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Optimal damping with hierarchical adaptive quadrature for efficient Fourier
pricing of multi-asset options in Lévy models

Christian Bayer, Chiheb Ben Hammouda, Antonis Papapantoleon, Michael Samet, Raúl Tempone

Abstract

Efficient pricing of multi-asset options is a challenging problem in quantitative finance. When the charac-
teristic function is available, Fourier-based methods become competitive compared to alternative techniques
because the integrand in the frequency space has often higher regularity than in the physical space. How-
ever, when designing a numerical quadrature method for most of these Fourier pricing approaches, two
key aspects affecting the numerical complexity should be carefully considered: (i) the choice of the damp-
ing parameters that ensure integrability and control the regularity class of the integrand and (ii) the effective
treatment of the high dimensionality. To address these challenges, we propose an efficient numerical method
for pricing European multi-asset options based on two complementary ideas. First, we smooth the Fourier
integrand via an optimized choice of damping parameters based on a proposed heuristic optimization rule.
Second, we use sparsification and dimension-adaptivity techniques to accelerate the convergence of the
quadrature in high dimensions. Our extensive numerical study on basket and rainbow options under the
multivariate geometric Brownian motion and some Lévy models demonstrates the advantages of adaptiv-
ity and our damping rule on the numerical complexity of the quadrature methods. Moreover, our approach
achieves substantial computational gains compared to the Monte Carlo method.

1 Introduction

Pricing multi-asset options, such as basket and rainbow options, is an interesting and challenging problem in
quantitative finance because prices cannot be analytically computed in most cases; thus, efficient numerical
methods are required. Moreover, despite the popularity of the Black–Scholes model, where the stock dynamics
follow the geometric Brownian motion (GBM), Lévy models, such as the variance Gamma (VG) [45] and nor-
mal inverse Gaussian (NIG) models [3], have shown a remarkable fit to empirical market behavior [17, 52] by
accounting for market jumps in prices, heavy tails, and high leptokurtosis.

Under the no-arbitrage assumption, option prices are given as expectations under an (equivalent) martingale
measure and approximated using numerical integration methods. In this context, the prevalent numerical method
is the Monte Carlo (MC) method [31], which has a convergence rate insensitive to the input space dimensional-
ity and payoff regularity, except for multilevel MC methods [7], where Lipschitz continuity is necessary to obtain
optimal convergence rates. However, the convergence may be very slow, and one may not exploit the avail-
able regularity structure to achieve better convergence rates. Another class of methods relies on deterministic
quadrature methods whose performance highly depends on the input space dimension and integrand regularity.
Some studies [6, 8] have combined adaptivity, sparsification techniques and hierarchical representations (Brow-
nian bridge and Richardson extrapolation) with quadrature methods to treat the high dimensionality effectively.
Moreover, financial payoffs usually have low regularity; therefore, analytic and numerical smoothing techniques
were introduced for better convergence [9, 6, 10, 8]. All aforementioned improvements were performed in the
physical space.

In this work, we propose a novel approach for pricing European multidimensional basket and rainbow1 options
under multivariate GBM and Lévy models. Compared to the previously mentioned approaches, we recover the

1Rainbow options [46] are appealing to investors because they allow the reduction of risk exposure to the market at a cheap cost by
betting more on individual performance among a group of individual stocks than the overall performance of the portfolio stocks when
considering basket options, for instance see [32].
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higher regularity of the integrand by mapping the problem from the physical space to the frequency space,
when the Fourier transforms of the payoff and density are well-defined and known explicitly. Moreover, when
designing our method, we effectively treat two key aspects affecting the numerical complexity: (i) the choice
of the damping parameters that ensure integrability and control the regularity class of the integrand and (ii)
the high dimensionality of the integration problem. Based on the extension of the one-dimensional (1D) Fourier
valuation formula [49, 41] to the multivariate case, first, we smooth the Fourier integrand via an optimal choice of
the damping parameters based on a proposed heuristic optimization rule. Second, we use adaptive sparse grid
quadrature (ASGQ) based on sparsification and dimension-adaptivity techniques, to accelerate the numerical
quadrature convergence in high dimensions.

Fourier-based pricing methods [13, 49, 41, 23, 27, 42, 40, 38, 5] map the original problem to the frequency
space and obtain the solution in the physical space using the Fourier inversion theorem. The approximation of
the resulting integral is performed numerically using direct integration (DI) methods or the fast Fourier transform
(FFT). The common ingredient for these approaches is the explicit knowledge of the characteristic function (i.e.,
the Fourier transform of the probability density function) corresponding to the price dynamics. There are three
different popular Fourier valuation approaches. In the first approach, originally proposed by Carr and Madan,
see [13, 39, 14], a Fourier transform is applied in the log-strike variable, k. Hence, for fixed maturity t, the whole
curve of option prices, C(t, ·), is computed. To ensure the existence of the Fourier transform, one must multiply
the pricing function by an exponential damping factor with respect to (w.r.t.) the strike parameter. This method
is appropriate for 1D problems; and extending it to the multi-asset option pricing context is difficult. The strike
price is not defined for all stocks, whereas the multivariate density depends on all the underlyings. Moreover,
the derivations must be performed separately for each payoff and stock dynamics. Given the characteristic
function and Fourier transform of the payoff function, an alternative approach, see [49, 41, 34, 24], uses a
highly modular pricing framework. This method separates the underlying stochastic process from the derivative
payoff using the Plancherel–Parseval Theorem and uses the generalized inverse Fourier transform to obtain
the option price. In addition, this approach introduces damping parameters w.r.t. the stock prices variables to
ensure integrability, which shifts the integration contour to a parallel line to the real axis in the complex space.
This technique is easier to extend to the multivariate case compared to the first approach in [13, 39, 14]. The
third approach [27, 50, 60] relies on the Fourier cosine or sine series expansion of the density function in relation
to the characteristic function. It is challenging to generalize this class of methods to the multidimensional setting
because an analytic formula for the cosine or sine series coefficients of the payoff function cannot easily be
obtained and should be recovered numerically. This numerical treatment influences the convergence rate of the
method. Moreover, even though this approach does not introduce damping parameters to ensure integrability,
truncation parameters must be determined. The method fails to converge when these truncation parameters
are not chosen appropriately [35]. A practical choice in a high-dimensional setting remains a challenging open
problem.

To the best of our knowledge, when using the second type Fourier valuation approach (as in [49, 41, 34, 24]),
there is no precise analysis of the effect of the damping parameters on the convergence speed of quadrature
methods or guidance on choosing them to improve the numerical performance, particularly in the multivariate
setting. Previous works have set arbitrary choices for the damping parameter, and only [43, 36] studied the
damping parameter selection for the first type Fourier valuation approach (as in [13, 39, 14]) in the 1D setting to
obtain robust integration behavior. In this work, when pricing basket and rainbow options under the multivariate
GBM and Lévy models based on the extension of the one-dimensional Fourier valuation formula [49, 41] to
the multivariate case, we demonstrate that the choice of the damping parameters highly affects the speed of
convergence of the numerical quadrature. In addition, motivated by error estimates based on contour integration
tools, we propose a general heuristic framework for the optimal choice of the damping parameters, which can be
tailored and extended to various pricing models, resulting in a smoother integrand and improving the efficiency of
the numerical quadrature. Based on this proposed heuristic rule, the vector of the optimal damping parameters
can be obtained by solving a simple optimization problem. Moreover, we demonstrate the consistent advantage
of the optimal damping rule through numerical examples with different dimensions and parameter constellations.

The numerical evaluation of the resulting inverse Fourier integral can be performed using the FFT algorithm
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[13, 18], which could be faster than DI methods because it exploits periodicities and symmetries. However, it
cannot satisfy the requirement for matching the pricing algorithm to the structure of the market data and must
be assisted by interpolation and extrapolation methods for the smile surface, in contrast to DI methods, which
allow for flexible strikes (refer to Chapter 4 of [61] and [43] for further comparisons of FFT and DI). An additional
downside of the FFT method is that it has an additional truncation error and requires the determination of
the upper and lower truncation parameters of the integral. This task is nontrivial for multidimensional integrals
because the speed of decay to zero of the integrand depends on the damping factors, which are unknown a
priori, creating dependence between the truncation and damping parameters. In this work, we opt for the DI
approach combined with an unbounded quadrature (Gaussian quadrature rule) to evaluate the option price.
Investigating the optimal choice of the damping and truncation parameters for FFT when pricing multi-asset
options remains for future work.

Through an extensive numerical study on basket and rainbow options under the multivariate GBM, VG, and NIG
models, we demonstrate the advantages of adaptivity and our rule for choosing the damping parameters on the
numerical complexity of the quadrature methods for approximating the Fourier valuation integrals. Moreover, we
show that our approach achieves substantial computational gains over the MC method for different dimensions
and parameter constellations.

Section 2 introduces the proposed pricing framework in the Fourier space and the multivariate valuation formula.
In Section 3, we explain our methodology. In Section 3.1, we motivate and state our heuristic rule for choosing
of the damping parameters. Moreover, we present the different hierarchical deterministic quadrature methods
used for numerically evaluating the inverse Fourier integrals of interest in Section 3.2. Finally, in Section 4, we
report and analyze the obtained results, illustrating the advantages of the proposed approach and highlighting
the considerable computational gains achieved over the MC method.

2 Problem Setting and Pricing Framework

In this work, we are interested in efficiently computing the price of European d-asset options using Fourier
valuation formulas. For concreteness, we concentrate on two specific examples, namely (i) basket put2 and (ii)
rainbow options, precisely the call on min. The respective payoffs of basket put and call on min are given, for
K > 0, by:

(2.1) (i) P (XT ) = max

(
K −

d∑
i=1

eX
i
T , 0

)
; (ii) P (XT ) = max

(
min

(
eX

1
T , . . . , eX

d
T

)
−K, 0

)
,

where Xi
T := log(Si

T ), i = 1, . . . , d, {Si
T }di=1 are the prices of the underlying assets at the maturity T , and

XT :=
(
X1

T , . . . , X
d
T

)
.

Moreover, P̂ (u) = F [P (x)](u) =
∫
Rd e

−i⟨u,x⟩P (x)dx denotes the conjugate of the Fourier transform, F [.]
of P (·). We refer to [55, 41, 51] for the definition of the generalized Fourier transform and its properties. The
conjugate of the payoff transform is given by (2.2) for the basket put and (2.3) for the call on min (for more details

2To simplify the presentation, we consider the unweighted basket put payoff. The generalization to the weighted case as presented
in Section 4 can be done straightforwardly.
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on the derivation we refer to Page 79 in [47] and Page 16 in [24]):

P̂ (z) = K1−i
∑d

j=1 zj

∏d
j=1 Γ (−izj)

Γ
(
−i
∑d

j=1 zj + 2
) , z ∈ Cd, ℑ[zj ] > 0 ∀j ∈ {1, . . . , d};

(2.2)

P̂ (z) =
K1−i

∑d
j=1 zj(

i
(∑d

j=1 zj

)
− 1
)∏d

j=1 (izj)
, z ∈ Cd, ℑ[zj ] < 0 ∀j ∈ {1, . . . , d},

d∑
j=1

ℑ[zj ] < −1,

(2.3)

where Γ(·) denotes the complex Gamma function defined for complex numbers with a positive real part, ℑ(·)
denotes the imaginary part of a complex number, and i denotes the unit imaginary number.

For asset dynamics, we consider three models: (i) the multivariate GBM, and two Lévy models: (ii) the multi-
variate VG and (iii) multivariate NIG model. Appendix A presents a brief description of these models. Moreover,
ΦXT

(·) denotes the joint characteristic function of XT , with ΦXT
(·) = ei⟨.,X0⟩ϕXT

(·), where ϕXT
(·) is

expressed in Table 2.1 for each pricing model, and ⟨., .⟩ denotes the inner product on Rd.

Model ϕXT
(z)

GBM exp
(
i⟨z, r1Rd − 1

2 diag(Σ)⟩T − T
2 ⟨z,Σz⟩

)
, z ∈ Cd, ℑ[z] ∈ δX

VG exp(i⟨z, r1Rd + µV G⟩T )
(
1− iν⟨θ, z⟩+ 1

2ν⟨z,Σz⟩
)−T/ν

, z ∈ Cd, ℑ[z] ∈ δX

NIG exp
(
i⟨z, r1Rd + µNIG⟩T + δT

(√
α2 − ⟨β,∆β⟩ −

√
α2 − ⟨β + iz,∆(β + iz)⟩

))
,

z ∈ Cd, ℑ[z] ∈ δX

Table 2.1: The expression of ϕXT
(·) for the different pricing models. r is the interest rate, 1Rd is the d-

dimensional unit vector. δX is the strip of the regularity of the characteristic function and is given in Table
2.3 for each pricing model. Appendix A provides the definitions of the various model parameters.

We extend the 1D representation [41] to derive the pricing valuation formula in the Fourier space for the multivari-
ate setting. By the virtue of the inverse generalized Fourier transform theorem, we express the payoff function,

P (·), w.r.t. the conjugate of the payoff transform, P̂ (·):

(2.4) P (x) = ℜ
[

1

(2π)d

∫
Rd+iR

ei⟨u,x⟩P̂ (u)du

]
, R ∈ δP , x ∈ Rd,

where R ∈ δP ⊂ Rd is the vector of damping parameters ensuring the integrability, δP is the conjugate strip of
analyticity of the payoff transform, presented for each payoff in Table 2.2. ℜ[·] denotes the real part of a complex
number.

Using (2.4) and Fubini’s theorem, we obtain the multivariate Fourier valuation formula for the option price:

V (Θm,Θp) = e−rTE [P (XT )] = e−rT

∫
Rd

P (x)ρXT
(x)dx,

= (2π)−de−rTE
[
ℜ
(∫

Rd+iR
ei⟨u,XT ⟩P̂ (u)du

)]
, R ∈ δP

= (2π)−de−rTℜ
(∫

Rd+iR
E[ei⟨u,XT⟩]P̂ (u)du

)
, R ∈ δV := δP ∩ δX

= (2π)−de−rTℜ
(∫

Rd+iR
ΦXT

(u)P̂ (u)du

)
,

= (2π)−de−rT e−⟨R,X0⟩ℜ
(∫

Rd

ei⟨u,X0⟩ϕXT
(u+ iR)P̂ (u+ iR)du

)
,

:=

∫
Rd

g(u;R,Θm,Θp)du,(2.5)
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Optimal damping for Fourier pricing 5

where ρXT
(·) is the risk-neutral conditional transition probability density function of XT , and Θp denotes the

vector of payofsf parameters. To ensure the L1 integrability of g(·) in (2.5), a vector of damping parameters
R ∈ Rd is introduced, which must be chosen in δV , where δV = δP ∩ δX .

Payoff δP

Basket put {R ∈ Rd, Ri > 0 ∀i ∈ {1, . . . , d}}
Call on min {R ∈ Rd, Ri < 0 ∀i ∈ {1, . . . , d},

∑d
i=1 Ri < −1}

Table 2.2: Strip of regularity, δP , of the conjugate of payoff transforms. Refer to [24, 34] for more details
on the derivation.

Model δX
GBM Rd

VG {R ∈ Rd,
(
1 + ν⟨θ,R⟩ − 1

2ν⟨R,ΣR⟩
)
> 0}

NIG {R ∈ Rd,
(
α2 − ⟨(β −R),∆(β −R)⟩

)
> 0}

Table 2.3: Strip of analyticity, δX , of the characteristic functions for the different pricing models. Refer to [24] for
further details.

Remark 2.1 (About the strip of regularity). Compared to the 1D case, in the multivariate setting, the choice of the
vector of damping parameters R, which satisfies the analyticity condition in Table 2.3, is nontrivial requiring nu-
merical approximations. Moreover, to obtain more intuition, for the multivariate NIG model with ∆ = Id, the strip
of regularity δNIG

X is an open ball centered at β with radius α. This fact further complicates the arbitrary choice
for damping parameters when the integrand is anisotropic because we must first identify the spherical boundary
to determine the admissible combinations of values for the damping parameters enforcing the integrability. In
addition, the dimensionality affects the area of the strip of regularity because, for fixed α, {βi}di=1, increasing
the problem dimensionality shrinks the strip of regularity. To illustrate this, for R1 = . . . = Rd, β1 = . . . = βd,
we can easily obtain the strip of regularity in d dimensions as follows:

(2.6) (R1 − β1)
2 <

(
α√
d

)2

.

Equation (2.6) demonstrates that increasing d shrinks the radius of the ball characterizing δMNIG
X in Table 2.3

by a factor of
√
d.

3 Methodology of our Approach

3.1 Characterization of the optimal damping rule

This section aims to motivate and propose a heuristic rule for the optimal choice of the damping parameters R
that can accelerate the convergence of the numerical quadrature in the Fourier space when approximating (2.5)
for pricing multi-asset options under the considered pricing models for various parameters. The main idea is to
establish a connection between the damping parameter values, integrand properties, and quadrature error.

Before considering the integral of interest (2.5), we provide the general motivation for the rule through a simple
1D integration example for a real-valued function f w.r.t. a weight function λ(·) over the support interval [a, b]
(finite, half-infinite, or doubly infinite interval):

(3.1) I(f) :=

∫ b

a
f(x)λ(x)dx ≈

N∑
k=1

wkf(xk) := QN (f),

DOI 10.20347/WIAS.PREPRINT.2968 Berlin 2022
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where the quadrature estimator, QN (f) is characterized by the nodes {xk}Nk=1 which are the roots of the
appropriate orthogonal polynomial, πk(x), and {wk}Nk=1 are the appropriate quadrature weights. Moreover,
EQN

(f) denotes the quadrature error (remainder), defined as EQN
(f) := I(f)−QN (f).

The analysis of the quadrature error can be performed through two representations: the first relies on estimates
based on high-order derivatives for a smooth function f [28, 20, 59]. These error representations are of limited
practical value and use because high-order derivatives are usually challenging to estimate and control, partic-
ularly with relation to the damping parameters in this context as a complex rule for optimally choosing these
parameters may result. For this reason, to derive our rule, we opt for the second form of quadrature error repre-
sentation, valid for functions that can be extended holomorphically into the complex plane, which corresponds
to the case in (2.5).

Several approaches exist for estimating the error EQN
(f) when f is holomorphic: (i) methods of contour inte-

gration [54, 22], (ii) methods based on Hilbert space norm estimates [19, 21] which consider EQN
as a linear

functional on f , and (iii) methods based on the approximation theory [2, 56]. Independent of the approach, the
results are often comparable because the error bounds involve the supremum norm of f .

We focus on error estimates based on contour integration tools to showcase these error bounds. This approach
uses Cauchy’s theorem in the theory of complex variables to express the value of an analytic function at some
point z by means of a contour integral (Cauchy integral) extended over a simple closed curve (or open arc)
in the complex plane encircling the point z. We assume that the function f can be analytically extended into
a sizable region of the complex plane, containing the interval [a, b] with no singularities. Then, we have the
following result.

Theorem 3.1. The error integral in the approximation (3.1) can be expressed as

(3.2) EQN
(f) =

1

2πi

∮
C
KN (z)f(z)dz,

where

(3.3) KN (z) =
HN (z)

πN (z)
, HN (z) =

∫ b

a
λ(x)

πN (z)

z − x
dx,

and C is a contour3 containing the interval [a, b] within which f(z) has no singularities.

Proof. We refer to [22, 28] for proof of Theorem 3.1.

In the finite case, the contour C is closed and (3.3) represents an analytic function in the connected domain
C \ [a, b] while we may take C to lie on the upper and lower edges of the real axis in the infinite case for
large |x|. Discussions on choosing adequate contours are found in [25, 22, 21]. Moreover, precise estimates of
Hn(z) were derived in [22, 26].

As f(·) has no singularities within C, using Theorem 3.1, we obtain

(3.4) |EQN
(f)| ≤ 1

2π
sup
z∈C

|f(z)|
∮
C
|KN (z)||dz|,

where the quantity
∮
C |Kn(z)||dz| depends only on the quadrature rule. We expect that when the size of

the contour increases,
∮
C |Kn(z)||dz| decreases, whereas sup

z∈C
|f(z)| increases by the maximum modulus

theorem. The optimal choice of the contour C is the one that minimizes the right-handside of (3.4).

3Two choices of C are most frequently made: C = Cr , the circle |z| = r, r > 1, and C = Cρ, the ellipse with foci at a and b, where
the sum of its semiaxes is equal to ρ, ρ > 1. Circles can only be used if the analyticity domain is sufficiently large, and ellipses have
the advantage of shrinking to the interval [a, b] when ρ → 1, making them suitable for dealing with functions that are analytic on the
segment [a, b].
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Optimal damping for Fourier pricing 7

Extending the error bound (3.4) to the multidimensional setting can be performed straightforwardly using ten-
sorization tools. Moreover, the dependence of the upper bound on sup

z∈C
|f(z)| is independent of the quadrature

method. Therefore, motivated by the error bound (3.4), we propose a heuristic rule for choosing the damping pa-
rameters that improves the numerical convergence of the designed numerical quadrature method (see Section
3.2) when approximating (2.5). The rule consists in solving the following constrained optimization problem

(3.5) R∗ := R∗(Θm,Θp) = argmin
R∈δV

∥g(u;R,Θm,Θp)∥∞,

where R∗ := (R∗
1, . . . , R

∗
d) denotes the optimal damping parameters.

In our setting, the integrand defined in Equation (2.5) attains its maximum at the origin point u = 0Rd ; thus
solving (3.5) is reduced to a simpler optimization problem given by (3.6)

(3.6) R∗ = argmin
R∈δV

g(0Rd ;R,Θm,Θp).

Equation (3.6) cannot be solved analytically, especially in high dimensions; therefore, we solve it numerically,
approximating R∗ by R = (R1, . . . , Rd). In this context, we used the interior point method [11, 12] with an
accuracy of order 10−6.

The numerical investigation through different models and parameters (for illustration, we refer to Figure 3.1 for
the single put option under the different models, and Figure 3.2 for the 2D-Basket put under VG) confirmed
that the damping parameters have a considerable effect on the properties of the integrand, particularly its peak,
tail-heaviness, and oscillatory behavior. We observed that the damping parameters that produce the lowest
peak of the integrand around the origin are associated with a faster convergence of the relative quadrature
error than other damping parameters. Moreover, we observed that highly peaked integrands are more likely
to oscillate, implying a deteriorated convergence of the numerical quadrature. Independent of the quadrature
methods explained in Section 3.2, this observation was consistent for several parameter constellations under
the three tested pricing dynamics, GBM, VG, and NIG, and for different dimensions of the basket put and
rainbow options. Section 4.1.2 illustrates the computational advantage of the optimal damping rule on the error
convergence for the multi-asset basket put and call on min options under different models.

Remark 3.2. The d-dimensional optimization problem (3.6) is simplified further to a 1D problem when the
integrand is isotropic.

Remark 3.3. Other rules for choosing the damping parameters can be investigated to improve the numerical
convergence of quadrature methods. One can account for additional features, such as (i) the distance of the
damping parameters to the poles, which affects the choice of the integration contour in (3.2), or (ii) controlling
the regularity of the integrand via high-order derivative estimates. However, we expect such rules to be more
complicated and computationally expensive (e.g., the evaluation of the gradient of the integrand). Investigating
other rules remains for future work.

3.2 Numerical evaluation of the inverse Fourier integrals using hierarchical deterministic quadra-
ture methods

We aim to approximate (2.5) efficiently using a tensorization of quadrature formulas over Rd. When using
Fourier transforms for option pricing, the standard numerical approach truncates and discretizes the integration
domain and uses FFT based on bounded quadrature formulas, such as the trapezoidal rule. This option is
efficient in the 1D setting, as the estimation of the truncation intervals based, for instance, on the cumulants,
was widely covered in the literature. It remains affordable even though the additional cost might be high due to
the inappropriate choice of truncation parameters. However, this is not the case in the multidimensional setting
because determining the truncation parameters becomes more challenging. Moreover, the truncation errors
nontrivially depend on the damping parameter values. Choosing larger than necessary truncation domains
leads to a more significant increase in the computational effort for higher dimensions.
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Figure 3.1: 1D illustration: (Left) Shape of the integrand w.r.t the damping parameter, R. (Right) ER convergence
w.r.t. N , using Gauss–Laguerre quadrature for the European put option under (a) GBM, (b) VG, and (c) NIG
pricing models. The relative quadrature error ER is defined as ER = |QN [g]−Reference Value|

Reference Value , where QN is the
quadrature estimator of (2.5) based on the Gauss–Laguerre rule.

For this reason, we use the DI approach with Gaussian quadrature rules. Moreover, our numerical investiga-
tion (see Appendix B) suggests that Gauss–Laguerre quadrature exhibits faster convergence than the Gauss–
Hermite rule. Therefore, we used Laguerre quadrature on semi-infinite domains after applying the necessary
transformations.

Before defining the multivariate quadrature estimators, we first introduce the notation in the univariate setting
(For more details see [15]). In addition, β denotes a non-negative integer, referred to as the “discretization
level,änd m : N → N represents a strictly increasing function with m(0) = 0 and m(1) = 1, called
a “level-to-nodes function.Ät each level β, we consider a set of m(β) distinct quadrature points Hm(β) ={
x1β, x

2
β, . . . , x

m(β)
β

}
⊂ R, and a set of quadrature weights, ωm(β) =

{
ω1
β, ω

2
β, . . . , ω

m(β)
β

}
. We also let

C0(R) be the space of real-valued continuous functions over R. We define the univariate quadrature operator
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Figure 3.2: Effect of the damping parameters on the shape of the integrand in the case of 2D-basket put option
under the VG model with parameters σ = (0.4, 0.4), θ = (−0.3,−0.3), ν = 0.257. (a) R = (0.2, 0.2) (b)
R = (1, 1), (c) R = (2, 2), (d) R = (3, 3).

applied to a function f ∈ C0(R) as follows:

Qm(β) : C0(R) → R, Qm(β)[f ] :=

m(β)∑
j=1

f
(
xjβ

)
ωj
β .

In our case, in (2.5), we have a multivariate integration problem of g over Rd. Accordingly, for a multi-index
β = (βi)

d
i=1 ∈ Nd, the d-dimensional quadrature operator applied to g is defined as4

Qm(β) : C0
(
Rd
)
→ R, Qm(β) =

d⊗
i=1

Qm(βi),

Q
m(β)
d [g] =

#T m(β)∑
j=1

g (x̂j)ωj ,

where x̂j ∈ T m(β) :=
∏d

i=1Hm(βi) (with cardinality #T m(β) =
∏d

i=1m (βi) and m(βi) = Ni quadrature
points in the dimension of xi), and ωj is a product of the weights of the univariate quadrature rule. To simplify

the notation, we replace Q
m(β)
d with Qβ

d .

We define the set of differences ∆Qβ
d for indices i ∈ {1, . . . , d} as follows:

(3.7) ∆iQ
β
d :=

{
Qβ

d −Qβ′

d , with β′ = β − ei, when βi > 0,

Qβ
d , otherwise,

4The n-th quadrature operator acts only on the n-th variable of g.
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where ei denotes the ith d-dimensional unit vector. Then, using the telescopic property, the quadrature estima-
tor, defined w.r.t. a choice of the set of multi-indices I ⊂ Nd, is expressed by5, 6

(3.8) QI
d =

∑
β∈I

∆Qβ
d , with ∆Qβ

d =

(
d⊗

i=1

∆i

)
Qβ

d ,

and the quadrature error can be written as

(3.9) EQ =
∣∣Q∞

d [g]−QI
d [g]

∣∣ ≤ ∑
β∈Nd\{I}

∣∣∣∆Qβ
d [g]

∣∣∣ ,
where

Q∞
d :=

∞∑
β1=0

· · ·
∞∑

βd=0

∆Q
(β1,...,βd)
d =

∑
β∈Nd

∆Qβ
d .

In Equation (3.8), the choice of (i) the strategy for the construction of the index set I and (ii) the hierarchy of
quadrature points determined by m(·) defines different hierarchical quadrature methods. Table 3.1 presents the
details of the methods considered in this work.

Quadrature Method m(·) I
Tensor Product (TP) m(β) = β ITP(l) = {β ∈ Nd : max1≤i≤d(βi − 1) ≤ l}
Smolyak (SM) Sparse
Grids

m(β) = 2β−1+1, β > 1,m(1) = 1 ISM(l) = {β ∈ Nd :
∑

1≤i≤d(βi − 1) ≤ l}

Adaptive Sparse Grid
Quadrature (ASGQ)

m(β) = 2β−1+1, β > 1,m(1) = 1 IASGQ =
{
β ∈ Nd

+ : Pβ ≥ T
}

(see (3.10) and (3.11))

Table 3.1: Construction details for the quadrature methods. l ∈ N represents a given level. T ∈ R is a threshold
value.

In many situations, the tensor product (TP) estimator can become rapidly unaffordable because the number of
function evaluations increases exponentially with the problem dimensionality, known as the curse of dimension-
ality. We use Smolyak (SM) and ASGQ methods based on sparsification and dimension-adaptivity techniques
to overcome this issue. For both TP and SM methods, the construction of the index set is performed a priori.
However, ASGQ allows for the a posteriori and adaptive construction of the index set I by greedily exploiting
the mixed regularity of the integrand during the actual computation of the quantity of interest. The construction
of IASGQ is performed through profit thresholding, where new indices are selected iteratively based on the error
versus cost-profit rule, with a hierarchical surplus defined by

(3.10) Pβ =
|∆Eβ|
∆Wβ

,

where ∆Wβ is the work contribution (i.e., the computational cost required to add ∆Qβ
d to QIASGQ

d ) and ∆Eβ is

the error contribution (i.e., a measure of how much the quadrature error would decrease once ∆Qβ
d has been

added to QIASGQ

d ):

∆Eβ =
∣∣∣QIASGQ∪{β}

d [g]−QIASGQ

d [g]
∣∣∣(3.11)

∆Wβ = Work
[
Q

IASGQ∪{β}
d [g]

]
−Work

[
QIASGQ

d [g]
]
.

5For instance, when d = 2, then ∆Qβ
2 = ∆2∆1Q

(β1,β2)
2 = Q

(β1,β2)
2 −Q

(β1,β2−1)
2 −Q

(β1−1,β2)
2 +Q

(β1−1,β2−1)
2 .

6To ensure the validity of the telescoping sum expansion, the index set I must satisfy the admissibility condition (i.e., β ∈ I,α ≤
β ⇒ α ∈ I, where α ≤ β is defined as αi ≤ βi, i = 1, . . . , d).
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The convergence speed for all quadrature methods in this work is determined by the behavior of the quadrature
error defined in (3.9). In this context, given the model and option parameters, the convergence rate depends on
the damping parameter values, which control the regularity of the integrand g in the Fourier space (see (2.5)).

We let N :=
∏d

i=1m (βi) denote the total number of quadrature points used by each method. For the TP
method, we have the following [20]:

(3.12) ETP
Q (N ;R) = O

(
N− rt

d

)
for functions with bounded total derivatives up to order rt := rt(R). When using SM sparse grids (not adaptive),
we obtain the following [53, 58, 29, 4]:

(3.13) ESM
Q (N ;R) = O

(
N−rm (logN)(d−1)(rm)+1)

)
for functions with bounded mixed partial derivatives up to order rm := rm(R). Moreover, it was observed
in [30] that the convergence is even spectral for analytic functions (rm → +∞). For the ASGQ method, we
achieve [15]

(3.14) EASGQ
Q (N ;R) = O

(
N−rw/2

)
where rw is related to the degree of weighted mixed regularity of the integrand.

In (3.12), (3.13), and (3.14), we emphasize the dependence of the convergence rates on the damping parame-
ters R, which is only valid in this context because these parameters control the regularity of the integrand in the
Fourier space. Moreover, our optimized choice of R is not only used to increase the number of derivatives but
also to reduce the bounds on these derivatives.

4 Numerical Experiments and Results

In this section, we present the results of different numerical experiments conducted for pricing multi-asset Euro-
pean basket and rainbow options with the respective payoffs:

(i) P (XT ;K) = max

(
K − 1

d

d∑
i=1

eX
i
T , 0

)
; (ii) P (XT ;K) = max

(
min

(
eX

1
T , . . . , eX

d
T

)
−K, 0

)
.

These examples are tested under the multivariate (i) GBM, (ii) VG and (iii) NIG models with various parame-
ter constellations for different dimensions d ∈ {2, 4, 6}. The tested model parameters are justified from the
literature on model calibration [37, 57, 16, 9, 1, 33]. The detailed illustrated examples are presented in Tables
4.1, 4.2, and 4.3. To compare the methods in this work, we consider relative errors normalized by the reference

prices. The error is the relative quadrature error defined as ER =
|QI

d [g]−Reference Value|
Reference Value when using quadrature

methods, and the 95% relative statistical error of the MC method is estimated by the virtue of the central limit
theorem (CLT) as

(4.1) ER ≈ Cα × σM

Reference Value ×
√
M

where Cα = 1.96 for 95% confidence level, M is the number of MC samples, and σM is the standard deviation
of the quantity of interest.

The numerical results were obtained using a cluster machine with the following characteristics: clock speed
2.1 GHw, #CPU cores: 72, and memory per node 256 GB. Furthermore, the computer code is written in the
MATLAB (version R2021b). The ASGQ implementation was based on https://sites.google.com/
view/sparse-grids-kit (For more details on the implementation we refer to [48]).
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Through various tested examples, in section 4.1.1, we demonstrate the importance of sparsification and adap-
tivity in the Fourier space for accelerating quadrature convergence. Moreover, in section 4.1.2 , we reveal the
importance of the choice of the damping parameters on the numerical complexity of the used quadrature meth-
ods. Finally, in Section 4.2, we illustrate that our approach achieves substantial computational gains over the
MC method for different dimensions and parameter constellations to meet a certain relative error tolerance (of
practical interest) that we set to be sufficiently small.

Example Option Parameters Reference Value
(95% Statistical Error)

Optimal damping parameters R

Example
1

2D-Basket
put

σ = (0.4, 0.4),C = I2,K =
100

11.4474
(8e−04)

(2.5, 2.5)

Example
2

2D-Basket
put

σ = (0.4, 0.8),C = I2,K =
100

17.831
(1.2e−03)

(2.1, 1.2)

Example
3

2D-Call on
min

σ = (0.4, 0.4),C = I2,K =
100

3.4603
(6e−04)

(−3.4,−3.4)

Example
4

2D-Call on
min

σ = (0.4, 0.8),C = I2,K =
100

3.7411
(8.2e−04)

(−3.6,−1.8)

Example
5

4D-Basket
put

σ = (0.4, 0.4, 0.4, 0.4),
C = I4,K = 100

8.193
(6e−04)

(2.1, 2.1, 2.1, 2.1)

Example
6

4D-Basket
put

σ = (0.2, 0.4, 0.6, 0.8),
C = I4,K = 100

11.3014
(8e−04)

(2.4, 1.9, 1.5, 1.2)

Example
7

4D-Call on
min

σ = (0.4, 0.4, 0.4, 0.4),
C = I4,K = 100

0.317
(2e−04)

(−3.1,−3.1,−3.1,−3.1)

Example
8

4D-Call on
min

σ = (0.2, 0.4, 0.6, 0.8),
C = I4,K = 100

0.2382
(1e−04)

(−6.4,−3.1,−2.1,−1.6)

Example
9

6D-Basket
put

σ = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4),
C = I6,K = 60

0.0041
(8.8e−06)

(2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

Example
10

6D-Basket
put

σ = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7),
C = I6,K = 60

0.012702
(1.8e−05)

(2.3, 2.1, 1.9, 1.7, 1.5, 1.3)

Example
11

6D-Call on
min

σ = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4),
C = I6,K = 100

0.038
(4.4e−05)

(−3.0,−3.0,−3.0,−3.0,−3.0,−3.0)

Example
12

6D-Call on
min

σ = (0.2, 0.3, 0.4, 0.5, 0, 6, 0.7),
C = I6,K = 100

0.0301
(3.7e−05)

(−6.0,−3.9,−3.0,−2.4,−2.0,−1.8)

Table 4.1: Examples of multi-asset options under the multivariate GBM model. In all examples, Si
0 = 100, i =

1, . . . , d, T = 1, r = 0. Reference values are computed with MC using 109 samples, with 95% statistical error
estimates reported between parentheses. R is rounded to one decimal place.

4.1 Combining the optimal damping heuristic rule with hierarchical deterministic quadrature
methods

4.1.1 Effect of sparsification and dimension-adaptivity

In this section, we analyze the effect of dimension adaptivity and sparsification on the acceleration of the con-
vergence of the relative quadrature error, ER. We elaborate a comparison between the TP, SM, and ASGQ
methods when optimal damping parameters are used. Table 4.4 summarizes these findings. Through the nu-
merical experiments, ASGQ consistently outperformed SM. Moreover, for the 2D options, the performance of
the ASGQ and TP methods is model-dependent, with ASGQ being the best method for options under the GBM
model. For d = 4, for options under the GBM and VG models, ASGQ performs better than TP, which is not the
case for options under the NIG model. As for 6D options, ASGQ performs better than TP in most cases. These
observations confirm that the effect of adaptivity and sparsification becomes more important as the dimension
of the option increases. For the sake of illustration, Figure 4.1 compares ASGQ and TP for 4D options with
anisotropic parameter sets under different pricing models when optimal damping parameters are used. Figure
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Example Option Parameters Reference Value
(95% Statistical Error)

Optimal damping

parameters R
Example
13

2D-Basket
put

σ = (0.4, 0.4),θ = (−0.3,−0.3),
ν = 0.257,K = 100

11.7589
(1e−03)

(1.7, 1.7)

Example
14

2D-Basket
put

σ = (0.4, 0.8),θ = (−0.3, 0),
ν = 0.257,K = 100

17.6688
(1.2e−03)

(1.7, 1.0)

Example
15

2D-Call on
min

σ = (0.4, 0.4),θ = (−0.3,−0.3),
ν = 0.257,K = 100

3.9601
(7e−04)

(−3.5,−3.5)

Example
16

2D-Call on
min

σ = (0.4, 0.8),θ = (−0.3, 0),
ν = 0.257,K = 100

3.3422
(8e−04)

(−4.0,−3.5)

Example
17

4D-Basket
put

σ = (0.4, 0.4, 0.4, 0.4),
θ = (−0.3,−0.3,−0.3,−0.3),
ν = 0.257,K = 100

8.9441
(8e−04)

(1.2, 1.2, 1.2, 1.2)

Example
18

4D-Basket
put

σ = (0.2, 0.4, 0.6, 0.8),
θ = (−0.3,−0.2,−0.1, 0),
ν = 0.257,K = 100

11.2277
(8e−04)

(1.6, 1.4, 1.1, 0.9)

Example
19

4D-Call on
min

σ = (0.4, 0.4, 0.4, 0.4),
θ = (−0.3,−0.3,−0.3,−0.3),
ν = 0.257,K = 100

0.6137
(2e−04)

(−3.2,−3.2,−3.2,−3.2)

Example
20

4D-Call on
min

σ = (0.2, 0.4, 0.6, 0.8),
θ = (−0.3,−0.2,−0.1, 0),
ν = 0.257,K = 100

0.2384
(1e−04)

(−6.6,−3.0,−2.0,−1.5)

Example
21

6D-Basket
put

σ = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4),
θ = −(0.3, 0.3, 0.3, 0.3, 0.3, 0.3),
ν = 0.257,K = 60

0.1691
(1e−06)

(1.1, 1.1, 1.1, 1.1, 1.1, 1.1)

Example
22

6D-Basket
put

σ = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7),
θ = (−0.3,−0.2,−0.1, 0, 0.1, 0.2),
ν = 0.257,K = 60

0.04634
(5e−05)

(2.1, 1.9, 1.7, 1.6, 1.4, 1.2)

Example
23

6D-Call on
min

σ = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4),
θ = −(0.3, 0.3, 0.3, 0.3, 0.3, 0.3),
ν = 0.257,K = 100

0.16248
(1e−04)

(−3.1,−3.1,−3.1,−3.1,−3.1,−3.1)

Example
24

6D-Call on
min

σ = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7),
θ = (−0.3,−0.2,−0.1, 0, 0.1, 0.2),
ν = 0.257,K = 100

0.02269
(4e−05)

(−6.5,−3.7,−2.6,−2.0,−1.7,−1.4)

Table 4.2: Examples of multi-asset options under the multivariate VG model. In all examples, Si
0 = 100, i =

1, . . . , d, T = 1, r = 0. Reference values are computed with MC using 109 samples, with 95% statistical error
estimates reported between parentheses. R is rounded to one decimal place.

4.1a reveals that, for the 4D-basket put option under the GBM model, the ASGQ method achieves ER below 1%
using 13.3% of the work of the TP quadrature. Moreover, Figure 4.1c indicates that, for the 4D-basket put option
under the VG model, the ASGQ method achieves ER below 0.1% using 25% of the work of the TP quadrature.
In contrast, for the 4D-basket put option under the NIG model, Figure 4.1e reveals that the TP quadrature attains
ER below 0.1% using 10% of the work of the ASGQ.

DOI 10.20347/WIAS.PREPRINT.2968 Berlin 2022



C. Bayer, C. Ben Hammouda, A. Papapantoleon, M. Samet, R. Tempone 14

Example Option Parameters Reference Value
(95% Statistical Error)

Optimal damping parameters R

Example
25

2D-Basket
put

β = (−3,−3), α = 15,
δ = 0.2,∆ = I2,K = 100

3.3199
(3e−04)

(6.1, 6.1)

Example
26

2D-Basket
put

β = (−3, 0), α = 10,
δ = 0.2,∆ = I2,K = 100

3.8978
(4e−04)

(4.6, 4.8)

Example
27

2D-Call on
min

β = (−3,−3), α = 15,
δ = 0.2,∆ = I2,K = 100

1.2635
(2e−04)

(−9.9,−9.9)

Example
28

2D-Call on
min

β = (−3, 0), α = 10,
δ = 0.2,∆ = I2,K = 100

1.4476
(2e−04)

(−7.5,−6.8)

Example
29

4D-Basket
put

β = (−3,−3,−3,−3), α = 15,
δ = 0.4,∆ = I4,K = 100

2.554
(3e−04)

(4.0, 4.0, 4.0, 4.0)

Example
30

4D-Basket
put

β = (−3,−2,−1, 0), α = 15,
δ = 0.4,∆ = I4,K = 100

3.307
(3e−04)

(4.0, 4.2, 4.2, 4.2)

Example
31

4D-Call on
min

β = (−3,−3,−3,−3), α = 15,
δ = 0.4,∆ = I4,K = 100

0.17374
(5e−05)

(−8.8,−8.8,−8.8,−8.8)

Example
32

4D-Call on
min

β = (−3,−2,−1, 0), α = 15,
δ = 0.4,∆ = I4,K = 100

0.20327
(7e−05)

(−6.5,−6.4,−6.3,−6.2)

Example
33

6D-Basket
put

β = (−3,−3,−3,−3,−3,−3),
α = 15, δ = 0.2,∆ = I6,K =
80

0.01039
(2e−05)

(3.1, 3.1, 3.1, 3.1, 3.1, 3.1)

Example
34

6D-Basket
put

β = (−3,−2,−1, 0, 1, 2),
α = 15, δ = 0.2,∆ = I6,K =
80

4.39e−04

(3e−06)
(4.5, 4.6, 4.7, 4.8, 4.8, 4.9)

Example
35

6D-Call on
min

β = (−3,−3,−3,−3,−3,−3),
α = 15, δ = 0.2,∆ = I6,K =
110

6.034e−05

(4e−06)
(−4.0,−4.0,−4.0,−4.0,−4.0,−4.0)

Example
36

6D-Call on
min

β = (−3,−2,−1, 0, 1, 2), α =
15, δ = 0.2,∆ = I6,K = 110

1.572e−04

(2e−06)
(−3.2,−3.2,−3.1,−3.2,−3.2,−3.2)

Table 4.3: Examples of multi-asset options under the multivariate NIG model. In all examples, Si
0 = 100, i =

1, . . . , d, T = 1, r = 0. Reference values are computed with MC using 109 samples, with 95% statistical error
estimates reported between parentheses. R is rounded to one decimal place.
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(a) Example 6 in Table 4.1
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(b) Example 8 in Table 4.1
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(c) Example 18 in Table 4.2

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

(d) Example 20 in Table 4.2
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(e) Example 30 in Table 4.3
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(f) Example 32 in Table 4.3

Figure 4.1: Convergence of the relative quadrature error, ER, w.r.t. N for TP, SM and ASGQ methods for Eu-
ropean 4-asset options under GBM ((a) and (b)), VG ((c) and (d)), and NIG ((e) and (f)) models, when optimal
damping parameters, R, are used.
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4.1.2 Effect of the optimal damping rule

In this section, we present the computational benefit of using the optimal damping rule proposed in Section
3.1 on the convergence speed of the relative quadrature error of various methods when pricing the multi-asset
European basket and rainbow options. Figures 4.2, 4.3, and 4.4 illustrate that the optimal damping parameters
lead to substantially better error convergence behavior. For instance, Figure 4.2a reveals that, for the 4D-basket
put option under the GBM model, ASGQ achieves ER below 0.1% using around N = 1500 quadrature points
when using optimal damping parameters, compared to around N = 5000 points to achieve a similar accu-
racy for damping parameters shifted by +1 in each direction w.r.t. the optimal values. When using damping
parameters shifted by +2 in each direction w.r.t. the optimal values, we do not reach ER = 10%, even us-
ing N = 5000 quadrature points. Similarly, for the 4D-call on min option under the VG model, Figure 4.3b
illustrates that ASGQ achieves ER below 0.1% using around N = 500 quadrature points when using the op-
timal damping parameters. In contrast, ASGQ cannot achieve ER below 1% when using damping parameters
shifted by −1 in each direction w.r.t. the optimal values with the same number of quadrature points. Finally, for
the 4D-basket put option under the NIG model, Figure 4.4a illustrates that, when using the optimal damping
parameters, the TP quadrature crosses ER = 0.1% using 22% of the work it would have used with damping
parameters shifted by −2 in each direction w.r.t. the optimal values.

In summary, in all experiments, small shifts in both directions w.r.t. the optimal damping parameters lead to worse
error convergence behavior, suggesting that the region of optimality of the damping parameters is tight and
that our rule is sufficient to obtain optimal quadrature convergence behavior, independently of the quadrature
method. Moreover, arbitrary choices of damping parameters may lead to extremely poor convergence of the
quadrature, as illustrated by the purple curves in Figures 4.2a,4.2b, 4.3a and 4.4b. All compared damping
parameters belong to the strip of regularity of the integrand δV defined in Section 2. Finally, although we only
provide some plots to illustrate these findings, the same conclusions were consistently observed for different
models and damping parameters.
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(b) Example 8 in Table 4.1

Figure 4.2: GBM model: Convergence of the relative quadrature error, ER, w.r.t. N for the ASGQ method for
different damping parameter values.
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(a) Example 18 in Table 4.2
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(b) Example 20 in Table 4.2

Figure 4.3: VG model: Convergence of the relative quadrature error, ER, w.r.t. N for the ASGQ method for
different damping parameter values.
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Figure 4.4: NIG model: Convergence of the relative quadrature error, ER, w.r.t. N for the TP method for different
damping parameter values.

4.2 Computational comparison of quadrature methods with optimal damping and MC

This section compares the MC method and our proposed approach based on on the best quadrature method
in the Fourier space combined with the optimal damping parameters in terms of errors and computational time.
The comparison is performed for all option examples in Tables 4.1, 4.2, and 4.3. While fixing a sufficiently
small relative error tolerance in the price estimates, we compare the necessary computational time for different
methods to meet it in the following way:

1 Find the least number of quadrature points to reach a pre-defined relative quadrature error.

2 Estimate, using the CLT formula given in Equation (4.1), the required number of MC samples to achieve
the same relative error achieved by the quadrature method.

3 Compare the CPU times of the both methods, including the cost of numerical optimization of (3.6) preced-
ing the numerical quadrature for the Fourier approach. The MC CPU time is obtained through an average
of 10 runs.

The results presented in Table 4.4 highlight that our approach significantly outperforms the MC method for all
the tested options with various models, parameter sets, and dimensions. In particular, for all tested 2D and 4D
options, the proposed approach requires less than 20% (even less than 1% for most cases) of the MC work
to achieve a total relative error below 0.1%. In general, these gains degrade for the tested 6D options. For
Example 21 in Table 4.2, this approach requires around 43% of the work of MC, to achieve a total relative
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error below 1%. The magnitude of the CPU gain varies depending on different factors, such as the model and
payoff parameters affecting the integrand differently in physical space (related to the MC estimator variance),
and the integrand regularity in Fourier space (related to the quadrature error for quadrature methods). Finally,
we observed significant memory gains using our approach for all examples, as we required considerably fewer
quadrature points (functions evaluations) than the required number of samples for the MC method to meet the
same error tolerance.
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Example Best
Quad

ER MC CPU
Time

M (MC
samples)

Quad
CPU
Time

N
(Quad.
Points)

CPU Time Ratio
(Quad/MC) in %

Example 1 in Table 4.1 ASGQ 7e−04 7.36 1.2× 107 0.63 33 8.5%
Example 2 in Table 4.1 ASGQ 3.7e−04 20.7 3.3× 107 0.65 67 3.14%
Example 13 in Table 4.2 TP 2.9e−04 44 8.8× 107 0.25 64 0.57%
Example 14 in Table 4.2 TP 1.8e−04 70.9 1.4× 108 0.23 64 0.32%
Example 25 in Table 4.3 TP 2.9e−04 75.3 1.1× 108 0.2 36 0.26%
Example 26 in Table 4.3 TP 5.86e−04 17.2 2.6× 107 0.2 25 1.16%
Example 3 in Table 4.1 ASGQ 7e−04 47.3 7.6× 107 0.6 37 1.26%
Example 4 in Table 4.1 ASGQ 5.8e−04 102 1.4× 108 0.63 37 0.62%
Example 15 in Table 4.2 ASGQ 8.26e−04 19.5 4.1× 107 0.54 25 2.77%
Example 16 in Table 4.2 TP 5.37e−04 87.1 1.4× 108 0.16 49 0.18%
Example 26 in Table 4.3 TP 6.7e−04 35.8 5.3× 107 0.22 100 0.61%
Example 27 in Table 4.3 TP 6.46e−04 42.2 6.5× 107 0.22 64 0.52%

Example 5 in Table 4.1 ASGQ 2.46e−04 207 108 7.8 5257 3.77%
Example 6 in Table 4.1 ASGQ 8.12e−04 14.5 7.9× 106 2.73 1433 18.83%
Example 17 in Table 4.2 ASGQ 2.58e−04 106.3 1.23× 108 5 3013 4.7%
Example 18 in Table 4.2 ASGQ 3.58e−04 38.7 4.5× 107 2 1109 5.17%
Example 27 in Table 4.3 TP 4.57e−04 50.2 4.7× 107 0.5 256 1%
Example 28 in Table 4.3 TP 4.1e−04 49.4 4.8× 107 0.52 256 1%
Example 7 in Table 4.1 ASGQ 5.7e−04 1147 7× 108 1 435 0.09%
Example 8 in Table 4.1 ASGQ 5.5e−04 1580 9.6× 108 0.95 654 0.06%
Example 19 in Table 4.2 ASGQ 5.9e−04 220 3× 108 1.25 567 0.57%
Example 20 in Table 4.2 ASGQ 8.9e−04 249 3.3× 108 1.4 862 0.56%
Example 29 in Table 4.3 TP 7.2e−04 193.5 2× 108 8.7 20736 4.5%
Example 30 in Table 4.3 TP 4.2e−04 716 7.8× 108 0.8 2401 0.11%

Example 9 in Table 4.1 ASGQ 2.9e−02 18.53 5.5× 106 2 318 11%
Example 10 in Table 4.1 ASGQ 3.3e−03 548 1.5× 108 2.1 340 0.38%
Example 21 in Table 4.2 ASGQ 7.8e−03 5.4 4.7× 106 2.3 453 42.6%
Example 22 in Table 4.2 ASGQ 5.4e−03 31.5 2.5× 107 3.5 566 11%
Example 31 in Table 4.3 ASGQ 1.47e−02 14.2 107 3.4 616 24%
Example 32 in Table 4.3 TP 3.75e−02 33.5 2.5× 107 11.7 4096 35%
Example 11 in Table 4.1 ASGQ 1.4e−03 2635 6.9× 108 6 3070 0.23%
Example 12 in Table 4.1 ASGQ 1.7e−03 2110 5.3× 108 4.5 1642 0.21%
Example 23 in Table 4.2 ASGQ 2e−03 85 6.8× 107 19.5 7401 23%
Example 24 in Table 4.2 ASGQ 2.6e−03 360 2.8× 108 4.6 1671 1.28%
Example 33 in Table 4.3 ASGQ 5.7e−02 85.5 6.3× 107 1 105 1.17%
Example 34 in Table 4.3 ASGQ 3.79e−02 108 7.5× 107 1.4 340 1.3%

Table 4.4: Errors, CPU times, and function evaluations comparing the Fourier approach combined with the
optimal damping rule and the best quadrature (Quad) method with the Gauss–Laguerre rule against the MC
method for the European basket and rainbow options under the multivariate GBM, VG, and NIG pricing dynamics
for various dimensions. Tables 4.1, 4.2, 4.3 present the selected parameter sets for each pricing model, the
reference values with their corresponding statistical errors, and the optimal damping parameters.
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A Option Pricing Models in Physical Space

In this section, we briefly give the details of the pricing models considered in this work: the multivariate GBM
(Section A.1), VG (Section A.2.1), and NIG (Section A.2.2) models.

A.1 Multivariate Geometric Brownian Motion

In the multivariate GBM model with d assets {Si(.)}di=1, each stock satisfies7

(A.1) Si(t)
d
= Si(0) exp

[(
r − σ2

i

2

)
t+ σiWi(t)

]
, i = 1, . . . , d,

where σ1, . . . , σd > 0 and {W1(t), . . . ,Wd(t), t ≥ 0} are independent standard Brownian motions with
correlation matrix C ∈ Rd×d with components −1 ≤ ρi,j ≤ 1, denoting the correlation between Wi and Wj .

Moreover, Σ ∈ Rd×d denotes the covariance matrix of the log returns, {log( Si(t)
Si(0)

)}di=1 , with Σij = ρi,jσiσj .

A.2 Multivariate Lévy models

Many stock price models are of the form Si(t)
d
= Si(0)e

(r+µi)t+Xi(t), where Xi(t) is a Lévy process, for
which the characteristic function is explicitly known, µi is the Martingale correction term. We consider two
models within this family: the VG and NIG models in Sections A.2.1 and A.2.2, respectively.

A.2.1 Multivariate variance Gamma

We consider the multivariate VG model introduced in [44]. The joint risk-neutral dynamics of the stock prices are
modeled as follows:

(A.2) Si(t)
d
= Si(0) exp

{
(r + µV G,i) t+ θiG(t) + σi

√
G(t)Wi(t)

}
, i = 1, . . . , d,

where {W1(t), . . . ,Wd(t)} are independent standard Brownian motions, {G(t)|t ≥ 0} is a common Gamma
process with parameters (a, b) defined by the pdf, fG(x; a, b) =

bat

Γ(at)x
at−1e−bx, x ≥ 0, independent of all

involved Brownian motions, with parameters ( tν ,
1
ν ). θi ∈ R and σi > 0, 1 ≤ i ≤ d. We only consider the

case in which the Brownian motions of the stocks are uncorrelated and share the same parameter ν; thus,
the matrix Σ ∈ Rd×d, presented in Table 2.1 satisfies Σi,j = σi

2 for i = j, and 0 otherwise. In addition,
µV G := (µV G,1, . . . , µV G,d) are the Martingale correction terms that ensure that {e−rtSi(t)|t ≥ 0} is a
Martingale and are given by

(A.3) µV G,i =
1

ν
log

(
1− 1

2
σ2
i ν − θiν

)
, i = 1, . . . , d.

7 d
= denotes the equality in distribution.
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A.2.2 Multivariate normal inverse Gaussian

We consider the multivariate NIG model where the joint risk-neutral dynamics of the stock prices are modeled
as follows:

(A.4) Si(t)
d
= Si(0) exp

{
(r + µNIG,i) t+ βiIG(t) +

√
IG(t)Wi(t)

}
, i = 1, . . . , d,

where {W1(t), . . . ,Wd(t)} are independent standard Brownian motions, {IG(t)|t ≥ 0} is a common inverse

Gaussian process with parameters (a, b) defined by the pdf, fIG(x; a, b) =
(

a
2πx3

)1/2
e

−a(x−b)2

2b2x , x > 0,

independent of all involved Brownian motions with parameters (δ2t2, α2 − βT∆β). Additionally, α ∈ R+,
β ∈ Rd, α2 > βT∆β, δ > 0, and ∆ ∈ Rd×d is a symmetric positive definite matrix with a unit determinant.
{µNIG,i}di=1 are the Martingale correction terms that ensure that {e−rtSi(t)|t ≥ 0} is a Martingale, given by

(A.5) µNIG,i = −δ

(√
α2 − β2

i −
√
α2 − (βi + 1)2

)
, i = 1, . . . , d.

B On the Choice of the Quadrature Rule

In this section, through numerical examples on vanilla put options, we show that the Gauss–Laguerre quadrature
rule significantly outperforms the Gauss–Hermite quadrature rule for the numerical evaluation of the inverse
Fourier integrals; hence, we adopt the Gauss–Laguerre measure for the rest of the work. Figures B.1a, B.1b, and
B.1c reveal that the Gauss–Laguerre quadrature rule significantly outcompetes the Gauss–Hermite quadrature
independently of the values of the damping parameters in the strip of regularity for the tested models: GBM, VG,
and NIG. For instance, Figure B.1a illustrates that, when R = 4 is used, the Gauss–Laguerre quadrature rule
reaches approximately the relative quadrature ER = 0.01% using 12% of the work required by the Gauss–
Hermite quadrature to attain the same accuracy. These observations were consistent for all tested parameter
constellations and dimensions, and independent of the choice of the quadrature methods (TP, ASGQ, or SM).
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(a) σ = 0.4
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(b) σ = 0.4, θ = −0.3, ν = 0.257
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(c) α = 10, β = −3, δ = 0.2

Figure B.1: Relative quadrature error, ER, convergence w.r.t. N of Gauss–Laguerre and Gauss–Hermite
quadrature rules for a European put option with S0 = 100, K = 100, r = 0 , and T = 1 under (a)
GBM, (b) VG, and (c) NIG.
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