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Hölder regularity for domains of fractional powers of elliptic
operators with mixed boundary conditions

Robert Haller, Hannes Meinlschmidt, Joachim Rehberg

Abstract

This work is about global Hölder regularity for solutions to elliptic partial differential equations
subject to mixed boundary conditions on irregular domains. There are two main results. In the
first, we show that if the domain of the realization of an elliptic differential operator in a negative
Sobolev space with integrability q > d embeds into a space of Hölder continuous functions, then
so do the domains of suitable fractional powers of this operator. The second main result then
establishes that the premise of the first is indeed satisfied. The proof goes along the classical
techniques of localization, transformation and reflection which allows to fall back to the classical
results of Ladyzhenskaya or Kinderlehrer. One of the main features of our approach is that we do
not require Lipschitz charts for the Dirichlet boundary part, but only an intriguing metric/measure-
theoretic condition on the interface of Dirichlet- and Neumann boundary parts. A similar condition
was posed in a related work by ter Elst and Rehberg in 2015 [10], but the present proof is much
simpler, if only restricted to space dimension up to 4.

1 Introduction

In this paper, we consider global Hölder regularity for solutions to elliptic partial differential equations
subject to mixed boundary conditions on irregular domains, in the exemplary form

− div(µ∇u) + u = f in Ω,

u = 0 on D ⊆ ∂Ω,

∇u · ν = g on N := ∂Ω \D

 (1.1)

for a bounded open set Ω ⊆ Rd with the unit outer normal ν at N , a bounded and elliptic coefficient
function µ taking its values in Rd×d, and integrable functions f on Ω and g on N . It is well known that
Hölder continuity is a natural regularity class for solutions to elliptic problems such as (1.1) and Hölder-
equicontinuous sets of functions are precompact in the space of uniformly continuous functions by the
Arzelà-Ascoli theorem. Such properties are, aside from intrinsic value, invaluable in the treatment
of nonlinear problems. It is thus not surprising that this is a well researched subject and affirmative
results are known even in the case of irregular domains and mixed boundary conditions with very weak
compatibility conditions as established for example in [10] by one of the authors.

The intention of this paper is essentially twofold: Firstly, we prove that if the domain dom(Aq + 1)
of the functional-analytic realization A + 1 of the elliptic differential operator in (1.1) in a negative
Sobolev space W−1,q

D (Ω) embeds into a space of Hölder-continuous functions, then so does the
domain dom((Aq+1)σ) of a fractional power ofA+1 when σ > 1

2
+ d

2q
. (We will introduce all objects

properly in the main text below.) It is well known that q > d is the expected condition in this context.
This is done under the quite general assumption that N admits bi-Lipschitzian boundary charts and
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D is Ahlfors regular; the coefficient function µ is not supposed to be more than measurable, bounded
and elliptic. (See Assumption 2.1 below.) The main motivation for this result are semilinear parabolic
problems, since it is well known that since the semigroup associated to Aq + 1 will be analytic, the
domain dom((Aq + 1)σ) will be a natural phase space, see e.g. [23, Ch. 6.3]. We will come back to
this below in a bit more detail.

Secondly, we consider a framework where the assumption of the first part is in fact satisfied; that is, we
show that dom(Aq + 1) indeed embeds into a Hölder space. This framework will essentially encap-
sulate the geometric assumptions from the first part, together with a classical assumption preventing
outward cusps for D, and an intriguing metric/measure-theoretic condition for the interface of D and
N , the Dirichlet- and Neumann boundary parts, which will ultimately allow to show that also at this
interface, we can transform the problem under consideration to one which satisfies the foregoing clas-
sical assumption. (See Assumption 4.1 below.) To this end, we revisit [10] where the associated result
was already established by means of Sobolev-Campanato spaces and of De Giorgi estimates. These
are both quite natural and powerful, but also quite involved. However, for spatial dimensions d up to
4 one can avoid this machinery and rely on the classical results on Hölder continuity for solutions of
the pure Dirichlet problem by Ladyzhenskaya and Kinderlehrer, which require much simpler technical
means. We carry out this simplified approach here. A welcome byproduct is that we in fact easily ob-
tain a result which is uniform in the given geometry and the L∞(Ω)-bound and ellipticity constant of
the coefficient function µ. Such statements are extremely useful in the treatment of, say, a quasilinear
counterpart of (1.1), and they are neither included in [10] nor easily traced there.

Motivation

It was already mentioned above that one of the main motivations to consider Hölder regularity for
dom(Aq + 1) and associated domains of fractional powers comes from semilinear parabolic equa-
tions. Indeed, consider the following abstract one, posed in some Banach space X :

u′(t) +Au(t) + u(t) = F (t, u(t)), u(0) = u0, (1.2)

where A + 1 is the realization of an elliptic operator such as the one in (1.1) in X . The way to treat
such a problem by means of analytic semigroups is well established by now under weak assumptions
on F , which require that the coordinate mappings t 7→ F (t, v) for fixed v and v 7→ F (t, v) for fixed
t are reasonably well behaved, cf. [23, Ch. 6.3], the latter usually referring to Lipschitz continuity on
bounded sets of the domain of a fractional power of A + 1. A most interesting and relevant case
is that of Nemytskii operators induced by scalar functions; these for example occur naturally in the
form of polynomials in reaction-diffusion problems. Whether the abstract framework can capture these
nonlinearities depends on the precise framework and associated growth properties and is usually the
central point to verify when doing analysis for such problems. In fact, in the most prominent case
X = L2(Ω) and space dimensions up to 3, one can show that not only the domain of the elliptic
operatorA+ 1 in L2(Ω) embeds into L∞(Ω), but already the domain of a fractional power does so.
This is established in an even more general context than the present one in [11], but see also [22,
Chapter 6.1] and Corollary 3.4 below. Since bounded functions are, essentially, ignorant of growth
induced by a Nemytskii operator, this allows to consider very rough nonlinearities F induced by such
operators.

However, this strong property comes at a price, namely that a realization ofA+ 1 in L2(Ω) implicitly
restricts the considered problem to a strong interpretation with homogeneous Neumann boundary
conditions. But this setup is in general insufficient for more sophisticated problems arising in real world
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applications. This already concerns nonhomogeneous Neumann boundary data. But also, consider for
example a (two-dimensional) surface S in the (closure of the) domain Ω ⊂ R3 and let H2|S be the
induced two-dimensional surface measure. Let φ be a scalar and locally Lipschitz function and let Φ
be the associated Nemytskii operator. Suppose that F in (1.2) is given by v 7→ Φ(v)H2|S . Such a
term would correspond to a nonlinear modulation for a jump-type condition for the solution u(t) along
S in a strong problem formulation, and, indeed, such conditions appear for example in the analysis of
the semiconductor equations if surface charge densities, concentrated on S, are involved, see [7, 21]
for a recent analytical treatment; see also [25, 26] for more physical background. (In this particular
example, there are also nonlinear modulations on the boundary.)

Clearly, in such a setup, it is not sufficient to have dom((A + 1)σ) ↪→ L∞(Ω) only, since this will
in general not be enough to interpret, much less control, Φ(v) on the lower-dimensional surface S in
dependence of v ∈ dom((A + 1)σ). Alternatively, one could try to rely on trace operators to have
a good control on v ∈ Lr(S;H2) and then Φ(v) for r large enough in dependence on the growth
conditions of φ. But this in turn would require to pass through a Sobolev spaceW s,p

D (Ω) with s > 1/p
and justifying such a setup might be quite hard if one goes away from (s, p) = (1, 2), whereas the
latter is rather limited, at least for d = 3.

From our point of view, it is thus preferable to rely on Hölder continuity for the domain of a fractional
power of A + 1. Then elements from such a domain are well defined on any subset of Ω and, as
mentioned above, there are even compactness properties to exploit. It turns out that the negative
Sobolev space W−1,q

D (Ω), which is the (anti-) dual of W 1,q′

D (Ω), with q > d, provides the adequate
functional-analytic framework X to obtain this Hölder continuity for the domain of a fractional power
of the X-realization of A + 1, and then treat problems such as (1.2) with inhomogeneous data on
lower-dimensional surfaces in Ω, be that ∂Ω or S. Indeed, negative Sobolev spaces are capable
of representing distributional objects such as induced by inhomogenenous data on lower-dimensional
surfaces, and as already mentioned above, it is well known that q > d is the natural threshold for which
one can obtain bounded or even continuous functions as elements of the domain of the associated
realizationAq+1, that is, for solutions u to the abstract problem (Aq+1)u = f with f ∈ W−1,q

D (Ω).

Context

As explained above, Hölder regularity for elliptic problems such as (1.1) is a classical and ubiquitous
subject in the regularity theory for partial differential equations. We locate our work between [10] with
essentially the same, extremely general geometric setup, but a much more sophisticated and involved
machinery to achieve the desired result (without a direct claim of uniformity), and [17], where the
less general framework of Gröger regularity is used. The technique of the present work, in terms of
localization of an elliptic problem (1.1) and associated transformation to regular sets plus a possible
reflection argument, is similar to the one employed in [17], but deviates from there along the different
assumptions on D. We note also that while there is no uniformity statement in [17], there is the recent
preprint [8] in which the authors there trace the constants in [17] to obtain a uniform results, which
is then even transferred to solutions of parabolic problems. In all mentioned works, the coefficient
function is also only assumed to be measurable, bounded and elliptic, as in the present one.

Overview

We set the stage with notation and the introduction of function spaces and differential operators with
some associated properties in Section 2. Section 3 then deals with the first main result, Theorem 3.1:
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if the domain of the W−1,q
D (Ω)-realization of A + 1 embeds into a Hölder space, then so does the

domain of a fractional power. The proof is based on ultracontractivity of the semigroups associated
to the Lp(Ω)-realization of A + 1, which we transfer to the negative Sobolev scale via the Kato
square root property. Section 4 then deals with showing that the premise of the foregoing part is in fact
satisfied in a wide geometric setting in Theorem 4.2. For this result, the proof is somewhat extensive.
We thus prepare it with a series of preliminary results on the techniques of localization, transformation
and reflection in Section 4.1 before proceeding to the actual meat of the proof in Section 4.2.

2 Preliminaries

We first clarify some basic notation. The spatial dimension will be d > 1. For x = (x1, . . . , xd) ∈ Rd

and r > 0 we denote the open ball around x with radius r by Br(x). The d-dimensional Lebesgue
measure in Rd will be written as λd and ωd = λd(B1(0)) means the volume of the unit ball. Given a
normed vector space V , we denote by V ∗ the Banach space of antilinear continuous functionals on
V . Finally, we use the convention of a generic constant c that may vary from occurence to occurence
but never depends on the free variables in the actual context. All other notation will be standard.

2.1 Function spaces

Let Λ be a nonempty, bounded open subset of Rd and let F ⊆ ∂Λ be a closed subset of its boundary.
Then, for q ∈ [1,∞], the first-order Sobolev space W 1,q(Λ) is given by the set of Lq(Λ) functions
with weak first-order derivatives in Lq(Λ). We set

C∞F (Λ) :=
{
u|Λ : u ∈ C∞c (Rd) with supp(u) ∩ F = ∅

}
and we use this space to define the first-order Sobolev space with mixed boundary conditionsW 1,q

F (Λ)

as the closure ofC∞F (Λ) inW 1,q(Λ). Furthermore, byW−1,q
F (Λ) := W 1,q′

F (Λ)∗ we denote the space

of continuous antilinear functionals onW 1,q′

F (Λ), where (here and in all what follows) 1/q+1/q′ = 1.
Finally, as commonly used we write W 1,q

0 (Λ) for W 1,q
∂Λ (Λ) and W−1,q(Λ) for W−1,q

∂Λ (Λ).

For α ∈ (0, 1), let Cα(Λ) denote the usual spaces of bounded and α-Hölder continuous functions on
Λ with their norm given by the sum of the supremum norm and the Hölder seminorm. Of course, every
function in Cα(Λ) admits a unique α-Hölder continuous extension to Λ, so we will not discriminate
between a Hölder-function on Λ and Λ.

2.2 Geometric setup

We next introduce some geometric assumptions on the spatial domain Ω. Throughout the article,
Ω denotes a given nonempty bounded open subset of Rd and D ⊆ ∂Ω is a closed portion of its
boundary, the designated Dirichlet boundary part. We do not exclude thatHd−1(D) = 0, the (d−1)-
dimensional Hausdorff measure. The Neumann boundary part shall be denoted by N := ∂Ω \D.

Assumption 2.1. We consider the following geometric assumptions for Ω and D:

(a) For all x ∈ N , there is an open neighbourhood Vx and a bi-Lipschitz mapping φx from a neigh-
bourhood of Vx into Rd such that φx(Vx) = (−1, 1)d, φx(Ω∩Vx) = {x ∈ (−1, 1)d : xd < 0},
φx(∂Ω ∩ Vx) = {x ∈ (−1, 1)d : xd = 0} and φx(x) = 0.
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(b) D is a (d−1)-set, i.e., there are constants c1, c2 > 0 such that for all r ∈ (0, 1] and all x ∈ D
there holds

c1r
d−1 ≤ Hd−1

(
Br(x) ∩D

)
≤ c2r

d−1

whereHd−1 denotes the (d− 1)-dimensional Hausdorff measure.

Remark 2.2. In Assumption 2.1 (a), for x ∈ N = ∂Ω \D one may assume without loss of generality
that the local Neumann boundary part around x is transformed to the full midplate of the cube, that is,
φx(N ∩ Vx) = {x ∈ (−1, 1)d : xd = 0}. In fact, since N is a (relatively) open subset of ∂Ω, the
image φx(N ∩ Vx) is a (relatively) open subset of {x ∈ (−1, 1)d : xd = 0} that contains 0. Thus,
one may shrink Vx to a suitable set φ−1

x ((−ε, ε)d) and afterwards rescale φx to 1
ε
φx.

Already the geometric setup of Assumption 2.1 (a) allows to construct a continuous linear extension
operator for first-order Sobolev spaces with mixed boundary conditions. Indeed, the following result
can be found in [4, Thm. 1.2 and Prop. 3.4]:

Proposition 2.3. Suppose that Ω and D meet Assumption 2.1 (a). Then there exists a continuous
extension operator from W 1,1

D (Ω) to W 1,1
D (Rd) that restricts to a continuous operator from W 1,p

D (Ω)
to W 1,p

D (Rd) for all p ∈ [1,∞).

Remark 2.4. Proposition 2.3 allows to establish the usual Sobolev embeddings, that is, W 1,q
D (Ω) ↪→

Lp(Ω) for 1
p

= 1
q
− 1

d
if q < d and W 1,q

D (Ω) ↪→ C1− d
q (Ω) if q > d, in a straightforward manner,

including compactness. In particular, for d > 2 the form domain V = W 1,2
D (Ω) is embedded into

L
2d
d−2 (Ω), and in the case d = 2 it embeeds into Lp(Ω) for every p <∞.

2.3 Elliptic operators

We define elliptic operators via the form t on V := W 1,2
D (Ω) given by

t(u, v) :=

∫
Ω

µ∇u · ∇v, u, v ∈ V.

Here, µ is a real, measurable, bounded and uniformly elliptic coefficient function in the sense that
there exists some κell > 0 such that (µ(x)ξ, ξ)Rd ≥ κell|ξ|2 for all ξ ∈ Rd and almost all x ∈ Ω.
Clearly, the form t induces a natural operatorA : V → V ∗. For q > 2, letAq be the part ofA = A2

in W−1,q
D (Ω) ⊂ V ∗. By the Lax-Milgram lemma,A+ λ is a topological isomorphism between V and

V ∗ for every λ with Reλ > 0; hence, σ(Aq) ∩ [Re z < 0] = ∅ for every q ≥ 2.

On the other hand, t also induces an operator A on L2(Ω) by

domA :=
{
u ∈ V : there exists f ∈ L2(Ω) : t(u, v) = (f, v)L2(Ω) for all v ∈ V

}
Au := f, for u ∈ domA.

Since t is L2(Ω)-elliptic, it is nowadays classical (e.g. [22, Thms. 1.54, 4.2 and 4.9]) that −A is the
generator of a contractive analytic C0-semigroup (e−At) on L2(Ω) which is both sub-Markovian and
substochastic, that is, positivity preserving and L∞(Ω)- and L1(Ω)-contractive, from which we obtain
the semigroup on every Lp(Ω) for p ∈ [1,∞] by interpolation.

These semigroups are contractive for all p ∈ [1,∞] , they are strongly continuous for p ∈ [1,∞),
and they are analytic for p ∈ (1,∞), see [22, Prop. 3.12, p.56/57&96]. We denote the respective
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(negative) generators onLp(Ω) byAp. Note that σ(Ap)∩[Re z < 0] = ∅ for every p ∈ [1,∞) by the
Hille-Yosida theorem, and that the operators admit a bounded H∞ functional calculus ([6, Cor. 3.9]);
in particular, their fractional powers are well defined. Moreover, for p > 2, the operators Ap are the
part of A = A2 in Lp(Ω).

All the properties mentioned so far do not require any regularity assumption on Ω. Under the geometric
assumptions from Assumption 2.1, however, we can say a bit more. Indeed, for q ≥ 2, several of the
good properties of Aq can be transferred toAq by means of the square root, which we do next.

Proposition 2.5. Let q ∈ [2,∞) and adopt Assumption 2.1. Then the following hold true.

(a) The inverse square root operator (Aq + 1)−1/2 provides a topological isomorphism between
W−1,q
D (Ω) and Lq(Ω).

(b) The negative of the operatorAq generates an analytic semigroup on W−1,q
D (Ω).

(c) For s ∈ [0, 1
2
), we have dom

(
(Aq + 1)1/2+s

)
= dom

(
(Aq + 1)s

)
.

Proof. In [5, Thm. 1.1] it is proved that A + 1 has the Kato square root property in the present
geometric setting. (And even beyond that.) Using this fundamental property, the claim (a) is one of the
main results in [2], see Theorem 5.1 there. Further, since (Aq + 1)−1 and (Aq + 1)−1 coincide on
Lq(Ω), so do the inverse square roots, and we have the similarity

(Aq + λ)−1 = (Aq + 1)1/2(Aq + λ)−1(Aq + 1)−1/2.

Hence, we can transfer the generator property for an analytic semigroup from−Aq to−Aq by means
of resolvent estimates, see the characterization in [12, Thm. II.4.6]. (Note that we do not claim the
semigroups generated by−Aq to be contractive.) This implies (b). Finally, the fractional powers ofAq
are well defined since the boundedH∞ calculus also transfers fromAq toAq by means of the square
root ([2, Thm. 11.5]). Then, (c) follows immediately from (a) by sketching(

Aq + 1
)−1/2−s

W−1,q
D (Ω) =

(
Aq + 1

)−s
Lq(Ω) =

(
Aq + 1

)−s
Lq(Ω).

3 Embeddings for domains of fractional powers ofAq + 1

In this section we show that if the domain of Aq + 1 embeds into a Hölder space, so do suitable
fractional powers of this operator. We remark on the domain ofAq after the proof of Theorem 3.1. The
question of when the domain of Aq + 1 actually embeds into a Hölder space will be considered in
Section 4.

Theorem 3.1. Let Assumption 2.1 be satisfied and let q > d. Suppose that dom(Aq +1) ↪→ Cα(Ω)
for some α > 0. Let κ ∈ (0, α) and σ ∈

(
1
2

+ d
2q

+ κ
α

(1
2
− d

2q
), 1
)
. Then we have(

W−1,q
D (Ω), dom(Aq + 1)

)
σ,1
↪→ Cκ(Ω) and dom

(
(Aq + 1)σ

)
↪→ Cκ(Ω).

Before we start with the proof, a short remark:

Remark 3.2. Via Proposition 2.5, we also obtain from Theorem 3.1 that

dom((Aq + 1)ς) ↪→ Cκ(Ω)
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for ς ∈
(
d
2q

+ κ
α

(1
2
− d

2q
), 1

2

)
. This is interesting because there is a natural connection between

embeddings of the domain of a fractional power ofAq+1 into a Hölder space and the Hölder continuity
of the heat kernel associated to the semigroup generated by the negative of Aq + 1. We refer to [22,
Ch. 6.2] and leave the details to the interested reader.

Our proof of Theorem 3.1 is based on ultracontractivity of semigroups generated by −Aq. We use
ultracontractivity to derive a precise regularizing property for inverse fractional powers of Aq + 1 and
then in turn transfer this to theAq operator by means of Proposition 2.3.

The semigroups (e−Apt) are said to be ultracontractive if there exists a constant c > 0 and some
γ > 2 such that ∥∥e−Apt∥∥

Lp(Ω)→L∞(Ω)
≤ ct−

γ
2p for all t > 0, p ∈ [1,∞). (3.1)

In fact, this property is equivalent to V ↪→ L
2γ
γ−2 (Ω); we refer to [1, Chapter 7.3]. But under the

geometric assumptions of Assumption 2.1 (a), Proposition 2.3 provides a Sobolev extension operator
from which the foregoing Sobolev embedding for V with γ = d if d > 2 and any γ ∈ (2,∞) if d = 2
follows immediately as noted in Remark 2.4. This is already the proof of the next proposition:

Proposition 3.3 (Ultracontractivity). Adopt Assumption 2.1 (a). Then the semigroups (e−Apt) are
ultracontractive, that is, there exists c > 0 such that (3.1) holds true for γ = d if d > 2 and γ > 2
arbitrary if d = 2.

We infer the following regularizing property for the inverse fractional powers of Ap + 1 for p > d/2 :

Corollary 3.4. Adopt Assumption 2.1 (a) and let p > d/2. Then, for every τ ∈ ( d
2p
, 1], we find

(Ap + 1)−τ ∈ L(Lp(Ω)→ L∞(Ω)). In particular, dom((Ap + 1)τ ) ↪→ L∞(Ω).

Proof. Consider the well-known Balakrishnan formula

(Ap + 1)−τ =
1

Γ(τ)

∫ ∞
0

tτ−1e−Apte−t dt.

From Proposition 3.3 and the growth bound (3.1) for (e−Apt), one observes immediately that the
condition τ > d

2p
is sufficient to have the integral converge in L(Lp(Ω) → L∞(Ω)) and the claim

follows. (For d = 2, squeeze γ
2p

between d
2p

and τ by picking γ close enough to d = 2.)

As a last auxiliary result of potentially independent interest, we note the following remarkably simple
embedding which holds true for any bounded open set without further assumptions on its geometry:

Lemma 3.5. Let α > 0. Then (L∞(Ω), Cα(Ω))θ,1 ↪→ Cαθ(Ω) for any θ ∈ (0, 1).

Proof. Let u ∈ Cα(Ω) and estimate

sup
x,y∈Ω
x6=y

|u(x)− u(y)|
|x− y|αθ

≤ sup
x,y∈Ω
x6=y

|u(x)− u(y)|1−θ sup
x,y∈Ω
x6=y

|u(x)− u(y)|θ

|x− y|αθ

≤
(
2‖u‖L∞(Ω))

1−θ‖u‖θCα(Ω).

Together with an obvious estimate for supx∈Ω |u(x)| one gets, for every u ∈ Cα(Ω),

‖u‖Cαθ(Ω) ≤ 3‖u‖1−θ
L∞(Ω)‖u‖

θ
Cα(Ω).

Thus, referring to [24, Lem. 1.10.1], Cαθ(Ω) is of class J(θ) with respect to L∞(Ω) and Cα(Ω) from
which we obtain the desired embedding.
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Proof of Theorem 3.1. Set θ := κ/α ∈ (0, 1) and σ ∈
(

1
2

+ d
2q

+ θ(1
2
− d

2q
), 1
)

as in the theorem.

A short computation shows that we can write σ = (1− θ)(1
2

+ τ) + θ with some τ ∈ ( d
2q
, 1

2
). Thus,

the reiteration theorem ([24, Thm. 1.10.2]) implies that(
W−1,q
D (Ω), dom(Aq + 1)

)
σ,1

=
((
W−1,q
D (Ω), dom(Aq + 1)

)
1
2

+τ,1
, dom(Aq + 1)

)
θ,1
.

We show that the first space on the right embeds continuously into L∞(Ω). Indeed, by interpolation
for fractional power domains of so-called positive operators as in [24, Thm. 1.15.2], we have(

W−1,q
D (Ω), dom(Aq + 1)

)
1
2

+τ,1
↪→ dom((Aq + 1)1/2+τ ).

But for τ ∈ ( d
2q
, 1

2
), by combining Proposition 2.5 (c)—this is the point where we need Assump-

tion 2.1 (b)—and Corollary 3.4, we find

dom
(
(Aq + 1)1/2+τ

)
= dom

(
(Aq + 1)τ

)
↪→ L∞(Ω).

By assumption, the restriction of the foregoing embedding to dom(Aq + 1) is precisely dom(Aq +
1) ↪→ Cα(Ω). Interpolating these and using Lemma 3.5, we find(

W−1,q
D (Ω), dom(Aq + 1)

)
σ,1
↪→
(
L∞(Ω), Cα(Ω)

)
θ,1
↪→ Cαθ(Ω)

and this was the claim, since αθ = κ.

Now the embedding for dom((Aq +1)σ) itself follows easily by squeezing s between 1
2

+ d
2q

+ κ
α

(1
2
−

d
2q

) and σ and using the previous part via [24, Thms. 1.3.3 and 1.15.2]:

dom((Aq + 1)σ) ↪→
(
W−1,q
D (Ω), dom(Aq + 1)

)
σ,∞

↪→
(
W−1,q
D (Ω), dom(Aq + 1)

)
s,1
↪→ Cκ(Ω).

The domain ofAq

In the above proof, we have worked only with Aq + 1 to have an invertible operator at hand which is
much more convenient. However, the sets dom(Aq) and dom(Aq + 1) are always the same, and if
A is continuously invertible, then so is Aq and it follows that dom(Aq) and dom(Aq + 1) are also
equivalent as Banach spaces, each equipped with the respective graph norm. This transfers to the
domains of their fractional powers as well.

By the Lax-Milgram lemma, the operator A in turn is continuously invertible whenever we have a
Poincaré inequality for V at hand. For the latter it is enough to establish that nonzero constant functions
do not belong to V . Within our geometric setup of Assumption 2.1, this is already guaranteed by either
D ∩ N 6= ∅, so the Dirichlet- and Neumann boundary parts share a common interface, or by D
containing at least one (relatively) inner point. See for instance [9, Lemma 7.3]. (In fact, in the former
case it is already enough to have Lipschitz charts for all points in the relative boundary ∂D within ∂Ω
at hand; cf. [6, Sect. 6].)

In this sense, the statement forAq+1 in Theorem 3.1 can be immediately transferred toAq whenever
the geometry assumptions admit a Poincaré inequality for V .
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4 Hölder properties for dom(Aq + 1)

In the main result of Section 3 the embedding of dom(Aq + 1) into some Hölder space was a given.
We now turn to the question when such an embedding is true. A very general answer was given in
[10, Theorem 1.1], where the result in Theorem 4.2 below was proved for all space dimensions d. This
proof is extremely involved, the natural instruments being Sobolev-Campanato spaces and De Giorgi
estimates.

However, for dimensions up to 4 one can avoid this machinery and base the arguments only on the
classical Ladyshenskaya result on Hölder continuity for solutions of the pure Dirichlet problem, see
Proposition 4.4 below, and some more elementary yet intricate technical means. This is what we
will carry out here. It will be a welcome byproduct of the present approach that we easily obtain a
uniform result with respect to the given geometry and the L∞(Ω)-bound and ellipticity constant of the
coefficient function µ.

In order to formulate our main result of this section, we introduce two more geometric conditions; the
first one relies on the rather classical notion with a twist of saying that an open subset Λ of Rd is of
class (Aγ) (at Υ ⊆ ∂Λ) with a constant γ > 0, if

λd
(
Br(x) \ Λ

)
≥ γλd

(
Br(x)

)
for all x ∈ Υ, r ∈ (0, 1].

Of course, necessarily γ < 1. This condition prevents inwards cusps of Λ at Υ. If Υ = ∂Λ, we just
refer to Λ being of class (Aγ). The second condition, rather intriguing, concerns the interface between
the Dirichlet boundary part D and the Neumann boundary part N = ∂Ω \D in the boundary of Ω:

Assumption 4.1. We consider the following further geometric assumptions for Ω and D:

(a) There is some γ ∈ (0, 1) such that Ω is of class (Aγ) at D.

(b) Using the notation of Assumption 2.1 (a), there are two constants c0 ∈ (0, 1) and c1 > 0 such
that for any point x ∈ E := D∩N , every y ∈ Rd−1 such that (y, 0) ∈ φx(E ∩Vx) and every
s ∈ (0, 1] it holds

λd−1

({
z ∈ Bs(y) : dist

(
z, φx(N ∩ Vx)

)
> c0s

})
≥ c1s

d−1.

Here and in the sequel, Br(y) denotes the open ball of radius r in Rd−1 with its center at
y ∈ Rd−1, and in the distance function we tacitly consider φx(N ∩Vx) ⊂ [zd = 0] as a subset
of Rd−1 in the obvious manner.

We can now formulate the main theorem of this section.

Theorem 4.2. Suppose that Ω and D satisfy Assumption 2.1 (a) and Assumption 4.1, and let q > d
with d ∈ {2, 3, 4}. If d = 4, suppose also that Assumption 2.1 (b) is satisfied. Then there is an α > 0
such that for every f ∈ W−1,q

D (Ω) the equation

(Aq + 1)v = f (4.1)

has a unique solution v ∈ W 1,2
D (Ω) that belongs to the Hölder space Cα(Ω). Moreover, the mapping

W−1,q
D (Ω) 3 f 7→ v ∈ Cα(Ω) is continuous and its norm depends only on the geometry of Ω and

the L∞(Λ)-bound and ellipticity constant of µ.
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Remark 4.3. We comment on Theorem 4.2.

(a) It is well known that, in general, the condition q > d is already necessary for the boundedness
of the solution, see [19, Ch. I.2].

(b) It is easily seen that if f ∈ Lp(Ω) with p > d/2, then also f ∈ W−1,q
D (Ω) where q = 2p > d

with continuous embedding thanks to Remark 2.4. In this sense, Theorem 4.2 is also a result
on Hölder regularity for the operators Ap + 1 for p > d/2. (Note that so far we had only seen
that the Lp(Ω)-solution to (4.2) is in L∞(Ω) via ultracontractivity as in Corollary 3.4—but this
was already true for a fractional power of Ap + 1 and so some opportunity for improvement for
Ap + 1 itself was expected.)

Let us sketch an outline for the proof of Theorem 4.2. We will rely on the classical techniques of local-
ization, transformation and reflection to tackle (4.2) in the form of a finite number of similar problems
on model sets with a very particular geometry. For these we will rely on classical Hölder regularity re-
sults of Ladyzhenskaja or Kinderlehrer which base on variants of Assumption 4.1 (a) . The treatment
of local problems at the pure Dirichlet part D \N will be quite immediate due to Assumption 4.1 (a),
and we will also be able to transfer the Neumann boundary part N = ∂Ω \ D to the pure Dirichlet
situation via Assumption 2.1 (a) and reflection techniques. Of course, the most interesting part will be
the interface D ∩ N with Assumption 4.1 (b). The intriguing idea here is that Assumption 4.1 (b) will
allow to transform the localized problem once more in a particular way such that the resulting set will
in fact be amendable by Assumption 4.1 (a).

4.1 Localization and transformation techniques

In this subsection we recall, for the reader’s convenience, some technical results on localization and
transformation techniques for (4.2) which are needed later on. For all the following considerations the
coefficient function µ is considered as in Section 2; in particular it is elliptic with constant κell.

We start by quoting a classical theorem (see [18, Ch. II Appendix B/C]) on the Hölder continuity for
the solution of the Dirichlet problem. The result is formulated for a generic bounded domain Λ ⊂ Rd

since we will use it for several local model sets in the proof of Theorem 4.2; the definitions of µ andA
are to be understood mutatis mutandis.

Proposition 4.4. Let Λ ⊂ Rd be a bounded domain and let v ∈ W 1,2
0 (Λ) be the solution of

Av = f0 +
d∑
j=1

∂fj
∂xj

, (4.2)

where f0, f1, . . . , fd ∈ Lq(Λ) with q > d and ∂
∂xj

denotes the distributional derivative. Then the
following holds true.

(a) The function v admits a bound

‖v‖L∞(Λ) ≤ c
d∑
j=0

‖fj‖Lq(Λ). (4.3)
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(b) Suppose that there exists γ ∈ (0, 1) such that Λ is of class (Aγ). Then v is Hölder-continuous,
more precisely: there is an α ∈ (0, 1) independent of f0, f1, . . . , fd such that

sup
x,y∈Br(z)∩Λ

|v(x)− v(y)| ≤ c
d∑
j=0

‖fj‖Lq(Λ) r
α (4.4)

holds true for all z ∈ Rd and r > 0.

In both estimates (4.3) and (4.4), the constant depends only on the geometry of Λ and the L∞(Λ)-
bound and ellipticity constant of µ.

Remark 4.5. The right hand side of (4.2) is to be understood as the antilinear form

W 1,q′

0 (Λ) 3 ψ 7→
∫

Λ

f0ψ −
d∑
j=1

fj
∂ψ

∂xj

which clearly belongs to W−1,q(Λ) ↪→ W−1,2(Λ). Thus, the uniqueness of the solution v follows
from the ellipticity of t and the Lax-Milgram lemma.

On the other hand, while every antilinear form in W−1,q(Λ) can be represented in the foregoing form,
this representation is in general non-unique. But it is in fact well known that W−1,q(Λ) is isometrically
isomorphic to the quotient space with respect to such representations; see [20, Ch. 1.1.14]. Hence,
taking the infimum over all representing families in the estimates (4.3) and (4.4), in the setting of
Proposition 4.4 one obtains the continuity of

A−1
q : W−1,q(Λ)→ Cα(Λ).

The norm of this mapping depends only on the geometry of Λ and the L∞(Λ)-bound and ellipticity
constant of µ.

The following extrapolation of the Lax-Milgram isomorphism will give us the small ε in regularity that
allows us to treat also the case of dimension four.

Proposition 4.6 ([15, Thm 5.6]). Let Assumptions 2.1 (a) and (b) be satisfied. Then there is an ε > 0
such that dom(Aq + 1) = W 1,q

D (Ω) for all q ∈ [2, 2 + ε), that is, the operator

Aq + 1: W 1,q
D (Ω)→ W−1,q

D (Ω)

is a topological isomorphism. The norms of (Aq + 1)−1 are uniform with respect to ε and the L∞(Ω)-
bound and ellipticity constant of µ.

The plan how we aim to prove Theorem 4.2 was already sketched above. We now have seen the main
tool with which we leverage Hölder-continuity for the localized and transformed problems in the form
of Proposition 4.4. It remains to make sure that the localization, transformation and possibly reflection
techniques are compatible with Proposition 4.4; this concerns continuity for the associated mappings
between the function spaces involved and of course in particular the assumption in the domain in
Proposition 4.4 for the actual Hölder estimate.

This we will do in the following series of technical lemmas. We start with three of them that deal with
the localization. Recall the notation N = ∂Ω \D for the Neumann boundary part. First, we deal with
localized Sobolev functions with partially vanishing trace.
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Lemma 4.7 ([17, Ch. 4.2]). Let U ⊆ Rd be open and set Ω• := Ω ∩ U as well as D• := ∂Ω• \N .
Fix an arbitrary function η ∈ C∞c (Rd) with supp(η) ⊆ U . Then for any q ∈ (1,∞) we have the
following assertions:

(a) If v ∈ W 1,q
D (Ω), then ηv|Ω• ∈ W

1,q
D•

(Ω•).

(b) Denote by E0 the zero extension operator and let f ∈ W−1,q
D (Ω). Then f 7→ f• with

f• : w 7→
〈
f, E0(ηw)

〉
, w ∈ W 1,q′

D•
(Ω•)

defines a continuous linear operator W−1,q
D (Ω)→ W−1,q

D•
(Ω•).

The next lemma is about the localization of a solution v to the elliptic equation (A+ 1)v = f and the
’localized’ equation. Here and also in the following, we will need several versions of the divergence-
gradient type operators A with different underlying spatial sets, coefficient functions and associated
Sobolev spaces respecting partially vanishing trace conditions. We will use the notation−∇·η∇ with
the coefficient function η for these. It will always be clear from the context which precise incarnation is
meant.

Lemma 4.8 ([17, Lem. 4.7]). Let U , η, Ω• and D• be as in the foregoing lemma. Set µ• := µ|Ω•
and consider the operator −∇ · µ•∇ : W 1,2

D•
(Ω•) → W−1,2

D•
(Ω•). Let f ∈ W−1,2

D (Ω) and let v ∈
W 1,2
D (Ω) be the solution of (A+ 1)v = f . Then u := ηv|Ω• satisfies

−∇ · µ•∇u = f • := f• −∇ · vµ•∇η − µ•∇v|Ω• · ∇η|Ω• − ηv|Ω• in W−1,2
D•

(Ω•). (4.5)

Note that D• will always be a nontrivial boundary part of Ω• due to the localization procedure as
established in Lemma 4.7. It is thus convenient to consider the localized problem without a zero-order
term as in (4.5), since this is ultimately also the form about which Proposition 4.4 makes a statement.

Lemma 4.9. Let Assumptions 2.1 (a) be satisfied; if d = 4, let also Assumption 2.1 (b) hold true.
Take U , η, Ω• and D• as in Lemma 4.7. Let further f ∈ W−1,q

D (Ω) for some q > d and consider
f •, defined as in Lemma 4.8 via (A+ 1)v = f . Furthermore, assume that there is a linear extension
operator E• which acts continuously from W 1,r

D•
(Ω•) into W 1,r(Rd) for r ∈ (1,∞). Then there exists

p > d such that f • ∈ W−1,p
D•

(Ω•), and the mapping W−1,q
D (Ω) 3 f 7→ f • ∈ W−1,p

D•
(Ω•) is

continuous.

Proof. Let us first recall that the usual Sobolev embeddings hold for both Ω and Ω•, respectively,
cf. Remark 2.4. Now, let us consider the terms in the right hand side of (4.5), so the definition of
f •, from left to right. We have f• ∈ W−1,q

D•
(Ω•) depending continuously on f ∈ W−1,q

D (Ω) thanks
to Lemma 4.7 (b), so this term is fine without further ado. For the remaining terms, we distinguish
between d = 2, 3 and d = 4, starting with the former. We note that the proof of the continuity of
f 7→ f• is implicitly contained in the following estimates.

Let first d = 2, 3. Due to the Lax-Milgram lemma and Sobolev embedding, we have

‖v‖W 1,2
D (Ω) ≤ c‖f‖W−1,2

D (Ω) ≤ c‖f‖W−1,q
D (Ω) (4.6)

where c only depends on geometry and the ellipticity constant of µ. Concerning−∇ · vµ•∇η, for any
p ∈ [1,∞] we have the estimate∣∣〈−∇ · vµ•∇η, w〉∣∣ ≤ ‖v‖Lp(Ω•) ‖µ‖L∞(Ω;Rd×d) ‖∇η‖L∞(Ω•) ‖w‖W 1,p′

D• (Ω•)
(4.7)
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In particular, for p = min(q, 6) > d, we find∣∣〈−∇ · vµ•∇η, w〉∣∣ ≤ c‖f‖W−1,q
D (Ω) ‖µ‖L∞(Ω;Rd×d) ‖∇η‖L∞(Ω•) ‖w‖W 1,p′

D• (Ω•)

thanks to the Sobolev embedding W 1,2
D (Ω) ↪→ L6(Ω) ↪→ Lp(Ω) and estimate (4.6). Thus, −∇ ·

vµ•∇η ∈ W−1,p
D•

(Ω•). The same argument and (4.6) moreover shows that ηv|Ω• ∈ Lp(Ω•) ↪→
W−1,p
D•

(Ω•).

Concerning the term µ•∇v|Ω• · ∇η|Ω• , it is easily observed that if v ∈ W 1,r
D (Ω), then the term

belongs to Lr(Ω) with the estimate

‖µ•∇v|Ω• · ∇η|Ω•‖Lr(Ω) ≤ ‖µ‖L∞(Ω;Rd×d)‖∇η‖L∞(Ω)‖v‖W 1,r
D (Ω). (4.8)

In particular, for r = 2, we obtain via (4.6):

‖µ•∇v|Ω• · ∇η|Ω•‖L2(Ω) ≤ c‖µ‖L∞(Ω;Rd×d)‖∇η‖L∞(Ω)‖f‖W−1,q
D (Ω).

Thus, with the same choice for p as before, µ•∇v|Ω• · ∇η|Ω• ∈ W
−1,p
D (Ω•) due to the embedding

L2(Ω•) ↪→ W−1,p
D•

(Ω•).

Now let d = 4. Thanks to Proposition 4.6, there is an ε > 0 such that v ∈ W 1,2+ε
D (Ω) with the

estimate
‖v‖W 1,2+ε

D (Ω) ≤ c‖f‖W−1,2+ε
D (Ω) ≤ c‖f‖W−1,q

D (Ω). (4.9)

Having this at hand, for the estimate of the term −∇ · vµ•∇η we again exploit (4.7), this time taking
p = 4 · 2+ε

2−ε such that precisely W 1,2+ε
D (Ω) ↪→ Lp(Ω). Note that p > 4 = d. Again, it follows

analogously, this time via (4.9), that ηv|Ω• ∈ Lp(Ω•) ↪→ W−1,p
D•

(Ω•).

Finally, we estimate again as in (4.8) but pick r = 2 + ε and consider (4.9) to observe µ•∇v|Ω• ·
∇η|Ω• ∈ L2+ε(Ω•) together with the estimate

‖µ•∇v|Ω• · ∇η|Ω•‖L2+ε(Ω) ≤ c‖µ‖L∞(Ω;Rd×d)‖∇η‖L∞(Ω)‖f‖W−1,q
D (Ω).

With p as before, one has the embedding L2+ε(Ω•) ↪→ W−1,p
D•

(Ω•) and the claim follows.

We now consider bi-Lipschitz transformations of the geometric setting.

Proposition 4.10. Let Λ ⊆ Rd be a bounded, open set that is a Lipschitz domain, i.e., Λ satisfies
Assumption 2.1 (a) in every point x ∈ ∂Λ. Let Σ be a closed subset of its boundary. Assume that φ
is a mapping from a neighbourhood of Λ into Rd that is bi-Lipschitz. Let us denote Λ# := φ(Λ) and
Σ# := φ(Σ). Then the following holds true.

(a) For every p ∈ (1,∞) and every α ∈ (0, 1), the mapping φ induces a linear, topological
isomorphism Φf := f ◦ φ acting between

Φ: W 1,p
Σ#(Λ#)→ W 1,p

Σ (Λ) and Cα(Λ#)→ Cα(Λ).

(b) Let ω be an essentially bounded, measurable function on Λ, taking its values in the set of
(d× d)-matrices. Then

Φ∗
[
−∇ · ω∇

]
Φ = −∇ · ω#∇
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with

ω#(y) :=
(Dφ)

(
φ−1(y)

)
ω
(
φ−1(y)

)
(Dφ)T

(
φ−1(y)

)∣∣ det(Dφ)
(
φ−1(y)

)∣∣ (4.10)

for almost all y ∈ Λ#. Here, Dφ denotes the Fréchet derivative of φ and det(Dφ) the corre-
sponding determinant.

(c) If ω is real and uniformly elliptic almost everywhere on Λ, then so is ω# on Λ#.

Proof. The proof of (a) for the Sobolev spaces is contained in [14, Thm 2.10]; for the Hölder spaces
it is easy to verify. Part (b) is well known, see [16] for an explicit verification, or [3, Ch. 0.8]. Finally, (c)
is implied by (4.10) and the fact that for a bi-Lipschitz function φ the derivative Dφ and its inverse
(Dφ)−1 are essentially bounded, see [13, Ch 3.1].

It will be very useful that the class (Aγ) as in Assumption 4.1 (a) is preserved under bi-Lipschitz
transformations, precisely:

Lemma 4.11. Let φ : Rd → Rd be a bi-Lipschitz map and assume that Ω and D satisfy Assump-
tion 4.1 (a), so Ω is of class (Aγ) at D. Then φ(Ω) is of class (Aγφ) at φ(D), that is, there is a
constant γφ > 0 such that for all y ∈ D and all r ∈ (0, 1]:

λd
(
Br(φ(y)) \ φ(Ω)

)
≥ γφλd

(
Br(φ(y)

)
.

Proof. For every Lebesgue measurable set B ⊆ Rd one has λd(B) ≥ 1
`d
λd(φ

−1(B)), where ` is a
Lipschitz constant of φ−1, cf. [13, Chapter 3.3]. This entails for every y ∈ D and all r ∈ (0, 1] that

λd
(
Br(φ(y)) \ φ(Ω)

)
≥ 1

`d
λd
(
φ−1
(
Br(φ(y)) \ φ(Ω)

))
=

1

`d
λd
(
φ−1
(
Br(φ(y))

)
\ Ω
)
.

But φ−1(Br(φ(y))) contains the ball B r
L

(y), where L ≥ 1 is a Lipschitz constant of φ. Using this
and Assumption 4.1 (a) we may continue to estimate by

≥ 1

`d
λd
(
B r

L
(y) \ Ω

)
≥ γ

`d
λd
(
B r

L
(y)
)

=
γ

`dLd
λd
(
Br(φ(y))

)
and we are done.

As a final step in this preparatory subsection, we prepare the reflection argument in the proof of
Theorem 4.2. For this we consider the matrix R := diag(1, 1, . . . , 1,−1) ∈ Rd×d and define the
bi-Lipschitz map φR(x) = Rx for x ∈ Rd that reflects at the plane [xd = 0].

Lemma 4.12. Let Λ ⊆ [xd < 0] be open and bounded and define Γ as the (relative) interior of
∂Λ ∩ [xd = 0] in the plane [xd = 0]. Furthermore, set Σ := ∂Λ \ Γ and Λ̂ := Λ ∪ Γ ∪ φR(Λ), and
consider for v ∈ W 1,2

Σ (Λ) the reflected function v̂ on Λ̂ with

v̂(y) :=

{
v(y) if y ∈ Λ,

v(Ry) if Ry ∈ Λ.

Then the following holds:

(a) If v ∈ W 1,2
Σ (Λ), then v̂ ∈ W 1,2

0 (Λ̂).
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(b) Consider Φ2 defined as in Proposition 4.10 for φ = φR. Let f ∈ W−1,2
Σ (Λ) and set

〈f̂ , ψ〉 := 〈f, ψ|Λ〉+ 〈Φ∗2f, ψ|φR(Λ)〉, ψ ∈ C∞c (Λ̂).

Then f 7→ f̂ is continuous from W−1,p
Σ (Λ) to W−1,p

0 (Λ̂) for every p ≥ 2.

(c) Let η : Λ→ Rd×d. Define the reflected coefficient function η̂ on Λ̂ by

η̂(y) :=

{
η(y) if y ∈ Λ,

R η(Ry)R if Ry ∈ Λ.

Let v and f as before. Then we have

−∇ · η∇v = f =⇒ −∇ · η̂∇v̂ = f̂ .

Proof. In order to prove (a), note first that—thanks to the special geometric constellation—every ψ ∈
C∞Σ (Λ) can be extended by zero to the whole half space H− := [xd < 0], resulting in a function in
W 1,2(H−). By the density of C∞Σ (Λ) in W 1,2

Σ (Λ) it follows that this extending procedure provides an
isometry E0 from W 1,2

Σ (Λ) into W 1,2(H−). Now let v ∈ W 1,2
Σ (Λ). We consider E0v and reflect this

function across the boundary of H− to obtain a function v± ∈ W 1,2(Rd) on all of Rd that satisfies

‖v±‖W 1,2(Rd) = 2‖E0v‖W 1,2(H−) = 2‖v‖W 1,2
Σ (Λ).

This is easily verified by direct calculations. So, summing up, the mapping

v 7→ E0v 7→ v± 7→ v±|Λ̂ = v̂

is continuous from W 1,2
Σ (Λ) to W 1,2(Λ̂). It remains to show that indeed v̂ ∈ W 1,2

0 (Λ̂). To this end,
let (vk) ⊂ C∞Σ (Λ) be an approximating sequence for v in W 1,2

Σ (Λ). Note that it is clear that (vk)±|Λ̂
approximates v̂ in W 1,2(Λ̂) and the supports of (vk)±|Λ̂ have a positive distance to ∂Λ̂, but the
functions are not smooth any more in general. But this can be rectified by mollifying each (vk)±|Λ̂ with
a suitable regularizing kernel such that the resulting smooth functions’ supports still have a positive
distance to ∂Λ̂, and it is easily shown that these functions still approximate v̂ in W 1,2(Λ̂), so v̂ ∈
W 1,2

0 (Λ̂).

The proof of (b) and (c) is concluded from a straightforward calculation and application of the definitions
of the operators −∇ · µ∇ and −∇ · µ̂∇ together with Proposition 4.10.

Remark 4.13. From the proofs of the foregoing framework for localization, transformation and reflec-
tion it is easily seen that each step preserves uniform bounds in the data of an elliptic equation, that
is, the underlying geometry, the right-hand side, and the coefficient function. In this sense, whenever
a result on elliptic regularity on the localized, transformed or reflected level yields a uniform estimate
on the solution in the aforementioned data, this uniform estimate carries over to the original situation
immediately. Of course, this is exactly the case for our main tool, Proposition 4.4.

4.2 Proof of Theorem 4.2

We now start the proof of the Hölder continuity following the program sketched in the preceding sub-
section, cf. page 10. According to the hypotheses of Theorem 4.2, from now on we suppose that Ω
and D satisfy the Assumptions 2.1 (a) and, if d = 4, also (b), as well as (always) Assumption 4.1.
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In order to start the localisation procedure, we fix some notation. For the Neumann boundary part we
use again the shorthand N = ∂Ω \D. Now, based on Assumption 2.1 (a), choose for every x ∈ N
an associated open neighbourhood Vx and let {Vx1 , . . . , Vxm} be a finite subcovering of N .

Furthermore, choose a bounded open neighbourhood W of Ω and put U0 := W \ N . Then U0 is
open and one has

U0 ∩ Ω = Ω and U0 ∩N = ∅.

The system U := {U0, Vx1 , Vx2 , . . . Vxm} forms an open covering of Ω. Moreover, all sets in U give
rise to extension domains; this will come in handy in view of Lemma 4.9:

Lemma 4.14. Let U ∈ U and put Ω• := Ω ∩ U and D• := ∂Ω• \ N . Then for all r ∈ (1,∞) the
space W 1,r

D•
(Ω•) admits again the continuation property, i.e., there is a continuous extension operator

EU : W 1,r
D•

(Ω•)→ W 1,r(Rd).

Proof. In the case U = U0 one has D• = ∂Ω• by construction. Thus, W 1,r
D•

(Ω•) = W 1,r
0 (Ω•) and

the trivial extension by zero does the trick even without any condition on the boundary. If U = Vxj ,
then Ω• = Ω ∩ Vxj is mapped onto the lower half cube {x ∈ (−1, 1)d : xd < 0} by the bi-Lipschitz

map φxj that is defined on a neighbourhood of Ω•, cf. Assumption 2.1 (a). The lower half cube is a
Lipschitz domain. Thus, Ω• is also a Lipschitz domain and there is even an extension operator from
W 1,r(Ω•) into W 1,r(Rd) thanks to Proposition 2.3. (Choose there Ω = Ω• and D = ∅.)

Corresponding to the open covering U of Ω we choose a smooth partition of unity {η0, η1, . . . , ηm} ⊂
C∞c (Rd) such that supp(η0) ⊆ U0 and supp(ηj) ⊆ Vxj for j ∈ {1, . . . ,m}.

Let from now on q > d be fixed, let f ∈ W−1,q
D (Ω), and let v ∈ W 1,2

D (Ω) be the solution to (4.2), so
(A+ 1)v = f . We write v =

∑m
j=0 ηjv and aim to show the Hölder continuity of every function ηjv

seperately. The easiest case is j = 0:

Lemma 4.15. There exists an α0 > 0 independent of f such that η0v ∈ Cα0(Ω) and the estimate

‖η0v‖Cα0 (Ω) ≤ c‖f‖W−1,q
D (Ω)

holds true. The constant c depends only on geometry and the L∞(Ω)-bound and ellipticity constant
of the given coefficient function µ.

Proof. SinceN does not intersectU0, the function η0v belongs toW 1,2
0 (Ω), cf. Lemma 4.7. Moreover,

by Lemma 4.8 there is a p > d and f0 ∈ W−1,p(Ω) such that the function η0v satisfies the equation

−∇ · µ∇(η0v) = f0. (4.11)

Since we are now in the setting of a pure Dirichlet problem and have Assumption 4.1 (a) at our
disposal, we can apply Proposition 4.4; note also Remark 4.5. This yields that the solution η0v of
(4.11) is Hölderian of some degree α0 with the estimate

‖η0v‖Cα0 (Ω) ≤ c‖f0‖W−1,p(Ω).

Finally, combining Lemma 4.14 and Lemma 4.9, we conclude that

‖η0v‖Cα0 (Ω) ≤ c‖f‖W−1,q
D (Ω),

where α0 does not depend on f . For the uniformity claim, see Remark 4.13.
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We turn to the Hölder continuity of the functions ηjv for j ∈ {1, . . . ,m}. For these, there will be a
part of the Neumann boundary N present. To make do with this, we transform the localized problems
via the diffeomorphisms φxj to the model constellation on the unit cube as in Assumption 2.1 (a),
which enables us to use a reflection argument to end up in a situation with a pure Dirichlet boundary
condition. Then we can conclude by Proposition 4.4. For this we introduce the notationQ := (−1, 1)d

for the unit cube, Q− := {x ∈ Q : xd < 0} for its lower half and P := {x ∈ Q : xd = 0} for its
midplate.

Due to Lemma 4.8, there is p > d such that each of the functions ηjv, j = 1, . . . ,m satisfies an
equation like

−∇ · µ∇(ηjv) = fj ∈ W−1,p
Dj

(Ω ∩ Vxj),

with Dj = ∂(Ω ∩ Vxj) \ N . Note that the right hand sides fj continuously depend on f , see
Lemma 4.9. According to Proposition 4.10, one may transform these equations under the bi-Lipschitz
diffeomorphisms φxj and pass to the equation

−∇ · µ#
j ∇wj = gj ∈ W−1,p

Σj
(Q−), (4.12)

where Σj = φxj(Dj) ⊆ ∂Q− is the transformed Dirichlet part, wj ∈ W 1,2
Σj

(Q−) is the transformed
version of the function ηjv|Ω∩Vxj

and gj is the transformation of fj . Note that the whole ’lower mantle’

boundary ∂Q− \ P belongs to Σj , since φxj(N ∩ Vxj) ⊆ P .

From now on we distinguish whether xj ∈ N or xj ∈ D ∩N , starting with the former.

Lemma 4.16. Let j ∈ {1, 2, . . . ,m} with xj ∈ N . Then there is some αj > 0 independent of f
such that ηjv ∈ Cαj(Ω) and we have

‖ηjv‖Cαj (Ω) ≤ c‖f‖W−1,q
D (Ω).

The constant c depends only on geometry and on the L∞(Ω)-bound and ellipticity constant of the
given coefficient function µ.

Proof. Thanks to Remark 2.2 we can assume that Σj = ∂Q− \ P . Thus, exploiting Lemma 4.12
with Λ = Q− and Γ = P , the symmetrically reflected function ŵj belongs to the space W 1,2

0 (Q)
and obeys an elliptic equation on the cube Q with the right hand side ĝj ∈ W−1,p(Q). The cube Q
is obviously convex and satisfies the regularity condition in Proposition 4.4 with γ = 1/2. Thus, said
Proposition 4.4 applies and gives us Hölder continuity of ŵj of degree, say, αj , with an estimate in
ĝj ∈ W−1,p(Q). By Proposition 4.10 and Lemma 4.12 we then have

‖ηjv‖Cαj (Ω∩Vxj ) ≤ c‖wj‖Cαj (Q−) ≤ c‖ŵj‖Cαj (Q)

≤ c‖ĝj‖W−1,p(Q) ≤ c‖gj‖W−1,p
Σj

(Q−) ≤ c‖fj‖W−1,p
Dj

(Ω∩Vxj ) ≤ c‖f‖W−1,q
D (Ω).

Since the support of ηj has a positive distance to Ω\Vxj , the αj-Hölder continuity and norm estimate
is preserved for ηjv on the whole Ω. For the uniformity claim, see again Remark 4.13.

It remains to treat the patches with xj ∈ D ∩ N and it is here that Assumption 4.1 (b) comes into
play. In order to reformulate this condition in our current notation, for some set M ⊆ ∂Q−, we denote
its relative boundary inside ∂Q− by bd∂Q−(M) and inside P by bdP (M). Then Assumption 4.1 (b)
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reads as follows: There are two constants c0 ∈ (0, 1) and c1 > 0, such that for all (y, 0) ∈ bdP (Σj)
and all s ∈ (0, 1] we have

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) > c0s

})
≥ c1s

d−1. (4.13)

Later on it will be convenient to have this condition not only for the points in the interface bdP (Σj),
but for all points of Σj inside P . It is an interesting fact that this comes for free, once we suppose it on
the interface. This will be elaborated in the next two lemmas.

Lemma 4.17. Condition (4.13) carries over to all points (y, 0) ∈ bd∂Q−(Σj) with possibly different
constants c0, c1 > 0.

Proof. Since ∂Q− \ P ⊆ Σj , we have the inclusion

bd∂Q−(Σj) = bd∂Q−(Σj ∩ P ) ⊆ bdP (Σj) ∪ bd∂Q−(P ).

For (y, 0) ∈ bd∂Q−(P ) we estimate

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) >

s

2

})
≥ λd−1

({
z ∈ Bs(y) : dist(z, P ) >

s

2

})
≥ ωd−1

2d−1
sd−1.

So, (4.13) is true for all points (y, 0) in bdQ−(P ) and it is true for all (y, 0) in bdP (Σj) by hypotheses,
with possibly different constants c0 and c1. In order to conclude, it suffices to observe the following: If
for a point y and a number s > 0 the inequality (4.13) holds, then this remains true if the constants
c0, c1 are replaced by smaller ones.

Lemma 4.18. We have for all (y, 0) ∈ Σj ∩ P and all s ∈ (0, 1]

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) > ĉ0s

})
≥ ĉ1s

d−1,

for ĉ0 := min{1
4
, c0

2
} and ĉ1 := min{ωd−1

4d−1 ,
c1

2d−1}, where c0 and c1 are from Lemma 4.17.

Proof. For all (y, 0) ∈ bdP (Σj) the assertion is true by Assumption 4.1 (b) and, using again the
observation made in the end of the proof of Lemma 4.17, it suffices to treat the case where (y, 0) is a
relatively inner point of Σj in P . Since P \ Σj is compact, we then have

ε := dist(y, P \ Σj) = dist(y, P \ Σj) > 0.

We distinguish three cases:

First case, 0 < s ≤ ε/2: In this case one finds{
z ∈ Bs(y) : dist(z, P \ Σj) > s

}
= Bs(y),

so
λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) > s

})
= λd−1

(
Bs(y)

)
= ωd−1s

d−1.

Second case, ε/2 < s ≤ 2ε: Since s/4 ≤ ε/2, we infer from the first case

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) >

s

4

)}
≥ λd−1

({
z ∈ B s

4
(y) : dist(z, P \ Σj) >

s

4

})
≥ ωd−1

sd−1

4d−1
.
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Third case, 2ε < s ≤ 1: From the fact that P \ Σj is compact, we not only get that ε > 0,
but we also obtain the existence of a point (y∗, 0) ∈ bd∂Q−(Σj) with ‖y − y∗‖Rd−1 = ε. Since
Bs−ε(y

∗) ⊆ Bs(y), this yields

λd−1

({
z ∈ Bs(y) : dist(z, P\Σj) >

c0

2
s
})
≥ λd−1

({
z ∈ Bs−ε(y

∗) : dist(z, P\Σj) >
c0

2
s
})
.

The condition 2ε < s implies c0
2
s < c0(s− ε). Using this and Lemma 4.17, we continue to estimate

≥ λd−1

({
z ∈ Bs−ε(y

∗) : dist(z, P \ Σj) > c0(s− ε
})
≥ c1(s− ε)d−1 ≥ c1

2d−1
sd−1.

Invoking once more the observation from the end of the proof of Lemma 4.17, we deduce the claim.

Let, in all what follows, ĉ0, ĉ1 be the constants from Lemma 4.18. Also, we will often use the decom-
position Rd 3 x = (x̄, xd) ∈ Rd−1 × R.

For t ∈ R, we define the mapping ψt : Rd → Rd by

ψt(x) = ψt
(
(x̄, xd)

)
:=
(
x̄, xd − t dist(x̄, P \ Σj)

)
. (4.14)

Later on we will transform our problem again under the mapping ψt for a suitably chosen value of t
and afterwards reflect it in correspondence with Lemma 4.12. In order to justify this transformation, we
first prove a little lemma.

Lemma 4.19. Consider ψt be as in (4.14). Then the following holds true:

(a) The function Rd 3 x = (x̄, xd) 7→ dist(x̄, P \ Σj) is a Lipschitz contraction.

(b) For every t ∈ R, the function ψt is Lipschitz continuous and bijective with inverse ψ−t. In
particular, the inverse is also Lipschitz continuous.

(c) For every t ∈ R, the function ψt is volume preserving.

Proof. The function under consideration in (a) is the concatenation of the projection Rd 3 x 7→ (x̄, 0)
onto [xd = 0] and the restriction of the function Rd 3 x 7→ dist(x, P \ Σj) to Rd−1 × {0}. Both of
these functions are Lipschitz continuous contractions, thus so is the considered concatenation.

For (b), the first assertion follows from (a), and the second is easy to verify.

Finally, it is clear that the determinant of the Jacobian of ψt (cf. [13, Chapter 3.2.2]) is identically 1 a.e.,
thus the assertion (c) follows from [13, Chapter 3.3.3 Theorem 2].

In the following we choose t = 3
ĉ0

and abbreviate ψ := ψ3/ĉ0 . We transform (4.12) under ψ to a
problem

−∇ · ω∇w = h ∈ W−1,p
Σ∆

(Q∆), (4.15)

where the resulting domain is Q∆ := ψ(Q−) and the new Dirichlet boundary part is Σ∆ := ψ(Σj).
We suppress the dependence on j here, so w is the transformation of wj by slight abuse of notation,
and h is the transformed gj . Furthermore, the resulting coefficient function ω is again real, elliptic and
bounded thanks to Proposition 4.10.

The crucial effect of the transformation ψ is that the new Neumann boundary part N∆ := ∂Q∆ \ Σ∆

is identical to the old Neumann part P \ Σj and that N∆ = P \ Σj = ∂Q∆ ∩ P . In particular,
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∂Q∆ ∩ P = ∂Q∆ ∩ [xd = 0] consists of Neumann boundary only. Thus, the geometry of the
problem (4.15) is now exactly of the shape needed to reflect the problem across the plane [xd = 0],
according to Lemma 4.12. We end up with the domain

Λ := Q∆ ∪N∆ ∪
{

z = (z̄, zd) ∈ Rd : (z̄,−zd) ∈ Q∆

}
,

while the new coefficient function ω̂ is again real, bounded and elliptic and the resulting right hand side
ĥ belongs to the space W−1,p(Λ) with p > d. Lemma 4.12 already tells us that the solution ŵ of the
equation on Λ belongs to W 1,2

0 (Λ). Thus, in order to infer Hölder continuity for ŵ by Proposition 4.4,
the only thing that is left to verify is that our final geometry satisfies Assumption 4.1 (a). This will be
the main part of the proof.

Lemma 4.20. The domain Λ is of class (Aγ) for some γ ∈ (0, 1).

Proof. The boundary of Λ is the union of the sets ψ(Σj ∩ P ) and ψ(∂Q− \ P ) and their reflected
counterparts. We show the assertion for the points from ψ(Σj ∩P ) and from ψ(∂Q− \P ), the proof
for points from the reflected parts is then analogous.

Let r ∈ (0, 1] and assume y = (ȳ, yd) ∈ ψ(Σj ∩ P ). Then y is necessarily of the form
(
ȳ,−3/ĉ0 ·

dist(ȳ, P \ Σj)
)

with (ȳ, 0) ∈ P . Now let first r < 3/ĉ0 · dist(ȳ, P \ Σj). Then the ball Br(y) lies
completely in the half space [xd < 0]. This gives

Br(y) \ Λ = Br(y) \Q∆ = Br(y) \ ψ(Q−).

Applying the volume-preserving map ψ−1, cf. Lemma 4.19, and using that ψ−1(y) ∈ P , one deduces
the inequality

λd
(
Br(y) \ Λ

)
= λd

(
ψ−1(Br(y)) \Q−

)
≥ λd

(
ψ−1(Br(y)) ∩ [xd > 0]

)
=

1

2
λd
(
ψ−1(Br(y))

)
.

Since ψ−1 is Lipschitz continuous by Lemma 4.19, the set ψ−1
(
Br(y)

)
contains the ballB`r

(
(ȳ, 0)

)
,

where ` is the Lipschitz constant of ψ−1. Thus, we can continue to estimate

≥ 1

2
`dωdr

d =
1

2
`dλd

(
Br(y)

)
.

Now we consider the second case r ≥ 3/ĉ0 · dist(y, P \ Σj). Let

B−r (y) := Br(y) ∩
{

z ∈ Rd : zd ≤ −3/ĉ0 · dist(ȳ, P \ Σj)
}
.

Since yd = −3/ĉ0 · dist(ȳ, P \ Σj), this is exactly the ’lower’ half of Br(y). By construction of Λ,
one has

Br(y) \ Λ ⊇ B−r (y) \ Λ = B−r (y) \Q∆.

Due to the choice of ψ, we have Q∆ ⊆
{

(z̄, zd) ∈ Rd : zd ≤ −3/ĉ0 · dist(z̄, P \ Σj)}. Thus, we
may continue

Br(y) \ Λ ⊇ B−r (y) \
{

(z̄, zd) ∈ Rd : zd ≤ −
3

ĉ0

dist(z̄, P \ Σj)
}

= B−r (y) ∩
{

(z̄, zd) ∈ Rd :
3

ĉ0

dist(z̄, P \ Σj) > −zd
}
.
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We aim to parametrize the last set by layers along the zd-direction. To this end, for s ∈ [0, r] we
denote by Hs the hyperplane

{
(z̄, zd) ∈ Rd : zd = −3/ĉ0 · dist(ȳ, P \ Σj)− s

}
. Then we obtain

Br(y) \ Λ ⊇ B−r (y) ∩
( ⋃
s∈[0,r]

Hs

)
∩
{

(z̄, zd) ∈ Rd :
3

ĉ0

dist(z̄, P \ Σj) > −zd
}

=
⋃

s∈[0,r]

(
B−r (y) ∩Hs

)
∩
{

(z̄, zd) ∈ Rd :
3

ĉ0

dist(z̄, P \ Σj) > −zd
}

=:
⋃

s∈[0,r]

Gs

with

Gs :=
{

(z̄, zd) ∈ Rd : zd = − 3

ĉ0

dist(ȳ, P \ Σj)− s, z̄ ∈ B√r2−s2(ȳ),

3

ĉ0

dist(z̄, P \ Σj) >
3

ĉ0

dist(ȳ, P \ Σj) + s
}
.

We now note the representation Gs = Gs ×
{
− 3
ĉ0

dist(ȳ, P \ Σj)− s
}

with

Gs = B√r2−s2(ȳ) ∩
{

z̄ ∈ Rd−1 :
3

ĉ0

dist(z̄, P \ Σj) >
3

ĉ0

dist(ȳ, P \ Σj) + s
}
.

Thus, applying Cavalieri’s principle,

λd
(
Br(y) \ Λ

)
≥
∫ r

0

λd−1(Gs) ds =

∫ r

0

λd−1(Gs) ds ≥
∫ r√

2

r
2

λd−1(Gs) ds.

For s ∈ [0, r√
2
] we have Bs(ȳ) ⊆ B√r2−s2(ȳ). On the other hand, for s ≥ r

2
the supposition

r ≥ 3/ĉ0 · dist(ȳ, P \ Σj) yields 3s ≥ r + s ≥ 3/ĉ0 · dist(ȳ, P \ Σj) + s. So, for r
2
≤ s ≤ r√

2
,

Gs ⊇ Bs(ȳ) ∩
{

z̄ ∈ Rd−1 :
3

ĉ0

dist(z̄, P \ Σj) > 3s
}
,

and using Lemma 4.18 we can continue to estimate:

λd
(
Br(y) \ Λ

)
≥
∫ r√

2

r
2

λd−1

(
Bs(ȳ) ∩

{
z̄ ∈ Rd−1 :

3

ĉ0

dist(z̄, P \ Σj) > 3s
})

ds

=

∫ r√
2

r
2

λd−1

({
z̄ ∈ Bs(ȳ) : dist(z̄, P \ Σj) > ĉ0s

})
ds

≥ ĉ1

∫ r√
2

r
2

sd−1 ds =
ĉ1

d

[(1

2

) d
2 −

(1

2

)d]
rd =

ĉ1(2
d
2 − 1)

dωd2d
λd
(
Br(y)

)
.

This was the claim for y ∈ Σj ∩ P .

It remains to discuss the points y ∈ ψ(∂Q−\P ). Clearly, Λ is contained in the ’strip’ (−1, 1)d−1×R,
and ψ maps the lateral faces M := {−1, 1}d−1 × [−1, 0] of Q− into {−1, 1}d−1 × (−∞, 0] which
are exactly (the ’lower’ half of) the faces of (−1, 1)d−1 × R. Thus, for y ∈ ψ(M), the set Br(y) \ Λ
contains at least half of the ball Br(y) and we have

λd
(
Br(y) \ Λ

)
≥ λd

(
Br(y) \ ((−1, 1)d × R)

)
≥ 1

2
λd(Br(y)).
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The only case left is y ∈ ψ
(
{−1} × (−1, 1)d−1

)
, i.e., y is in the image of the ’bottom’ of the half

cube. Then the ball Br(y) lies completely inside the ’lower’ halfplane [zd = 0] for all r ∈ (0, 1]. Thus,
since ψ was volume-preserving,

Br(y) \ Λ = Br(y) \ ψ(Q−) = Br

(
ψ(ψ−1(y))

)
\ ψ(Q−).

By Lemma 4.11 we get the desired estimate once we can prove it for the untransformed geometry
Br(ψ

−1(y)) \ Q− where ψ−1(y) is in the bottom face of the unit cube. But this is straightforward
since Q− is convex.

With Lemma 4.20 at hand, we complete the proof of Theorem 4.2 easily with the pendant to Lemma 4.16;
its proof is completely analogous to the one of Lemma 4.16 up to the additional transformation ψ.

Lemma 4.21. Let j ∈ {1, 2, . . . ,m} with xj ∈ D ∩N . Then there is some αj > 0 independent of
f such that ηjv ∈ Cαj(Ω) and we have

‖ηjv‖Cαj (Ω) ≤ c‖f‖W−1,q
D (Ω).

The constant c depends only on geometry, and on the L∞(Ω)-bound and ellipticity constant of the
given coefficient function µ.

We have shown in Lemmata 4.15, 4.16 and 4.21 that all localized functions ηvj for j = 0, . . . ,m are
Hölder continuous of (possibly different) degree αj with an estimate against f ∈ W−1,q

D (Ω) which
depends only on geometry, and on the L∞(Ω)-bound and ellipticity constant of the given coefficient
function µ. Thus, if we choose α to be the minimum of the αj , the claim of Theorem 4.2 follows and
we are done.
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