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Hyperbolic–parabolic normal form and local classical solutions
for cross-diffusion systems with incomplete diffusion

Pierre-Étienne Druet , Katharina Hopf, Ansgar Jüngel

Abstract

We investigate degenerate cross-diffusion equations with a rank-deficient diffusion matrix that
are considered to model populations which move as to avoid spatial crowding and have recently
been found to arise in a mean-field limit of interacting stochastic particle systems. To date, their
analysis in multiple space dimensions has been confined to the purely convective case with equal
mobility coefficients. In this article, we introduce a normal form for an entropic class of such
equations which reveals their structure of a symmetric hyperbolic–parabolic system. Due to the
state-dependence of the range and kernel of the singular diffusive matrix, our way of rewriting
the equations is different from that classically used for symmetric second-order systems with a
nullspace invariance property. By means of this change of variables, we solve the Cauchy problem
for short times and positive initial data in Hs(Td) for s > d/2 + 1.

1 Introduction

In the present paper, we are interested in the Cauchy problem for a class of cross-diffusion systems
with a rank-deficient diffusion matrix and a porous medium-type degeneracy. For n species with partial
densities u = (u1, . . . , un) and partial velocity fields v1, . . . ,vn, we consider the conservation laws

∂tui + div(uivi) = 0, t > 0, x ∈ Td, i = 1, . . . , n. (1.1)

Here, Td denotes the periodic box and n, d ∈ N are arbitrary integers. From a simple phenomeno-
logical viewpoint, the type of diffusion system we are interested in arises when the motion is driven by
density gradients according to

vi = −
n∑
j=1

bij∇uj, (1.2)

where bij are phenomenological coefficients. For a derivation of such equations from a weakly inter-
acting stochastic many-particle system, we refer to [6].

In the special case where bij = k∂uj p̂ for some k > 0 and a suitable equation of state for the
thermodynamic pressure p̂ = p̂(u1, . . . , un), we obtain a purely convective motion with Darcy law
vi = v = −k∇p̂. Problems of this type have been studied in several works concerning the well-
posedness of classical and weak solutions [8, 14] as well as with regard to their segregation property,
see for instance [4, 15], where the model is enhanced by competition-type reactions arising in tissue
growth modelling.

A prototypical example motivating the present work is obtained for the choice

bij = kiaj with k1, . . . , kn > 0, a1, . . . , an > 0, (1.3)
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leading to the equations

∂tui − div(kiui∇p(u)) = 0 with p(u) =
n∑
i=1

aiui. (Rk1)

This is the model considered by Bertsch et al. [2, 3] for d = 1, n = 2 and segregated solutions.
It was first proposed in [13] to describe populations that disperse in order to avoid spatial crowding.
Few further rigorous studies exist for this or similar models when the ki are not all equal. The study
in [21] on a two-species model illustrates numerically and through travelling wave analysis that unequal
coefficients k1 6= k2 can lead to instabilities in the presence of a reaction term.

There are several energy functionals F (u) =
∫
Td f(u) dx available for the simple model (Rk1),

allowing to exhibit an underlying gradient-flow structure,

∂tu− div(M(u)∇µ) = 0, (1.4)

where µ = ∂uF (u) is the vector of chemical potentials and M(u) denotes the mobility tensor. First,
we note the so-called Shannon entropy [27] generated by the density

f1(u) :=
n∑
i=1

πi(ui log ui − ui) with πi :=
ai
ki
.

In this case, the ith chemical potential is µi = πi log ui, and (1.4) is true for M(u) = (ku)⊗(ku) with
ku = (k1u1, . . . , knun). Every density function f of the form f(u) = (ϕ◦p)(u) with a strictly convex
function ϕ ∈ C2(0,∞) generates another Lyapunov functional for system (Rk1). If we choose, for
instance,

f2(u) =
1

2

( n∑
i=1

aiui

)2

, (1.5)

then the chemical potential is given by µi = aip(u), yielding (1.4) with M(u) = diag(ui/πi). This
shows that the constitutive equations underlying (1.1)–(1.2), and in particular the rank deficiency of
the diffusion matrix, may be subject to different interpretations: strictly convex free energy and rank-
deficient mobility tensor for (1.4), or full-rank mobility tensor but rank-deficient Hessian for the free
energy (1.5). Interestingly, only the choice f3(u) = p(u) log p(u) − p(u) of the free energy yields
the identity p = −f3 +

∑n
i=1 ui∂uif3, which can be interpreted as the Gibbs–Duhem equation for

the thermodynamic pressure p.

In the general case of (1.2), we assume that the matrix

B = (bij) ∈ Rn×n is symmetric, positive semidefinite

and has rank 1 ≤ r ≤ n.
(1.6)

More generally, our results hold for matrices B for which there exists a vector π̂ ∈ Rn
+ such that the

product B diag(π̂1, . . . , π̂n) obeys the properties in (1.6). Indeed, this case can be reduced to (1.6)
by the rescaling ui 7→ ui/π̂i. In particular, the asymmetric case (1.3) can be covered in this way.

Note that in many physical and biological situations, where the dynamics of the species is driven by
pressure-like quantities or frictional interactions, it is reasonable to further impose the non-negativity
of the coefficients bij . However, our analysis shall reveal that positivity is a requirement only for (bij)
as an operator.
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Cross-diffusion systems with incomplete diffusion 3

System (1.1)–(1.2) with (1.6) admits the free energy functions

f̃1(u) =
n∑
i=1

(ui log ui − ui), f̃2(u) =
1

2

n∑
i,j=1

bijuiuj.

In the context of mathematical biology, the functional associated with the quadratic function f̃2 is known
as the Rao entropy [24]. Rank-deficiency can for example be justified if the driving functional measures
some dissimilarity between the species (genetic characters, f̃2(u) =

∑n
i,j=1(ui − uj)2). Recently,

in the context of electrochemistry, Eisenberg and Lin proposed a similar quadratic correction of the
standard entropy to describe repulsive interactions between ions crowded in small channels; see [20,
eq. (2.11)] with bij = εij(ai + aj)

12, the interaction energies εij ≥ 0 and the diameter ai > 0 of the
ith ion species. More generally, rank-deficiency for the Hessian of the free energy function is a singular
limit, which can be motivated from general representation theorems for the free energy function (see
equations (30), (32) in [5]), when the behaviour of the system is widely dominated by its response
under pressure, hence by the equation of state rather than by the statistical entropy of mixing.

Motivation and key aspects

With the choice (1.3), the second-order system (1.1)–(1.2) does not enjoy full parabolicity, and even
for ui strictly positive, the system is not parabolic in the sense of Petrovskii. Thus, the theories by
Amann or Solonnikov do not apply in the present setting and we cannot expect the classical parabolic
smoothing properties. Therefore, even the local-in-time well-posedness in spaces of high regularity
is a non-trivial question, which has hardly been investigated in the literature for rank-deficient cross-
diffusions. The present article aims to provide an answer to this question for system (1.1)–(1.2) under
conditions (1.6). Our key idea is to separate the degenerate variables from the parabolic evolution
in such a way that the resulting system has a (symmetrisable) hyperbolic–parabolic structure. After
identification of such a proper set of variables, we are able to obtain closed higher-order a priori es-
timates for short times by means of classical energy methods, which then allow for the construction
of local-in-time strong solutions by iteration. We emphasize that for general second-order quasilin-
ear symmetric systems, the commutator terms arising upon higher-order spatial differentiation in the
equation for ∂αui, α ∈ Nd, may not be controlled and standard parabolic estimates generally fail in
the rank-deficient case.

For positive densities, the diffusion matrix associated with system (1.1)–(1.3) (resp. (1.1), (1.2), (1.6))
has rank one (resp. rank r). Thus, we are looking for a change of variables that transforms the system
into a composite problem coupling a Friedrichs-symmetrisable hyperbolic system for n−1 (resp. for
n−r) components to a scalar parabolic equation (resp. to a parabolic system for r components).
We recall that Friedrichs-symmetrisable first-order systems allow for energy estimates in a similar
way as scalar equations and that, as is well known, symmetrisability is a direct consequence of the
existence of a strictly convex entropy [9, 12]. While the entropic structure of the present models allows
us to recast the equations in the form of a (degenerate) second-order symmetric system (see the
introductory comments in Section 5), it is not obvious why symmetrisability should be inherited by any
first-order subsystem that might be obtained after changing coordinates.

The main results of this article can be summarized as follows:

� We provide transformations leading to a normal form of symmetric hyperbolic–parabolic type
for the rank-one systems (Rk1).
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� We derive a transformation that allows us to write system (1.1), (1.2) with (1.6) for an arbitrary
rank r ∈ {1, . . . , n} in a symmetric hyperbolic–parabolic form.

� We show that such systems, for any rank r ∈ {1, . . . , n}, admit unique local-in-time classical
solutions provided the initial densities lie in Hs(Td) for some s > d/2 + 1 and are strictly
positive.

Comparison to existing literature on hyperbolic–parabolic systems

Normal forms of symmetric hyperbolic–parabolic type have first been introduced in the context of vis-
cous compressible fluid dynamics. In their seminal work [17], Kawashima and Shizuta rely on entropic
variables and a nullspace invariance condition of the matrix associated with the second-order spatial
differential operator in order to derive an appropriate composite form. In our class of systems, this
invariance condition amounts to a state-independence of the kernel or range of the underlying mobility
tensor M(u), a property which is not fulfilled in the present cross-diffusive problem. Thus, the results
by Kawashima and Shizuta, including their extensions in [11, 25, 26], are not directly applicable.

The normal forms that arise here (see equation (2.2)) are structurally different from those appearing in
the fluid dynamics context. They also seem to be new with respect to more recent work on hyperbolic–
parabolic problems considered, for instance, in thermoviscoelasticity [7]. A trivial version of our normal
form is obtained for (Rk1) when setting ki = 1 for all i (or equal to any other fixed constant). Then,
if n = 2, the change of variables w1 = u1/(u1 + u2), w2 = a1u1 + a2u2, as first employed in [4],
leads to the pure transport equation ∂tw1 = ∇w2 · ∇w1 whose velocity field is given by the negative
gradient of the solution to the porous-medium equation ∂tw2 = div(w2∇w2).

From a technical point of view, the difficulties in the Cauchy problem associated with our class of
normal forms are not very different from those arising in (viscous) systems of conservations laws.
The symmetrisability of the hyperbolic subsystem allows us to adopt an L2-approach, which was
first applied by Kawashima to symmetric hyperbolic–parabolic systems, requiring initial data in Hs for
s > d/2+2 [16]. This regularity condition was improved by Serre [25], who only required s > d/2+1
and obtained strong solutions. With regard to the classical solutions constructed here, the condition
s > d/2 + 1 in the L2-framework should essentially be optimal, as it just yields the continuous
differentiability of the hyperbolic components as well as the spatial Lipschitz continuity of the ‘velocity
field’. We obtain classical solutions by exploiting a modest regularising effect in the quasilinear strongly
parabolic subsystem, whose coefficient matrix has limited regularity due to its dependence on the
hyperbolic components. It turns out that the regularity is sufficient to deduce classical solvability for
small positive times.

Finally, we point out that specific situations may allow for improved results and alternative methods.
Besides the one-dimensional case d = 1, the binary case n = 2 and, more generally, the case
r = n− 1 are special, since then the hyperbolic part of the system is scalar and can thus be treated
by the method of characteristics for quasilinear first-order equations. Boundary-value problems may
also be treated more easily in this case.

Outline

The remaining part of this article is structured as follows. In Section 2, we formulate our main results
on the rank-one system (Rk1) and the general problem (1.2), (1.6). We provide in Section 3 an explicit
transformation leading to a simple normal form for (Rk1). Subsequently, we establish the existence of a
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unique local-in-time classical solution for systems of that form; see Section 4. Section 5 is concerned
with general rank-r systems. Here, a different change of variables is used leading to a somewhat
different, though structurally similar normal form. In Appendix A, we briefly discuss possible alternative
transformations in the rank-one case.

Notation

For s ∈ N0 := N ∪ {0}, we equip the space Hs := Hs(Td) with the canonical norm ‖v‖Hs =
(
∑
|α|≤s

∫
Td |∂

αv|2dx)1/2. We do not distinguish between the spaces Hs(Td) and Hs(Td;Rn) if

no confusion arises. For any vector v = (v1, . . . , vn)T ∈ Rn, we introduce v′ = (v1, . . . , vn−1)
T.

Moreover, given r ∈ {1, . . . , n}, we write v = (vI, vII)
T, where vI := (v1, . . . , vn−r)

T and vII :=
(vn−r+1, . . . , vn)T with the understanding that v = vII if r = n. We denote by RN×N

sym the space

of symmetric real (N × N)-matrices and by RN×N
spd the space of symmetric positive definite real

matrices. Finally, we set R+ = (0,∞) and let Rn
+ := (R+)n.

2 Main results

2.1 Main results in the rank-one case

We abbreviate n′ = n−1 and let D := Rn′ × R+. Given Y = (Yi`) ∈ C∞(D;Rn′×n′), Yn =
(Yni) ∈ C∞(D;Rn′) and a ∈ C∞(D;R+), we consider for w := (w′, wn) := (w1, . . . , wn−1, wn)
PDE systems of the form

∂tw
′ = ∇wn · Y(w)∇w′ + Yn(w)|∇wn|2, (2.1a)

∂twn = div(a(w)∇wn), (2.1b)

where we abbreviated

(∇wn · Y(w)∇w′)i :=
d∑

ν=1

∂xνwn

( n′∑
`=1

Yi`(w)∂xνw`

)
, i = 1, . . . , n′.

Definition 2.1 (Symmetrisable hyperbolic part). We say that system (2.1) has a symmetrisable hyper-
bolic part if there exists a smooth mapping A0 ∈ C∞(D;Rn′×n′

sym ) with the following properties:

(i) A0(u) ∈ Rn′×n′
spd for all u ∈ D, or equivalently (given the smooth dependence of A0 on u), for

each K b D there exists cK > 0 such that

ξTA0(v)ξ ≥ cK|ξ|2 for all ξ ∈ Rn′ and v ∈ K.

(ii) A0 symmetrises (2.1a) in the sense that

A0(v)Y(v) ∈ Rn′×n′
sym for every v ∈ D.

The above definition is motivated by the structural properties of system (Rk1) after a suitable change
of variables and the fact that, under reasonable hypotheses, quasilinear Friedrichs-symmetrisable
hyperbolic systems admit local smooth solutions.

Our first result asserts the existence of such a change of variables.
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Theorem 2.2 (Normal form). Suppose that ki, ai > 0 and maxi 6=n ki < kn. Then there exists a
smooth diffeomorphism Φ : Rn

+ → D, u 7→ w, such that system (Rk1) in the w-variables takes the
form (2.1) with a symmetrisable hyperbolic part. The transformation Φ can be chosen in such a way
that wn = p(u).

The theorem is proved in Section 3. We note that the condition maxi 6=n ki < kn is not restrictive in
the sense that it does not appear in Theorem 2.4 on the local existence and uniqueness for (Rk1). The
symmetriser and the normal form derived in the proof of Theorem 2.2 are explicit and take a relatively
simple form; see Section 3.2. For example, if n = 2, the change of variables u 7→ w reads as

w1 = log

(
u
1/k1
1

u
1/k2
2

)
, w2 = p(u).

Other transformations leading to somewhat different, albeit structurally similar normal forms are pos-
sible. For instance, one may alternatively consider

w1 =
u
1/k1
1

u
1/k1
1 + u

1/k2
2

, w2 = p(u);

see Appendix A for details.

Our second result asserts the local-in-time existence of classical solutions for symmetrisable systems
of the form (2.1) for data in the Sobolev space Hs = Hs(Td), s > d/2 + 1.

Theorem 2.3 (Local classical solutions for systems in normal form). Suppose that system (2.1) has
a symmetrisable hyperbolic part. Let s > d/2 + 1 and win ∈ Hs with r := minTd w

in
n > 0. Then

there exists a time T = T (‖win‖Hs , r) > 0 and a unique classical solution w = (w′, wn) ∈
C([0, T ];Hs) to system (2.1) in (0, T )× Td satisfying w|t=0 = win, inf(0,T )×Td wn ≥ r and

∂tw
′ ∈ C([0, T ];Hs−1), w′ ∈ C1([0, T ]× Td),

∂twn, ∇2wn ∈ L2(0, T ;Hs−1) ∩ Cloc((0, T ]× Td).

See Section 4 for the proof of this theorem. The local existence of classical solutions to our original
cross-diffusion system is now essentially obtained as a corollary.

Theorem 2.4 (Local classical solutions for (Rk1)). Suppose that s > d/2 + 1 and let ki, ai > 0 for
i = 1, . . . , n. Then, for every initial condition uin ∈ Hs(Td;D0), whereD0 b Rn

+, there exists a time
T = T (‖uin‖Hs ,D0) > 0 such that system (Rk1) has a unique classical solution u : [0, T ]×Td →
Rn

+ in the regularity class u ∈ C([0, T ];Hs),

∂tu, ∇2p(u) ∈ L2(0, T ;Hs−1(Td)) ∩ Cloc((0, T ]× Td)

that satisfies u|t=0 = uin.

We refer to Section 4.6 for the proof of this theorem.

2.2 The general case of incomplete diffusion

Given the above results, it is natural to ask whether a similar theory can be obtained for the rank-r
generalisations with r ∈ {1, . . . , n}, as introduced in Section 1. Thus, given a symmetric positive
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Cross-diffusion systems with incomplete diffusion 7

semidefinite matrix B = (bij) ∈ Rn×n
spd such that rankB = r, we aim to identify an appropriate

normal form for the induced equations of motion,

∂tui − div

(
ui∇

n∑
j=1

bijuj

)
= 0, i = 1, . . . , n. (B)

Our main results on this problem may be summarised as follows.

Theorem 2.5 (Normal form). Let r ∈ {1, . . . , n}. There exists a domain D1 ⊂ Rn and a smooth
diffeomorphism Φ : Rn

+ → D1, u 7→ w = (wI, wII), where wI = (w1, . . . , wn−r) and wII =
(wn−r+1, . . . , wn), such that system (B) in thew-variables can be recast in the symmetric hyperbolic–
parabolic form

AI
0(w)∂twI =

d∑
ν=1

AI
1(w, ∂xνwII)∂xνwI + f I(w,∇wII), (2.2a)

AII
0 ∂twII = div

(
AII

1 (w)∇wII

)
, (2.2b)

where AI
0 : D1 → R(n−r)×(n−r)

spd and AII
1 : D1 → Rr×r

spd are smooth mappings and AII
0 ∈ Rr×r

spd is

a constant diagonal matrix. The smooth map AI
1 : D1 × Rr → R(n−r)×(n−r)

sym is linear in the second
argument, and f I : D1 × Rr → Rn−r is smooth and quadratic in the second argument.

The precise form of the coefficient matrices appearing in Theorem 2.5 is described in Proposition 5.2.
The transformation Φ is built upon an orthonormal basis of constant eigenvectors associated with
B and slightly differs from that in Theorem 2.2. We emphasise that normal forms are generally not
unique, and in different applications different choices might be preferable.

The local existence of a unique classical solution to the symmetric hyperbolic–parabolic systems of
the form (2.2) will be established in Section 5.3, cf. Theorem 5.5. As a consequence of the analysis in
Section 5.3, we obtain the local existence of a unique positive classical solution to the cross-diffusion
system (B) for smooth positive initial data.

Theorem 2.6 (Local classical solutions in original variables). Let B ∈ Rn×n fulfil the conditions (1.6)
and let s > d/2 + 1. Then, for every initial condition uin ∈ Hs(Td;D0), where D0 b Rn

+, there
exists a time T = T (‖uin‖Hs ,D0) > 0 such that system (B) has a unique classical solution u :
[0, T ]× Td → Rn

+ in the regularity class u ∈ C([0, T ];Hs),

∂tu,∇2Bu ∈ L2(0, T ;Hs−1(Td)) ∩ Cloc((0, T ]× Td)

that satisfies u|t=0 = uin.

Remark 2.7. By a rescaling, we see that our results apply more generally to systems

∂tui − div
(
ui∇pi(u)

)
= 0, pi(u) =

n∑
j=1

aijuj,

for which the matrix A = (aij) ∈ Rn×n is such that for some π̂ ∈ Rn
+ the product B :=

A diag(π̂1, . . . , π̂n) satisfies the properties in (1.6).

DOI 10.20347/WIAS.PREPRINT.2967 Berlin 2022
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3 An explicit normal form for rank-one systems

In this section, we provide the proof of Theorem 2.2. Observe that if a diffeomorphism Φ has the
required properties in the case ai = 1 for i = 1, . . . , n in (1.3), then the transformation Φ ◦ Γ with
Γi(u) = aiui enjoys the properties needed in the general case ai > 0 for all i. We therefore assume
that ai = 1 for i = 1, . . . , n in (1.3).

3.1 Change of variables

Between the domains D̂ := Rn
+ and D := Rn′ × R+, where n′ := n − 1, we consider the

transformation Φ : D̂ → D,

Φ(u) =


log
(
u
1/k1
1

/
u
1/kn
n

)
...

log
(
u
1/kn′
n′

/
u
1/kn
n

)∑n
j=1 uj

 for u ∈ D̂. (3.1)

Its Jacobian

DΦ(u) =


1

k1u1
0 . . . 0 − 1

knun

0 1
k2u2

0 . . . − 1
knun

...
. . .

...
0 . . . 0 1

kn′un′
− 1
knun

1 1 1 . . . 1

 (3.2)

has a non-vanishing determinant,

det DΦ(u) =
n∑
`=1

∏
i 6=`

1

kiui
> 0. (3.3)

Lemma 3.1. The map Φ : D̂ → D is a C∞-diffeomorphism.

Proof. By definition, Φ ∈ C∞, and by the implicit function theorem and (3.3), the map Φ is locally
invertible with smooth inverse. To show that Φ is a bijection from D̂ toD, we observe that the equation
Φ(u) = w for u ∈ D̂ and w ∈ D is equivalent to

uj = exp(kjwj)un
kj/kn , j = 1, . . . , n′, and

n∑
j=1

uj = wn. (3.4)

Inserting the first relation into the second one, we find that

gw′(un) := un +
n′∑
j=1

exp(kjwj)un
kj/kn = wn. (3.5)

For fixed w = (w′, wn) ∈ D, the function gw′ : R+ → R+ is strictly increasing and continuous with
lims↓0 gw′(s) = 0 and lims↑+∞ gw′(s) = +∞. Hence, there exists a unique solution un ∈ R+ of
the equation gw′(un) = wn, which in turn uniquely determines uj ∈ R+, j = 1, . . . , n′, by means
of the first condition in (3.4).
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3.2 PDE system in new variables

We now formulate our original equation in the new variables w = Φ(u). We recall that the original
PDE system takes the form

∂tui = div(kiui∇wn), i = 1, . . . , n, (3.6)

and let Ψ(w) = u denote the inverse of Φ. Summing up the n equations (3.6) leads to

∂twn = div(a(w)∇wn),

where a(w) := â(Ψ(w)) with â(u) =
∑n

i=1 kiui. For u = Ψ(w), we have â(u) ≥ (mini ki)
∑n

i=1 ui =

(mini ki)wn. Since Ψ ∈ C∞(D; D̂) and infw∈K wn > 0 for every K b D, we find that a ∈
C∞(D;R+).

Next, let i = 1, . . . , n′. We deduce from (3.2) and (3.6) that

∂twi =
n∑
`=1

∂u`Φi(u)∂tu` =
∂tui
kiui
− ∂tun
knun

=
1

ui
div(ui∇wn)− 1

un
div(un∇wn)

= ∇(log Ψi − log Ψn) · ∇wn =
n∑
`=1

∂w`(log Ψi − log Ψn)∇w` · ∇wn.

To determine the term ∂w`(log Ψi − log Ψn), we use relation (3.5),

∂wnun = ∂wn

(
wn −

n′∑
j=1

exp(kjwj)u
kj/kn
n

)
= 1−

n′∑
j=1

kjuj
knun

∂wnun,

and solve this identity for ∂wnun:

(∂wnΨn)(w) = ∂wnun =

(
1 +

n′∑
j=1

kjuj
knun

)−1
=
knun
â(u)

.

In a similar way, it follows for ` = 1, . . . , n′ that

∂w`un = −k`u` −
n′∑
j=1

kjuj
knun

∂w`un

and consequently, after solving for ∂w`un,

(∂w`Ψn)(w) = ∂w`un = −k`u`
(

1 +
n∑
j=1

kjuj
knun

)−1
= −knun

â(u)
k`u`.

Hence,

(∂wn log Ψn)(Φ(u)) =
kn
â(u)

, (∂w` log Ψn)(Φ(u)) = − kn
â(u)

k`u` for ` = 1, . . . , n′.

Next, we differentiate wi = log(u
1/ki
i /u

1/kn
n ) = (1/ki) log Ψi − (1/kn) log Ψn, i = 1, . . . , n′, with

respect to w`, ` = 1, . . . , n′, which gives δi` = (1/ki)∂w` log Ψi − (1/kn)∂w` log Ψn. This shows
that

∂w` log Ψi − ∂w` log Ψn = kiδi` +

(
ki
kn
− 1

)
∂w` log Ψn = kiδi` +

(
kn − ki

)k`u`
â(u)

,
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Similarly, differentiating wi = (1/ki) log Ψi − (1/kn) log Ψn, i = 1, . . . , n′, with respect to wn, we
obtain 0 = (1/ki)∂wn log Ψi − (1/kn)∂wn log Ψn or, equivalently, ∂wn log Ψi = ki/â(u). Thus,

∂wn log Ψi − ∂wn log Ψn =
ki − kn
â(u)

.

In summary, the components w′ = (w1, . . . , wn′) satisfy the system

∂tw
′ =

d∑
ν=1

∂xνwnY(w)∂xνw
′ + Yn(w)|∇wn|2, (3.7)

where Y = (Yi`)
n′

i,`=1, Yn = (Yni)
n′
i=1, and

Yi`(w) := kiδi` +
(
kn − ki

)k`u`
â(u)

, i, ` = 1, . . . , n′,

Yni(w) := Yin(w) :=
ki − kn
â(u)

, i = 1, . . . , n′.

3.3 Symmetriser for the first-order subsystem

We look for a matrix A0(w) ∈ Rn′×n′
sym which is w-locally uniformly bounded and positive definite, such

that A0(w)Y(w) is symmetric for all w. The ansatz of a diagonal symmetrising matrix

A0(w) = diag(X1(w), . . . , Xn′(w)) (3.8)

leads to the conditions
XiYij = XjYji, i, j = 1, . . . , n′,

for the unknown smooth and positive functions Xi, i = 1, . . . , n′. Since, by hypothesis, 0 < k1 ≤
. . . ≤ kn′ < kn, an admissible choice of Xi is

Xi =
kiui

kn − ki
. (3.9)

Thus, (3.8), (3.9) defines an admissible symmetriser for system (3.7). In view of Lemma 3.1, this
completes the proof of Theorem 2.2.

4 Local classical solutions

In this section, we prove Theorem 2.3 and deduce Theorem 2.4 as a corollary. Thanks to its sym-
metry, the hyperbolic part can be treated following a well-established procedure based on Hs energy
estimates at the linear approximate level and a Picard iteration, cf. [1, 22] and the references therein.
Hence, our main task is to properly take care of the coupling between the hyperbolic and the parabolic
problem.

We only present the proof for integer s. Using basic tools from Fourier analysis, the extension to
fractional s > d/2 + 1 should be straightforward. For the most part, we avoid using the explicit
structure obtained in Section 3. In this way, we only require a few minor changes to treat the Cauchy
problem for the general rank-r system (B) once brought into a normal form.
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4.1 Preliminaries

Let A0 be a smooth symmetriser for (2.1a). We will construct a strong solution (within the appropriate
regularity class) to the symmetric hyperbolic–parabolic system

A0(w)∂tw
′ = ∇wn · A1(w)∇w′ + Vn(w)|∇wn|2, (4.1a)

∂twn = div(a(w)∇wn), (4.1b)

with w|t=0 = win, where A1(w) = A0(w)Y(w) and Vn(w) = A0(w)Yn(w).

By hypothesis, we can define positive constants

r := inf
x∈Td

win
n (x) and R := ‖win‖Hs .

As an immediate consequence, this gives

‖win
i ‖L∞ ≤ LR for i = 1, . . . , n,

where L < ∞ denotes the constant from the Sobolev embedding Hs(Td) ↪→ L∞(Td). Defining
a1 := (r/2) mini ki > 0, we infer the bound a(v) ≥ a1 for all

v ∈ D0 :=
{
ṽ ∈ D : ṽn > r/2 and |ṽi| < 2LR, i = 1, . . . , n

}
.

We further choose λ1 ∈ (0, 1] and Λ1 ≥ 1 such that

Λ1In′ ≥ A0(v) ≥ λ1In′ for all v ∈ D0, (4.2)

and abbreviate

K := 2

√
Λ1

λ1
. (4.3)

Note that a1, λ1,Λ1 and K depend on win through r and R only.

To avoid regularity issues during the iteration process, we mollify the initial data. Let (η`)`∈N0 ⊂
C∞(Td) be an approximate identity, that is,

∫
Td η`dx = 1, ‖η`‖L1 . 1 and lim`→∞

∫
{|x|>δ} |η`|dx =

0 for all 0 < δ � 1. Here, a` . b` means that there exists a constant C > 0 such that a` ≤ Cb`

for all ` ∈ N0. We choose (η`) such that η` ≥ 0 for all ` and introduce the mollified initial datum
z` := η` ∗ win for every ` ∈ N0. After possibly passing to a subsequence of (η`), we may assume
that

‖z`+1 − z`‖L2 . 2−`R. (4.4)

The construction by convolution immediately yields z`n ≥ r and |z`i | ≤ LR, i = 1, . . . , n and thus,
z`(x) ∈ D0 for all x ∈ Td and ` ∈ N0. Moreover,

‖z`‖Hs ≤ R for all ` ∈ N0. (4.5)

Before starting with our analysis, let us recall the following classical inequalities from calculus [18, 23]:
For all ϕ, ψ ∈ C∞(Td) and any multi-index α ∈ Nn

0 with |α| ≤ σ,

‖∂α(ψϕ)‖L2 . ‖ψ‖L∞‖ϕ‖Hσ + ‖ψ‖Hσ‖ϕ‖L∞ ,
‖[∂α, ψ]ϕ‖L2 . ‖∇ψ‖L∞‖ϕ‖Hσ−1 + ‖∇ψ‖Hσ−1‖ϕ‖L∞ ,

(4.6)
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where [A,B] := AB −BA denotes the commutator of two linear operators A and B. Furthermore,
for g ∈ C∞(D), K b D, and ϕ ∈ Hσ(Td;K),

‖g(ϕ)‖Hσ . ‖ϕ‖Hσ + 1, (4.7)

where the constant associated to this inequality depends on ‖g‖Cσ(K) and ‖ϕ‖L∞ . Finally, let us
introduce the Banach space Xσ

t := C([0, t];Hσ(Td)) with the norm

‖v‖Xσ
t

:= sup
τ∈(0,t)

‖v(τ)‖Hσ .

4.2 Iteration scheme

We initialise w0 := z0 and t0 =∞, and consider the following iteration scheme. Given v := w`−1 ∈
C∞([0, t`−1)×Td;D), ` ∈ N, with vn ≥ r and ‖v‖Xs

t
< KR for all t < t`−1, we let the next iterate

w` be the solution w = (w′, wn) to the linear decoupled system

A0(v)∂tw
′ = ∇vn · A1(v)∇w′ + Vn(v)|∇vn|2, (4.8a)

∂twn = div(a(v)∇wn), (4.8b)

supplemented by the initial condition w|t=0 = z`. Notice that w` is well defined and smooth on the
entire time interval [0, t`−1) thanks to classical theory for linear, uniformly parabolic equations resp.
linear symmetric hyperbolic systems with smooth coefficients (cf. [19] resp. [1, Chapter 2]) and the fact
that there is no coupling between w′ and wn. Moreover, the maximum principle implies that

r ≤ w`n(t, ·) ≤ LR for all t ∈ [0, t`−1). (4.9)

We then let 0 < t` ≤ t`−1 be the maximal time less than or equal to t`−1 such that

‖w`‖Xs
t
< KR for all t < t`, (4.10)

where K > 1 is the constant in (4.3). In view of (4.5), the time t` ∈ (0, t`−1] is indeed well-defined.

The above construction and the Sobolev embedding Hs ⊂ L∞ (with constant L) gives us a first
rough control of the values of the iterates:

w`(t, x) ∈ [−LKR,LKR]n
′ × [r, LR] for all (t, x) ∈ (0, t`)× Td. (4.11)

SinceK depends on the constants Λ1 and λ1, the control (4.11) needs to be upgraded before we can
take advantage of the strict positive definiteness of A0 in D.

4.3 Uniform bounds

Lemma 4.1 (Control of values). There exists a time T1 = T1(R, r
−1) > 0 such that for all ` ∈ N0,

w`(t, x) ∈ D0 for all (t, x) ∈ (0, t̂`)× Td, where t̂` := min{t`, T1}.

Proof. The assertion is true for ` = 0 since, by construction, z0(x) ∈ D0 for all x ∈ Td. Let now
` ≥ 1. It follows from equation (4.8a) that, for all τ < t` ≤ t`−1,

‖∂t(w`)′‖Xs−1
τ
≤ C

(
‖w`−1‖Xs

τ
, ‖(w`)′‖Xs

τ
, R, r−1

)
≤ C0,
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where C0 = C0(R, r
−1), and we used inequalities (4.6)–(4.7) and the control (4.10)–(4.11). Hence,

for all t < t` and every i ∈ {1, . . . , n′},

‖w`i (t)− w`i (0)‖C(Td) ≤ tL1C0.

Here, L1 denotes the constant associated with the embedding Hs−1(Td) ↪→ C(Td). Thus, with the
choice T1 := LR/(2L1C0), we find that

|w`i (t, x)| ≤ |w`i (0, x)|+ tL1C0 ≤ LR + T1L1C0 =
3

2
LR < 2LR

for i = 1, . . . , n′ and all (t, x) ∈ (0, t̂`) × Td. Combined with inequalities (4.9), we deduce the
assertion.

Lemma 4.2 (Uniform bounds). For all ` ∈ N0, let t̂` = min{t`, T1}, where T1 > 0 denotes the
constant from Lemma 4.1.

(i) There exists F (t) = F (t, R, r−1) > 0 which is continuous on [0,∞)3 and non-decreasing in each
of its arguments such that for all ` ∈ N+,∫ t

0

‖∇w`n(τ)‖2Hsdτ ≤ F (t), t ∈ [0, t̂`−1). (4.12)

(ii) There exists T∗ = T∗(R, r
−1) > 0 such that t̂` > T∗ for all ` ∈ N.

Remark 4.3. We infer immediately from Lemma 4.2 and equations (4.8) a uniform bound on the time
derivative of the iterates: for all ` ∈ N+,

‖∂t(w`)′‖Xs−1
T∗
≤ C, ‖∂tw`n‖L2(0,T∗;Hs−1) ≤ C(T∗), (4.13)

where C and C(T∗) may depend on R and r−1.

Proof of Lemma 4.2. Let ` ∈ N and abbreviate, as before, w := w` and v := w`−1. We will always
suppose that t < t̂`−1, which guarantees that v(τ, x) ∈ D0 for all (τ, x) ∈ (0, t)×Td and ‖v‖Xs

t
≤

KR.

Re (i): For a multi-index α ∈ Nd
0 of order 0 ≤ |α| ≤ s, we differentiate (4.8b) by the spatial differential

operator ∂α:

∂t∂
αwn = div

(
a(v)∂α∇wn

)
+ div

(
[∂α, a(v)]∇wn

)
.

Testing this identity with ∂αwn, we obtain

1

2

d

dt
‖∂αwn‖2L2 + a1

∫
Td
|∂α∇wn|2dx ≤ C‖[∂α, a(v)]∇wn‖L2‖∂α∇wn‖L2 ,

and hence,

1

2

d

dt
‖∂αwn‖2L2 +

a1
2
‖∂α∇wn‖2L2 ≤ C(a1)‖[∂α, a(v)]∇wn‖2L2 .

Upon taking the sum over α, 0 ≤ |α| ≤ s, integrating in time and using inequalities (4.6)–(4.7) and
the Sobolev embedding Hs−1 ↪→ L∞, we arrive at

d

dt
‖wn‖2Hs + a1‖∇wn‖2Hs ≤ R2C(R, r−1)‖wn‖2Hs .
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Gronwall’s lemma implies that

‖wn(t)‖2Hs + a1

∫ t

0

‖∇wn‖2Hsdτ ≤ ‖wn(0)‖2Hs exp(tC(R, r−1)) (4.14)

for all t ∈ (0, t̂`−1). The rough bound (4.12) is a consequence of (4.14) and the initial condition
w|t=0 = z`, combined with the control (4.5) and the fact that the above argument holds for any
` ∈ N0.

Re (ii): In the following, we abbreviatew′α := ∂αw′. We first left-multiply (4.8a) by the matrix A0(v)−1,
differentiate the resulting identity by ∂α and subsequently left-multiply by A0(v). This gives

A0(v)∂tw
′
α = ∇vn · A1(v)∇w′α + A0(v)Rα, where

Rα :=
[
∂α,∇vn · Y(v)

]
∇w′ + ∂α

(
Yn(v)|∇vn|2

)
.

Next, we test this equation with w′α:

1

2

d

dt

∫
Td

(w′α)TA0(v)w′αdx−
∫
Td

(w′α)T
(
DA0(v)∂tv

)
w′αdx

=
1

2

∫
Td
∇vn ·

{
∇
(
(w′α)TA1(v)w′α

)
− (w′α)T

(
DA1(v)∇v

)
w′α
}

dx

+

∫
Td

(w′α)TA0(v)Rαdx.

Hence, after a rearrangement and an integration by parts in the second step,

1

2

d

dt

∫
Td

(w′α)TA0(v)w′αdx ≤ 1

2

∫
Td
∇vn · ∇

(
(w′α)TA1(v)w′α

)
dx

+
1

2

∫
Td

(
|∇vn||DA1(v)∇v|+ |DA0(v)∂tv|

)
|w′α|2dx+

∫
Td
|Rα||w′α|dx

.
∥∥|∆vn|+ |∇v|2 + |∂tv|

∥∥
L∞
‖w′α‖2L2 + ‖Rα‖L2‖w′α‖L2 ,

where the constant associated to the last inequality depends on R and r−1.

To proceed, we estimate the remainder term Rα using again inequalities (4.6)–(4.7), the bound
supt<t`−1

‖v‖Xs
t
≤ KR and the embedding Hs−1 ↪→ L∞:∑

|α|≤s

‖Rα‖L2 ≤
∑
|α|≤s

(
‖∇(∇vn · Y(v))‖L∞‖∇w′‖H|α|−1

+ ‖∇(∇vn · Y(v))‖H|α|−1‖∇w′‖L∞ + ‖∂α
(
Yn(v)|∇vn|2

)
‖L2

)
.
(
‖∇vn‖Hs + 1

)(
‖∇w′‖Hs−1 + 1

)
.

To estimate the time derivative ∂tv, we use the equation for v = w`−1; i.e. (4.8) with ` replaced by
`− 1 supposing that ` ≥ 2 (if ` = 1, then ∂tv ≡ 0 and there is nothing to show). This gives

‖∂tv
∥∥
L∞
≤ ‖∂tvn

∥∥
L∞

+ ‖∂tv′
∥∥
L∞
. ‖∆vn‖Hs−1 + 1 . ‖∇vn‖Hs + 1.

In combination, we infer for ν(t) := ‖∇vn(t)‖Hs+1 and C1 = C1(R, r
−1) that

d

dt

∑
|α|≤s

∫
Td

(wα
′)TA0(v)w′αdx ≤ C1ν(t)‖w′(t)‖2Hs + C1ν(t), (4.15)
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where we used the elementary estimate ρ . ρ2 + 1.

Taking into account the equivalence (cf. (4.2) and Lemma 4.1)

‖w′‖2Hs ∼
∑
|α|≤s

∫
Td

(w′α)TA0(v)w′αdx

with associated constants λ1 and Λ1, and Gronwall’s inequality, we deduce a bound of the form

λ1‖w′(t)‖2Hs ≤
(
Λ1‖w′(0)‖2Hs +

√
tβ
)

exp(
√
tβ), where (4.16)

β :=

(∫ t

0

‖∇vn‖2Hsdτ

)1/2

C1 +
√
tC1.

Recalling (4.12), adding inequalities (4.14) and (4.16), inserting the initial value w|t=0 = z` and
recalling definition (4.3) of K , we infer the bound

‖w(t)‖2Hs ≤ 2
Λ1

λ1
R2 < (KR)2

for all t ∈ [0, T∗], provided that T∗ ∈ (0, t̂`−1) (depending on R and r−1) is small enough. This
implies that t̂` > T∗, and inductively we infer (ii).

4.4 Convergence

We show that the approximate solutions converge to a strong solution of system (2.1) as `→∞.

Lemma 4.4 (Convergence). There exists a solution w = (w′, wn) : [0, T∗] × Td → D0 to sys-
tem (2.1) in (0, T∗)× Td satisfying w|t=0 = win and the regularity

w ∈ L∞(0, T∗;H
s) ∩ Cw([0, T∗];H

s), wn ∈ L2(0, T∗;H
s+1), (4.17a)

∂twn ∈ L2(0, T∗;H
s−1), ∂tw

′ ∈ L∞(0, T∗;H
s−1) (4.17b)

such that, as `→∞,

w` → w in Xσ
T∗ for every σ < s, (4.18a)

w`(t) ⇀ w(t) in Hs uniformly in t ∈ [0, T∗], (4.18b)

w`n ⇀ wn in L2(0, T∗;H
s+1), (4.18c)

∂tw
`
n ⇀ ∂twn in L2(0, T∗;H

s−1), (4.18d)

∂t(w
`)′

∗
⇀ ∂tw

′ in L∞(0, T∗;H
s−1). (4.18e)

As a consequence,

wn ∈ C([0, T∗];H
s), w′ ∈ C1([0, T∗]× Td), (4.19a)

∂twn, ∇2wn ∈ L2(0, T∗;C(Td)). (4.19b)

Proof. We split the proof into several steps.
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Step 1. We assert that there exists a function p : N+ → R+ of at most polynomial growth such that
for all ` ∈ N+,

N`+1
T∗
≤ 2−`p(`) + 2−1N`T∗ , where (4.20)

N`T∗ := sup
t∈(0,T∗)

‖w`(t)−w`−1(t)‖L2 + ‖∇(w`n−w`−1n )‖L2(0,T∗;L2(Td)).

This estimate is the key point of the proof. To verify the assertion, we subtract the equations for two
subsequent iterates, yielding

A0(w
`)∂t(w

`+1 − w`)′ = ∇w`n · A1(w
`)∇(w`+1 − w`)′ + F`,

∂t(w
`+1
n − w`n) = div

(
a(w`)∇(w`+1

n − w`n)
)

+G`,

where

F` = Vn(w`)|∇w`n|2 − Vn(w`−1)|∇w`−1n |2
(
A0(w

`)− A0(w
`−1)

)
∂t(w

`)′

+
(
∇w`n · A1(w

`)−∇w`−1n · A1(w
`−1)

)
∇(w`)′,

G` = div
(
(a(w`)− a(w`−1))∇w`n

)
.

Energy estimates similar to those in the proof of Lemma 4.2 yield the following stability estimates for
the hyperbolic and the parabolic components, respectively:

1

2

d

dt
‖A0(w

`)1/2(w`+1−w`)′‖2L2 (4.21)

.
(
1 + ‖∂tw`n‖Hs−1 + ‖∆w`n‖Hs−1

)
‖(w`+1−w`)′‖2L2

+
(
‖w`−w`−1‖L2 + ‖∇(w`n−w`−1n )‖L2

)
‖(w`+1−w`)′‖L2 ,

1

2

d

dt
‖w`+1

n − w`n‖2L2 +
a1
2
‖∇(w`+1

n − w`n)‖2L2 . ‖w` − w`−1‖2L2 (4.22)

with associated constants depending on R and r−1. Let us now define the quantity

Q`(ϕ, ψ) = ‖A0(w
`)1/2(ϕ− ψ)′‖2L2 + ‖ϕn − ψn‖2L2 .

It satisfies Q`(ϕ, ψ) ∼ ‖ϕ− ψ‖2L2 for all `.

We add (4.21) and (4.22) and use Young’s inequality to find for any δ ∈ (0, 1] that

d

dt
Q`(w

`+1, w`) + a1‖∇(w`+1
n − w`n)‖2L2

≤
(
Cδ + C‖∂tw`n‖Hs−1 + C‖∆w`n‖Hs−1

)
Q`(w

`+1, w`)

+ C Q`−1(w
`, w`−1) + δ‖∇(w`n − w`−1n )‖2L2 .

Invoking the Gronwall lemma, inserting the bounds (4.12)–(4.13) and applying (4.2), we conclude that

n`+1(t) ≤ CT∗ exp(Cδt)
(
‖w`+1(0)−w`(0)‖L2 + δn`(t)

)
, where

n`(t) := ‖w`(t)− w`−1(t)‖L2 +

(∫ t

0

‖∇(w`n − w`−1n )‖2L2dτ

)1/2

for all t ∈ [0, δ] and any δ ∈ (0, T∗], where CT∗ = C(
√
T∗F (T∗)) with a function F as in (4.12).
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Let us now fix δ = min{1/(4CT∗), T∗}. By construction, ‖w`+1(0)−w`(0)‖L2 . 2−`R (cf. (4.4)).
If we choose t∗ = t∗(δ, R, r

−1) ∈ (0, δ] so small that exp(Cδt∗) ≤ 2, we deduce an estimate
of the form (4.20) with T∗ replaced by t∗ and with p(`) ≡ c = const. It follows by recursion that
N`+1
t∗ ≤ 2−`c` + 2−`N1

t∗ and as a consequence ‖w`+1(t∗)−w`(t∗)‖L2 ≤ 2−`C`. Using this decay
property in ` at the new initial time t∗, we can repeat the above argument on the interval [t∗, 2t∗] and
obtain an estimate of the form (4.20) with T∗ replaced by 2t∗ and with p(`) ≡ C`. Iterating for a total
number of i := bT∗/t∗c times, we infer (4.20) with the time T∗ and p(`) ≡ C`i.

Step 2: Inequality (4.20) implies that
∑

`∈N N
`
T∗ < ∞. Hence, the sequence (w`+1−w`)` ⊂ X0

T∗

is summable, and by completeness, there exists w ∈ X0
T∗ such that w` → w in X0

T∗ as ` →
∞. The uniform bounds in Lemma 4.2 and Remark 4.3, combined with classical compactness and
interpolation arguments, further yield the convergence (4.18) as well as the regularity (4.17). We omit
the details, since an exposition of such arguments in a similar context has been provided, e.g., in [1,
Chapter 10.1.1] and [22, p. 39–40].

Step 3: We assert that the limit w further has the regularity (4.19) and is a strong solution. Indeed,
the regularity (4.19a) is an immediate consequence of (4.17b). Next, the convergence (4.18a) allows
us to pass to the limit ` → ∞ in equation (4.8a) (where v = w`−1 and w = w`), giving in particular
∂tw

′ ∈ C([0, T∗] × Td) and showing that w′ ∈ C1([0, T∗] × Td) is a classical solution to (4.8a).
Finally, the convergences (4.18a), (4.18c) and (4.18d) imply that equation (4.8b) is fulfilled in the strong
sense, and the regularity (4.19b) follows from the embedding Hs−1 ↪→ C(Td).

4.5 Regularity

To deduce the temporal continuity ofw′ with values inHs, we need some basic uniqueness properties.

Lemma 4.5 (Uniqueness). Let T > 0 and s > d/2 + 1. Then the following holds:

(i) For a given initial value win, there exists at most one strong solution w of system (4.1) in
(0, T )×Td satisfying the regularity (4.17) (with T∗ replaced by T ), the initial conditionw|t=0 =
win and min[0,T ]×Td wn > 0.

(ii) For fixed strictly positive wn satisfying the regularity (4.17b) and a given initial condition (win)′,
the hyperbolic subsystem (4.8a) with the coefficient function wn has at most one classical solu-
tion w′.

Proof. The assertions can be deduced from energy estimates similar to those in the proof of Lemma 4.4.

Lemma 4.6. The solution w constructed in Lemma 4.4 satisfies w′ ∈ C([0, T∗];H
s).

Proof. In the proof we closely follow [22, Theorem 2.1 (b)]. Since we already know the weak continuity
w′ ∈ Cw([0, T∗];H

s), it is sufficient to show the continuity of the norm in the Hilbert space Hs. We
first show the continuity at t = 0. Equip Hs(Td;Rn′) with the equivalent norm

‖v‖Ĥs :=

(∑
|α|≤s

∫
Td
∂αv

TA0(w|t=0)∂αvdx

)1/2

.
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It then suffices to show that

lim sup
t↓0

‖w′(t)‖Ĥs ≤ ‖w′(0)‖Ĥs . (4.23)

To prove this inequality, we recall estimate (4.15), valid for w = w` and v = w`−1. Thanks to
the uniform bounds in Lemma 4.2, the right-hand side of (4.15) can be estimated above by an `-
independent function f ∈ L2([0, T∗]; [0,∞)) so that∑

|α|≤s

∫
Td
∂α(w`)′(t)TA0(w

`−1(t))∂α(w`)′(t)dx

≤
∑
|α|≤s

∫
Td
∂α((z`)′)TA0(z

`−1)∂α(z`)′dx+

∫ t

0

f(τ)dτ

for all t ∈ [0, T∗] and ` ∈ N+.

It follows from the convergence properties in Section 4.4 and a weak lower semi-continuity argument
that, in the limit `→∞,∑

|α|≤s

∫
Td
∂αw

′(t)TA0(w(t))∂αw
′(t)dx (4.24)

≤
∑
|α|≤s

∫
Td
∂αw

′(0)TA0(w(0))∂αw
′(0)dx+

∫ t

0

f(τ)dτ.

Recalling the weak continuity in (4.17a) and taking the lim supt↓0, we find (4.23), where we used the

fact that limt↓0 ‖A0(w(0)) − A0(w(t))‖C(Td) = 0 to recover the Ĥs-norm on the left-hand side
of (4.23).

The right-continuity of w′ with values in Hs at general t̂ ∈ [0, T∗) follows by applying the above result
to the time-shifted problem with initial condition w(t̂) ∈ Hs and exploiting the fact that τ 7→ w(t̂+ τ)
is the unique solution emanating from w(t̂).

It remains to show the left-continuity of w′. To this end, we consider the hyperbolic subsystem with
the fixed coefficient function wn and apply the above argument to the time-reversed problem. More
precisely, for establishing an analogue of the crucial Hs energy estimate (4.24), one possibility is to
use a Picard iteration for the hyperbolic subsystem, while approximating the coefficient function wn
by the smooth functions w`n from Lemma 4.4. The uniqueness property in Lemma 4.5 (ii) then implies
that the limiting function coincides with the time-reversed version of w′.

To complete the proof of Theorem 2.3, it remains to show the regularity

∂twn,∇2wn ∈ Cloc((0, T∗]× Td). (4.25)

To this end, let β ∈ (0,min{s− d/2− 1, 1}). The regularity w′ ∈ C([0, T∗];H
s) and the Sobolev

embedding imply that w′ ∈ C([0, T∗];C
1,β(Td)). Combined with the space-uniform temporal Lips-

chitz regularity ofw′, i.e. ∂tw′ ∈ C([0, T∗]×Td), we infer from [19, Chapter II, Lemma 3.1] a temporal
Hölder regularity of the gradient:

∇w′ ∈ Cβ/(1+β)([0, T∗];C(Td)). (4.26)
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Now, we can use classical regularity results for quasilinear parabolic equations in divergence form,
wherew′ is viewed as a given function: Thanks to (4.26),∇w′ satisfies a space-time Hölder condition,
which makes Theorem 5.4 in [19, Chapter V] accessible and gives us an interior space-time Hölder a
priori estimate for ∂twn and ∇2wn. To conclude (4.25) from the a priori control, we approximate w′

by smooth functions whose spatial gradient is uniformly bounded in some space-time Hölder norm,
and exploit the uniqueness of regular solutions to the parabolic equation in wn (with w′ acting as a
fixed parameter). As a consequence, ∂twn and ∇2wn satisfy a space-time Hölder condition away
from t = 0, which entails (4.25).

4.6 Original variables

We now conclude the existence of classical solutions for the degenerate cross-diffusion system (Rk1).

Proof of Theorem 2.4. Without loss of generality, after rescaling time, relabelling components and
rescaling ui 7→ aiui, we can assume that k1 ≤ . . . ≤ kn′ ≤ kn = 1 and ai = 1 for all i. It then
suffices to consider the following two cases.

Case 1: Let k1 ≤ . . . ≤ kn′ < kn. Then the assertion is a consequence of Theorems 2.2 and 2.3.
The time of existence T can be bounded below by a positive constant that depends on the datum uin

only through ‖win‖Hs and minTd w
in
n , where win = Φ(uin) with Φ denoting a diffeomorphism as in

Theorem 2.2 with the property that wn = Φn(u) = p(u).

Case 2: There exists a minimal m ∈ {1, . . . , n′} such that ki = 1 for i = m, . . . , n. In this case,
we define ũi := ui for 1 ≤ i ≤ m − 1 and ũm := um + · · · + un. The system formulated in
terms of ũ satisfies the hypotheses of Case 1 with n replaced by m, which provides a local strong
solution ũ and in particular a velocity field ṽ = −∇

∑m
j=1 ũj . Subsequently, we determine the unique

solutions to the linear continuity equations for um, . . . , un with the fixed velocity field ṽ, so that u =
(ũ1, . . . , ũm, um+1, . . . , un) is the desired classical solution to (Rk1).

5 The general system (B) with incomplete diffusion

In this section, we turn to the general PDE system (B) (see page 7) for symmetric positive semidefinite
matrices B = (bij) ∈ Rn×n with rank r ∈ {1, . . . , n}. In particular, we aim to bring equations (B)
into a normal form that makes them accessible to the energy methods from Section 4.

In the following, we use the notation D(v) := diag(v1, . . . , vn) ∈ Rn×n for v = (vi) ∈ Rn.
Moreover, we use the convention f(v) := (f(v1), . . . , f(vn))T for a function f : R → R and a
vector v ∈ Rn.

5.1 Preliminary consideration: the full-rank case

We first note that for symmetric strongly parabolic PDE systems, local strong solutions to the Cauchy
problem in suitable function spaces can be obtained by means of basic energy estimates in the
spirit of Section 4. More generally, initial-boundary value problems may for instance be treated us-
ing Schauder-type estimates as in [10].

System (B) can be symmetrised in several ways. For instance, following Kawashima and Shizuta [17],
we may consider a change to entropy variables ṽi = log ui for the strictly convex Shannon entropy. In
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this way, we obtain the symmetric system

D(eṽ)∂tṽ = div
(
D(eṽ)BD(eṽ)∇ṽ

)
,

which is strictly parabolic if and only if rankB = n. Likewise, we may use the quadratic Rao entropy
H(u) = 1

2
uTBu, which is strictly convex if B possesses full rank. In this case, we find B−1∂tv =

div(D(u)∇v), u := B−1v. Of course, the classical inversion of B is only possible for rankB = n.
Alternatively, equation (B) may be put in symmetric form directly by means of the symmetriserB giving
B∂tu = div(BD(u)B∇u), where we used the fact that B is constant.

In order to find a symmetrisation suitable to conveniently treat the rank-deficient case, we use again the
fact thatB is constant, but somewhat modify the previous alternative. To this end, denote by ξ1, . . . , ξn

an orthonormal basis of eigenvectors of B with the corresponding vector of positive eigenvalues λ =
(λ1, . . . , λn) and define wk := ξk · u for k = 1, . . . , n. With Oij = ξij for i, j = 1, . . . , n, we obtain
BOT = OTD(λ) and u = OTw. Hence, we can write (B), i.e. ∂tu = div(D(u)B∇u), in terms of
the variable w = (w1, . . . , wn) as

D(λ)∂tw = D(λ)O div(D(u)BOT∇w) = div
(
D(λ)OD(u)OTD(λ)∇w

)
.

IfB possesses rank n, these equations define a symmetric strongly parabolic system forw as long as
u remains positive componentwise. We further develop this approach in the next paragraph to derive
a normal form in the case rankB = r with 1 ≤ r ≤ n.

5.2 Normal form of symmetric hyperbolic–parabolic type

We suppose that rankB = r ∈ {1, . . . , n− 1}. To ease the notation, we partition the set of indices
{1, . . . , n} into I = {1, . . . , n− r} and II = {n− r + 1, . . . , n}. We choose an orthonormal basis
ξ1, . . . , ξn of eigenvectors of B with corresponding eigenvalues λi = 0 for i ∈ I and λi > 0 for
i ∈ II, and further introduce the orthogonal matrix Oij = ξij for i, j = 1, . . . , n and the rectangular
blocks

Qij := ξij for i ∈ I, Pij := ξij for i ∈ II, j = 1, . . . , n. (5.1)

For later reference, we note the elementary matrix identities

QQT = In−r, PPT = Ir, QTQ + PTP = In, PQT = 0, QPT = 0. (5.2)

Left-multiplying system (B) by (ξk)T, k ∈ II, the functions wn−r+1, . . . , wn defined via wk := ξk · u
satisfy the parabolic system

λk∂twk = div

(∑
`∈II

αk`(u)∇w`
)
, where (5.3)

αk`(u) = D(u)(λkξ
k) · (λ`ξ`) for all k, ` ∈ II.

Moreover, multiplying (B) by ξki /ui for k ∈ I, summing over i = 1, . . . , n and using the fact that ξk is
in the kernel of B yields for wk := ξk · log u the first-order equation

∂twk =
n∑

i,j=1

ξki bij∇ log ui · ∇uj for all k ∈ I. (5.4)
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This leads us to propose the change of variables Φ(u) = w defined via

wk :=

{
ξk · log u for k ∈ I,

ξk · u for k ∈ II.
(5.5)

With wI := (w1, . . . , wn−r) and wII := (wn−r+1, . . . , wn), we then have wI = Q log u and wII =
Pu. We next prove a diffeomorphism property for this change of variables.

Lemma 5.1. The map Φ is smoothly invertible between Rn
+ and D := Rn−r × PRn

+.

Proof. It follows from definition (5.5) and the identity log ui = (OTO log u)i that

log ui =
n∑
k=1

log u · ξkξki =
∑
k∈I

wkξ
k
i +

∑
k∈II

log u · ξkξki for i = 1, . . . , n,

w` =
n∑
i=1

ξ`iui =
n∑
i=1

ξ`i exp

(∑
k∈I

wkξ
k
i +

∑
k∈II

log u · ξkξki
)

for ` ∈ II. (5.6)

We assert that for arbitraryw ∈ D, the last line defines the r components log u·ξj , j ∈ II, implicitly as
functionsXj(w). Indeed, we can write the algebraic system (5.6) in the form F (X;w1, . . . , wn) = 0,
where

F`(X;w) :=
n∑
i=1

ξ`i exp

(∑
k∈I

wkξ
k
i +

∑
k∈II

Xkξ
k
i

)
− w`, ` ∈ II.

It is readily seen that F (X;w) = ∂XG(X;w) for G given by

G(X; w) := exp
(
QTwI + PTX

)
· 1− wII ·X,

where we abbreviated 1 := (1, . . . , 1)T. Moreover, we compute for j, ` ∈ II,

∂XjF` =
n∑
i=1

ξ`i ξ
j
i exp

(∑
k∈I

wkξ
k
i +

∑
k∈II

Xkξ
k
i

)
=

n∑
i=1

ξ`i ξ
j
i ui,

that is ∂XF = PD(u)PT. Thus, ∂XF is symmetric positive definite, and X 7→ G(X;w) is strictly
convex on Rr. The equations F (X;w) = 0 possess a unique solution X = X(w) if and only
if X is the unique global minimiser of G(·;w). To prove its existence, a sufficient condition is that
G(X;w) → +∞ for |X| → +∞. To establish this property, recall that for wII ∈ P(R+)n, there
exists ζ ∈ Rn

+ such that wII = Pζ , and then

G(X;w) := exp
(
QTwI + PTX

)
· 1− ζ · PTX.

For |X| → +∞, we must also have |PTX| → +∞ and we distinguish two cases:
If maxi=1,...,n(PTX)i → +∞, the exponential term dominates and G(X;w) tends to infinity. Oth-
erwise, if maxi=1,...,n(PTX)i is bounded above, then mini=1,...,n(PTX)i → −∞ as |X| → +∞.
The exponential term is bounded, but since mini=1,...,n ζi > 0, we see that −ζ · PTX → +∞, and
G(X;w) again tends to infinity. Thus, we may recover u ∈ Rn

+ from w ∈ D via

ui = exp

(∑
k∈I

wkξ
k
i +

∑
k∈II

Xk(w)ξki

)
=: Ψi(w), i = 1, . . . , n. (5.7)

This completes the proof.
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For later reference, we note the formula

(∂XF )−1 = P[D(u)]−1PT − P[D(u)]−1QT(QD(u)−1QT)−1QD(u)−1PT, (5.8)

which can be verified using (5.2), as well as the identity

∂wmX(w) = −(∂XF )−1PD(u)ξm, m ∈ I, (5.9)

which follows from 0 = ∂wm(F (X;w)) = ∂XF∂wmX + ∂wmF = ∂XF∂wmX + PD(u)ξm.

We are now in a position to derive an appropriate normal form for system (B). We continue to denote
by Ψ the inverse of the diffeomorphism Φ.

Proposition 5.2 (Normal form). A vector u = (u1, . . . , un) of positive functions is a classical solution
to (B) if and only if the transformed variables w = (wI, wII) defined via wI = Q log u and wII = Pu
satisfy, in the classical sense,

AI
0(w)∂twI =

d∑
ν=1

AI
1(w, ∂xνwII)∂xνwI + f I(w,∇wII), (5.10a)

DII(λ)∂twII = div(AII
1 (w)∇wII), (5.10b)

where
AII

1 (w) = DII(λ)PD(Ψ(w))PTDII(λ),

DII(λ) = diag(λn−r+1, . . . , λn) and D(Ψ(w)) := diag(Ψ1(w), . . . ,Ψn(w)). The maps

AI
0 : D → R(n−r)×(n−r)

spd , AI
1 : D × Rr → R(n−r)×(n−r)

sym , f I : D × Rr → Rn−r

are smooth, and AI
1 is linear in the second argument. More specifically,

AI
0(w) =

(
QD(Ψ(w))−1QT

)−1
,

AI
1(w, ∂xνwII) = QΣ(Ψ(w))D(Ψ(w))−1D[PTλ∂xνwII]Σ(Ψ(w))QT,

whereD[PTλ∂xνwII] is the diagonal matrix with diagonal entries given by the vectorPTDII(λ)∂xνwII.
Moreover,

Σ(Ψ(w)) := QT
(
QD(Ψ(w))−1QT

)−1
Q, f I(w,∇wII) = AI

0(w)g(w,∇wII),

and g = (g1, . . . , gn−r) is defined in (5.13).

Proof. We differentiate (5.7) to find that

∂wm log ui = ξmi +
∑
k∈II

∂wmXk(w)ξki , m ∈ I. (5.11)

Introducing µi :=
∑n

j=1 bijuj , it follows that (5.4) is equivalent to

∂twk =
n∑
i=1

ξki∇ log ui · ∇µi =
n∑
i=1

ξki
∑
m∈I

∂wm log ui∇wm · ∇µi + gk, k ∈ I, (5.12)
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where∇µi =
∑

j∈II λjξ
j
i∇wj does not depend on the gradient of the hyperbolic variables, and

gk = gk(w,∇wII) :=
n∑
i=1

ξki
∑
m∈II

∂wm log ui∇wm · ∇µi (5.13)

is a quadratic expression in the second argument. Thus, for ν = 1, . . . , d, the critical term multiplying
∂xνwm in equations (5.12) equals

Zkm = Zkm(w, ∂xνwII) :=
n∑
i=1

ξki ∂wm log ui∂xνµi

=
n∑
i=1

ξki

(
ξmi +

∑
j∈II

∂wmXj(w)ξji

)
∂xνµi, k,m ∈ I, (5.14)

where the last equality follows from (5.11). Using identity (5.9), we have

ui
∑
j∈II

∂wmXj(w)ξji = ei ·
[
D(u)PT∂wmX(w)

]
= −ei ·

[
D(u)PT(∂XF )−1PD(u)ξm

]
,

where ei is the standard ith unit vector of Rn. We combine this result with (5.14):

Zkm =
n∑
i=1

ξki ui

(
ξmi +

∑
j∈II

∂wmXj(w)ξji

)
∂xνµi
ui

=
n∑
i=1

ξki e
i ·
[(
D(u)−D(u)PT(∂XF )−1PD(u)

)
ξm
]∂xνµi
ui

=
n∑
i=1

ξki e
i · (Σ(u)ξm)

∂xνµi
ui

, (5.15)

where Σ(u) := D(u) − D(u)PT(∂XF )−1PD(u). A computation using (5.8) and the third identity
in (5.2) show that

Σ(u) = QT
(
Q[D(u)]−1QT

)−1
Q.

The symmetric positive definite matrix AI
0(w) ∈ R(n−r)×(n−r), given by

AI
0(w) = QΣ(u)QT =

(
QD(u)−1QT

)−1
, u := Ψ(w), (5.16)

is our candidate for the symmetriser. We note that the identity QQT = In−r and the form of Σ(u)
imply that

AI
0(w)Q = QQT

(
QD(u)−1QT

)−1
QQTQ = QQT

(
QD(u)−1QT

)−1
Q = QΣ(u). (5.17)

For `,m ∈ I and ν = 1, . . . , d, we define(
AI

1(w, ∂xνwII)
)
`m

:=
∑
j∈I

(AI
0(w))`jZjm(u, ∂xνwII).
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Using (5.15) and (5.17), we compute(
AI

1(w, ∂xνwII)
)
`m

=
n∑
i=1

∑
j∈I

(AI
0(w))`jQji

(
ei · (Σ(u)ξm)

)∂xνµi
ui

=
n∑
i=1

∑
j∈I

Q`jΣ(u)ji
(
ei · (Σ(u)ξm)

)∂xνµi
ui

=
n∑
i=1

(
ei · (Σ(u)ξ`)

)(
ei · (Σ(u)ξm)

)∂xνµi
ui

,

which is a symmetric expression in ` and m. In matrix notation, we have

AI
1(w, ∂xνwII) = QΣ(u)D(u)−1D[PTλ∂xνw]Σ(u)QT.

Hence, after left-multiplication by AI
0(w), equations (5.12) turn into the system

AI
0(w)∂twI =

d∑
ν=1

AI
1(w, ∂xνwII)∂xνwI + f I(w,∇wII), (5.18)

whose principle part is symmetric and where f I(w,∇wII) := AI
0(w)g(w,∇wII). Combining (5.3)

and (5.18), we have obtained a composite symmetric hyperbolic–parabolic normal form as asserted.

Remark 5.3. In some cases, we may derive explicit expressions for the symmetriser. For instance, if
r=1 and bij=kikj , formula (5.16), the definition of Σ(u) and the fact that P=± (

∑n
i=1 k

2
i )
−1/2kT ∈

R1×n lead to

AI
0(w) = Q

(
D(u)− D(u)k ⊗D(u)k∑n

i=1 k
2
i ui

)
QT, u := Ψ(w),

where k = (k1, . . . , kn)T.

Remark 5.4. In Section 3.2, we have obtained a different symmetriser, which takes a simple diag-
onal form. On the other hand, the corresponding transformation (3.1) was not constructed using an
orthonormal system. This shows that other choices for the basis (ξ1, . . . , ξn) might be practically rel-
evant, at least in the rank-one case. In a similar spirit, the observations in Appendix A show that more
involved nonlinear multipliers might also be considered.

5.3 Local classical solutions in the general case

We recall from the preceding section that the change of variables Φ maps Rn
+ diffeomorphically onto

D := Rn−r × PRn
+. For wII ∈ PRn

+, we define

ρ(wII) := sup
Pζ=wII

inf
i=1,...,n

ζi > 0.

Theorem 5.5 (Local classical solutions). Let s > d/2 + 1 and win = (wI, wII) ∈ Hs(Td) with
ρ̄ := minTd ρ(win

II ) > 0. Then there exists a time T = T (‖win‖Hs , ρ̄) > 0 and a unique function
w = (wI, wII) ∈ C([0, T ];Hs) with inf(0,T )×Td ρ(wII) ≥ ρ̄/2 and

∂twI ∈ C([0, T ];Hs−1), wI ∈ C1([0, T ]× Td),
∂twII, ∇2wII ∈ L2(0, T ;Hs−1(Td)) ∩ Cloc((0, T ]× Td)

that is a classical solution of system (2.1) in (0, T )× Td and satisfies w(0, ·) = win.

DOI 10.20347/WIAS.PREPRINT.2967 Berlin 2022



Cross-diffusion systems with incomplete diffusion 25

Proof. By virtue of Theorem 2.5, we have reduced the question of the local existence of strong so-
lutions to system (B) to that of constructing strong solutions to system (5.10). For the latter, we may
essentially follow the proof of Theorem 2.3, and we only describe the necessary modifications. The
main point is that for r > 1, we no longer have a maximum principle for the parabolic problem. In
particular, we need to ensure that, on a short time interval, the approximate solutions stay in an appro-
priate domain of uniform parabolicity of the parabolic subsystem. We therefore modify the definition of
t` ∈ (0, t`−1], now requiring it to be the maximal time less than or equal to t`−1 such that the smooth
solution w` to the linear approximate problem analogous to (4.8) satisfies

‖w`‖Xs
t
< KR and inf

(0,t)×Td
ρ(w`II) >

ρ̄

4
for all t < t`.

In the next step, we derive an estimate analogous to that in Lemma 4.2 (i). Thanks to the relatively
simple symmetric form (5.10b) of the quasilinear parabolic subproblem, this is achieved essentially in
the same way as in the proof of Lemma 4.2 (i). (Since the matrixDII(λ) multiplying ∂twII in (5.10b) is
constant, we may even bring the parabolic subsystem in a canonical form by the change of variables
wII 7→ DII(λ1/2)wII.) We deduce an estimate of the form∫ t

0

‖∇w`II(τ)‖2Hsdτ ≤ C(R, ρ̄) for all t ∈ (0,min{t`−1, 1}), ` ∈ N+. (5.19)

Let us emphasise that we do not yet need the improved control of the values to conclude (5.19).

At this stage, we are in a position to derive a refined control of the values substituting for Lemma 4.1.
For the hyperbolic components wI, we proceed as before. For the parabolic components, we rely on
the following estimate for all 0 ≤ t ≤ min{t`, 1}

‖w`II(t)− w`II(0)‖C(Td) ≤ C

∫ t

0

‖∂tw`II(τ)‖Hs−1dτ ≤
√
tC(R, ρ̄),

where in the second step we used the bound (5.19) in conjunction with the equation in order to control
∂tw

`
II by suitable spatial derivatives. Thus, by choosing T1 ∈ (0, 1] small enough depending on ρ̄ and

R, we can ensure that

w`(t, x) ∈ D0 :=

{
w̃ ∈ D : |w̃| < 2LR and ρ(w̃II) >

ρ̄

2

}
for all (t, x) ∈ (0, t̂`)× Td and ` ∈ N, where t̂` := min{t`, T1}. At this point, we may proceed with
the proof of the lower bound t̂` > T∗ > 0 along the lines of the proof of Lemma 4.2 (ii).

The convergence in a weaker norm and regularity results analogous to those in Lemma 4.4 can be
deduced as in Section 4.4. The regularity wI ∈ C([0, T∗];H

s) is obtained in the same way as in the
proof of Lemma 4.6.

It remains to prove the regularity

∂twII, ∇2wII ∈ Cloc((0, T∗]× Td). (5.20)

As in the proof of (4.25), we show that the gradient∇wI of the hyperbolic component satisfies a space-
time Hölder condition. Moreover, since wII ∈ W 1,2([0, T∗];H

s−1), this component also satisfies a
space-time Hölder condition. Applying the linear theory for strongly parabolic systems in divergence
form (see for instance the Schauder-type estimate in [10, Theorem 2.1]), we find that∇wII and hence
∇w satisfy a space-time Hölder condition. Thus, the coefficient matrix AII

1 (w) of the parabolic sub-
system is sufficiently regular to deduce, by invoking once more classical linear theory, interior Hölder
regularity of ∂twII and∇2wII, which implies (5.20). This completes the proof of Theorem 5.5.
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Theorem 2.6 is a consequence of Theorem 5.5 and Proposition 5.2 (with Ψ = Φ−1 as in Lemma 5.1).
The regularity of Bu asserted in Theorem 2.6 follows from the identity

Bu =

(
Q
P

)T(
0

DII(λ)wII

)
,

combined with the regularity of wII obtained in Theorem 5.5.

A Alternative transformations

A.1 A general ansatz

Here, we briefly sketch an ansatz towards a characterisation of the set of possible diffeomorphisms
w = Φ(u), u ∈ D̂ := Rn

+, leading to a normal form of hyperbolic–parabolic type. For simplicity, we
restrict to the rank-one case r = 1 and abbreviate n′ := n − 1. As in Section 5, we introduce the
partition I = {1, . . . , n′} and II = {n}, write (wI, wII) = (ΦI(u),ΦII(u)) and use the notational
conventions introduced above. We further set Ψ = Φ−1.

For the hyperbolic components, the essential condition for cancelling the second-order derivatives
is DΦI(u)D(u)B ≡ 0. For problem (1.3), i.e. with B = k ⊗ a for vectors k = (k1, . . . , kn)T,
a = (a1, . . . , an)T, ki, ai > 0, this amounts to requiring that DΦI(u)D(k)u = 0 ∈ Rn′ . Hence, the
map ΦI must be constant along the integral curves γu∗(t) = D(ekt)u∗, t ∈ R, u∗ ∈ D̂, of the vector
field V (u) := D(k)u. Any candidate mapping must thus satisfy

ΦI(γu∗(t)) = c(u∗) for all t ∈ R, u∗ ∈ D̂. (A.1)

Notice that for the transformation in Section 5, this condition is fulfilled with

ΦIi(γu∗(t)) =
∑
j

Qij log(γu∗,j(t)) =
∑
j

Qij(kjt+ log(u∗,j)) =
∑
j

Qij log(u∗,j),

where we used the fact that the rows of the matrix Q defined in (5.1) are orthogonal to k. For the
transformation (3.1), property (A.1) follows from a similar calculation. In Section A.2, we will briefly
discuss a different change of coordinates that is subject to (A.1).

With the choice wII := a · u as the diffusive variable and under condition (A.1), system (Rk1) in the
new variables w = Φ(u) takes the form

∂twI = ∇wII · Y(w)∇wI + f(w,∇wII),

∂twII = div
(
a(w)∇wII

)
,

where a(w) =
∑

i aiuiki and

Y(w) = DΦI(u)D(k)DwI
Ψ(w),

f(w,∇wII) = DΦI(u)D(k)DwII
Ψ(w)|∇wII|2,

and we recognise the structure of (2.1).

We note that Y can be written as

Y(w) = DuIΦI(u)DI(k)DwI
ΨI(w) + DuIIΦI(u)knDwI

ΨII(w),

where DI(k) := diag(k1, . . . , kn′). If DuIΦI(u) is diagonal, it commutes with DI(k), and hence the
expression for Y(w) can be simplified, using the fact that DΦI(u)DwI

Ψ(w) = In′ in the first term on
the right-hand side. This is essentially the technique used in Section 3. The following section provides
an example where DuIΦI(u) takes a more complicated form.
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A.2 An example

Consider the system

∂tui = div(kiui∇(k · u)),

which falls into the setting of (Rk1) with the choice a := k. We then let D̂ := Rn
+, D1 := E × R+,

E := {wI ∈ (0, 1)n
′
:
∑

i∈Iwi < 1} and define Φ : D̂ → D1 by

wi = Φi(u) =

{
1

L(u)
u
1/ki
i , 1 ≤ i ≤ n′,∑n

j=1 kjuj, i = n,
(A.2)

where L(u) :=
∑n

j=1 u
1/kj
j . Definition (A.2) readily shows that Φ fulfils condition (A.1). We observe

that in the special case where all ki equal (without loss of generality we may take ki = 1), the change
of variables (A.2) is more regular near zero and reduces to that used in [4].

We assert that Φ : D̂ → D1 is a diffeomorphism. For i ∈ I and j = 1, . . . , n, we compute

∂ujΦi(u) =
Φi(u)

kiui
δij − Φi(u)

u
1/kj
j

L(u)

1

kjuj
.

In particular, the (n′ × n′)-matrix DuIΦI is the sum of a diagonal and a rank-one matrix. Moreover,

DuIIΦI(u) = −a(u)ΦI(u), where a(u) =
u
1/kn
n

L(u)

1

knun
,

and DΦII(u) = kT. Using the formula det(M + ζ ⊗ ξ) = det(M) + ζT(cofM)ξ, we see that

det DuIΦI =
∏
`∈I

Φ`(u)

k`u`

(
1−

∑
j∈I

wj

)
> 0.

Similar calculations show that det DΦ > 0. The bijectivity of Φ from D̂ to D1 is also elementary to
verify, and we conclude the diffeomorphism property.

Again, let Ψ be the inverse of Φ. Using the following identities, involving L = L(u),

uj = (Lwj)
kj , j ∈ I, L =

(
1−

∑
`∈I

w`

)−1
u1/knn , wn =

∑
j∈I

kjL
kjw

kj
j + knun,

we compute

∂wiΨj(w) = kjuj

(
∂wiL

L
+

1

wj
δij

)
, j ∈ I, i = 1, . . . , n,

∂wiΨn(w) = knun

{
∂wiL

L
−
(

1−
∑
j∈I

wj

)−1
δiI

}
, i = 1, . . . , n,

∂wiL

L
= L

(
k2nu

1−1/kn
n − k2i u

1−1/ki
i

)( n∑
j=1

k2juj

)−1
, i ∈ I,

where δiI := 1 if i ∈ I and δnI := 0. Since the transformation (A.2) is still non-smooth as soon as
one of the densities vanishes, this change of variables does not lead to an improved local existence
theory for classical solutions compared to that based on (3.1).
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Remark A.1. In contrast to transformation (3.1), DuIΦI is not diagonal in the present case. An alter-
native splitting of Y such as

Y(w) = knIn′ + DuIΦI(D(k)−D(kn))DwI
ΨI

might therefore be favourable for a possible symmetrisation. Thus, it suffices to find a positive definite
matrix A0(w) ∈ Rn′×n′

sym such that the product A0(w)DuIΦI(D(k)−D(kn))DwI
ΨI is symmetric. A

computation yields

G(w)i` :=
(
DuIΦI(D(k)−D(kn))DwI

ΨI

)
i`

= (ki − kn)δi` − Φi(u)(k` − kn) + (ki − kn − λ(u))Φi(u)
∂w`L

L
,

where λ(u) =
∑

j∈I(kj − kn)Φj(u). We observe that G is a rank-two perturbation of a diagonal
matrix, which means that the question of symmetrisability is not trivial in general.

Acknowledgements

The first two authors are grateful to the organizers of the WIAS Days 2022, where some ideas for this
work were initiated. The second author would further like to thank Dr. Joachim Rehberg for helpful
comments.

References

[1] S. Benzoni-Gavage and D. Serre. Multidimensional hyperbolic partial differential equations. Ox-
ford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

[2] M. Bertsch, R. Dal Passo, and M. Mimura. A free boundary problem arising in a simplified tumour
growth model of contact inhibition. Interfaces Free Bound., 12(2):235–250, 2010.

[3] M. Bertsch, M. E. Gurtin, D. Hilhorst, and L. A. Peletier. On interacting populations that disperse
to avoid crowding: preservation of segregation. J. Math. Biol., 23(1):1–13, 1985.

[4] M. Bertsch, D. Hilhorst, H. Izuhara, and M. Mimura. A nonlinear parabolic-hyperbolic system for
contact inhibition of cell-growth. Differ. Equ. Appl., 4(1):137–157, 2012.

[5] D. Bothe, W. Dreyer, and P.-E. Druet. Multicomponent incompressible fluids – An asymptotic
study. ZAMM, 2021. Open access. http://doi.org/10.1002/zamm.202100174.

[6] L. Chen, E. S. Daus, and A. Jüngel. Rigorous mean-field limit and cross-diffusion. Z. Angew.
Math. Phys., 70(4):Paper No. 122, 21, 2019.

[7] C. Christoforou and A. E. Tzavaras. Relative entropy for hyperbolic-parabolic systems and appli-
cation to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal., 229(1):1–52,
2018.

[8] P.-E. Druet and A. Jüngel. Analysis of cross-diffusion systems for fluid mixtures driven by a
pressure gradient. SIAM J. Math. Anal., 52(2):2179–2197, 2020.

DOI 10.20347/WIAS.PREPRINT.2967 Berlin 2022



Cross-diffusion systems with incomplete diffusion 29

[9] K. O. Friedrichs and P. D. Lax. Systems of conservation equations with a convex extension. Proc.
Nat. Acad. Sci. U.S.A., 68:1686–1688, 1971.

[10] M. Giaquinta and G. Modica. Local existence for quasilinear parabolic systems under nonlinear
boundary conditions. Ann. Mat. Pura Appl. (4), 149:41–59, 1987.

[11] V. Giovangigli. Multicomponent flow modeling. Modeling and Simulation in Science, Engineering
and Technology. Birkhäuser Boston, Inc., Boston, MA, 1999.

[12] S. K. Godunov. An interesting class of quasi-linear systems. Dokl. Akad. Nauk SSSR, 139:521–
523, 1961.

[13] M. E. Gurtin and A. C. Pipkin. A note on interacting populations that disperse to avoid crowding.
Quart. Appl. Math., 42(1):87–94, 1984.
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