devices at time t by

Wt \
⋃

0≤s<t

Ws = {Xi ∈ Xλ : ∃Xj ∈ Wt−ρW(Xi,Xj) ∩N(Xi), Xi ∈ It−ρW(Xi,Xj) \
⋃

0≤s<t

Ws}.

Let us comment on the construction. As mentioned above, the model can be seen as an approximation
of chase-escape on the dynamical graph where we associate to every edge an independent random
time that represents the time that it takes to transmit the infection. The distribution of this transfer
time can be, for example, sampled by considering the transmissions of a typical device towards its
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neighbors in an independent simulation step. In other words, we insert information about the typical
transmission behavior and apply it independently to every edge of the static graph. Let us mention that
this approach is not unlike the approach used in [BGC+22b, Section V], where the spatial graph was
replaced by a sequence of edges which had the length distribution of a typical edge in the PVT.

We are again interested in conditions under which global survival is possible or impossible. Let us
start with the preliminary observation in the case where the transmission times are fixed, i.e., %I = δTI
and %W = δTW for some TW, TI > 0. In this case, survival and extinction essentially depends on the
ordering of TW and TI. We say that the graph gρ,r(S,Xλ) is in the supercritical percolation regime if
there is an unbounded connected component and note that [CHJW22] exhibits non-trivial criteria that
guarantee the existence of a supercritical percolation regime.

Proposition 3.1. Assume that gρ,r(S,Xλ) is in the supercritical percolation regime. Then,

P(infection survives globally)

{
> 0 for TI ≤ TW, λW ≥ 0

= 0 for TI > TW, λW > 0

The proof is based on a robust descending-chain argument that in fact generalizes to arbitrary super-
critical graphs and is presented in Section 4.5.

Let us now present our main results for general %I and %W. In order to prove global survival of the
infection we need to require stronger notions of percolation of the connectivity graph. We present two
alternative conditions in Theorem 3.2, respectively Theorem 3.3. First, in Theorem 3.2 we require a
parameter regime for the street system and waypoint kernel that guarantees a strongly percolating
structure similar to Theorem 2.1. Recall the definition of ac from (3) and let us denote for any b > 0 by
%bI the shifted version of %I defined via

∫
f(x/b)%bI(dx) =

∫
f(x)%I(dx) for all measurable functions

with bounded support f .

Theorem 3.2 (Mean-field survival I). Let κ be c-well behaved for some c > 0, assume that vmin

satisfies 0 < vminρ < min(ac/2, r, c/2) and that %W,min > 0. Then, there exists λc <∞ such that
for all λ > λc and λW ≥ 0 there exists bc <∞ such that for %bI with b > bc we have that

P(infection survives globally) > 0.

The proof rests on percolation arguments similar to the ones used for the proof of Theorem 2.1. The
details are presented in Section 4.6.

Next, we present an alternative result for global survival which requires that a subgraph of the connec-
tivity graph is in the supercritical percolation regime. More precisely, we define the random subgraph
gM,p
ρ,r (S,Xλ) ⊂ gρ,r(S,X

λ) via the following thinning procedure. Let (Berp(Xi))Xi∈Xλ be an iid field
of Bernoulli random variables with parameter p and define the vertex set of gM,p

ρ,r (S,Xλ) by

V M,p = {Xi ∈ Xλ : N(Xi) ≤M and Berp(Xi) = 1},

where N(Xi) denotes the number of neighbors in the graph gρ,r(S,Xλ, Y λW) that includes also the
white knights. In words, vertices with more than M neighbors are eliminated and additionally each of
the remaining vertices is kept independently with probability p. The edge set of gM,p

ρ,r (S,Xλ) is then
inherited from the edge set of gρ,r(S,Xλ), but only those that connect Xi, Xj ∈ V M,p. It is not hard
to see that

lim
M↑∞,p↑1

gM,p
ρ,r (S,Xλ) = gρ,r(S,X

λ)

weakly, however for global observables such as percolation this is non trivial. We have the following
result.
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Theorem 3.3 (Mean-field survival II). Assume that there existM > 0 and p > 0 such that gM,p
ρ,r (S,Xλ)

is in the supercritical percolation regime. Further assume that %I has no atom in 0. Then, for all
λW ≥ 0, there exists bc <∞, such that for all %bI with b > bc we have that

P(infection survives globally) > 0.

The proof rests on the idea that, for sufficiently fast infection rate, already the process of nodes with
a maximal degree, which also transmit the infection faster than being patched, is in the supercritical
percolation regime. We present the details in Section 4.7.

We conclude this section with our result on the absence of global survival.

Theorem 3.4 (Mean-field extinction). Consider a street system given by a Poisson–Voronoi or Poisson–
Delaunay tessellation and assume that %I,min > %W,min. Then, there exists λW,c < ∞, such that for
all λW > λW,c we have that

P(infection survives globally) = 0.

The proof is based on the idea that, for sufficiently large intensity of white knights, any connection be-
tween susceptible devices is accompanied by many white knight connections. In this case, it becomes
highly unlikely that the infection is passed on before being eliminated by the white knights. In order to
make this precise, we have to leverage local independence properties of the propagation model. We
present the details in Section 4.8.

4 Proofs

4.1 Proof Proposition 1.2

Proof Proposition 1.2. First, let us assume that P(∃Xi ∈ Xλ such that deg(Xi) = ∞) > 0. Then,
by continuity of measures, there exists R > 0 such that P

(
∃Xi ∈ Xλ ∩ QR such that deg(Xi) =

∞
)
> 0 and hence, by translation invariance, also P

(
∃Xi ∈ Xλ ∩Q1 such that deg(Xi) =∞

)
>

0. But the last inequality implies that E[
∑

Xi∈Xλ∩Q1
deg(Xi)] = ∞. However, in order to derive a

contradiction, we can use the MeckeâĂŞ-Slivnyak Theorem twice to see that

E
[ ∑
Xi∈Xλ∩Q1

deg(Xi)
]
≤ E

[ ∑
Xi∈Xλ∩Q1

∑
Xj∈Xλ\Xi

1{|Xi −Xj| ≤ `S(Xi) + `S(Xj)}
]

= λ2E
[ ∫

S∩Q1

dx

∫
S

dy1{|x− y| ≤ `S(x) + `S(y)}
]
.

Next, we bound the maximal reach `S by the street length in a stabilized region. For this, let

K := sup{|x− y| : x ∈ S, y ∈ supp(κS(x, dy))} <∞

denote the maximal reach of the kernel κ, which exists due to the assumption of a uniformly bounded
support of κ. Using this, we can bound the length of any shortest path starting in x ∈ S to any
y ∈ S ∩ BK(x), by the total street length of the box in which there is a connection between x and y
due to asymptotic-essential connectedness. More precisely, note that if R(Q2n(x)) < n/2, then

`S(x) ≤ |S ∩Q2n(x)|+ r/2,
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for any n > 2K , and we can define

N(x) := min
n∈N,n>K

R(Q2n+1(x)) < n/2.

In particular, for all y ∈ Q1(z) we have `S(y) ≤ |S ∩Q2N(z)+1(z)|+ r/2 and hence

E
[ ∫

S∩Q1

dx

∫
S

dy1{|x− y| ≤ `S(x) + `S(y)}
]

≤ E
[∑
n>K

1{N(o) = n}|S ∩Q1|
∫
S

dy1{|y| ≤ `S(y) + 1/2 + r/2 + |S ∩Q2n+1|}
]

≤ E
[∑
n>K

∑
m>K

∑
z∈Z2

1{N(o) = n}1{N(z) = m}|S ∩Q1|

·
∫
S∩Q1(z)

dy1{|y| ≤ `(y) + 1/2 + r/2 + |S ∩Q2n+1|}
]

≤
∑
n>K

∑
m>K

∑
z∈Z2

E
[
1{N(o) = n}1{N(z) = m}|S ∩Q1|

· |S ∩Q1(z)|1{|z| ≤ |S ∩Q2m+1(z)|+ 1 + r + |S ∩Q2n+1|}
]
,

where we used |y| ≤ |z| + 1/2 for y ∈ Q1(z) in order to eliminate the dependence of the integrals
on x and y respectively and thus derive a uniform bound for the integrals. It remains to show that this
bound is integrable. By Hölder’s inequality we can bound each summand by

P
(
N(o) = n

)1/5P(N(o) = m
)1/5E[|S ∩Q1|5

]2/5P(|z| ≤ |S ∩Q2m+1(z)|+ 1 + r + |S ∩Q2n+1|
)1/5

≤ C1 exp
(
− c1(n+m)

)
P
(
|z| ≤ |S ∩Q2m+1(z)|+ 1 + r + |S ∩Q2n+1|

)1/5
for some constants C1, c1 > 0 due to the existence of exponential moments for |S ∩ Q1| as well as
the assumption of exponential stabilization. Now, the last factor can be further bounded by Markov’s
inequality as

P
(
|z| ≤ |S ∩Q2m+1(z)|+1 + r + |S ∩Q2n+1|

)1/5
≤ |z|−3E

[(
|S ∩Q2m+1(z)|+ 1 + r + |S ∩Q2n+1|

)15]1/5
≤ |z|−3

(
E
[(

3|S ∩Q2m+1|
)15

] + (3 + 3r)15 + E[(3|S ∩Q2n+1|
)15

]
)1/5

≤ |z|−3
(
(3(2m+ 1)2 + 3(2n+ 1)2)15E

[(
|S ∩Q1|

)15
] + (3 + 3r)15

)1/5
≤ C2(mn)c2|z|−3,

for some constants C2, c2 > 0. Finally, we can use |z| > |z|∞, where | · |∞ denotes the `∞-norm,
combined with the fact that for k ∈ N0 we have

∑
z∈Z 1{|z|∞ = k} ≤ 4k + 1, to see that∑

n>K

∑
m>K

∑
k∈N0

(4k + 1)C2(mn)c2C1 exp
(
− c1(n+m)

)
k−3 <∞,

and hence the proof is finished.

4.2 Proof of Theorem 2.1

Proof of Theorem 2.1. For simplicity we only prove the case where µ = δv. The general case can be
verified using a thinning argument where we ignore all devices that have a speed greater than vmin+ε
for an arbitrarily small ε, only leading to a potentially larger value of λc.
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First note that the assumption that κ is translation covariant and c-well behaved for some c > 2%I,minv
ensures that it is possible for the kernel to generate a shortest path from one street to an adjacent
street while spending a sufficient amount of time on both streets to allow an infection to be past onto
another device. Further, the requirement that r > %I,minv ensures that the communication radius is
large enough such that an infection transmission can happen between devices with initial and target
locations in the vicinity of the crossing. Also recall that we require that the streets of length larger than
2v%I,min percolate with positive probability.

Since we assume λW to be arbitrary, in spirit, we think of white knights to be everywhere. We consider
open streets as well as open crossings. Let us start with the streets. Let 0 < ε < min(r/4, v(%I,min−
%W,min)/2) and define n(s) = b|s|/(2r)c, which will represent the number of devices on the street
s on which the infection will be propagated. We call a street s = (c1, c2) open, if there are devices
Xs

0 , . . . , X
s
n(s) such that

(S1) |s| > v%I,min + ε,

(S2) for all t, Xs
i,t ∈ Bε(c1 + ri

2
c2−c1
|c2−c1|) for all i ∈ {1, . . . , n(s)},

(S3) ρI(Xs
i , X

s
i+1) < %W,min for all i ∈ {1, . . . , n(s)− 1}, and

(S4) ρI(Xs
i , X

s
i−1) < %W,min for all i ∈ {2, . . . , n(s)}.

In words a street is open if, by Condition (S1), the street is long enough such that an infection trans-
mission is possible. By Condition (S2), there is a chain of devices reaching from the crossing c1 to the
crossing c2 and such that each pair of neighboring devices has distance less than r. In particular, if
device Xs

0 is infected, Condition (S3) ensures that the infection can not be stopped by white knights
as they are too slow and hence the infection propagates from Xs

0 to Xs
n(s). Similarly, Condition (S4)

ensures that an infection also propagates from Xs
n(s) to Xs

0 . Let us call Xs
c1

= Xs
1 and Xs

c2
= Xs

n(s)

the boundary devices of an open street s = (c1, c2).

Next, for a street s = (c1, c2), denote by [a, b]s,c1 the segment {x ∈ s : x = c1+d
c2−c1
|c2−c1| for some d ∈

[a, b]} on s such that {0}s,c1 is identified with the crossing c1. Consider again 0 < ε < min(r/4, v(%I,min−
%W,min)/2) to be small enough such that vmin%I,min + ε < c/2. We call a crossing c open at time t
if, for any ordered pair of open streets s1, s2 that share the crossing c, there exists a bridging device
Xs1,s2 such that

(C1) Xs1,s2
0 ∈ As1 = [v%I,min/2 + ε/2, v%I,min/2 + ε]s1,c,

(C2) Xs1,s2 has its target location in the segment Bs2 = [v%I,min/2, v%I,min/2 + ε]s2,c,

(C3) Xs1,s2
t ∈ Js1 = [0, ε/2]s1,c and is on its way back to its starting location,

(C4) ρI(Xs1,s2 , Xs1
c ) < %I,min + ε/(2v), and

(C5) ρI(Xs1,s2 , Xs2
c ) < %I,min + ε/v.

These conditions roughly guarantee that, for sufficiently long streets, the bridging device Xs1,s2 prop-
agates the infection from s1 to s2. The time the bridging device stays on each of the streets is insuf-
ficiently long to allow to be patched by white knights. This is ensured by Condition (C1) and (C2), as
the distance the devices travel on each street before entering the crossing is at most v%I,min + 2ε <
v%W,min, since ε is sufficiently small. Together, since s2 is open, then, due to the configuration of

DOI 10.20347/WIAS.PREPRINT.2969 Berlin 2022



Chase-escape in dynamic device-to-device networks 17

the devices on the open street and the fact that r > v%I,min, Xs1,s2 will pass the infection on to the
boundary device Xs2

c of the chain of transmitting devices on s2. This is ensured by Condition (C5).
Finally, Conditions (C3) and (C4) ensure that Xs1,s2 becomes infected if Xs1

c , becomes infected at
time t, as it is on its way back to its starting location and will spend at least a time of %W,min + ε/(2v)
in the vicinity of Xs1

c .

The following statement guarantees that there exists a uniform bound for the probability that a given
crossing is open for all sufficiently large times. In particular, this bound converges to one as λ tends to
infinity. Recall that we denoted byH the range of dependence of κ and defineL = H + v%I,min/2 + ε.

Lemma 4.1. For almost-all S we have that ({c is open at time t})c∈S is an independent family of
events, conditioned on S. Further, there exists T > 0 such that for almost-all S and all crossings
c ∈ S there exists a constant Cc = Cc(S ∩BL(c), T ) such that

P(c is open at time t | S) ≥ 1− exp(−λCc) for all t ≥ T.

We present the proof of the lemma later in this section. Consider τs1,c, the time that a boundary device
associated to the crossing c is infected, then, for τs1,c > T and conditioned on S, we can couple the
event that c is open at time τs1,c to a Bernoulli random variable Bc with parameter 1 − exp(−λCc),
and note that the Bc are independent conditioned on S and only depend on S in the region S∩BL(c).
For τs1,c = ∞, i.e., if the boundary device never becomes infected, we assume that the crossing is
open nonetheless. We say that a crossing is open if Bc = 1. In order to make use of this observation,
we need to ensured that the infection survives up until time T . However, note that survival for long but
finite times has a positive probability and can be even constructed locally by an appropriate isolation
procedure for the typical device.

Now, we consider the model at time t ≥ T and show that the graph of open streets and open
crossings percolates with positive probability via stabilization arguments. For this, let us fix an a such
that %I,min < a/2 < ac/2 and recall that we have the random field of stabilizing radii {Rx}x∈R2 for
the street system at our disposal, in addition to the random field {Ra

x}x∈R2 that acts as a replacement
for the asymptotically essentially connectedness of the thinned graph Sa. Then, we say that z ∈ Z2

is n-open if

(a) R(Q3n(nz)) < n,

(b) Ra(Qn(nz)) < n/2,

(c) every street fully contained in Q3n(nz) ∩ Sa is open, and

(d) every crossing in Q3n(nz) is open.

Condition (b) limits the size of cells of points in Qn(nz) to a diameter of at most n/2 with respect
to Sa. Further, under the condition, there exists a unique giant component in Qn(nz) ∩ Sa, build by
the boundaries of the cells, that is connected in Q3n(nz). If now adjacent sites z1 and z2 both satisfy
Condition (b), they form a joint connected component, since there exist cells that are simultaneously
in Qn(nz1) and in Qn(nz2). Due to Condition (c) and (d) the infection is able to propagate through
open streets and open crossings unpatched.

Now, we can use the domination-by-product-measures theorem [LSS97, Theorem 0.0] to establish
Bernoulli site percolation of n-open sites on Z2 since (a) guarantees 7-dependence of Sa and under
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Condition (a) also the Conditions (b) and (c) can be decided within the 7-dependent region. By choos-
ing n > L, the crossing dependent constant Cc from Lemma 4.1 is also 7-dependent like the street
system. Hence, using translation invariance, it suffices to show that

lim inf
n↑∞

lim inf
λ↑∞

P(o is n-open) = 1.

To show this, we denote by A(n), B(n), C(n, λ), and D(n, λ), the events that the Conditions (a),
(b), (c), and (d) are not satisfied for z = o. Then, P(o is n-open) ≥ 1 − P(A(n) ∪ B(n)) −
P(C(n, λ)) − P(D(n, λ)). By assumption, we have that lim supn↑∞ P(A(n) ∪ B(n)) = 0 inde-
pendently of λ. For fixed n, using Markov inequality and dominated convergence, we now also have
lim supλ↑∞(P(C(n, λ)) + P(D(n, λ))) = 0, as λ increases, where we used that the expected
number of streets and crossings in finite.

Finally, due to the translation invariance of the model, existence of an infinite cluster of open sites
implies existence of an infinite cluster of good streets and good crossings and thus to a positive
probability that the typical device transmits the infection to infinity.

Proof of Lemma 4.1. First note that the conditions only dependent on the bridging devices, which
have their initial position and their destination close to the crossing and move over the crossing and
are therefor independent for distinct crossings. This guarantees the independence of the events.

In order to bound the probability of openness at late times, we compute the intensity of devices that
satisfy the Conditions (1), (2) and (3) at time t and then show that, as t tends to infinity, this intensity
converges to a positive crossing-dependent value. In turn, the probability that no such devices exist
can be seen as a Poisson void probability.

Let us start by deriving expressions for the intensity of devices at time t in the desired interval, i.e.,
devices that start on s1 in the interval As1 and have a target location in Bs2 , on s2. Recall that the
streets s1 and s2 have a joint crossing c. Note that, by the displacement theorem for Poisson point
processes, the number of devices that satisfy the conditions is a Poisson distributed random variable
and its parameter is given by λpS(s1, s2), where

pS(s1, s2) =

∫
As1

dx

∫
Bs2

κS(x, dz)1{0 ≤ rt(|x, z|S)− |z, c|S ≤ ε/2},

where |z, x|S denotes the shortest distance between x and z on S and rt(|z, x|S) is uniquely defined
as vt = |z, x|Snt + rt(|z, x|S) with nt the largest odd number such that 0 ≤ rt(|z, x|S) ≤ 2|z, x|S .
In words, nt(|z, x|S) denotes the number of times that the device has traveled from x to z and
back, and since we want the device to be on the way back, we require nt(|z, x|S) to be odd. Then,
rt(|z, x|S) is the distance from z on the way back. Subtracting the distance from z to the joint crossing
c, we obtain the traveled distance on s1, which has to lie in the interval (0, ε)s1,c.

We will show that there is a time T such that for all t ≥ T we can bound pS(s1, s2) from below by a
constant that does only depend on S ∩BL(c).

Let us define for x ∈ As1 by 0 < ηx = ηx(s1, s2, S ∩ BL(x), κS(x, dy)) = infy∈Bs2 κ
S(x, y) the

minimal density for the kernel, starting in x and having a destination in Bs2 . This value ηx is positive
as the kernel is c-continuous, Bs2 ⊂ Bc(x), and we use our assumption that 2v%I,min + 2ε < c.

In order to simplify the notation for As1 and Bs2 let us abbreviate b = v%W,min/2 and associate
bijectively the interval A = [b+ ε/2, b+ ε] to As1 such that x 7→ xs1,c. We associate B = [b, b+ ε]
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in a similar way to Bs2 . Then,

pS(s1, s2) ≥
∫
A

dxηx

∫
B

dz1{0 ≤ rt(x+ z)− z ≤ ε/2}

where we also dropped the singular part in κS(x, dy). Now, let us define by

φx(s) = lim
a↓0

1

a

∫
B

dz1{0 ≤ rs(x+ z)− z ≤ a}

the density of points points started at x that are on their way back from their target location, and that
are at time s precisely at the origin. Note, that a device satisfies Condition (3) at time t if and only if it
passes the crossing on its way to its starting location in the time interval [t − ε(2v)−1, t]. Therefore,
we can rewrite∫

A

dxηx

∫
B

dz1{0 ≤ rt(x+ z)− z ≤ ε/2} =

∫ t

t−ε/(2v)
ds

∫
A

dxηxφx(s), (4)

and we will prove that P-almost surely, conditioned on S, there exist constants T and C that depend
on v, %I,min, and ε but neither on S, x nor κS , such that inft≥T φx(t) > C > 0. In order to derive
this statement, the main tool is the following identity for φx(t)

φx(t) =
∞∑
n=1

(2εn)−11{x+ 2b+ (n− 1)2(b+ x) ≤ vt < x+ 2b+ 2ε+ (n− 1)2(x+ b+ ε)}.

(5)

Let us explain this formula. Here, n represents the number of of times that a device, started in x
reaches its destination, which is uniformly distributed in B. With every reflection in B, the density is
distributed to an interval of length 2εn, where ε is the length of B, again uniformly at random. Now,
x + 2b, respectively x + 2b + 2ε are the shortest, respectively the longest, distance that the device,
started in x, travels before it re-visits the crossing c for the first time. For each consecutive visit in the
origin an additional length of 2(b + x), respectively 2(x + b + ε) has to be added as the length of a
complete cycle from the origin to its destination and back.

In other words, each indicator becomes non-zero in x + 2b + (n − 1)2(x + b) and adds a mass
of (2εn)−1 over a length of 2nε. For n < (x + b)/ε the indicator functions are disjoined, i.e. for
vt < x + 2b + ((x + b)/ε − 1)2(x + b) there is at most one indicator function that is non-zero.
Now, for n > (x + b)/ε, the interval for vt in which the indicator function is non-negative is longer
than the minimal cycle length. In other words, it is possible that at least two indicator functions are
non-negative.

Now, for (x + b)/ε < n < 2(x + b)/ε the indicator functions contribute for more than the length
of a full cycle 2(x + b) and less than twice that length. Therefore, for each vt ∈ [x + 2b + (n1 −
1)2(b+ x), x+ 2b+ (n2 − 1)2(b+ x)] there are either exactly one or two non-negative indicators,
where ni = di(x+ b)/εe. As each indicator has a weight of at least (4ε(x+ b)/ε)−1 we can bound
φx(t) > (4ε(x+ b)/ε)−1.

More general, in the interval vt ∈ [x+ 2b+ (nm− 1)2(b+x), x+ 2b+ (nm+1− 1)2(b+x)] there
are either m or m+ 1 overlapping indicator functions whose contribution can be each be bounded by
(2nm+1ε)

−1. Therefore, we can bound

φx(t) > m(2(nm+1)ε)
−1 =

m

2εd(m+ 1)(x+ b)/εe
≥ 1

2εd2(x+ b)/εe
≥ 1

4(2b+ ε)
= C > 0,

(6)
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where we used that the bound monotonously increases in m and x ≤ b + ε. Therefore, for T =
(x+ 2b+ (n1 − 1)2(b+ x))v−1 the desired bound is realized and integration of 4 yields

pS(s1, s2) ≥ ε(2v)−1(8b+ 4ε)−1
∫
A

dxηx = p̃S(s1, s2) > 0.

Noting that the requirements in Conditions (4) and (5) can be considered independently, respectively
with probability p4 = %I([%I,min, %I,min + ε/2]) and p5 = %I([%I,min, %I,min + ε]), the number of
devices that satisfy the criterion of a bridging deviceXs1,s2 can be bounded from below by an Poisson-
distributed random variable with expectation p̃S(s1, s2)p4p5. As c is open if there is at least one
bridging device for each combination of open adjacent streets, we can bound

P(c is open at time t | S) ≥
∏

i 6=j,si,sj open
c∈si,c∈sj

(
1− exp(−λp̃(si, sj)p4p5)

)
for all t ≥ T,

which proves the lemma.

4.3 Proof of Theorem 2.2

For the proof we adopt a multiscale argument in the spirit of the proof of existence of subcritical regimes
for the Poisson–Boolean model with random radii in [Gou08]. We note that this approach has been
also applied in the setting of Cox–Boolean models with random radii in [JTC22]. More specifically
we adapt the arguments for absence of percolation in the connectivity graph for sufficiently large
velocities presented in [CHJW22]. Roughly speaking, we prove that a Cox–Boolean model in which
any two devices, that could transmit the infection somewhere on their path and are sufficiently close,
are connected, becomes subcritical if the white-knight intensity is sufficiently large.

First, we call a street s = (c1, c2) blocked for (device) x if either |s| < vmin%I,min/2 or if there exist
two white knights Y1, Y2 ∈ Y λW such that for i ∈ {1, 2} we have that %I,min > ρW(Yi, x), Yi,t ∈ s
and |ci − Yi,t| < r for all t ≥ 0. Otherwise we call s unblocked for x. Then, we consider the thinned
process

Xλ,th = {Xi ∈ Xλ : there exists y ∈ supp(κS(Xi, dy)) and s ∈ `S(Xi, y) such that s is unblocked for Xi}.

In words, for devices inXλ \Xλ,th every possible path only contains streets that are either to short to
perform any transmission of the infection or that contain a white knight that patches the device before
it can transmit the infection on the street. Let us note that here we use that r > vmax%W,min is large
enough to allow a successful patch. Using these definitions, we note that, if the infection survives
globally, then this implies that the geostatistical Cox–Boolean model

C =
⋃

Xi∈Xλ,th

B`S(Xi)(Xi),

contains an unbounded component. Hence, in order to prove absence of global survival, it suffices
to prove absence of percolation in this Cox–Boolean model, which is also well defined by the local-
connectedness assumption. Let Cx(V ) denote the connected component containing x of the geosta-
tistical Cox–Boolean model, based on points in V ⊂ R2. Then, we define for any x ∈ R2 and α > 0
the event

G(x, α) =
{
Cx(B10α(x)) 6⊂ B8α(x)

}
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that the cluster of x, only using points inB10α(x), reaches beyondB8α(x). Consider the set of α-local
points

AS(α) = {x ∈ S : `S(x) < α},

let S∗ denote the Palm version of S and recall the stabilization radii Ry of the street system. Recall
that R(V ) = supy∈V ∩Q2 Ry for any V ⊂ R2. Then, we can employ the following key lemma that
establishes a scaling relation in the model.

Lemma 4.2 ( [CHJW22, Lemma III.1]). Consider the geostatistical Cox–Boolean model. Then, there
exists a constant c > 0 such that for all α > 0, we have

P
(
G(o, 10α)

)
≤ cP

(
G(o, α)

)2
+ cα2P

(
o ∈ Ac

S∗(α)
)

+ cP
(
R(Q10α) ≥ α

)
In the next lemma we deviate from [CHJW22, Proof of Theorem II.3]. We show that the local percola-
tion probability becomes zero for large white-knight intensities.

Lemma 4.3. There exists c > 0 such that

P
(
G(o, α)

)
≤ cα2P

(
there exists y ∈ supp(κS

∗
(o, dy)) and at least one unblocked s ∈ `S∗(o, y)

)
and P

(
there exists y ∈ supp(κS

∗
(o, dy)) and at least one unblocked s ∈ `S∗(o, y)

)
tends to zero

as λW tends to infinity.

Proof of Lemma 4.3. Note that

P
(
G(o, α)

)
≤ P

(
Xλ,th(B10α) > 0

)
≤ E

[
Xλ,th(B10α)

]
≤ λE

[ ∫
S∩B10α

dxP
(
there exists y ∈ supp(κS(x, dy)) and

s ∈ `S(x, y) such that s is unblocked for x
)]

≤ λ102α2P
(
there exists y ∈ supp(κS

∗
(o, dy)) and

s ∈ `S∗(o, y) such that s is unblocked for o
)

But, by dominated convergence

P
(
there exists y ∈ supp(κS

∗
(o, dy)) and s ∈ `S∗(o, y) such that s is unblocked for o

)
tends to zero as λW tends to infinity and hence we arrive at the desired result.

As a final input for the proof, we recall the following essential result about convergence properties of
functions satisfying some scaling inequality.

Lemma 4.4 ( [Gou08, Lemma 3.7]). Let f and g be two bounded measurable functions from [1,∞] to
[0,∞). Additionally, let f be bounded by 1/2 on [1, 10], g be bounded by 1/4 on [1,∞] and assume

f(α) ≤ f(α/10)2 + g(α), for all α ≥ 10.

Then, limα↑∞ g(α) = 0 implies that limα↑∞ f(α) = 0.

Now we are in the position to prove the theorem.
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Proof of Theorem 2.2. Recall that S is assumed to be a PVT or PDT. In order to prove that λW,c <∞,
it suffices to show that limα↑∞ P(Xλ,th(Co(R2)) > Xλ,th(B8α)) = 0 for all sufficiently large λW.
But this is true if limα↑∞ P

(
G(0, α)

)
= 0, since by [CHJW22][Lemma III.4 and III.5], we have that

P
(
Xλ,th(Co(R2)) > Xλ,th(B8α)

)
≤ P

(
G(o, α)

)
+ λE

[ ∫
S

dx1{10α ≤ |x| ≤ 9α + `S(x)}
]
,

where E
[ ∫

S
dx1{10α ≤ |x| ≤ 9α + `S(x)}

]
tends to zero as α tends to infinity. Now, in order to

show limα↑∞ P
(
G(0, α)

)
= 0 we apply Lemma 4.2, Lemma 4.3 and Lemma 4.4 for proper choices

of f and g.

For this, note that, since we assume stabilization, in Lemma 4.2 we have that P(R(Q10α) ≥ α) tends
to zero as α tends to infinity and the same is true for α2P

(
o ∈ Ac

S∗(α)
)

by [CHJW22][Lemma III.2].
Hence, we can define

α1 := inf{s ≥ 1: φ1(α) = α2P
(
o ∈ Ac

S∗

)
< (8c2)−1 for all α ≥ s}

α2 := inf{s ≥ 1: φ2(α) = P
(
R(Q10α) ≥ α

)
< (8c2)−1 for all α ≥ s},

and set αc = α1 ∨ α2 and note that αc <∞. Further, we let

λW,c = inf{λW ≥ 1: P
(
there exists y ∈ supp(κS

∗
(o, dy))

and at least one unblocked s ∈ `S∗(o, y)
)
<

1

2
(100cαc)

−2},

where λW,c <∞ by Lemma 4.3. Then, we denote

f(α) = cP
(
G(o, 10αcα)

)
and g(α) = c2

(
φ1(αcα) + φ2(αcα)

)
and hence, using again Lemma 4.3, we have that

f(α) ≤ 1/2, for all 1 ≤ α ≤ 10 and λW > λW,c,

and by definition,

g(α) ≤ 1/4, for all 1 ≤ α.

Finally, using Lemma 4.2, we have that

f(α) ≤ c2
(
P
(
G(o, αcα)

)2
+ φ1(αcα) + φ2(αcα)

)
= f(α/10)2 + g(α) for all α ≥ 10.

Hence, since limα↑∞ g(α) = 0, an application of Lemma 4.4 gives the result.

4.4 Proof of Theorem 2.3

We prove the theorem in two parts.

Proof of Theorem 2.3 Part (2) and (3). Note that Part (2) is the statement of Theorem 2.1 which puts
no restrictions in the white-knight intensity. Further, Part (3) follows from [CHJW22][Theorem 3.3]
where a sub-critical percolation regime is established for sufficiently fast speeds, independent of the
device intensities. This in particular implies that global survival is possible only with probability zero.
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Hence, it only remains to prove Part (1). The main idea is that small velocities make it impossible to
transmit the infection through crossings if sufficiently many white knights are available. We say that a
street s = (c1, c2) is closed if

(A) we have that |s| > 2vρW,

(B) there exist white knights Y s ⊂ Y λW such that for all t ≥ 0 and x ∈ s we have |x−Yi,t| < r/2
for some Yi ∈ Y s, and

(C) if at time t ≥ 0, there exists an infected Xi ∈ Xλ with Xi,t = c1 (respectively Xi,t = c2),
then, {Xj ∈ Xλ ∩ s : |Xj,u − c2| ≤ vρW, for some u ∈ τ(t)} = ∅ (respectively {Xj ∈
Xλ∩s : |Xj,u−c1| ≤ vρW, for some u ∈ τ(t)} = ∅). Here, τ(t) is the time interval in which
the infection reaches s ∩BvρW+r(c2) (respectively in s ∩BvρW+r(c1)).

A street is called open if it is not closed. The key idea is that a closed street cannot be used for the
transmission of the infection. Indeed, Condition (A) guarantees that the street is sufficiently long in
order to allow the white knights to patch, and the probability that the condition is satisfied tends to
one as v tends to zero. Further, Condition (B) guarantees the existence of white knights at all times
close to every point on the street and in particular close to the crossings. These white knights help to
patch any incoming infected device and the condition becomes likely to be satisfied for large white-
knight intensities. Now, for Condition (C), note first that a large device intensity λ makes it probable
that an infection travels through a street unpatched since we assume that ρW > ρI. Also, due to
the continuous movement of the devices, it is unavoidable that an infected device enters the street at
some time. However, in order for an infected device to leave the street unpatched, it needs to receive
the infection at the opposite end of the street, sufficiently close to the crossing, i.e., in s∩BvρW+r(c2)
(respectively s∩BvρW+r(c1)). Only in this case it can exit the street unpatched from the blocking white
knight that is positioned there. Very roughly then, again for small v, Condition (C) becomes likely.

What makes the probability that Condition (C) is satisfied challenging to control is the fact that, in
principle, a street at any given time could host devices from distant spatial areas. In order to cope
with this we again employ a multi-scale argument very similar to the one presented in the previous
Section 4.3. Using the definitions for `S from Section 4.3, we now consider the thinned point cloud

Xλ,th = {Xi ∈ Xλ : there exists y ∈ supp(κS(Xi, dy)) and s ∈ `S(Xi, y) such that s is open}.

Again, the idea is that any device that is not in Xλ,th only finds closed streets on any possible path
and hence can not contribute to the spread of the infection. Thus, it suffices to show subcriticality in
the associated geostatistical Cox–Boolean model

C =
⋃

Xi∈Xλ,th

B`S(Xi)(Xi).

However, the situation is more complicated compared to the proof of Theorem 2.2 since the thinning
procedure depends on the entire point cloud. Still, we can employ the Lemmas 4.2 and 4.4 and only
need to replace the Lemma 4.3 by the following statement, which is presented in terms of P∗, the Palm
version of P.

Lemma 4.5. There exists c > 0 such that

P
(
G(o, α)

)
≤ cα2P∗

(
there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
and

lim sup
λW↑∞

lim sup
v↓0

P∗
(
there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
= 0.
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Proof of Lemma 4.5. First note that we can use the Slivnyak–Mecke formula and translation invari-
ance to estimate

P
(
G(o, α)

)
≤ P

(
Xλ,th(B10α) > 0

)
≤ E

[
Xλ,th(B10α)

]
≤ λ102α2P∗

(
there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
.

We highlight here that, different to the situation of Lemma 4.3, the probability also extends to the
devices Xλ since openness is defined not only with respect to white knights and the street system.

In order to show the second statement of the lemma, we employ stabilization based on the stabilizing
random field {Rx}x∈R2 . For all sufficiently large n, we have that for ε′ > 0,

P∗
(
there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
≤ P∗

(
R(Q2n) < n/2, there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
+ ε′

≤ P∗
(
there exists an open s ∈ Q2n

)
+ ε′,

where we used that P(R(Q2n) ≥ n/2) tends to zero as n tends to infinity, as well as the fact that
under the event R(Q2n) < n/2 any shortest path starting in o must be contained in Q2n. Now, by
the Markov inequality,

P∗
(
there exists an open s ∈ Q2n

)
≤ E∗

[ ∑
s∈S∩Q2n

P∗(s is open|S)
]

and, using dominated convergence and the fact that E∗[#{s ∈ S ∩Q2n}] <∞ for PVT and PDT, it
suffices to show that, for all s ∈ S ∩Q2n,

lim sup
λW↑∞

lim sup
v↓0

P∗(s is open|S) = 0,

almost-surely with respect to S. In view of the definition of closed streets, let C(v) denote the event
that Condition (A) is satisfied for s and similar D(λW) and E(v, λ, λW) for the events associated to
the Conditions (B) and (C). Then,

P∗(s is open|S) ≤ P(Cc(v)|S) + P(Dc(λW)|S) + P(Ec(v, λ, λW)|S),

where the first and third summands tend to zero as v tends to zero and then also the second summand
tends to zero as λW tends to infinity. This finishes the proof.

Proof of Theorem 2.3 Part 1. For the proof we can follow the same line of arguments as used for the
proof of Theorem 2.2 above, only replacing Lemma 4.3 by Lemma 4.5 and subsequently adjusting
the arguments. We need to prove existence of λW,c < ∞ such that for all λW > λW,c there exists
vc(λ, λW) such that limα↑∞ P(Xλ,th(Co(R2)) > Xλ,th(B8α)) = 0 for all v < vc(λ, λW). Referenc-
ing to [CHJW22][Lemma III.2, Lemma III.4 and III.5] as well as to Lemma 4.2 and the initial argument
presented in Theorem 2.2 it suffices to note that, with the help of Lemma 4.5, there exists λW,c <∞
such that for all λW > λW,c there exists vc(λ, λW) such that for all v < vc(λ, λW)

P∗
(
there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
<

1

2
(100cαc)

−2,

where αc is defined as in the proof of Theorem 2.2. Then, using the same definitions for f and g, the
result follows by an application of Lemma 4.4.
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4.5 Proof of Proposition 3.1

Proof of Proposition 3.1. First note that by the assumption of supercriticality there is a positive proba-
bility that the typical device is connected to infinity within gρ,r(S,Xλ) via at least one path of suscep-
tible devices, i.e., in the absence of white knights. However, in case that TI ≤ TW, any white knight
that is connected to the path can only eliminate the infection after the infected device has already
passed the infection towards the subsequent susceptible device, leading to an unstoppable sequence
of infections along the path, independent of the choice of λW.

On the other hand, in case TI > TW, it suffices to consider the model conditioned on the event
{Xo ! ∞} that Xo is in the infinite cluster of gρ,r(S,Xλ). Let us denote by D the graph distance
of Xo to the set of white knight and note that D <∞ almost surely as λW > 0. Then, closest white
knight Yi experiences an infection attempt at time DTI. Note that, at this time, any infected device
has a distance to Yi given by at most 2D. This comes from the fact that the transmission times are
deterministic and there is a one-to-one correspondence between graph distance to the typical device
and elapsed time. However, there exists N ∈ N such that NTI > (N + 2D)TW and therefore the
infection can reach at most a graph distance of N + D. Indeed, any device Xi at graph distance
N +D from Xo, is in contact with Yi via N + 2D edges connecting infected or patched devices. But,
since the patching is faster than the infection, for this N , on the joint path between Xo, Yi and Xi,
the patch will have caught up with the infection before time (N + D)TI which is strictly smaller than
NTI.

4.6 Proof of Theorem 3.2

Proof of Theorem 3.2. As %W,min > 0, we can choose b large enough such that %bI,min < %W,min.
Furthermore, we can choose µ′ with v′min such that vminρ < v′min%

b
I,min < min(ac/2, r, c/2). Now

v′min and %bI,min satisfy the Conditions of Theorem 2.1. A close inspection of the proof of Theorem 2.1
reveals that, under the conditions in this theorem, there exists an infinite sequence of crossing devices,
boundary devices and devices connecting boundary devices {Xni}i∈N, connecting the typical device
to infinity, in the dynamical model considered in Theorem 2.1. Let us argue that this given sequence is
also connected in gρ,r(S,Xλ). Indeed, as the chain of devices between boundary devices is strongly
localized, they are connected for all t ≥ 0, especially for a continuous time-window of length ρ. Now,
the crossing devices are localized in such a way, that they travel at least a distance of v′min%

b
I,min on

their respective streets. As vminρ < v′min%
b
I,min the bridging devices can connect to their respective

boundary devices. Therefore, the infection can propagate in gρ,r(S,Xλ) along the given sequence to
infinity, which finishes the proof.

4.7 Proof of Theorem 3.3

Proof of Theorem 3.3. Using similar arguments as in the analysis of chase-escape dynamics on the
Gilbert graph in [HJCW20b], we call a deviceXi ∈ V M,p good if, in case of an infection, the infection is
transmitted to all neighbors ofXi before any neighbor ofXi is able to patch it. If there is an infinite path
of good devices, every device on this path is guaranteed to become infected and hence, if there exists
an infinite component of good devices with positive probability, this implies survival of the infection also
with positive probability. Now, if a device Xi has at most M neighbors, the probability to be good is
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bounded by

P
(

min
Xj∈N(Xi)

ρW(Xj, Xi) > max
Xj∈Xλ∩N(Xi)

ρI(Xi, Xj)
)
≥ P

(
min

i∈{1,...,M}
ρW,i > max

i∈{1,...,M}
ρbI,i

)
= P

(
min

i∈{1,...,M}
ρW,i > b−1 max

i∈{1,...,M}
ρI,i

)
,

(7)

independently of Xi, where the ρbI,i, and respectively the ρW,i, are iid random variables with distribu-
tion %bI and %W.

Now, by assumption, we can choose M and p such that gM,p
ρ,r (S,Xλ) percolates with positive prob-

ability. Hence, as %W had no atom at zero we can choose b = b(M) sufficiently large such that the
bound (7) is larger than p.

Note that the bound is uniform over the devices, since the infection and patch times are independent by
definition, and therefore we can couple the connectivity graph to an independent thinning with param-
eter p that dominates the process of good devices. As a consequence, gM,p

ρ,r (S,Xλ) is a subgraph of
the thinned graph of good devices with at most M neighbors. Hence, we have established percolation
of good devices with positive probability as desired.

4.8 Proof of Theorem 3.4

Our strategy is again to employ the arguments from Section 4.3 and Section 4.4. That is, we realize
that it suffices to show absence of percolation in the geostatistical Cox–Boolean model

C =
⋃

Xi∈Xλ,th

B`S(Xi)(Xi),

where,
Xλ,th = {Xi ∈ Xλ : min

Xj∈Nλ(Xi)
ρI(Xi, Xj) < min

Xj∈NλW (Xi)
ρW(Xj, Xi)},

with Nλ(Xi) the set of neighbors of Xi in gρ,r(S,Xλ) and NλW(Xi) the set of neighbors of Xi in
gρ,r(S,Xi ∪ Y λW). Indeed, devices in Xλ \Xλ,th are patched before they can transmit the infection
and can therefore not contribute to the dissipation of the infection.

Again, the thinning procedure depends on the entire point cloud, but, we can still employ Lemma 4.2
and Lemma 4.4 from above and only need to replace Lemma 4.3 by the following statement, which is
presented in terms of P∗, the Palm version of P.

Lemma 4.6. There exists c > 0 such that

P
(
G(o, α)

)
≤ cα2P∗

(
min

Xj∈Nλ(o)
ρI(o,Xj) < min

Xj∈NλW (o)
ρW(Xj, o)

)
and

lim sup
λW↑∞

P∗
(

min
Xj∈Nλ(o)

ρI(o,Xj) < min
Xj∈NλW (o)

ρW(Xj, o)
)

= 0.

Proof of Lemma 4.6. Again, by the Slivnyak–Mecke formula and translation invariance we can esti-
mate

P
(
G(o, α)

)
≤ P

(
Xλ,th(B10α) > 0

)
≤ E

[
Xλ,th(B10α)

]
≤ λ102α2P∗

(
min

Xj∈Nλ(o)
ρI(o,Xj) < min

Xj∈NλW (o)
ρW(Xj, o)

)
.

DOI 10.20347/WIAS.PREPRINT.2969 Berlin 2022



Chase-escape in dynamic device-to-device networks 27

Now,

P∗
(

min
Xj∈Nλ(o)

ρI(o,Xj) < min
Xj∈NλW (o)

ρW(Xj, o)
)
≤ E∗

[
P(ρW > %I,min)NλW (o)

]
, (8)

where ρW is a random variable distributed according to %W. Note that P(ρW > %I,min) < 1 by our
assumptions on %W,min. Further, the expression on the right-hand side of (8) can be further bounded
from above by considering only those white knights that mimic the behavior of the typical device at
the origin in the sense that they start close to the origin and have a target location close to the target
location of the typical device. Then, by dominated convergence, the right-hand side of (8) tends to zero
as λW tends to infinity and this finishes the proof.

As now the Lemma is proven this concludes the proof of Theorem 3.4.

Proof of Theorem 2.3 Part 1. For the proof we can follow the same line of arguments as used for the
proof of Theorem 2.2 above, only replacing Lemma 4.3 by Lemma 4.5 and subsequently adjusting
the arguments. We need to prove existence of λW,c < ∞ such that for all λW > λW,c there exists
vc(λ, λW) such that limα↑∞ P(Xλ,th(Co(R2)) > Xλ,th(B8α)) = 0 for all v < vc(λ, λW). Referenc-
ing to [CHJW22][Lemma III.2, Lemma III.4 and III.5] as well as to Lemma 4.2 and the initial argument
presented in Theorem 2.2 it suffices to note that, with the help of Lemma 4.5, there exists λW,c <∞
such that for all λW > λW,c there exists vc(λ, λW) such that for all v < vc(λ, λW)

P∗
(
there exists y ∈ supp(κS(o, dy)) and s ∈ `S(o, y) such that s is open

)
<

1

2
(100cαc)

−2,

where αc is defined as in the proof of Theorem 2.2. Then, using the same definitions for f and g, the
result follows by an application of Lemma 4.4.
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