
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

A descent algorithm for the optimal control of ReLU neural

network informed PDEs based on approximate directional

derivatives

Guozhi Dong1, Michael Hintermüller2,3, Kostas Papafitsoros4

submitted: October 25, 2022

1 School of Mathematics and Statistics
HNP-LAMA, Central South University
Lushan South Road 932
410083 Changsha, China
E-Mail: guozhi.dong@csu.edu.cn

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: michael.hintermueller@wias-berlin.de

3 Institute for Mathematics
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
E-Mail: hint@math.hu-berlin.de

4 School of Mathematical Sciences
Queen Mary University of London
Mile End Road, E1 4NS, UK
E-Mail: k.papafitsoros@qmul.ac.uk

No. 2964

Berlin 2022

2020 Mathematics Subject Classification. 35R30, 49J52, 49K20, 49M41, 68T07, 90C46.

Key words and phrases. Optimal control of nonsmooth partial differential equations, data-driven models, neural networks,
bundle-free methods, descent algorithms.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). The work
of GD is supported by an NSFC grant, No. 12001194. The work of MH is partially supported by the DFG SPP 1962,
project-145r.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

A descent algorithm for the optimal control of ReLU neural
network informed PDEs based on approximate directional

derivatives
Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros

Abstract

We propose and analyze a numerical algorithm for solving a class of optimal control problems
for learning-informed semilinear partial differential equations. The latter is a class of PDEs with
constituents that are in principle unknown and are approximated by nonsmooth ReLU neural
networks. We first show that a direct smoothing of the ReLU network with the aim to make use
of classical numerical solvers can have certain disadvantages, namely potentially introducing
multiple solutions for the corresponding state equation. This motivates us to devise a numerical
algorithm that treats directly the nonsmooth optimal control problem, by employing a descent
algorithm inspired by a bundle-free method. Several numerical examples are provided and the
efficiency of the algorithm is shown.

1 Introduction

1.1 Context and motivation

In this paper we study a numerical algorithm for the following artificial neural network based optimal
control problem:

minimize J(y, u) :=
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to

{
−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad.

(PN)

Here Ω denotes an open, bounded, Lipschitz domain in Rd with boundary ∂Ω, d ≥ 2, g ∈ L2(Ω) is a
given desired state, α > 0 is fixed, and Cad is an admissible set for the control u, which is assumed to
be a nonempty, closed and convex subset of Lp(Ω) for some p ≥ 2. The state (variable) is y which,
given a control u, solves a semilinear elliptic partial differential equation (PDE), the state equation. The
term that renders the above problem nonstandard is the function N : Rd × R → R, a constituent
of the PDE acting as a constraint for the minimization problem. In fact, throughout we assume that
N represents a ReLU (Rectified Linear Unit) artificial neural network, that is, a neural network that
has the ReLU σ(t) := max(t, 0) as its activation function. We note that the ReLU is one of the most
common and advantageous activation functions in deep learning [6, 15], see Section 2 for more details
and definitions. As a result,N is in general a nonlinear and nonsmooth function. We mention that here
we consider N to be monotonically increasing in the variable y which guarantees the uniqueness of
a solution to the state equation, resulting in a well-defined control-to-state map.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 2

The semilinear PDE in (PN) is thus an instance of a learning-informed PDE, a concept that was
introduced in [11] and further explored recently in other works [1, 20]. We assume that it forms an
approximating model to an unknown ground truth physical law expressed by

{
−∆y + f(·, y) = u, in Ω,

y = 0, on ∂Ω,
(1.1)

with the function f being some unknown nonlinearity, which is approximated by the network N . This
could be achieved for instance in a setting where we have at our disposal a dataset

D := {(yi, ui) : yi (approximately) solves (1.1) for ui, i = 1 . . . , nD},

which corresponds to some pre-specified controls and associated state responses, collected for exam-
ple through measurements or computations. This dataset can be used towards evaluation instances
of f via f(xj, yi(xj)) ' ui(xj) + ∆yi(xj) where {xj}`j=1 is an appropriate discrete collection of
points in the domain. Using these instances as a training set, a neural networkN can be trained in the
context of supervised learning in an offline phase, and take the role of an approximating map for the
unknown f . Applications of the above framework were considered in [11] in order to learn the physical
law that governs the separation of a fluid into two immiscible phases as well as to learn the physical law
behind magnetic resonance imaging (MRI), where, instead of a PDE, a system of ordinary differential
equations (ODEs) acts as a constraint [10].

Several theoretical aspects of the optimal control problem (PN) were studied in detail in [12]. There,
existence and uniqueness of solutions to the state equation were shown, as well as continuity and
directional differentiability properties of the control-to-state map. The main challenge here is the afore-
mentioned nonsmoothness of N due to the ReLU. In fact, it can be shown that the set of functions
represented by ReLU neural networks coincides with the family of piecewise affine maps. In gen-
eral one does not expect the associated control-to-state map SN to be Gâteaux differentiable which
poses difficulties in the derivation of first-order optimality conditions for the optimal control problem.
Addressing this latter aspect, stationary conditions were derived in the companion work [12] based
on generalized differentiability concepts. In this paper, we focus on establishing algorithms for the
numerical solution of (PN) towards the approximation of so-called B-stationary points.

With the desire of making use of classical numerical solvers, an immediate approach to solving (PN)
would be to regularize the problem by smoothing the nonsmooth component N . As a consequence,
the classical Karush-Kuhn-Tucker theory for stationarity (see, e.g., [27]) becomes available and solvers
from (smooth) nonlinear programming, such as sequential quadratic programming [22, 19], may be
employed. Indeed such an approach has also been for long used in order to derive limiting optimal-
ity conditions (under vanishing regularization) which unfortunately typically leads to stationarity sys-
tems containing less information when compared to the strong stationarity conditions as in [5, 9, 21],
obtained by using nonsmooth analysis techniques. In this work, we show that in the case of ReLU
learning-informed PDEs, additional issues can arise from a smoothing approach. In particular, due to
a potentially large architecture of a network N (large number of layers and neurons), a natural and
efficient way to smoothen N (after its training has been completed) would be via simply smoothing
the ReLU function inN , denoted now by σε, resulting in a smooth networkNε approximatingN . We
refer to this technique as canonical smoothing ofN . However we show with simple examples that this
type of smoothing does not necessarily preserve monotonicity for deep enough networks, and in fact
it does not even preserve it in a way that monotonicity of the PDE operator could still be shown. This
possibly renders the resulting control-to-state map SNε multi-valued, posing difficulties when resorting
to classical algorithms for the solution of the regularized problem. This is yet another motivation for

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 3

us to devise numerical methods which are capable of directly solving (PN). In this vein, we propose
to adapt the bundle-free method from [18], originally developed for a class of mathematical programs
with equilibrium constraints (MPECs). The proposed algorithm makes use of an auxiliary optimiza-
tion problem as in [18], and we show that by approximating the derivatives of the ReLU network (but
not the ReLU itself!) via a smoothed max-function, then a descent direction for a reduced version of
(PN) at a given control iterate is identified or (ideally) B-stationarity of that iterate can be diagnosed.
We also mention that in [9], an algorithm for solving a very specific nonsmooth semilinear PDE (in a
first-discretize-then-optimize flavor) in the absence of control constraints has been proposed, where
N (·, y) = max(0, y). However, as it was also noted by the authors of [9] their algorithm cannot be
applied to general nonsmooth semilinear PDEs, and an efficient algorithm for the general case calls
for new ideas. The current paper aims to cover this gap.

1.2 Structure of the paper

In Section 2 we focus on the structure of the functional form of ReLU networks. We are in particular
interested in understanding how this structure changes after smoothing the ReLU network function
via regularization of the associated activation function (canonical smoothing). Here our main focus is
on how this kind of smoothing can break the monotonicity of the network. The implication of the latter
concerning the emergence of nonuniqueness of solutions of the learning-informed state equation is
discussed in Section 3. We also collect basic results concerning the general optimal control problem
(PN) and in particular we recall the stationarity conditions derived in [12]. In Section 4, we introduce
and analyze a descent algorithm that directly treats the nonsmooth optimal control problem. It is ap-
plied in Section 5 to several instances of an optimal control problem with a ReLU network-informed
semilinear second-order elliptic PDE. In particular, also a non-monotone setting is considered in order
to challenge the solver.

2 Smoothings of ReLU neural networks

2.1 Definition and basic properties

We first fix some notation. For a set A, the characteristic and the indicator functions χA and XA,
respectively, are defined as χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise, and XA(x) = 0 if x ∈ A
and XA(x) = +∞ otherwise. Unless otherwise stated 〈·, ·〉 denotes the standard L2 inner product.

Definition 2.1 (Standard feedforward multilayer neural network). Let L ∈ N, network parameters
θ = ((W1, b1), . . . , (WL, bL)) with Wi ∈ Rni×ni−1 , bi ∈ Rni , for i = 1, . . . , L and ni ∈ N for i =
0, . . . , L. Furthermore let σ : R → R be an arbitrary function. We call a function N : Rn0 → RnL

a neural network with weight matrices (Wi)
L
i=1, bias vectors (bi)

L
i=1 (the network parameters) and

activation function σ ifN (x) can be defined through the following recursive relation for any x ∈ Rn0 :

z0 = x, (2.1)

z` = σ (W`z`−1 + b`) , ` = 1, . . . , L− 1, (2.2)

N (x) = WLzL−1 + bL. (2.3)

The action of the activation function σ in (2.2) is considered component-wise i.e. for a vector y =
(y1, . . . , yn) ∈ Rn we set σ(y) := (σ(y1), . . . , σ(yn)). More compactly,N can also be defined as

N (x) = TL ◦ σ(TL−1) ◦ · · · ◦ σ(T2) ◦ σ(T1(x)), x ∈ Rn0 , (2.4)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 4

where for every ` = 1, . . . , L, TL denotes the affine transformation z 7→ W`z + b`.

We callN a ReLU neural network if σ is the ReLU (Rectified Linear Unit) activation function:

σ(t) = max(t, 0), t ∈ R. (2.5)

Following the standard neural network terminology, we say that a neural network defined as in (2.1)–
(2.3), has L layers and L− 1 hidden layers, with the latter denoting the operations in (2.2). The final
operation (2.3) is called the output layer. Furthermore, ni is the number of neurons in the i-th layer,
i = 1, . . . , L, that is, it is the number of rows of the weight matrix Wi. The number of neurons of a
given layer is also called the width of that layer, while the number of layers is called the depth of the
network.

We should note that a neural network as a function, does not necessarily admit a unique representation
with respect to the weight matrices, the bias vectors and the activation functions. Furthermore in the
Definition 2.1, the input of the `-th layer consists only of the output z`−1 of the previous layer. A more
general neural network definition would allow the input for each layer to depend on the output of all
the previous layers. In that case every W` would be a weight matrix of size Rni×(

∑`−1
k=0 nk). However,

since every network of the latter type can be realized by a network as in (2.1), see [16], we will stick to
the more classical definition given above.

We are interested in the regularity of the functions that are realized by ReLU neural networks. It turns
out that the latter class coincides with the class of continuous piecewise affine functions.

Definition 2.2 (Continuous piecewise affine functions). Let n0 ∈ N. We say that a function F :
Rn0 → R is continuous piecewise affine (CPWA) if the following condition holds:

� F is continuous and there exist finitely many affine maps f1, . . . , fp : Rn0 → R for some
p ∈ N such that for every x ∈ Rn0 , there exists an i ∈ {1, . . . , p} such that F(x) = fi(x).

We refer to [2, 3, 26] for further equivalent characterizations of CPWA functions.

Theorem 2.3. (Characterization of ReLU neural networks, [3]) A function N : Rn0 → R is a ReLU
neural network if and only if it is a CPWA function.

From the definition (2.1)–(2.3) it is clear that N : Rn0 → RnL , nL ≥ 1, is an RnL-valued ReLU
neural network if and only if N = (N1, . . . ,NL) with each Ni : Rn0 → R, i = 1, . . . , L being
a scalar-valued ReLU neural network. Thus N is an RnL-valued ReLU neural network if and only if
it is an RnL-valued CPWA function, with the latter defined exactly as in Definition 2.2 with the only
difference being that the affine maps fi are RnL-valued.

To give an example, for p ≥ 2 and t1 ≤ · · · ≤ tp−1, we consider the following one dimensional
continuous piecewise affine function F with

F(t) =

a1t+ γ1 if t ≤ t1,

ait+ γi if ti−1 ≤ t ≤ ti, i = 2, . . . p− 1,

apt+ γp if t ≥ tp−1.

(2.6)

Note that we assume that (ai, γi)
p
i=1 satisfy the appropriate conditions such that F is continuous.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 5

Then it can be checked, see for instance [2, Corollary 3.5], that F can be written as

F(t) = a1t+ γ1 +

p−1∑

i=1

(ai+1 − ai)max(t− ti, 0)

= a1(max(t, 0)− a1max(−t, 0) +

p−1∑

i=1

(ai+1 − ai)max(t− ti, 0) + γ1. (2.7)

This means that F can be realized as a ReLU neural network with one hidden layer having p +
1 neurons. In particular, F = T2 ◦ σ(T1), where T1(t) = W1t + b1, T2(z) = W2z + b2 with
W1 = (1,−1, 1, 1, . . . , 1)T ∈ R(p+1)×1, b1 = (0, 0,−t1 . . . ,−tp−1)T ∈ R(p+1)×1, and W2 =
(a1,−a1, a2 − a1, . . . , ap − ap−1) ∈ R1×(p+1), b2 = γ1 ∈ R.

Another characteristic of ReLU neural networks are their approximation capabilities. In fact it can be
easily checked that given a bounded domain U ⊂ Rn0 with Lipschitz boundary we have that for
every ε > 0 and f ∈ W 1,∞(U) there exists a ReLU neural network Nε : Rn0 → R such that
‖Nε − f‖W 1,∞(U) < ε, see also [12, Section 2.2].

2.2 Smoothings of ReLU neural networks

We are also interested in smoothing versions of ReLU networks. One canonical way to achieve
smoothing is via appropriately smoothing the ReLU function σ which is the constituent of the net-
work that determines its regularity. In optimal control, typically specific approximating sequences are
used [9, 21, 23] which we will also employ here.

Definition 2.4 (Canonical smoothing of ReLU). We say that the family σε : R→ R (or ReLUε), ε > 0,
is a canonical smoothing of the ReLU function if:

(i) σε is a positive, convex, monotonically increasing C1(R) function for all ε > 0.

(ii) σε → σ uniformly and monotonically as ε→ 0, i.e.,

|σε1(x)− σ(x)| ≤ |σε2(x)− σ(x)| for 0 < ε1 ≤ ε2 and for every x ∈ R.

We say that a family of networks Nε : Rn0 → RnL , ε > 0, is a canonical smoothing of the ReLU
networkN : Rn0 → RnL if it results fromN by simply substituting the activation function σ by σε.

Lemma 2.5. Let (σε)ε>0, be a canonical smoothing of the ReLU function. Then the following two
additional properties hold for ε > 0 small enough:

(i) 0 ≤ σ′ε(t) ≤ 1, for all t ∈ R.

(ii) For every δ > 0, σ′ε converges uniformly to 1 on [δ,∞) and uniformly to 0 on (−∞, δ] as
ε→ 0.

Proof. Suppose that (i) does not hold. Then because every σε is convex and hence σ′ε is incrceasing,
there exists εn → 0 and tn ∈ R such that σ′εn(t) > 1 for every t ∈ [tn,∞). But that means that for
every n ∈ N there exists t ∈ [tn,∞) such that σεn(t) is arbitrary far away from σ(t) contradicting
the uniform convergence.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 6

For (ii), we fix δ > 0. Using a similar argument as before we deduce that for every ε > 0 small enough
it holds that limt→∞ σ

′
ε(t) = 1. Hence, given the monotonicity of σ′ε and (i), it suffices to show that

limε→0 σ
′
ε(δ) = 1. But if this is not the case it can easily be checked that there exists a subsequence

σεn and η > 0 such that |σεn(0)| > η contradicting the convergence limε→0 σε(0) = 0. The uniform
convergence of σ′ε to 0 on (−∞, δ) is proved similarly.

There are numerous options for a canonical smoothing of the ReLU function, see for instance Fig-
ure 1. It is also clear that Nε → N uniformly but as we will show later with a counterexample the
convergence does not have to be necessarily monotonic.

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6

2

σε(t) =

0 t ≤ − ε
2

1
2ε (t+

ε
2)

2 − ε
2 ≤ t ≤ ε

2

t t ≥ ε
2

ε = 3
ε = 2
ε = 1
ε = 0.5
ReLU

2

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6
σ′
ε(t) =

0 t ≤ − ε
2

1
ε (t+

ε
2) − ε

2 ≤ t ≤ ε
2

1 t ≥ ε
2

ε = 3
ε = 2
ε = 1
ε = 0.5
ReLU′

2

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6

2

σε(t) = ε ln(1+ex/ε)

ε = 0.8
ε = 0.4
ε = 0.2
ε = 0.1
ReLU

2

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6
σ′ε(t) =

1

1 + e−x/ε

ε = 0.8
ε = 0.4
ε = 0.2
ε = 0.1
ReLU′

2

Figure 1: Examples of canonical smoothings of the ReLU functions together with depiction of the cor-
responding derivative approximations. In particular, the second one is the so-called Softplus function,
whose derivative is the logistic function - both extensively used in machine learning.

Nevertheless the following holds:

Proposition 2.6. LetN , (Nε)ε>0 : Rn0 → RnL be a ReLU network and a canonical smoothing of it.
Then it holds:

‖Nε −N‖∞ ≤M‖σε − σ‖∞, (2.8)

where the constantM does not depend on ε but only on the parameters ofN . In particular,Nε → N
uniformly as ε→ 0.

Furthermore, for every 1 ≤ p <∞ and for every open bounded U ⊂ Rn0 we have that

‖∇Nε −∇N‖Lp(U) → 0, as ε→ 0. (2.9)

Proof. In order to show (2.8) we will show the result for networks with two hidden layers and then

one can proceed via induction. Let N = T3

(
σ
(
T2(σ(T1))

))
and Nε = T3

(
σε
(
T2(σε(T1))

))
be

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 7

a two hidden layer ReLU network and its corresponding canonical smoothing, in accordance to the
formulation (2.4) (without loss of generality let T3 be linear). Then, setting N (2)(x) := T2(σ(T1(x)))

and N (2)
ε (x) := T2(σε(T1(x))), we estimate successively for x ∈ Rn0

|N (2)
ε (x)−N (2)(x)| =|T2(σε(T1(x)))− T2(σ(T1(x)))|

≤‖T2‖|σε(T1(x))− σ(T1(x))| ≤ ‖T2‖‖σε − σ‖∞. (2.10)

We then further estimate

|Nε(x)−N (x)| = ‖T3‖
∣∣(σε(N (2)

ε (x))− σ(N (2)(x)))
∣∣

≤ ‖T3‖
(∣∣σε(N (2)

ε (x))− σε(N (2)(x))
∣∣+
∣∣σε(N (2)(x))− σ(N (2)(x))

∣∣)

≤ ‖T3‖(‖T2‖‖σε − σ‖∞ + ‖σε − σ‖∞)

≤M‖σε − σ‖∞,

where we employed the mean value theorem for σε, using the fact that 0 ≤ σ′ε ≤ 1. The induction
step follows similarly.

For (2.9), notice first thatN restricted toU (a function that we still denote byN) belongs toW 1,∞(U),
being Lipschitz. In particular∇N : U → RnL×n0 is a function in L∞(U) and – see [7, Theorem III.1]
– for almost every x it is equal to

∇N (x) = WL · σ′(N (L−1)(x)) ·WL−1 · . . . · σ′(N (1)(x)) ·W1, (2.11)

with N (K) defined as above and σ′ := χ(0,∞) being applied pointwise. Note that, while σ′(N i(x)) is
an Rni-vector, in (2.11) using the same notation we denote the ni×ni diagonal matrix with the same
vector in the diagonal. Analogously∇Nε ∈ C(U) where for every x

∇Nε(x) = WL · σ′ε(N (L−1)
ε (x)) ·WL−1 · . . . · σ′ε(N (1)

ε (x)) ·W1. (2.12)

We check that ∇Nε → ∇N almost everywhere, and then (2.9) follows by employing the dominated
convergence theorem using the fact that∇Nε is uniformly bounded in L∞(U) since 0 ≤ σ′ε ≤ 1 for
every ε > 0. In order to show the almost everywhere pointwise convergence of the gradients, in view
of the recursive formulas (2.11) and (2.12), and considering an inductive argument it suffices to show
that if N := (N1, . . . , Nn) : Rm → Rn is a ReLU network, Nε is a canonical smoothing such that
∇Nε → ∇N almost everywhere as ε→ 0 then also

σ′ε(Nε)∇Nε → σ′(N)∇N, a.e. as ε→ 0. (2.13)

Let Ũ be the set of full measure where ∇Nε → ∇N converges pointwise. Fixing an 1 ≤ i ≤ n, as
a first case, let x ∈ Ũ be such that Ni(x) 6= 0. Then using Ni,ε(x) → Ni(x) and Lemma 2.5 (ii),
we get σ′ε(Ni,ε(x))→ σ′(Ni(x)) and hence (2.13) holds for that x and the i-th row. Let now x ∈ Ũ
such that Ni(x) = 0. Since Ni is Lipschitz then, see e.g. [14, Theorem 3.3(i)], the set of such x such
that∇iN(x) 6= 0 has a zero Lebesgue measure, so we can assume that∇iN(x) = 0. Then (2.13)
for the i-th row follows from the fact that∇iNε(x)→ ∇iN(x) = 0 and the fact that 0 ≤ σ′ε ≤ 1.

Remark 2.7. Looking at the examples of Figure 1 one can see that σε can be actually chosen such
that

‖σε − σ‖∞ ≤ cε, for every ε > 0, (2.14)

for some constant c > 0. Then (2.8) could be written in a stronger form as

‖Nε −N‖∞ ≤Mε, for every ε > 0. (2.15)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 8

Since our focus here is on ReLU learning-informed PDEs, that is, PDEs that contain a ReLU neural
network, we are particularly interested in monotonically increasing networks. As we will see later, they
will guarantee uniqueness for the corresponding PDE. In particular we are interested in whether the
monotonicity of the ReLU networks can be preserved under canonical smoothing, or not. If the latter
is the case, then we study to which extent the resulting nonmonotone part can be controlled by the
smoothing parameter ε > 0. In what follows we will always make a distinction between monotonically
increasing and strictly monotonically increasing functions. The following proposition sheds some light
on this context.

Proposition 2.8. The following are true:

(i) There exists a canonical smoothing σ̃ε of the ReLU function such that for every (strictly) mono-
tonically increasing one-hidden layer ReLU network N : R → R, its corresponding canonical
smoothing Nε under σ̃ε is also (strictly) monotone for every ε > 0. However preservation of
monotonicity of one-hidden layer ReLU networks does not necessarily hold for an arbitrary
canonical smoothing.

(ii) The property of the above canonical smoothing σ̃ε does not hold for ReLU networks with more
than one hidden layers. That is, there exists a monotone increasing two-hidden layer ReLU
network such that its canonical smoothingNε under σ̃ε is not monotonically increasing for every
ε > 0.

Proof. For (i) it suffices to define σ̃ε = ρε ∗ σ, where ρε(t) = ε−1ρ(t/ε) and ρ being the standard
mollifier,

ρ(t) = ce
− 1

1−t2 .

Here c > 0 is a constant such that
∫
R ρ dx = 1. It is easy to check that σε is a canonical smoothing.

LetN be an one hidden layer ReLU network, that is

N (t) = b2 +W2σ(W1t+ b1)

= b2 +

n1∑

i=1

wi2σ(wi1t+ bi1),

where W1 = (w1
1, . . . , w

n1
1)T , W2 = (w1

2, . . . , w
n1
2), b1 = (b1, . . . , bn1)T and b2 ∈ R. Then from

the linearity of convolution we have

Nε(t) := b2 +

n1∑

i=1

wi2ρε ∗ σ(wi1t+ bi1) = ρε ∗
(
b2 +

n1∑

i=1

wi2σ(wi1t+ bi1)

)
= ρε ∗ N (t).

Hence ifN is (strictly) monotone thenNε is (strictly) monotone as well, since it is immediate to check
that this convolution preserves (strict) monotonicity.

In order to see that the above property does not hold for an arbitrary canonical smoothing, consider for
instance the canonical smoothing of the first example of Figure 1. LetN be the ReLU neural network
defined as

N (t) = max(λ1t, 0) + max(λ2t, 0)−max(λ3t, 0)−max(λ4t, 0),

where λ1, λ2, λ3, λ4 > 0 and λ1 + λ2 = λ3 + λ4 . This network has one hidden layer with 4
neurons and obviously, N ≡ 0 and is hence monotone. Given ε > 0, we have that for every t ∈
[−ε/2λmax, ε/2λmax], with λmax := maxiλi that

N ′ε(t) = (λ2
1 + λ2

2 − λ2
3 − λ2

4)
t

ε
. (2.16)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 9

Then by simply choosing λi such that the specific linear combination of their squares in (2.16) is not
zero, we get that the derivative of Nε changes sign in a small neighbourhood of the origin and thus
implies nonmonotonicity.

In order to produce a counterexample for (ii) consider

M(t) = max(−max(t, 0), 0) = σ(−σ(t)),

which is a two-hidden layer ReLU neural network realizing again the zero function, and letMε(t) =
σ̃ε(−σ̃ε(t)) denote its canonical smoothing under σ̃ε = ρε ∗ σ. Note that

(ρε ∗ σ)(t) =

0 if t ≤ −ε,
1
ε

∫
B(t,ε)

ρ
(
t−s
ε

)
σ(s) ds if − ε < t < ε,

t if t ≥ ε.

For the derivative ofMε, it obviously holds thatM′
ε(t) = −σ̃′ε(−σ̃ε(t))σ̃′ε(t) ≤ 0. Furthermore, for

t ≥ ε, we haveMε = 0, while for t ≤ −ε we haveMε(t) = σε(0) > 0. HenceMε is monotonically
decreasing.

−0.4 −0.2 0 0.2 0.4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
N1(t) = σ(5t) + σ(5t)
N2(t) = −σ(9t)− σ(t)
N (t) = N1(t) +N2(t)
N1,ε(t) = σε(5t) + σε(5t)
N2,ε(t) = σε(9t) + σε(t)
Nε(t) = N1,ε(t) +N2,ε(t)

2

−0.4 −0.2 0 0.2 0.4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
N1(t) = σ(5t) + σ(5t)
N2(t) = −σ(9t)− σ(t)
N (t) = N1(t) +N2(t)
N1,ε(t) = σε(5t) + σε(5t)
N2,ε(t) = σε(9t) + σε(t)
Nε(t) = N1,ε(t) +N2,ε(t)

2

−6 −4 −2 0 2 4 6

−4

0

4

8

12

16

20
N
Nε, ε = 10
Nε, ε = 5
Nε, ε = 2.5
Nε, ε = 1.25

2

−6 −4 −2 0 2 4 6

−4

0

4

8

12

16

20
M
Mε, ε = 10
Mε, ε = 5
Mε, ε = 2.5
Mε, ε = 1.25

−4 −3 −2 −1 0 1 2 3 4
5

6

7

8

9

10

11

2

2

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ(−σ(t))
σε(−σε(t)), ε = 10
σε(−σε(t)), ε = 5
σε(−σε(t)), ε = 2.5
σε(−σε(t)), ε = 1.25

2

Figure 2: Examples of non preservation of monotonicity of ReLU networks after canonical smoothing
as these are dictated by Proposition 2.8.

In Figure 2 we see a visualization of the examples given in Proposition 2.8. At the top part of the figure,
we provide an example corresponding to (i) of Proposition 2.8. There, the zero function is written as
a one hidden layer ReLU network,N (t) = max(5t) + max(5t)−max(9t, 0)−max(t, 0) (dashed
black line). Using the canonical smoothing of the first example of Figure 2.8 the monotonicity is not
preserved (top left, black solid line). On the other hand the linear smoothing σ̃ε = ρε ∗ σ preserves
the monotonicity, see top right plot. At the bottom part of Figure 2 we have expressed the same
monotone increasing CPWA function as a ReLU network of both one and two hidden layers, N and

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 10

M respectively,

N (t) = 4max(t, 0)− 4max(−t, 0) + 20− 4max(t+ 3, 0) + 3max(t− 3, 0),

M(t) = N (t) + max(−max(t, 0), 0),

whereM trivially results by adding the zero function max(−max(t, 0), 0) to N . Nevertheless their
canonical smoothings Nε and Mε under the same σε look rather different. We note that here we
depict this for the canonical smoothing of the first example of Figure 2.8 but the differences are similar
for σ̃ε. The canonical smoothingNε of the one hidden layer network remains monotonically increasing
(bottom left), which is not the case for the two hidden layer networkMε (bottom middle). This is due
to the term max(−max(t, 0), 0) whose canonical smoothing introduces a decreasing part near the
origin, see bottom right plot of Figure 2.

Remark 2.9. Note that even though canonical smoothings do not necessarily preserve monotonicity –
in particular as we saw, ifN is increasing,Nε does not have to be increasing as well – nevertheless the
negative part of the derivative (N ′ε)− := max(−N ′ε , 0) can be controlled. Specifically, according to
Proposition 2.6, ifN : R→ R is a monotonically increasing ReLU network – in particular (N ′)− = 0,
then given an open bounded U ⊂ R, and 1 ≤ p < ∞, we have for every canonical smoothing Nε
that

‖(N ′ε)−‖Lp(U) → 0, as ε→ 0. (2.17)

3 Basic facts of the optimal control problem and implications of
smoothing

Recall the main learning-informed optimal control problem:

minimize J(y, u) :=
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to

{
−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad,

(PN)

where the different constituents are defined in the introduction. We mention that in [12] a more general
setting was adopted by considering a function f instead of N , belonging to a slightly larger family
than the one defined by ReLU neural networks, with the main characteristic that y 7→ f(x, y) is
directionally differentiable. Here, we note that N is additionally Hadamard directionally differentiable
with respect to the second variable. Using the chain rule for Hadamard directionally differentiable
functions we can state a recursive formula forN ′x(y;h), where for every x ∈ Rd

N ′x(y;h) := lim
tn→0+

N (x, y + tnh)−N (x, y)

tn
.

Indeed, for z := (x, y), and for N (2)(z) = W2 · σ(W1z+ b1) + b2, W2 ∈ R1×n1 , W1 ∈ Rn1×(d+1),
b1 ∈ Rn1 , b2 ∈ R, we have that for any y, h ∈ R

(N (2))′x(y;h) = W2 ·
(
χ(0,∞)(W1z + b1)W1(:, n0)h+ χ{0}(W1z + b1)max(0,W1(:, n0)h)

)
.

(3.1)

Here W1(:, n0) denotes the last column of W1, and χ(0,∞)(W1z + b1) is a diagonal matrix, whose
diagonal consists of the vector resulting from the componentwise action of the functionχ(0,∞)(·) on the

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 11

vectorW1z+b1 – similarly for the second summand in (3.1). Recursively forN (`) = W`σ(N `−1(z))+
b` we have

(N (`))′x(y;h) = W` ·
(
χ(0,∞)(N

(`−1)(z))(N (`−1))′x(y;h) + χ{0}(N
(`−1)(z)) max(0, (N (`−1))′x(y;h))

)
.

(3.2)

Comparing the formulas (3.1)–(3.2) with the formula (2.11) for the weak gradient ofN , one notes that
while (2.11) holds almost everywhere, the formulas for the directional derivatives hold at every point.

We will also make use of the function space

Y := {y ∈ H1
0 (Ω) : ∆y ∈ L2(Ω)},

which is a separable Hilbert space equipped with the inner product (y, v)Y :=
∫

Ω
∆y∆v+∇y∇v+

yv dx and it is compactly embedded in H1
0 (Ω). Let N be the Nemytskii operator y 7→ N(y), with

N(y)(x) = N (x, y(x)) for y in some Lp space. Note that N : Lp(Ω)→ Lp(Ω) is Lipschitz contin-
uous for every fixed 1 ≤ p ≤ ∞. We also remark, see [12, Section 3.2], thatN : Lp(Ω)→ Lp(Ω) for
1 ≤ p <∞ is Hadamard directionally differentiable with the directional derivative N ′(y;h) ∈ Lp(Ω)
defined via N ′(y;h)(x) = N ′x(y(x);h(x)). In the next theorem we briefly summarize the basic
results from [12] concerning the optimal control problem (PN).

Theorem 3.1 ([12]). The following hold for the learning-informed optimal control problem (PN) where
we also assume that p > d

2
and p ≥ 2:

(i) For every u ∈ Lp(Ω), there exists a unique solution y ∈ Y ∩C0,a(Ω) for the state equation of
(PN), where a > 0 depends only on p, d and Ω. In particular, for every M > 0 there exists a
constant ca (that depends on M) such that

‖y‖C0,a(Ω) ≤ ca‖u−N (·, 0)‖Lp(Ω), for all ‖u‖Lp(Ω) ≤M. (3.3)

(ii) The control-to-state map S : Lp(Ω) → Y is Hadamard directionally differentiable, and given
u ∈ Lp(Ω) and a direction h ∈ Lp(Ω), S ′(u;h) := zh ∈ Y ∩ C0,a(Ω) is the unique solution
of {

−∆zh +N ′(y; zh) = h, in Ω,

zh = 0, on ∂Ω,
(K)

where y = S(u).

(iii) The optimal control problem (PN) has a solution.

(iv) (B-stationarity) If u ∈ Lp(Ω) is a local minimizer for (PN), y = S(u) is the associated state,
and J (·) = J(S(·), ·) is the reduced objective for (PN), then the pair (u, y) satisfies the
following variational inequality:

J ′(u;h) = 〈y − g, S ′(u;h)〉+ α〈u, h〉 ≥ 0, for all h ∈ TCad(u). (3.4)

Here TCad(u) denotes the contingent cone of Cad at u ∈ Cad.

(v) (C-stationarity) If u ∈ Lp(Ω) is a local minimizer for (PN), and y = S(u) is the associated
state, then the pair (u, y) satisfies the following optimality system:

−∆p̄+ ζ̄ p̄ = ȳ − g in Ω, p̄ = 0 on ∂Ω,

ζ̄(x) ∈ ∂N (x, ȳ(x)) for almost every x ∈ Ω,

(p̄+ αū, u− ū) ≥ 0 for all u ∈ Cad,
(3.5)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 12

for some nonnegative ζ̄ ∈ L∞(Ω) and for some adjoint state p̄ ∈ Y . Here ∂N (x, ȳ(x)) is the
Clarke generalized gradient ofNx := N (x, ·) : R→ R evaluated at ȳ(x).

(vi) (Weak stationarity) We say that ū ∈ Lp(Ω) and ȳ = S(ū) satisfy the weak stationarity condi-
tion if the first and the third conditions of (3.5) are satisfied for some nonnegative ζ̄ ∈ L∞(Ω)
and for some adjoint state p̄ ∈ Y . Obviously any pair (ū, ȳ) of local minimizers for (PN) is
weak stationary.

We note that TCad(u) is defined as

TCad(u) := {h ∈ Lp(Ω) : ∃ tn ↓ 0 and hn → h ∈ Lp(Ω), s.t. for all n ∈ N, u+ tnhn ∈ Cad}.

Note that it can be shown [8, Lemma 6.34], that if Cad is of the form

Cad = {u ∈ Lp(Ω) : ua(x) ≤ u(x) ≤ ub(x), for almost every x ∈ Ω} (3.6)

with ua, ub ∈ L∞(Ω), ua < ub almost everywhere, then TCad(u) can be characterized by

TCad(u) =

{
h ∈ Lp(Ω) :

h(x) ≥ 0, almost everywhere in {x ∈ Ω : u(x) = ua(x)}
h(x) ≤ 0, almost everywhere in {x ∈ Ω : u(x) = ub(x)}

}
. (3.7)

Apart from the primal notion of B-stationarity, and the primal-dual notions of weak and C-stationarity
also one more primal-dual stationarity concept was discussed in [12], namely strong stationarity.
There, the relationships between all these concepts were analyzed. Here we focus on B-stationarity,
and in particular our developed algorithm studied in Section 4 builds on that notion. We only mention
that the C-stationarity system (which is weaker than strong stationarity) is obtained as a limiting op-
timality system where N is substituted by some smooth version Nε and the smoothing parameter ε
vanishes. In that case the smoothing of the network N does not need to be canonical as it is only
used as a tool in order to get this stationarity system in the limit. Next, we discuss the limitations that
arise when this regularization is used not in order to study the limiting case, but in order to solve the
corresponding regularized optimal control problem with a classical numerical solver, via smoothing the
problem for a fixed ε > 0.

Implications of the ReLU smoothing on the uniqueness of the state equation

There are, in general, two levels of approximation involved in the optimal control of learning-informed
PDEs. The first level of approximation arises from the approximation of f by a sequence of ReLU
neural networks Nn and can be thought as the capability of the ReLU-informed PDE to approximate
some ground truth nonsmooth physical model. This is studied in [12, Proposition 3.3]. The second
level of approximation – as we mentioned above – considers the approximating PDEs that arise after
smoothing the ReLU network in order to treat the problem algorithmically with classical solvers. As
we have mentioned in the introduction, due to the potentially large architecture of a networkN (large
number of layers and neurons), a natural and efficient way to smoothen it (after its training has been
completed) would via simply smoothing the ReLU function, with the canonical smoothing procedure
described in the previous section. This would result in the following smoothed version of the ReLU
learning-informed PDE {

−∆y +Nε(·, y) = u, in Ω,

y = 0, on ∂Ω.
(ENε)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 13

However, nonuniqueness issues for the solutions of (ENε) can arise, as demonstrated above in Propo-
sition 2.8, since the resulting canonically smoothed network Nε is not necessarily monotonically
increasing. Uniqueness for the solutions of (ENε) could be derived by showing that the operator
Aε : H1

0 (Ω)→ H−1(Ω) with

〈Aε(y), z〉H−1(Ω),H1
0 (Ω) :=

∫

Ω

∇y∇z dx+

∫

Ω

Nε(x, y)z dx,

is strongly monotone and then applying the Browder-Minty theorem. This is certainly the case if Nε
was monotone in y, but it could also follow, at least for small ε > 0, see [12, Proposition 3.3], if
∇Nε → ∇N uniformly. However in the case of a canonical smoothing Nε, the convergence of
∇Nε to ∇N as ε → 0 can only be guaranteed to hold with respect to the Lp norm, for every
1 ≤ p <∞, see (2.9). The potential nonuniform convergence of∇Nε to∇N makes the application
of the Browder-Minty theorem problematic. In order to be more precise, it would suffice as in the proof
of [12, Proposition 3.3], to show that for every η > 0 there exists ε0 > 0 such that for every 0 < ε < ε0

∫

Ω

(Nε(x, y1)−Nε(x, y2))(y1 − y2) dx ≥ −η‖y1 − y2‖2
L2(Ω), (3.8)

for all y1, y2 ∈ H1
0 (Ω). Indeed in that case, denoting by cΩ the Poincaré inequality constant, we would

have for every y1, y2 ∈ H1
0 (Ω)

〈Aε(y1)− Aε(y2), y1 − y2〉 ≥
1

(cΩ + 1)2
‖y1 − y2‖2

H1
0

+

∫

Ω

(Nε(x, y1)−Nε(x, y2))(y1 − y2) dx

≥
(

1

(cΩ + 1)2
− η
)
‖y1 − y2‖2

H1
0
,

and thus by choosing 0 < η < 1/(cΩ + 1)2 we would get strong monotonicity for the operator Aε for
small enough ε > 0. Consider now the example of Figure 2, where forNε : R→ R it holds that there
exists a c > 0 such that for every ε > 0, there exists a δ > 0 such that

∇Nε(t) = N ′ε(t) < −c, for every t ∈ (−δ, δ).

This means that for every y1 < y2 ∈ H1
0 (Ω) with values in (−δ, δ) a pointwise application of the

mean value theorem gives for some θ, with θ(x) ∈ (y1(x), y2(x))
∫

Ω

(Nε(y1)−Nε(y2))(y1 − y2) dx =

∫

Ω

N ′ε(θ)(y1 − y2)2dx < −c‖y1 − y2‖2
L2(Ω).

Hence if c > 0 turns out to be large, the absorption of the last term into 1
(cΩ+1)2‖y1 − y2‖2

H1
0 (Ω)

is not possible. We note however that one can still prove existence of solutions for the PDEs with
nonmonotone nonlinearity for instance by showing that the latter is equivalent to the Euler-Lagrange
equation of an associated variational problem, see for instance [11] or by using the theory of type M
operators as it is done in the next section. Nevertheless uniqueness can no longer be guaranteed.

Having a (canonical) smoothing Nε of N , that satisfies the properties of Proposition 2.6 with the
additional property that Nε(x, ·) is monotonically increasing for every x ∈ Ω, could be theoretically
achieved in two ways: The first way would be to take advantage of the fact that any ReLU networkN
of arbitrary number of layers can be realized by a ReLU network of one hidden layer. Then one could
use the canonical smoothing derived from convolution σε := ρε ∗ σ that preserves monotonicity, see
(i) of Proposition 2.8. Of course such an approach would not necessarily work in practice in the case
one wants to use a classical solver in order to solve a smooth version of (PN), since the one-hidden

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 14

layer version of N cannot be easily derived. The second way, would be to consider abandoning the
canonical smoothing approach and smooth directly the multilayer network as Nε := ρε ∗ N . While
such an approach preserves monotonicity, the computation of a convolution of the network could be
computationally demanding and the resulting function cannot necessarily be represented by a neural
network. Hence, both approaches appear impractical.

Our discussion here should serve as a warning that using feasible canonical smoothing approaches of
N with the target of solving a smooth approximating problem to (PN) using standard algorithms could
be problematic since multiple solutions for the smoothed state equation might be introduced by this
process. This provides a further motivation for designing algorithms that directly solve the nonsmooth
problem as we do in the following Sections 4 and 5.

4 A descent algorithm for B-stationarity

In this section we introduce a descent algorithm for the ReLU network learning-informed optimal con-
trol problem (PN) and discuss its convergence. We recall that N is assumed monotone in y which
gives rise to a unique solution of the learning-informed state equation.

4.1 A descent algorithm

We aim to compute local minimizers for (PN) that satisfy certain stationarity conditions, as outlined in
Theorem 3.1. Here we are particularly interested in B-stationarity, i.e., control-state pairs (u, y) that
satisfy the following variational inequality:

J ′(u;h) = 〈y − g, S ′(u;h)〉+ α〈u, h〉 ≥ 0, for all h ∈ TCad(u). (4.1)

For the ease of exposition, from now on we focus on the case where Cad is of the form (3.6) and thus
TCad(u) can be written as in (3.7).

We proceed in terms of the reduced version of (PN), i.e., by considering the state as dependent on
u, i.e., y = S(u), which allows to eliminate the state as an independent variable. Then, given some
u ∈ Cad, following [18] we consider the following auxiliary problem:

minimize 〈S(u)− g, S ′(u;h)〉+ α〈u, h〉 over h ∈ TCad(u). (4.2)

Note that according to the definition of B-stationarity (4.1), it holds that h = 0 ∈ TCad(u) is a solution
of (4.2) if and only if (u, S(u)) is a B-stationary point. We point out that when (u, S(u)) is not B-
stationary, then problem (4.2) is not necessarily well-posed. As a remedy, we introduce the regularized
version

minimize
1

2
q(h, h) + 〈S(u)− g, S ′(u;h)〉+ α〈u, h〉 over h ∈ TCad(u), (4.3)

where q : L2(Ω) × L2(Ω) → R is a symmetric functional with v 7→ q(v, v) convex, differentiable
(typically quadratic, hence the notation) and for every v, v′ ∈ L2(Ω) satisfying

q(v, v) ≥ C1 ‖v‖2
L2(Ω) and q(v, v′) ≤ C2 ‖v‖L2(Ω) ‖v′‖L2(Ω) , (4.4)

for some constants C1, C2 > 0. Note that according to [18, Lemma 2.1] h = 0 is a solution of (4.3) if
and only h = 0 is a solution of (4.2). Furthermore, the following proposition holds.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 15

Proposition 4.1. Let u ∈ Cad be a feasible point for the reduced version of (PN). Then the following
properties are satisfied:

(1) The problem (4.3) admits a solution h̄ ∈ TCad(u).

(2) If h̄ 6= 0, then h̄ is a descent direction for the reduced objective J associated with (PN).

(3) If the directional derivative S ′(u; ·) : Lp(Ω)→ Y is bounded and linear, then h̄ is unique.

Proof. The proof is essentially the same as the one of [18, Proposition 2.3], with the only difference
that h is constrained to TCad(u) instead of the whole Lp(Ω). For the first assertion we only need to
notice that TCad(u) is non-empty, convex and closed due to the assumption that Cad is non-empty,
convex and closed. Then existence of solutions follows from the direct method of the calculus of
variations. For the second one, notice that since u is feasible, it follows that 0 ∈ TCad(u). Therefore
the same argument as [18, Proposition 2.3] can be applied here. The third assertion follows from the
strong convexity of the resulting problem.

From this discussion it follows that for computing a descent direction for the reduced version of (PN)
at a non B-stationary point u, it suffices to solve (4.3). Notice, however, that solving (4.3) is delicate
whenever S ′(u; ·) is not bounded and linear. The latter is typically connected to active nonsmoothness
ofN , that is when the set

ΩN (u) := {x ∈ Ω : N (x, ·) is nondifferentiable at y(x) = S(u)(x)},

has a strictly positive Lebesgue measure (which we denote by m). In such a situation we will consider
a specific approximation of (4.3) as detailed below. Note that ΩN (u) is Lebesgue measurable since
N is jointly continuous on Ω×R. We mention also that in the case where ΩN (u) has zero Lebesgue
measure then (4.3) is a standard quadratic problem, presuming q quadratic.

The specific approximation of (4.3) which we utilize in the nonsmooth case consists of a substitution of
the nonlinear (and nonsmooth) map S ′(u; ·) by a differentiable approximation Πε(u; ·). More precisely,
fixing an ε > 0, we define dε ∈ Πε(u;h) where dε is a solution of the problem

{
−∆dε +Dε(y; dε) = h, in Ω,

dε = 0, on ∂Ω.
(4.5)

The crucial point here is that Dε is the Nemytskii operator that corresponds to a function Dε which is
smooth with respect to the second variable but it does not correspond to the derivative N ′ε of some
smoothingNε ofN . In order to define Dε we fix a canonical smoothing (σε)ε>0 of the ReLU function
such that also (2.14) holds. Then Dε is defined by simply substituting the ReLU (the max function) by
σε whenever this ReLU is applied to the direction d, but leaving the derivative of ReLU intact, wherever
that appears in the recursive formulas (3.1)–(3.2) for the directional derivative N ′x(y; d) of the ReLU
networkN . Specifically, for z := (x, y),

(D(2)
ε)x(y; d) = W2 ·

(
χ(0,∞)(W1z + b1)W1(:, n0)d+ χ{0}(W1z + b1)σε(W1(:, n0)d)

)
,

(D(`)
ε)x(y; d) = W` ·

(
χ(0,∞)(N

(`−1)(z))(D`−1
ε)x(y; d) + χ{0}(N

(`−1)(z))σε((D(`−1)
ε)x(y; d))

)
,

(Dε)x(y; d) = (D(L)
ε)x(y; d),

with ` = 3, . . . , L, where L is the number of layers of N . It is easy to check that the regularity of
Dε with respect to d is dictated by the regularity of σε. For the sake of clarity, we state the formulas

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 16

of Dε for the case of one and two-hidden layer ReLU networks, where also for simplicity, there is
no explicit dependence on x, i.e., N : R → R. For the one-hidden layer case we have for W1 =
(w1

1, . . . , w
n1
1)T , W2 = (w1

2, . . . , w
n1
2), b1 = (b1, . . . , bn1)T , b2 ∈ R,

N (y) = b2 +

n1∑

i=1

wi2 max(wi1y + bi1, 0),

N ′(y; d) =

n1∑

i=1

wi2
(
χ(0,∞)(w

i
1y + bi1)wi1d+ χ{0}(w

i
1y + bi1) max(wi1d, 0)

)
,

Dε(y; d) =

n1∑

i=1

wi2
(
χ(0,∞)(w

i
1y + bi1)wi1d+ χ{0}(w

i
1y + bi1)σε(w

i
1d)
)
.

On the other hand for a two-hidden layer case we have, for W1 = (w1
1, . . . , w

n1
1)T , W2 = (wj,i2)j,i,

i = 1, . . . , n1, j = 1, . . . , n2, W3 = (w1
3, . . . , w

n2
3), b1 = (b1, . . . , bn1)T , b2 = (b1, . . . , bn2)T ,

b3 ∈ R,

N (y) = b3 +

n2∑

j=1

wj3 max

(
n1∑

i=1

wj,i2 max(wk1y + bk1, 0) + bj2, 0

)
,

N ′(y; d) =

n2∑

j=1

wj3χ(0,∞)(v
j)

(
n1∑

i=1

wj,i2

(
χ(0,∞)(w

i
1y + bi1)wi1d+ χ{0}(w

i
1y + bi1) max(wi1d, 0)

)
)

+

n2∑

j=1

wj3χ{0}(v
j) max

(
n1∑

i=1

wj,i2

(
χ(0,∞)(w

i
1y + bi1)wi1d+ χ{0}(w

i
1y + bi1) max(wi1d, 0)

)
, 0

)
,

Dε(y; d) =

n2∑

j=1

wj3χ(0,∞)(v
j)

(
n1∑

i=1

wj,i2

(
χ(0,∞)(w

i
1y + bi1)wi1d+ χ{0}(w

i
1y + bi1)σε(w

i
1d)
)
)

+

n2∑

j=1

wj3χ{0}(v
j)σε

(
n1∑

i=1

wj,i2

(
χ(0,∞)(w

i
1y + bi1)wi1d+ χ{0}(w

i
1y + bi1)σε(w

i
1d)
)
)
,

where vj =
∑n1

i=1w
j,i
2 max(wk1y + bk1, 0) + bj2.

We have the following approximation result.

Lemma 4.2. Let 1 ≤ p < ∞, N : Ω × R → R be a ReLU neural network, N : Lp(Ω) → Lp(Ω)
its corresponding Nemytskii operator, u ∈ Lp(Ω), y = S(u) and N ′(y; ·) : Lp(Ω)→ Lp(Ω) be the
directional derivative of N . Then for the operator Lp(Ω) 3 d 7→ Dε(y; d) it holds that

‖N ′(y; d)−Dε(y; d)‖Lp(Ω) ≤ Cε for all d ∈ Lp(Ω), (4.6)

where C > 0 is some constant independent of ε. In particular Dε(y; ·) : Lp(Ω)→ Lp(Ω).

Proof. The proof is straightforward via induction over the number of layers of N , using (2.14), and
thus we omit the details.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 17

Note that in particular for the functionsN ′(y(·); ·),Dε(y(·); ·) : Ω×R→ R we also have that there
exists a constant C > 0 such that for every ε > 0, d ∈ R and for almost every x ∈ Ω,

|N ′(y(x); d)−Dε(y(x); d)| < Cε. (4.7)

Using the fact that y ∈ L∞(Ω), as well as |σ′ε| ≤ 1, it can also be deduced that Dε(y(x); ·) is
uniformly Lipschitz, i.e., there exists a c > 0 such that for every d1, d2 ∈ R, for every ε > 0 and
almost every x ∈ Ω

|Dε(y(x); d1)−Dε(y(x); d2)| ≤ c|d1 − d2|. (4.8)

In particular this also implies that there exist a, b > 0 such that for every d ∈ R and almost every
x ∈ Ω

|Dε(y(x); d)| ≤ a+ b|d|. (4.9)

Remark 4.3. We note that the constant C > 0 in (4.7), and hence also the one in (4.6), can be
considered to be independent of the state y and as a result also independent of the corresponding
control u. Indeed, observe that C is dependent on the L∞ norm of y, but given the estimate (3.3) and
the fact that every u considered here belongs to the box constraint set Cad of the form (3.6), we have
that the L∞ norm of y is uniformly bounded.

We note that one cannot necessarily expect the functions Dε(y(x); ·) to be monotone, see the dis-
cussion in Section 2.2. Hence the Browder-Minty theorem can no longer be applied, in order to get
the existence of a unique solution for the regularized adjoint equation (4.5). Nevertheless existence of
solutions can be shown via applying the theory of type M operators, see [24]. We recall that if V is
a reflexive Banach space, and V ∗ is its dual, then an operator A : V → V ∗ is called to be of type
M whenever it holds that if dn ⇀ d, Adn ⇀ h and lim supn〈Adn, dn〉 ≤ 〈h, d〉 then it follows that
Ad = h. The corresponding proposition follows next.

Proposition 4.4. For every h ∈ L2(Ω), the equation (4.5) admits a solution dε ∈ H1
0 (Ω).

Proof. According to [24, Corollary 2.2] it suffices to show that A : H1
0 (Ω) → H−1(Ω) is type M ,

bounded and coercive where for every d, v ∈ H1
0 (Ω)

Ad(v) := 〈∇d,∇v〉+ 〈Dε(y; d), v〉. (4.10)

Note that the second term on the right-hand side of (4.10) is well-defined due to (4.9). The first term of
(4.10) defines a hemicontinuous and monotone operator and hence it is of type M , [24, Lemma 2.1].
Thus in order to show that A is of type M , according to [24, Example 2.B] it suffices to show that the
operator B : H1

0 (Ω)→ H−1(Ω)

Bd(v) := 〈Dε(y; d), v〉
is completely continuous, i.e., whenever dn ⇀ d in H1

0 (Ω) it holds that Bdn → Bd strongly in
H−1(Ω). Indeed from the compact embedding of H1

0 (Ω) into L2(Ω) we have that dn → d in L2(Ω).
Using (4.8) we estimate

‖Dε(y; dn)−Dε(y; d)‖L2(Ω) ≤ c‖dn − d‖L2(Ω) (4.11)

and thusDε(y; dn)→ Dε(y; d) in L2(Ω) which implies that Bdn → Bd strongly inH−1(Ω). Finally,
clearly A : H1

0 (Ω) → H−1(Ω) is a bounded operator, and also coercive. Indeed, for the latter

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 18

property, we have for d ∈ H1
0 (Ω) that

Ad(d)

‖d‖H1
0 (Ω)

≥ 1

(cΩ + 1)2
‖d‖H1

0 (Ω) +
1

‖d‖H1
0 (Ω)

〈N ′(y; d), d〉+
1

‖d‖H1
0 (Ω)

〈Dε(y; d)−N ′(y; d), d〉

≥ 1

(cΩ + 1)2
‖d‖H1

0 (Ω) +
1

‖d‖H1
0 (Ω)

〈N ′(y; d)−N ′(y; 0), d− 0〉︸ ︷︷ ︸
≥0

− C̃ε

‖d‖H1
0 (Ω)

‖d‖L2(Ω),

for some constant C̃ > 0. Here, cΩ is the Poincaré constant and we have used the fact thatN ′(y; d)
is monotonically increasing with respect to d and also (4.7).

Upon fixing an ε > 0, we use a solution of (4.5), denoted by dε = dε(h) ∈ Πε(u;h), to replace
S ′(u;h) when ΩN (u) has positive Lebesgue measure. In particular, (4.3) is approximated by the
following problem:

minimize
1

2
q(h, h) + 〈S(u)− g, dε〉+ α〈u, h〉 over h ∈ L2(Ω), dε ∈ H1

0 (Ω)

subject to

{
−∆dε +Dε(y; dε) = h, in Ω,

dε = 0, on ∂Ω,
and h ∈ TCad(u).

(4.12)

Proposition 4.5. The minimization problem (4.12) has a solution.

Proof. The first claim is that there exist constants c1, c2 > 0 independent of h and small ε > 0 such
that the following estimate holds true

‖dε‖H1
0 (Ω) ≤ c1 + c2‖h‖L2(Ω), (4.13)

from which it straightforwardly follows that the objective in (4.12) is bounded from below and coercive
in L2(Ω). In order to show (4.13) we add and subtract N ′(y; dε) in (4.5) and test with dε getting

‖∇dε‖2
L2(Ω) + 〈Dε(y; dε)−N ′(y; dε), dε〉+ 〈N ′(y; dε), dε〉︸ ︷︷ ︸

≥0

= 〈h, dε〉

⇒‖∇dε‖2
L2(Ω) − C̃ε‖dε‖L2(Ω) ≤ ‖h‖L2(Ω)‖dε‖L2(Ω).

By estimating theH1
0 norm by the L2 norm using the Poincaré inequality and by dividing by ‖dε‖H1

0 (Ω)

we have the result. Consider now two minimizing sequences (hn)n∈N and (dnε)n∈N. From the coerciv-
ity of the objective and from the estimate (4.13) it follows that these are bounded in L2(Ω) andH1

0 (Ω)
respectively and hence there exist h∗ ∈ L2(Ω) and d∗ε in H1

0 (Ω) such that hn ⇀ h∗ in L2(Ω) and
dnε ⇀ d∗ε in H1

0 (Ω). Since TCad(u) is convex and L2-strongly closed it follows that h∗ ∈ TCad(u). It
remains to show that (h∗, d∗ε) is a feasible pair, i.e., it satisfies (4.5). For this it suffices to show that
Dε(y; dnε) ⇀ Dε(y; d∗ε) weakly in L2(Ω), which follows similarly as in the proof of Proposition 4.4.
The proof is complete in view of the lower semicontinuity of the objective in (4.12) with respect to the
corresponding weak convergences.

In the remainder of this section, we show that for sufficiently small ε > 0, we are still able to find a
descent direction by solving (4.12) instead of (4.3). We start with the following lemma.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 19

Lemma 4.6. Let N be a ReLU neural network, u, h ∈ Lp(Ω), y = S(u), ε > 0, and let d =
S ′(u;h), dε ∈ Πε(u;h) be defined as before. Then the following estimate holds:

‖dε − S ′(u;h)‖H1(Ω) ≤ C ‖N ′(y; dε)−Dε(y; dε)‖L2(Ω) . (4.14)

with a constant C > 0 independent of h and ε. In particular in view of (4.6) the inequality

‖dε − S ′(u;h)‖H1(Ω) ≤ Cε (4.15)

holds for a generic constant C > 0 still independent of h and ε.

Proof. We have that dε, d satisfy

−∆dε +Dε(y; dε) = h, −∆d+N ′(y; d) = h, in Ω, and dε = d = 0 on ∂Ω.

It follows that eε := dε − d, satisfies

−∆eε +N ′(y; dε)−N ′(y; d) = N ′(y; dε)−Dε(y; dε) in Ω, and ehε = 0 on ∂Ω.

Identifying N ′(y; dε) − N ′(y; d) = ξ(dε − d) for some ξ ∈ L∞(Ω), with ξ ≥ 0 a mean value
representation (cf. [12, Proposition 3.1]), and using standard estimates for elliptic PDEs (e.g., [13,
Chapter 6, Theorem 2]) we have the conclusion.

Remark 4.7. The estimate in Lemma 4.6 is uniform for every element of the set Πε(u;h) which is
potentially a non-singleton. We also note again that the constants C > 0 in (4.14) and (4.15) can also
be considered to be independent of y and u. This follows from Remark 4.3 and the fact that the L∞

norm of ξ above can be upper bounded independently of y (and ε), making the constant C > 0 in the
first estimate (4.14) independent on y (and ε).

Lemma 4.6 indicates that Πε(u;h) → S ′(u;h) in H1(Ω) as ε → 0. We note that in order to
rigorously state this convergence we would need to define a selection function that chooses a solution
of (4.12) for every ε > 0. While this can be done using the axiom of choice, or at least the axiom of
countable choice, for a sequence εn → 0, we will refrain from using it whenever possible and constrain
ourselves to estimates of the type (4.15).

The next proposition shows that for sufficiently small ε > 0, we can indeed compute a descent direc-
tion by solving (4.12) instead of (4.3).

Proposition 4.8. Let u ∈ Cad be a feasible point for the reduced problem of (PN) which is not B-
stationary. Then there exists ε∗ > 0, such that for 0 < ε < ε∗ a solution hε of problem (4.12) is a
descent direction for the reduced objective J of (PN) at u (in particular hε 6= 0).

Proof. Our goal is to show that there exist ε∗ > 0 such that, for all ε < ε∗, if hε solves (4.12), then

〈S(u)− g, S ′(u;hε)〉+ α〈u, hε〉 < 0.

Observe first that from the fact that S ′(u; 0) = 0 and from (4.15), we have that there exists a constant
C > 0 independent of ε such that for every dε solving (4.5) for h = 0, we have ‖dε‖H1(Ω) ≤ Cε. It
follows that if (hε, dε) is a solution of (4.12), then we have

1

2
q(hε, hε) + 〈S(u)− g, dε)〉+ α〈u, hε〉 ≤ Cε. (4.16)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 20

again for a constant independent of ε > 0. Based on (4.16), we have

〈S(u)− g, S ′(u;hε)〉+ α〈u, hε〉 ≤ Cε− 1

2
q(hε, hε) + 〈S(u)− g, S ′(u;hε)− dε〉. (4.17)

Now in view of the estimate (4.15), we have for a generic constant C > 0 still independent of ε > 0
and u

〈S(u)− g, S ′(u;hε)〉+ α〈u, hε〉 ≤ Cε− 1

2
q(hε, hε). (4.18)

In order to finish the proof it suffices to show that there exists ε∗ > 0 and M > 0 such that for every
ε < ε∗

M ≤ q(hε, hε), (4.19)

or in view of the coercivity estimate in (4.4), it suffices to show

M ≤ ‖hε‖2
L2(Ω). (4.20)

Then by potentially reducing ε∗ further, the results follows. Suppose towards contradiction that (4.20)
does not hold. Then there exists a sequence εn → 0 such that ‖hεn‖L2(Ω) → 0, which implies that
hεn → 0 in L2(Ω). Then from Lemma 4.9 below we deduce that h̄ = 0 is a minimizer of (4.3) which
is a contradiction since we have assumed that u is not B-stationary.

Lemma 4.9. Let u ∈ Cad, εn → 0 and let h∗εn be a minimizer for the problem (4.12) for every n ∈ N.
Then there exists a subsequence (h∗εnk

)k∈N and a minimizer h∗ of (4.3) such that h∗εnk ⇀ h∗ in

L2(Ω) as k →∞.

Proof. We first claim that the sequence (h∗εn)n∈N is bounded in L2(Ω). This can be seen for instance
from (4.15) and the fact that 1

2
q(·, ·) + 〈S(u) − g, S ′(u; ·)〉 is coercive. It follows that there exists

a subsequence (h∗εnk
)k∈N and h∗ ∈ L2(Ω) such that h∗εnk ⇀ h∗ in L2(Ω) as k → ∞. From

the estimate (4.13) we can assume that d∗εnk ⇀ d∗ in H1
0 (Ω) for some d∗ ∈ H1

0 (Ω) where d∗εnk
satisfies (4.5) for h∗εnk as right-hand side, also assuming that it has been selected using the axiom of

countable choice. Note that we can easily check that d∗ = S ′(u;h∗), i.e., the pair (h∗, d∗) satisfies
the unregularized adjoint equation (K). Indeed, this follows from the fact that −∆d∗εnk

⇀ −∆d∗

and h∗εnk ⇀ h∗ in H−1(Ω) and from the fact that Dεnk
(y; d∗εnk

) → N ′(y; d∗) in L2(Ω). The last
convergence can be inferred from the estimate

‖Dεnk
(y; d∗εnk

)−N ′(y; d∗)‖L2(Ω) ≤ ‖Dεnk
(y; d∗εnk

)−N ′(y; d∗εnk
)‖L2(Ω)+‖N ′(y; d∗)−N ′(y; d∗εnk

)‖L2(Ω)

in combination with (4.6), the Lipschitz continuity of N ′(y; ·) and the fact that d∗εnk → d∗ in L2(Ω).

Using the minimizing property of h∗εnk and letting G : L2(Ω) × H1
0 (Ω) → R with G(h, d) =

1
2
q(h, h) + 〈S(u)− g, d〉+ α〈u, h〉+ XTCad(u)

(h) we have that

G(h∗εnk
, d∗εnk

) ≤ G(hεnk , dεnk), (4.21)

for all pairs (hεnk , dεnk) that satisfy (4.5) for ε := εnk . We now claim that for every pair (h, d) satisfying

(K) there exists a pair sequence (h̄εnk , d̄εnk) that satisfies (4.5) for ε := εnk for each index k such

that h̄εnk → h in L2(Ω) and d̄εnk ⇀ d in H1
0 (Ω). Indeed we can set h̄εnk := h for all k ∈ N, and

choose d̄εnk ∈ H1
0 (Ω) a solution of

−∆d̄εnk +Dεnk
(y; d̄εnk) = h.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 21

Similarly as before we can check that d̄εnk ⇀ d in H1
0 (Ω) where d = S ′(u;h). By employing the

inequality (4.21) and taking limits on both sides we have

G(h∗, d∗) = lim inf
k→∞

G(h∗εnk
, d∗εnk

) ≤ lim
k→∞

G(h̄εnk , d̄εnk) = G(h, d).

Since (h, d) was a arbitrary pair satisfying (K), the result follows.

Remark 4.10. We note that since the value of the constant M > 0 in (4.20) potentially depends on
u ∈ Cad, it cannot be guaranteed that ε∗ > 0 can be chosen to have a common fixed value for all
u ∈ Cad.

Details on how we solve (4.12) in practice are provided below in Section 4.2. Once (4.12) is solved, and
a descent direction h is identified, we perform an Armijo line search in order to compute a step length
that sufficiently decreases the reduced objective J . For the sake of completeness we outline this in
Algorithm 1, which assumes that we have already computed uk, uk + h ∈ Cad at the k-th iteration
of the main algorithm. Here η > 0 is some parameter that prevents the step size from becoming too

Algorithm 1 Armijo line search
Input: h ∈ TCad(uk), τ0 = τ > 0, c ∈ (0, 1), 0 < η � 1, ν ∈ (0, 1), i = 0.
While

J (uk + τih) > J (uk) + ντiJ ′(uk;h) and τi > η (4.22)

Set: τi+1 = cτi, i = i+ 1
end while

small.

Note that the directional derivative of the reduced objective J ′(uk;h) in (4.1), can be evaluated us-
ing standard adjoint calculus. The corresponding involved PDEs (the state equation in (PN) and the
adjoint equation (K)) are solved numerically via a (semismooth) Newton algorithm.

In practice, the decrease of the step length τ in Algorithm 1 may be faster than the decrease of the
magnitude of the descent direction h. This may result in an insufficient decrease of the cost functional
J , particularly when the iterates approach some nonstationary point where the (reduced) objective is
nonsmooth. In such a case we perform a robustification step similar to [18, Algorithm 4]. That is, we
resort to a smoothed optimal control problem in order to compute a new control uk, and then compute
a new descent direction based on this uk. In particular, we solve the following problem

minimize
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to

{
−∆y +Nδ(·, y) = u, in Ω

y = 0, on ∂Ω
, and u ∈ Cad.

(4.23)

where Nδ is a (canonically) smoothed version of the network N . Note that since problem (4.23) is
merely a helpful tool in the overall algorithm (in practice the robustification step is rarely activated -
see next section), and not the final problem to be solved, the potential nonuniqueness of its solutions
is not a point of concern. The numerical solver for this smooth problem can be found for instance in
[11]. After every robustification step, we decrease the parameter δ by a factor c̃ ∈ (0, 1).

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 22

We state now in Algorithm 2 the overall descent algorithm which is based on the strategy of sequen-
tially minimizing the cost function in (4.12) in order to obtain descent directions. A few initial remarks
on Algorithm 2 are in order. Note that if uk is not a B-stationary point, then the internal loop which is
triggered in Step 3, in the case where hk is not a descent direction, is finite. This is indeed guaranteed
in view of Proposition 4.8. The extra update ε → c1ε in Step 4 after every successful Armijo line
search, ensures that the parameter ε goes to zero along the iterations.

Algorithm 2 Proposed algorithm for optimal control of ReLU-network-informed PDEs
Input: u0 ∈ Cad, η > 0, ε = ε0 > 0, δ = δ0 > 0, 1 ≥ τ > τmin > 0, and c, c̃, c1, c2, ν ∈ (0, 1).

Obtain y0 = S(u0) by solving the state equation in (PN) using a semismooth Newton method.
Perform the following iteration for k = 0, 1, 2, . . .:

Step 1: Solve problem (4.24) at u = uk in order to get initial values for hk (details in Section 4.5).

If m(ΩN (uk)) = 0, go directly to Step 4.
Else go to Step 2.

Step 2: Solve the subproblem (4.12) (details in Sections 4.2 and 4.5) and update hk accordingly.

Step 3: Check if hk is a descent direction, i.e., whether

〈S(uk)− g, S ′(uk;hk)〉+ α〈u, hk〉 < 0.

If this is not satisfied, update ε→ c1ε, and return to Step 2.

Step 4: Perform the Armijo line search in Algorithm 1 with parameters c, ν and

η := min
{
τmin, c̃ ‖hk‖L2(Ω)

}

to obtain a step length τ ∈ (0, 1], and then update ε → c1ε. If τ < η, stop the line search,
perform the robustification step by solving (4.23) to obtain a new uk, update δ → c2δ, let
k = k + 1 and return to Step 1.

Step 5: Set uk+1 = uk + τhk, and compute S(uk+1) using again a semismooth Newton method by
solving the state equation in (PN). Let k = k + 1.

We mention already here that in order to get an initial value for hk in Step 1, which is used as initial-
ization for Step 2, we solve the following problem

minimize
1

2
q(h, h) + 〈S(u)− g,Π0(u;h)〉+ α〈u, h〉 over h ∈ TCad . (4.24)

Here, for h ∈ L2(Ω), Π0(u;h) ∈ H1
0 (Ω) denotes a solution of the following linear equation:

{
−∆d+D0(y)d = h, in Ω,

d = 0, on ∂Ω,
(4.25)

where D0 is the function that results by formally setting the derivatives of the ReLU functions at zero
to be zero, recall formula (2.11). Note that in the case m(ΩN (u)) = 0, (4.24) is equivalent to (4.3).

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 23

We point the reader to Remark 4.11 below regarding potential (but rare) complications which might
be caused by D0 in (4.25). We also note that if q(h, h) := ‖h‖2

L2(Ω), then Algorithm 2 will perform
exactly like a (sub-) gradient descent method, which can be slow in terms of convergence rates. In
order to accelerate the algorithm, in the numerical examples we use the quadratic functional

q(h, h) = 〈Π0(u;h),Π0(u;h)〉+ α〈h, h〉, (4.26)

and we denote its derivative at h by Qh. We also note that if the network functionN (x, y) is smooth
with respect to y, then the proposed algorithm with the above quadratic functional is an SQP (Sequen-
tial Quadratic Programming) type method.

Remark 4.11. As it was pointed out in [7], even though D0 is almost equal to the gradient of N and
in particular it is an almost everywhere positive function, its values at the nondifferentiability points of
N could lie strictly below the Clark subdifferential ofN at these points. For example, ifN : R→ R,
then for every y ∈ R, it holds that ∂N (y) = [∂N (y), ∂N (y)], where ∂N := min{N ′−,N ′+},
∂N := max{N ′−,N ′+} withN ′± denoting the left- and right-sided derivatives. While due toN being
increasing we have ∂N (y) > 0 for every y ∈ R, it could be the case that for some y0 ∈ R it holds
D0(y0) < 0 < ∂N (y0) and as a result if the function y in (4.25) attains the value y0 at a set of
positive measure the existence of that equation could be at stake. Since however (4.25) is only used
to get some initial values for hk, in practice, we can restrict ourselves to a nonnegative approximation
by setting the negative values of D0 to zero.

4.2 Solving problem (4.12)

We continue by providing some details on solving (4.12) in Step 2 of Algorithm 2. From now on we
assume that the state equation in (4.12) admits a unique solution dε = dε(hε). This is indeed the case
when, e.g., for sufficiently small ρ > 0, 〈Dε(y; d), d〉 ≥ −ρ‖d‖2

L2(Ω) for all d ∈ H1
0 (Ω). Then the

first-order optimality condition for an optimal hε reads

〈Qhε + pε(u;hε) + αu, h〉 ≥ 0 for all h ∈ TCad(u). (4.27)

Note that in (4.27), pε(u;hε) represents the directional derivative of the second term in the objective
of (4.12).

Since we have assumed box constraints on the control variable (compare (3.6)), and in view of [25,
Theorem 2.29], formally the above variational inequality can be equivalently characterized by a system
of equations as follows:

−∆dε +Dε(y; dε)− hε = 0 in Ω, and dε = 0 on ∂Ω,

−∆pε + ∂d(Dε(y; dε))pε = y − g in Ω, and pε = 0 on ∂Ω,

Qhε + pε + µ = −αu,
µ−max(0, µ+ λ(u+ hε − ub))−min(0, µ+ λ(u+ hε − ua)) = 0,

(4.28)

where λ > 0 is a constant which is typically set equal to the cost of the control, i.e., λ = α. The first
equation in (4.28) is simply (4.5), while the second one is the adjoint equation that provides a way to
calculate the directional derivative in (4.27). The third equation represents the first-order stationarity
condition of (4.12) with µ being a slack variable, while the fourth one is used to enforce the box
constraint u + hε ∈ Cad, complementarity µ(u + hε − ua)(u + hε − ub) = 0 a.e. in Ω, as well as
µ ≥ 0 a.e. on {u + hε = ub} and µ ≤ 0 a.e on {u + hε = ua}. Under suitable assumptions, the

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 24

nonlinear and nonsmooth system (4.28) can be solved efficiently via a primal-dual active-set algorithm
(PDAS) for which we provide the details in Section 4.5 below.

The subtle point of the system (4.28) is that additional conditions are required for the existence of
solutions for the second equation since the L∞-function ∂d(Dε(y; dε)) might be negative on a large
set and hence the corresponding PDE operator would not be coercive. This is due to the potential
nonmonotonicity of Dε(y; ·). Below we provide a sufficient condition which guarantees existence of
solutions and, as a consequence the constraint qualification of [27] is satisfied. Thus, (4.28) indeed
represents the Karush-Kuhn-Tucker (KKT) system for (4.12). Note that as we show in Proposition
4.13, essentially unless an early stopping occurs, it holds that ‖hεk‖L2(Ω) → 0 along the iterations
k of Algorithm 2. In view of (4.5), this implies that ‖dεk‖H1

0 (Ω) → 0 as well. The condition below
leverages this fact.

Lemma 4.12. Let y ∈ Y ∩ C0,a(Ω) be a solution of the state equation in (PN) and let dε ∈ H1
0 (Ω)

be a solution of the first equation in (4.28) such that the estimate ‖dε‖H1
0 (Ω) → 0 as ε→ 0. Suppose

that there exists δ > 0, possibly dependent on y, such that for small enough ε > 0, the set

U = {x ∈ Ω : Dε(y(x); ·) is monotone increasing in (−δ, δ)} (4.29)

has a full Lebesgue measure. Then for small enough ε > 0 the second equation in (4.28) has a
solution pε ∈ H1

0 (Ω).

Proof. It suffices to show that

m({x ∈ Ω : ∂dDε(y(x); dε(x)) < 0})→ 0 as ε→ 0. (4.30)

Indeed, if this holds then the operatorAε : H1
0 (Ω)→ H−1(Ω), where for d, v ∈ H1

0 (Ω),Aεd(v) :=
〈∇d,∇v〉+ 〈∂dDε(y; dε)d, v〉 is coercive for small enough ε > 0 and we can proceed as in Propo-
sition 4.4.

Since we have ‖dε‖H1
0 (Ω) → 0 as ε→ 0, using the Chebyshev inequality, it follows that

m ({x ∈ Ω : |dε(x)| ≥ δ})→ 0 as ε→ 0. (4.31)

We then have the partition

({x ∈ Ω : ∂dDε(y(x); dε(x)) < 0} = ({x ∈ Ω : ∂dDε(y(x); dε(x)) < 0} ∩ {x ∈ Ω : |dε(x)| < δ}
∪ ({x ∈ Ω : ∂dDε(y(x); dε(x)) < 0} ∩ {x ∈ Ω : |dε(x)| ≥ δ}.

The first set in the partition above is a subset of Ω \ U so it has zero Lebesgue measure, while the
measure of the second set goes to zero as ε→ 0 in view of (4.31). That shows (4.30).

Lemma 4.12 indicates that, in order to have existence of solutions for the second equation in (4.28), it
suffices to impose some condition that guarantees that the smoothed function Dε(y(x); ·) will not be
decreasing in an area around zero; in a large set or in set of full measure as it is done here. This is the
main region of interest since ‖dεk‖L2(Ω) → 0 and thus all its values will be essentially concentrated
around that area.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 25

4.3 Convergence analysis

In this section, we provide information about the quality of the limits of the sequence of controls
(uk)k∈N and pertinent states (yk)k∈N generated by Algorithm 2. We start with a result regarding
the convergence of the sequence of descent directions (hk)k∈N.

Proposition 4.13. Let (uk)k∈N be a sequence of controls generated by Algorithm 2. If for every
k ∈ N, uk is not a B-stationary point and the robustification step is activated only finitely many times,
then ‖hk‖L2(Ω) → 0 as k →∞.

Proof. Note that since the robustification step is activated finitely many times only, we have that the
sequence (J (uk))k∈N is eventually strictly decreasing. Since all its elements are positive, it follows
that there exists J ∗ ≥ 0 such that J (uk) → J ∗. Assume without loss of generality, that for all but
finitely many iterates we have m(ΩN (uk)) > 0. Note that from the Armijo line search we have for
large enough k, and a constant C > 0 independent of ε and uk (see also (4.18))

J (uk+1)− J (uk) ≤ ντJ ′(uk;hk) ≤ ντCε− ντ

2
q(hk, hk)

≤ νCε− νC2

2
min(τmin‖hk‖2

L2(Ω), c̃‖hk‖3
L2(Ω)),

where we used the fact that 1 > τ > min(τmin, c̃‖hk‖L2(Ω)) and the estimate (4.4). Since 0 >
J (uk+1) − J (uk) → 0 as k → ∞ and the fact that ε is also going to zero along the iterates, see
the remarks after Algorithm 2, it follows that ‖hk‖L2(Ω) → 0. Lastly if m(ΩN (uk)) = 0 for infinitely
many k’s then, along that subsequence, still denoted by (uk)k∈N, we have

J (uk+1)− J (uk) ≤ ντJ ′(uk;hk) ≤ −
ντ

2
q(hk, hk) ≤ −

νC2

2
min(τmin‖hk‖2

L2(Ω), c̃‖hk‖3
L2(Ω)),

see (4.24) and (4.25). This concludes the proof.

The next theorem provides more details about the iterates of Algorithm 2. In fact, depending on prop-
erties with respect to robustification and the nonsmooth behavior of N , along specific subsequences
limit points satisfying different types of stationarity are obtained, respectively.

Theorem 4.14. Let λ = α in the KKT system (4.28). Let (uk)k∈N be a sequence of controls generated
by Algorithm 2, with (yk)k∈N the corresponding states. Then the following hold true:

(1) Suppose the algorithm returns hk0 = 0 after finitely many iterations, and uk0 and yk0 are the
corresponding control and state, respectively. If m(ΩN (uk0)) = 0, then the algorithm returns a
B-stationary point; otherwise the following conditions are satisfied:

−∆yk0 +N (·, yk0)− uk0 = 0 in Ω, yk0 = 0 on ∂Ω,

−∆pk0 + χεpk0 − yk0 = −g in Ω, pk0 = 0 on ∂Ω,

(pk0 + αuk0 , h) ≥ 0 for all h ∈ TCad(uk0).

(4.32)

where χε = ∂dDε(yk0 ; dε), and dε solves the PDE

−∆d+Dε(yk0 ; d) = 0 in Ω, d = 0 on ∂Ω.

(2) When the robustification step is activated only finitely many times, the following two cases need
to be distinguished:

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 26

(i) Along a subsequence where m(ΩN (ukl)) = 0 for all l ∈ N, there exists a further
subsequence still denoted by (ukl , ykl), so that ukl → u∗ in L2(Ω), and u∗ ∈ Cad
satisfies

J ◦(u∗;h) ≥ 0 for all h ∈ TCad(u∗), (4.33)

where J ◦(u∗;h) is the Clarke directional derivative of J (·) at u∗ in the direction h, i.e.
J ◦(u∗;h) = supξ∈∂J (u∗)〈ξ, h〉.

(ii) Along a subsequence where m(ΩN (ukl)) > 0 for all l ∈ N, there exists a further
subsequence still denoted by (ukl , ykl), so that ukl → u∗ in L2(Ω), and u∗ ∈ Cad
satisfies the weak stationarity condition.

(3) When the robustification step is activated for infinitely many times, then there exists a subse-
quence so that the algorithm converges to a C-stationary point along that subsequence.

Proof. We prove each of the statement here.

(1) The first statement on the smooth case is due to the setting of the algorithm. In fact, when
m(ΩN (uk0)) = 0, then we have Π0(uk0 ;h) = S ′(uk0 ;h). When 0 is a minimizer of (4.2),
then for every h ∈ TCad(uk0), J ′(uk0 ;h) ≥ J ′(uk0 ; 0) = 0 due to the property of the min-
imizer. When the nonsmooth part has positive measure, S ′(uk0 ;h) is replaced by the smooth
approximation Πε(uk0 ;h) for some fixed ε > 0. The conclusion is drawn by rewriting the KKT
system in (4.28) where the equivalence between the third variational inequality in (4.32) and
the third and the fourth equations in (4.28) is considered, a proof of which can be found in [25,
Theorem 2.29].

(2) We turn to the first assertion in the second statement. Notice that for a bounded sequence
(uk)k∈N ⊂ Cad ⊂ L2(Ω), we can extract a weakly convergent subsequence denoted by
(ukl), and ukl ⇀ u∗ ∈ Cad. Let ykl , pkl be the solutions of the state equation and the adjoint
equation corresponding to ukl , respectively, and y∗, p∗ be the solutions corresponding to u∗.
Using standard regularity results on solutions of elliptical PDEs, we have ykl ∈ H1

0 (Ω) and
pkl ∈ H1

0 (Ω) for all l ∈ N, and (ykl) and (pkl) are uniformly bounded in H1
0 (Ω), respectively.

Using the compact embedding ofH1
0 (Ω) into L2(Ω), we conclude that ykl → y∗ and pkl → p∗

both in the L2(Ω) norm topology. Referring to the fourth equation in the KKT system (4.28) for
each ukl in the subsequence, we derive also that ukl → u∗ strongly in L2(Ω) if we choose
λ = α > 0. This is because of Qhkl → 0 (as well as hkl → 0) and the relation Qhkl + pkl =
−µkl − αukl → p∗ in L2(Ω), and the connection given by the fourth equation in (4.28) when
λ = α, i.e.,

µkl = max(0, µkl + α(ukl + hkl − ub) + min(0, µkl + α(ukl + hkl − ua)))

which ensures that µkl → µ∗ in L2(Ω), and subsequently ukl → u∗ in L2(Ω). Since ykl ∈
L∞(Ω) and N(·) is Lipschitz, N ′(ykl) ∈ L∞(Ω) are uniformly bounded. Using the Banach-

Alaoglu theorem, we have N ′(ykl)
∗
⇀ ζ for some ζ ∈ L∞(Ω). Using the definition of the

Clarke subgradient, we have ζ ∈ ∂N(y∗) by upper semicontinuity of ∂N(·); see, e.g., [4].

Using the above convergence properties, we arrive at the system

−∆y∗ +N (·, y∗)− u∗ = 0 in Ω, y∗ = 0 on ∂Ω,

−∆p∗ + ζp∗ − y∗ = −g in Ω, p∗ = 0 on ∂Ω,

〈p∗ + αu∗, h〉 ≥ 0 for all h ∈ TCad(u∗),
(4.34)

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 27

where the same argument for the third variational inequality holds as in Case (1). By the defi-
nition of Clarke’s generalized directional derivative, we then conclude that

J ◦(u∗;h) ≥ 〈p∗ + αu∗, h〉 ≥ 0 for all h ∈ TCad(u∗).

For assertion (ii), we use the same argument as in (i) to have ykl → y∗, pkl → p∗, and
ukl → u∗ in L2(Ω). Recall that hk → 0 in L2(Ω) in the KKT system in (4.28). Now we
show that (∂dDεk(yk; dεk))k∈N is a bounded sequence in L∞(Ω). Note that N(·) is Lipschitz
continuous and yk ∈ H1(Ω) ∩ L∞(Ω), and Dεk(yk; ·) is C1 smooth and therefore Lipschitz
with respect to the second variable, from which we have that ∂dDεk(·, ·) is uniformly bounded
with respect to both variables, i.e., for all k ∈ N we have |∂dDεk(yk, dεk)| ≤M . Thus, we have
∂dDεk(yk, dεk) ∈ L∞(Ω) for all k ∈ N. Now using the Banach-Alaoglu theorem, we conclude
that there exists a weakly star convergent sub-sequence of ∂dDεkl

(ykl , dεkl), i.e., there exists

ζ ∈ L∞(Ω) such that ∂dDεkl
(ykl , dεkl)

∗
⇀ ζ (still denoted using the same indices). Passing to

the limit in the system (4.28) with respect to this subsequence, yields the conclusion.

(3) For the third statement, we take the subsequence whose elements correspond to the control
and state variables for activated robustification. This results in a sequence of optimal control
problems with respect to the regularized PDEs in (4.23). Since in the lth robustification step,
δl+1 = c̃δl for some c̃ ∈ (0, 1) we infer δl → 0 as l → ∞. This yields a C-stationary point in
the limit as l → ∞. For the associated analytical details on the convergence of the smoothed
optimal control problems as δl → 0, we refer to the paper [12].

We note that case (1) of Theorem 4.14 rarely occurs in practice and yields a desirable B-stationary
point ifN is differentiable at uk0 ; otherwise an approximate version of aC-stationary point is reached.
Case (2) either yields a form of C-stationary point in (i), or a an element satisying weaker conditions
in (ii). The latter case produces the least favorable limit point in terms of stationarity. Finally, case (3)
provides a point satisfying C-stationarity conditions, which are weaker than B-stationarity conditions.

4.4 Practical aspects concerning Algorithm 2

We recall that for the sake of presentation we confine ourselves to the case where Cad is given by box
constraints; see (3.6). We point out that such box constraints are relevant in numerous applications in
PDE constrained optimization.

In order to account for possible violations of the control constraints in the practical numerical realization
(e.g. due to inexact solves), we use the following merit function for the line search algorithm

Ek(τ) := J (uk + τh) + κΨ(uk + τh), (4.35)

where
Ψ(u) := ‖max(0, u− ub)‖L2(Ω) + ‖min(0, u− ua)‖L2(Ω) ,

evaluates the violation of the box constraint. Here κ > 0 is the parameter from Algorithm 2. The
above merit function replaces the objective function J in (4.22) in Algorithm 1. Thus, we need to
guarantee a descent direction for (4.35). In our setting the latter is connected to a practical stopping
rule for terminating the utilized solver for (4.28). Notice that if uk ∈ Cad, and the subproblem (4.12) in

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 28

particular the constraint has been settled with satisfactory accuracy, we shall have uk + h ∈ Cad as
well. Then (Ψ(uk + h) − Ψ(uk)) = 0 and the standard Armijo line search is applied. This is often
the case when a primal-dual active-set (PDAS) method (see, e.g., [17]) is applied to box constraints
as we will explain in detail in the next section. In case one aims at only approximately satisfying the
constraint along the iterates, i.e. (Ψ(uk + h) − Ψ(uk)) > 0, a similar termination condition for
the solver of the sub-problem (4.12) as in [11, Algorithm 1, (4.62)] can be applied. It consists of the
following inequalities:

J ′(uk;h) + κ(Ψ(uk + h)−Ψ(uk)) ≤ −ξq(h, h),

and Ψ(uk + h) ≤ (1− ξ)Ψ(uk),
for some ξ ∈ (0, 1). (4.36)

The first inequality above guarantees a descent direction for the merit functional in every iteration.
Whereas the second condition enforces uniform decay of the constraint violation along the iterations.
Observe that if Ψ(uk) = 0, then Ψ(ul) = 0 for all l > k. The underlying assumption here is that the
solver for (4.28) is able to achieve sufficiently accurate solutions.

Notice also that in Algorithm 2, we require τ0 < τ ≤ 1, and observe further that by solving the system
(4.28) exactly we obtain a direction h with uk +h ∈ Cad. Hence if uk ∈ Cad and the solution for (4.28)
is accurate, then this implies that uk+τh ∈ Cad for all τ ∈ (0, 1] by convexity of Cad. Consequently all
the iterates are feasible, and the merit functional (4.35) is equivalent to the reduced functional provided
that all the systems are solved exactly. Indeed, in our experiments, we use the PDAS algorithm which
can compute highly accurate solutions for (4.28).

4.5 Details on the PDAS Algorithm

In the following, we provide some details on the implementation of PDAS in Algorithm 2, as it is
employed in two different steps. First we utilize PDAS to solve the KKT system of (4.24) for initialization,
which is:

(K−1 + αId)h+ p0 + αu+ µ = 0,

µ−max(0, µ+ λ(u+ h− ub))−min(0, µ+ λ(u+ h− ua)) = 0,
(4.37)

with λ > 0 fixed. In practice we typically set λ := α > 0. Here Qh := (K−1 + αId)h, with
Q : L2(Ω) → L2(Ω) linear and continuous, i.e., Q ∈ L(L2(Ω)), is the derivative of 1

2
q(h, h) and

K−1 ∈ L(L2(Ω), B) for some B ⊂ L2(Ω) with

K ∈ L(B,L2(Ω)), Kt = (−∆ + (D0(y))∗(−∆ + (D0(y))t for t ∈ B.

In fact, for given h ∈ L2(Ω) and sufficiently smooth Ω, Kt = h is realized via finding (s, t) ∈
(H1

0 (Ω) ∩H2(Ω))2 such that

−∆s+D0(y)s = h and −∆t+D0(y)t = s.

Thus, B = H1
0 (Ω) ∩H2(Ω).

Computationally, (4.37) is realized as follows: we first introduce an auxiliary variable t ∈ B and
K−1h = t. Then, in every iteration of PDAS, we solve the linear system (4.38) below. For this purpose
let A+ denote an estimate for the upper active set {x ∈ Ω : u(x) + h∗(x) = ub(x)}, or short
{u + h∗ = ub}, at the solution h∗ ∈ L2(Ω) of (4.24) and analogously for A− and the lower active
set {u + h∗ = ua}, with A+ ∩ A− = ∅. Further, I = Ω \ A, with A := A+ ∪ A−, is an estimate
of the inactive set {ua < u+ h∗ < ub}.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 29

The resulting linear system reads

Kt− h = 0,

t+ αh+ J ′0(u) + µ = 0,

h|A+ = ub|A+ − u|A+ , h|A− = ua|A− − u|A− , µ|I = 0,

(4.38)

where J ′0(u) = p0 + αu, and v|S denotes the restriction of a function v : Ω → R to a set S ⊂ Ω.
Notice that only h|I and µ|A are our desired unknown variables now.

Next, let EI denote the extension-by-zero operator from I to Ω. Then, E∗I is the restriction operator
from Ω to I . The operators EA+ , E∗A+

, EA− , E∗A− and EA, E∗A are defined analogously. Note that,
for instance, µ|I = E∗Iµ. For convenience, below we will use both notations for restriction operators.
With these definitions and noting from the second and third equation in (4.38) that

h|I = −α−1(t|I + J ′0(u)|I),

and
µ|A = −t|A − αE∗A(EA+(ub − u)|A+ + EA−(ua − u)|A−)− J ′0(u)|A,

we can reduce the system in (4.38) to solving

(K + α−1EIE
∗
I)t = EA+(ub − u)|A+ + EA−(ua − u)|A− − α−1EIJ ′0(u)|I . (4.39)

for t ∈ B. Backward substitution then yields h|I and µ|A.

Utilizing the above considerations, PDAS solves (4.37) iteratively by estimating the active and inactive
sets and solving the associated linear system of the type (4.39) in every iteration. In this context, the
active set estimation works as follows: Assume that a current iterate (hl, µl) ∈ L2(Ω)2, l ∈ N, is
available. Then the next active and inactive set estimates are determined by

Al+1
+ := {µl + λ(u+ hl − ub) > 0}, Al+1

− := {µl + λ(u+ hl − ua) < 0},
Al+1 := Al+1

+ ∪ Al+1
− , I l+1 := Ω \ Al+1.

These sets are then used in (4.39), respectively (4.38), to obtain (hl+1, µl+1). Unless some stopping
rule is satisfied, PDAS returns to the next set estimation. We refer to [17] for more details on PDAS
including convergence considerations. The choice of numerical solvers for (4.39) may depend on the
size of the system after discretization. In our situation, the standard Matlab backslash is sufficient
already. In our tests below, the PDAS iterations are terminated if the L2(Ω)-norm residual of the
second equation in (4.37) drops below 10−16 or a maximum of 50 iterations is reached.

The second application of PDAS is connected to numerically solving the nonlinear system in (4.28).
Our strategy here is to decouple the system (4.28) into the following two subsystems:

{
−∆dε +Dε(y; dε)− h = 0 in Ω, and dε = 0 on ∂Ω,

−∆pε + ∂dε(Dε(y; dε))pε = y − g in Ω, and pε = 0 on ∂Ω,
(4.40)

and {
Qh+ pε + µ = −αu,
µ−max(0, µ+ λ(u+ h− ub))−min(0, µ+ λ(u+ h− ua)) = 0.

(4.41)

Then, in our implementation of Step 2 of Algorithm 2, while the L2(Ω) residual norm of the system
(4.28) is larger than 10−16, or the iteration count is smaller than 50, we use a consecutive and iterative
way to implement the following:

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 30

(i) First we run Newton algorithm for (4.40) to get an update to dε and pε for a fixed h. The algorithm
can be initialized using the solution from its last round, and 0s for the first round;

(ii) Using the newly computed dε and pε from (i), we apply PDAS to (4.41) to obtain updates of µ
and h. The PDAS step is similar to the one we have described above. Only the terms pertinent
to the new quantities in (4.40) and (4.41) are adapted. Especially, now Q is associated with
the functional qε(h, h) = 〈Πε(u, ·)h,Πε(u, ·)h〉 + α〈h, h〉. However, we note here that in
our experiments, for each PDAS iteration for (4.41), we found that using simply the quadratic
functional q from the initialization step above gives almost the same convergence behavior than
using qε connected to Πε.

5 Numerical results

In this section, we demonstrate the practical performance of our proposed algorithm for solving optimal
control problems with nonsmooth partial differential equations which contain ReLU network compo-
nents.

Parameter setting of Algorithm 2 In our algorithm, we set η = 10−16, τmin = 10−16 and ε0 =
δ0 = 10−1, c = 0.6, c1 = c2 = 0.1, β = 1.1, c̃ = 0.5. The parameter ν will be set depending on the
value of α and the respective example. In all the tested examples, we use finite differences for the PDE
discretization, and in particular the standard five-point stencil for the discrete Laplacian. The algorithm
is terminated if ‖h‖L2(Ω) ≤ 10−16. For solving both the state equation and the adjoint equation, we

use a (semismooth) Newton method [17], with the stopping rule on checking the H−1(Ω)-norm of the
residual. Specifically, if the residual norm is smaller than 10−16 or the number of iterations is bigger
than 50, then we stop the Newton solver. Numerical calculations were performed on a laptop with Intel
Core i7-10850H CPU and 64GB memory using Matlab R2020b.

5.1 Application to PDE with single max-function

Here we first show the result of our algorithm when applied to an example presented in [9]. We choose
Ω = (0, 1) × (0, 1) to be the unit square, and design the exact solution and its adjoint state of the
optimal control problem to be

y = p =

((
x1 −

1

2

)4
+

1

2

(
x1 −

1

2

)3)
sin(πx2) x1 <

1

2
,

0 x1 ≥
1

2
.

(5.1)

No active control constraint is considered in this example for simplicity. The state equation is given by
the following second-order semilinear elliptic PDE:

−∆y + max(0, y) = u+ f in Ω, and y = 0 on ∂Ω,

where, given y and p, the optimal control u and the given function f can also be explicitly calculated
using the KKT condition of the optimal control problem. Note that introducing a given function f into
the PDE does neither change the analysis nor the algorithm. Both y and p are twice continuously
differentiable and have value 0 on the right half of Ω. Therefore, the nonsmoothness of the max-
function in the state equation at the solution appears on a set of positive measure in this example.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 31

This renders the control-to-state map nonsmooth at the solution (u, y). We test our algorithm by
using different discretization sizes dx (uniform in both dimensions) and with respect to variants of the
control cost α. Particularly, in all the numerical tests provided in this paper, we consider the following
C2-smooth approximation of the max-function in Dε:

σε(t) =

t− ε
2
, if t ≥ ε,

t3

ε2
− t4

2ε3
, if t ∈ (0, ε),

0, if t ≤ 0,

(5.2)

for given ε > 0. The numerical results are reported in Table 5.1. We observe here that our algo-

α = 10−1, ν = 0.9 α = 10−2, ν = 0.9

Mesh size Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖ Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖
dx=1/16 0.0261 0.0506 0.0234 0.0263 0.044 0.2021

dx=1/32 0.0329 0.013 0.0058 0.0331 0.0116 0.052

dx=1/64 0.0368 0.0029 0.0012 0.037 0.003 0.0131

dx=1/128 0.0389 6.07× 10−4 1.03× 10−4 0.039 7.1× 10−4 0.0031

α = 10−3, ν = 0.9 α = 10−4, ν = 0.9

Mesh size Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖ Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖
dx=1/16 0.0281 0.0216 0.7755 0.0455 0.0057 1.3518

dx=1/32 0.0349 0.0057 0.2003 0.0523 0.0015 0.3501

dx=1/64 0.0387 0.0015 0.0511 0.0562 3.94× 10−4 0.0896

dx=1/128 0.0408 3.73× 10−4 0.0128 0.0582 1.0× 10−4 0.0226

α = 10−5, ν = 0.9 α = 10−6, ν = 0.9

Mesh size Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖ Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖
dx=1/16 0.2194 0.0011 1.592 1.9592 2.35× 10−4 1.6832

dx=1/32 0.2266 3.08× 10−4 0.4136 1.9702 8.32× 10−5 0.4421

dx=1/64 0.2305 8.06× 10−5 0.1061 1.9744 2.31× 10−5 0.1159

dx=1/128 0.2326 2.06× 10−5 0.027 1.9765 6.06× 10−6 0.0319

α = 10−7, ν = 0.9 α = 10−8, ν = 0.9

Mesh size Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖ Cost ‖u− uh‖ / ‖u‖ ‖y − yh‖ / ‖y‖
dx=1/16 19.3566 3.27× 10−5 1.7302 193.3311 3.4782× 10−6 1.8797

dx=1/32 19.4059 2.03× 10−5 0.4713 193.7626 3.06× 10−6 0.6281

dx=1/64 19.4128 7.43× 10−6 0.1330 193.7970 2.09× 10−6 0.3067

dx=1/128 19.4151 2.09× 10−6 0.0468 193.8011 7.65× 10−7 0.2340

Table 5.1: Convergence performance of the proposed algorithm (for the single-max function problem)
in terms of mesh size dx and the regularization parameter α. The exact solution y is given in (5.1),
and u = p/α can be informed through the KKT system as we assumed that the constraint is not
active.

rithm can achieve quadratic convergence rates with respect to the mesh size dx as in [9]. When α
becomes smaller, the convergence of the state variable becomes harder. It was reported in [9] that the
semismooth Newton type method used there, achieved no convergence when α = 10−6 or smaller.
However, our method is capable of preserving the quadratic convergence when α = 10−6. For the
case α < 10−6, as provided in the last two groups in Table 5.1, quadratic convergence rate can be
observed in the case of α = 10−7, and a suboptimal convergence rate appears when α = 10−8.
This shows that the proposed method is more robust for ill-conditioned problems.

In the following test examples, we also show that our proposed algorithm copes well with semilinear
PDEs whose nonlinearities are general ReLU network functions. In this sense, our proposed method
can be considered a genuine nonsmooth solver for such type of problems.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

G. Dong, M. Hintermüller, K. Papafitsoros 32

5.2 Application to general multilayer ReLU network PDEs

We consider a ReLU neural network functionN : R→ R, with two-hidden-layers:

N (y) =
L∑

l=1

wl2σ

(
K∑

k=1

wl,k1 σ(wk0y + bk0) + bl1

)
+ b2.

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

20

40

60

80

100
function graph of N
derivative graph of N

2
−100 −80 −60 −40 −20 0 20 40 60 80 100

0

20

40

function graph of N
derivative graph of N

2

Weight parameters Bias

w1
0 w2

0 w3
0 b1

0 b2
0 b3

0

5 0.1 10 − − − 10 −1 −60

w1,1
1 w1,2

1 w1,3
1 w2,1

1 w2,2
1 w2,3

1 b1
1 b2

1

0.3 2 −0.16 0.1 1 −0.03 (−0.12) 0 1 −
2 − − 1.5 − − 0 − −

Figure 3: Graphs and corresponding weights for the monotone and nonmonotone ReLU networks.
The only difference is their w2,3-value (−0.03 vs −0.12).

Our results here address optimal control problems for nonsmooth semilinear elliptic PDEs with both,
monotone and nonmonotone network functions, respectively, as shown in Figure 3. For the sake of pro-
viding quantitative observations, we generate synthetic data by fixing the solution of the PDE. The data
is generated from the function g0 = 200 sin(πx) sin(πy) and the control u0 = min(ub,max(ua,−∆g0+
N (g0))) for ua = −1000, ub = 1000, giving rise to a state y0.In this example, we choose Ω =
(0, 2) × (0, 2). Then the function g in the objective of (PN) is computed numerically via the KKT-
system for (u0, y0). Both test examples, respectively containing monotone and nonmonotone network
functions, are generated in this way. Optimal control of PDEs involving ReLU neural network com-
ponents, as proposed and studied in this paper, is a new feature in the literature, and our proposed
algorithm is specific for the optimization with these type of PDE constraints. For this reason we refrain
from comparing our algorithm with other (less tailored) methods for this set of examples.

Our numerical results are summarized in Table 5.2. Here we collect three cases of discretization sizes
with respect to varying cost parameter α. In all cases, we observe that m(ΩN) is not zero at the
solution rendering the control-to-state map genuinely nonsmooth. As a consequence, Step 2 in Algo-
rithm 2 is always active. In Table 5.2, ’Cost’ denotes the value of the objective functional of the optimal
control problem at the final iterate, and ’Iterates’ shows the number of outer iterations in Algorithm 2.
From the results reported in Table 5.2 we find that in both cases, monotone and nonmonotone, the
algorithm exhibits a robust behavior across the scales of dx and α. Specifically, the almost constant
iteration count for varying dx can be associated with mesh-independent convergence of the algorithm.
Moreover, In all cases highly accurate solutions could be obtained. In our computations, we also tested
the algorithm in the extreme case of α = 10−16, which however exhibits still a similar performance
as for the last set of examples for both monotone and nonmonotone functions. The only difference for
this case is that we used λ = 10−6 in (4.37) rather than λ = α as in the other cases.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

A descent algorithm for the optimal control of ReLU neural network informed PDEs 33

Monotone case Nonmonotone case

α = 10−2 ν = 0.7 α = 10−2 ν = 0.7

Mesh size Cost ‖h‖ Iterates CPU time Cost ‖h‖ Iterates CPU time

dx=1/16 2453.4 2.0× 10−27 34 0.5s 2505.8 2.0× 10−27 33 0.4s

dx=1/32 2444.1 3.4× 10−27 31 1.5s 2496.1 4.9× 10−27 31 1.5s

dx=1/64 2441.6 1.4× 10−28 34 23.9s 2493.7 3.3× 10−27 35 39.0s

α = 10−10 ν = 0.7 α = 10−10 ν = 0.7

Mesh size Cost ‖h‖ Iterates CPU time Cost ‖h‖ Iterates CPU time

dx=1/16 1.4531× 10−4 7.9× 10−24 34 1.3s 1.4477× 10−4 4.2× 10−24 34 1.3s

dx=1/32 1.4535× 10−4 5.4× 10−23 34 4.7s 1.4474× 10−4 1.0× 10−22 34 22.2s

dx=1/64 1.4535× 10−4 3.9× 10−21 34 23.4s 1.4476× 10−4 4.7× 10−21 34 23.8s

α = 10−16 ν = 0.7 α = 10−16 ν = 0.7

Mesh size Cost ‖h‖ Iterates CPU time Cost ‖h‖ Iterates CPU time

dx=1/16 1.4531× 10−10 4.9× 10−17 55 14.1s 1.4477× 10−10 8.4× 10−17 54 13.5s

dx=1/32 1.4535× 10−10 8.5× 10−17 55 52.2s 1.4474× 10−10 8.1× 10−17 55 51.6s

dx=1/64 1.4535× 10−10 5.9× 10−17 55 273.6s 1.4476× 10−10 5.9× 10−17 55 283.3s

Table 5.2: Convergence performance of the proposed algorithm for monotone and nonmonotone ReLU
neural network functions.

6 Conclusion

In this paper, we have studied numerical aspects of optimal control problems with ReLU-network-
informed PDEs. It was firstly shown that a canonical smoothing of a ReLU network, though practically
very plausible, cannot always preserve its monotonicity, something that could imply lack of uniqueness
of solutions for the corresponding ReLU-network-informed PDEs. Therefore traditional numerical ap-
proaches relying on such smooth approximations may encounter difficulties in the solution process.
This motivates us to propose a genuine nonsmooth algorithm which respects the specific structure
of ReLU networks in the PDEs. The proposed approach does not smoothen the state equation itself,
but it rather approximates the derivative of the control-to-state map via smoothing of the max-function
appearing at the directional derivatives. Such approximations were proven to converge strongly to
the original directional derivative of the nonsmooth operator in a vanishing smoothing regime. More-
over, this approximation process allows to identify descent directions of the reduced optimal control
problem with respect to the nonsmooth PDEs at a given control iterate. In our numerical tests, the
proposed algorithm performs more robust in a benchmark optimal control problem when compared to
recent nonsmooth algorithms designed specifically for the optimal control of PDEs with a single max-
function. In addition, our algorithm also works well for optimal control of semilinear elliptic PDEs with
deeper ReLU network functions, which have a more general nonsmooth structure when compared to
a single max-function.

Acknowledgments

KP would like to thank Amal Alphonse for useful discussions.

References

[1] C. Aarset, M. Holler, and T.T.N. Nguyen. Learning-informed parameter identification in nonlin-
ear time-dependent PDEs. arXiv:2202.10915, 2022. https://arxiv.org/abs/2202.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

https://arxiv.org/abs/2202.10915
https://arxiv.org/abs/2202.10915

G. Dong, M. Hintermüller, K. Papafitsoros 34

10915.

[2] C.D. Aliprantis, D. Harris, and R. Tourky. Continuous piecewise linear functions.
Macroeconomic Dynamics, 10(1):77–99, 2006. https://doi.org/10.1017/
S1365100506050103.

[3] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rec-
tified linear units. In International Conference on Learning Representations, 2018. https:
//openreview.net/pdf?id=B1J_rgWRW.

[4] J.-P. Aubin and H. Frankowska. Set-valued analysis. Springer Science & Business Media, 2009.

[5] V. Barbu. Optimal control of variational inequalities. Research Notes in Mathematics, 100, 1984.

[6] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[7] J. Berner, D. Elbrächter, P. Grohs, and A. Jentzen. Towards a regularity theory for ReLU networks
– chain rule and global error estimates. In 2019 13th International conference on Sampling
Theory and Applications (SampTA), pages 1–5, 2019. https://doi.org/10.1109/
SampTA45681.2019.9031005.

[8] J.F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Science
& Business Media, 2013.

[9] C. Christof, C. Meyer, S. Walther, and C. Clason. Optimal control of a non-smooth semilinear
elliptic equation. Mathematical Control & Related Fields, 8:247, 2018. https://doi.org/
10.3934/mcrf.2018011.

[10] G. Dong, M. Hintermüller, and K. Papafitsoros. Quantitative magnetic resonance imaging: From
fingerprinting to integrated physics-based models. SIAM Journal on Imaging Sciences, 12(2),
2019. https://doi.org/10.1137/18M1222211.

[11] G. Dong, M. Hintermüller, and K. Papafitsoros. Optimization with learning-informed differential
equation constraints and its applications. ESAIM: COCV, 28:1–44, 2022. https://doi.
org/10.1051/cocv/2021100.

[12] G. Dong, M. Hintermüller, K. Papafitsoros, and K. Völkner. First-order conditions for the optimal
control of learning-informed nonsmooth PDEs. arXiv:2206.00297, 2022. https://arxiv.
org/abs/2206.00297.

[13] L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, Sec-
ond Edition. American Mathematical Society, 2010.

[14] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca
Raton, FL, 1992.

[15] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics, pages 315–323. JMLR
Workshop and Conference Proceedings, 2011.

[16] I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep ReLU neural
networks in W s,p norms. Analysis and Applications, 18(05):803–859, 2020. https://doi.
org/10.1142/S0219530519410021.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

https://arxiv.org/abs/2202.10915
https://arxiv.org/abs/2202.10915
https://doi.org/10.1017/S1365100506050103
https://doi.org/10.1017/S1365100506050103
https://openreview.net/pdf?id=B1J_rgWRW
https://openreview.net/pdf?id=B1J_rgWRW
https://doi.org/10.1109/SampTA45681.2019.9031005
https://doi.org/10.1109/SampTA45681.2019.9031005
https://doi.org/10.3934/mcrf.2018011
https://doi.org/10.3934/mcrf.2018011
https://doi.org/10.1137/18M1222211
https://doi.org/10.1051/cocv/2021100
https://doi.org/10.1051/cocv/2021100
https://arxiv.org/abs/2206.00297
https://arxiv.org/abs/2206.00297
https://doi.org/10.1142/S0219530519410021
https://doi.org/10.1142/S0219530519410021

A descent algorithm for the optimal control of ReLU neural network informed PDEs 35

[17] M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth
Newton method. SIAM Journal on Optimization, 13(3):865–888, 2003. https://doi.org/
10.1137/S1052623401383558.

[18] M. Hintermüller and T.M. Surowiec. A bundle-free implicit programming approach for a class
of elliptic mpecs in function space. Mathematical Programming, 160:271–305, 2016. https:
//doi.org/10.1007/s10107-016-0983-9.

[19] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints, vol-
ume 23. Springer Science & Business Media, 2009. https://doi.org/10.1007/
978-1-4020-8839-1.

[20] B. Kaltenbacher and T.T.N. Nguyen. Discretization of parameter identification in PDEs using
neural networks. arXiv preprint arXiv:2108.10618, 2021. https://arxiv.org/abs/
2108.10618.

[21] F. Mignot and J.P. Puel. Optimal control in some variational inequalities. SIAM Journal on Control
and Optimization, 22(3):466–476, 1984. https://doi.org/10.1137/0322028.

[22] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e edition,
2006.

[23] A. Schiela and D. Wachsmuth. Convergence analysis of smoothing methods for optimal control of
stationary variational inequalities with control constraints. ESAIM: M2AN, 47(3):771–787, 2013.
https://doi.org/10.1051/m2an/2012049.

[24] R.E. Showalter. Monotone operators in Banach space and nonlinear partial differential equations,
volume 49. American Mathematical Society, 1997.

[25] F. Tröltsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications,
volume 112 of Graduate Studies in Mathematics. American Mathematical Society, 2010.

[26] S. Wang and X. Sun. Generalization of hinging hyperplanes. IEEE Transactions on Infor-
mation Theory, 51(12):4425–4431, 2005. https://doi.org/10.1109/TIT.2005.
859246.

[27] J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical programming problem
in Banach spaces. Applied Mathematics and Optimization, 5(1):49–62, Mar 1979. https:
//doi.org/10.1007/BF01442543.

DOI 10.20347/WIAS.PREPRINT.2964 Berlin 2022

https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1007/s10107-016-0983-9
https://doi.org/10.1007/s10107-016-0983-9
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/978-1-4020-8839-1
https://arxiv.org/abs/2108.10618
https://arxiv.org/abs/2108.10618
https://doi.org/10.1137/0322028
https://doi.org/10.1051/m2an/2012049
https://doi.org/10.1109/TIT.2005.859246
https://doi.org/10.1109/TIT.2005.859246
https://doi.org/10.1007/BF01442543
https://doi.org/10.1007/BF01442543

	Introduction
	Context and motivation
	Structure of the paper

	Smoothings of ReLU neural networks
	Definition and basic properties
	Smoothings of ReLU neural networks

	Basic facts of the optimal control problem and implications of smoothing
	A descent algorithm for B-stationarity
	A descent algorithm
	Solving problem (4.12)
	Convergence analysis
	Practical aspects concerning Algorithm 2
	Details on the PDAS Algorithm

	Numerical results
	Application to PDE with single max-function
	Application to general multilayer ReLU network PDEs

	Conclusion

