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Qualitative study of a geodynamical rate-and-state model for
elastoplastic shear flows in crustal faults

Alexander Mielke, Tomáš Roubíček

Abstract

The Dieterich–Ruina rate-and-state friction model is transferred to a bulk variant and the state
variable (aging) influencing the dissipation mechanism is here combined also with a damage
influencing standardly the elastic response. As the aging has a separate dynamics, the overall
model does not have a standard variational structure. A one-dimensional model is investigated
as far as the steady-state existence, localization of the cataclastic core, and its time response,
too. Computational experiments with a damage-free variant show stick-slip behavior (i.e. seismic
cycles of tectonic faults) as well as stable slip under very large velocities.

1 Introduction

In the last decades the mathematical interest in geophysical problems was steadily growing. While
there is already a large body of work in atmospheric and oceanographic fluid flows, the mathemat-
ics for geophysical models for solid earth is much less developed. The latter concerns in particular
the deformation and motion of lithospheric plates in the upper crust, in particular earthquakes. The
difficulties in these models is the complex behavior of rock that behaves elastically like a solid in the
case of seismic waves on short time scales but behaves like a viscoplastic fluid when considered over
centuries. However, very slow motion of long periods are crucial for building up internal stresses that
are then released in short rupture events triggering earthquakes. Only recently, a new class of peri-
odic motions in the Earth crust was detected by evaluating GPS measurements, namely the so-called
“episodic tremor and slip” (cf. [KT*12,Bar20]): Here all motions are so slow that no seismic waves are
emitted, but there exist two distinct regimes, one involving inelastic motions and one involving slow
smooth slip. These events are observed in so-called subduction zones and have periods in the range
of a few years while the overall shear velocity rate is in the range of millimeter per year.

In addition to these temporal time scales there are also several spatial scales involved. For instance,
between tectonic plates there form weak regions called faults that are relatively narrow but may ac-
cumulate relatively large deformations, in particular in rapid shearing events. We refer to [PK*16,
HGvD18, RH*19, PH*19, NG*20] for some recent efforts in geodynamical modeling towards a better
understanding of these phenomena. On the mathematical side the work started less than a decade
ago and is still comparably small, see [RSV13,PSK13,Pip19,HKP20,EHM22,EHL21]. Moreover, there
is a dichotomy with respect to bulk interface models, where most of the nonlinear effects are localized
in the interface (e.g. by a so-called rate-and-state dependent friction law), and pure bulk models where
typically only existence results for solutions are obtained but no qualitative behavior of the solutions
can be deduced.

With this work we want to initiate a mathematical study where pure bulk models are considered but
still interesting qualitative features can be deduced. In this first study we will confine ourselves to a
simplified “stratified” setting where only shear deformations are considered that depend on a one-
dimensional variable x ∈ (−H,H) representing the transverse direction to a straight fault or damage
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zone between two compact rocks representing two plates that move with respect to each other, see
Figure 2.1. The continuum model is given in terms of
• the shear velocity v = v(t, x) ∈ R,
• the elastic strain ε = ε(t, x),
• the plastic strain p = p(t, x),
• the internal damage variable α = α(t, x), and
• the internal aging variable θ = θ(t, x).

The model to be studied in its simplest form is the following system of five partial differential equations
posed for (t, x) ∈ (0,∞)× (−H,H) (see (2.12) for the more general case treated below):

%
.
v =

(
C(α)ε

)
x
,

.
ε +

.
p = vx, (1.1a)

∂.
pR(

.
p, θ) 3 C(α)ε+ η

.
pxx,

.
α = −1

2
C′(α)ε2 + β(1−α) + γαxx, (1.1b)

.
θ = 1− θ/θ∞ − λ|

.
p|θ + κθxx, (1.1c)

with the dot-notation (·). and the notation (·)x for the partial derivatives in time and in space, respec-
tively. We complete it with boundary conditions

v(t,±H) = ±v∞(t), p(t,±H) = 0, α(t,±H) = 1, θ(t,±H) = θ∞. (1.1d)

Here β, γ, η, κ, and λ are positive constants, whereas α 7→ C(α) > 0 and (π, θ) 7→ R(π, θ) > 0
are general smooth constitutive functions. In particular, the state of damage α may decrease the
elastic stiffness C(α), and even more importantly the yield stress µ(π, θ) may depend on the plastic
rate π =

.
p as well as on the aging variable θ. Thus, we are able to mimic the commonly used Dieterich-

Ruina rate-and-state friction law [Die07, Rui83] where now the aging variable can be interpreted as
the “state” while the dependence on π =

.
p gives the rate dependence.

Here R( · , θ) : R → R is the plastic dissipation potential depending on the aging variable θ, i.e. it
is convex and satisfies R(π, θ) ≥ 0 = R(0, θ). The plastic yield stress (or dry friction coefficient) is
encoded by assuming R(π, θ) = µ(0, θ)|π| + O(π2). Hence, we obtain a set-valued convex subd-
ifferential, which we assume to have the form ∂πR(π, θ) = µ(π, θ) Sign(π) + O(π), where “ Sign”
is the set-valued sign function, see (2.6). Thus, the first equation in (1.1b), involving the nonsmooth
convex function R(·, θ), is an inclusion and gives rise to a free boundary, namely between regions
with the purely elastic regime with π =

.
p ≡ 0 where Sign(

.
p) = [−1, 1] and the plastic regime where

π =
.
p 6= 0 and Sign(

.
p) = {−1} or {+1}.

Our paper is organized as follows: In Section 2 we provide the background from geodynamics intro-
ducing the rate-and-state friction models with a given interface and our distributed-parameter model
which is slightly more general than (1.1). In particular, Section 2.2 discusses the steady-state equation

where
.
v =

.
α =

.
θ = 0 while the plastic flow rate π =

.
p is independent of time. The full evolutionary

model is then introduced in Section 2.3.

The analysis of steady states is the content of Section 3. In Theorem 3.1 we provide an existence
theorem for steady states under quite natural assumptions and arbitrary shear velocities v(±H) =
±v∞. The proof relies on a Schauder fix-point argument and we cannot infer uniqueness, which
is probably false in this general setting. In Proposition 3.4 we show that for steady states the limit
η → 0+ in (1.1b) can be performed in such a way that accumulation points are still steady states.

In Section 4 we discuss the full dynamic model, show its thermodynamic consistency, and derive the
natural a priori estimates. For our main existence result we restrict to the case without damage, i.e.C is
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independent of α and α ≡ 1 solves (1.1b). The result of Theorem 4.1 is obtained by time discretization
and a staggered incremental scheme mimicking the solution of the static problem in Theorem 3.1. The
analytical aspects are nontrivial because of the non-variational character of the problem, the non-
polynomial friction law (2.4) leading to usage of Orlicz spaces, and the lack of compactness for the
elastoplastic wave equation.

The final Section 5 is devoted to a numerical exploration of some simplified models that show the typi-
cal behavior expected also for the full model. The simplified model is obtained from (1.1) by neglecting
α as in Section 4 and by further ignoring inertia (i.e. setting % = 0 and choosing η = 0), see Section
5.1:

2H

C
.
σ +

∫ H

−H
Π(σ, θ) dx = 2v∞(t),

.
θ = 1− θ

θ∞
− λΠ(σ, θ) + κθxx, (1.2)

with θ(t,±H) = θ∞, where π = Π(σ, θ) = ∂ξR∗(σ, θ) is the unique solution of σ ∈ ∂πR(π, θ).

In Section 5.2 we discuss the steady states (θstst, πstst) where πstst = Π(σstst, θstst). We do a
parameter study for varying κ and v∞ and obtain a monotone behavior with respect to v∞, namely
θstst is decreasing and πstst is increasing. We always observe spatial localization in the sense that πstst
is supported on [−h∗(v∞, κ), h∗(v∞, κ)] with a free boundary positioned at the points ±h∗(v∞, κ)
with h∗(v∞, κ) � H and h∗(v∞, κ) ≈ 0.55

√
κ for κ, v∞ → 0+.

The pure existence of steady states does not say anything about stability in the dynamic model (1.2).
In Section 5.3 we provide a two-dimensional ODE model where there is a unique steady state that
is unstable for small positive v∞ and convergence of general solutions to periodic motions. Similarly,
Section 5.4 shows simulations for system (1.2) which shows convergence towards (θstst, πstst) if v∞ is
large but predicts convergence towards time-periodic solutions that also have a clearly defined plastic
zone smaller than (−H,H), see Figures 5.6 and 5.7.

A surprising effect is that the width 2h of the core of the fault (the active cataclastic zone) does not
tend to be 0 if the plasticity gradient is ignored by setting η = 0, and even not if the aging gradient is
ignored by setting κ = 0. In Proposition 3.5 we show that under natural assumptions on the rate-and-
state friction law one obtains a linear dependence h = h∗(v∞, 0) = |v∞|/π∗ for shear velocities with
|v∞| < Hπ∗, where π∗ is uniquely determined by the friction law and the aging law.

Another noteworthy effect is that the length scale of the aging qualitatively influences the character
of response, varying in between the stick-slip and the sliding regimes. In particular, for very large
shear velocities v∞ (which are not relevant in usual geophysical faults in the lithosphere) the fault
goes into a continuous sliding mode and no earthquakes occur. Actually, this is a recognized attribute
of this friction model which in [Bau96] has been compared to the observation of our “everyday life
when one often manages to get rid of door-squeaking by a fast opening”. In contrast under very slow
shear velocities, the friction threshold is not reached for large time spans after a relaxation. Only
when enough shear stress has build up, the threshold can be overcome. But then not only stresses
are released but also the aging variable is reduced which leads to a much larger stress release than
needed. Hence, another long waiting time is needed until next “earthquake” will start.

2 Setup of the geodynamical model

2.1 Geodynamical background

Earth’s crust (together with lithosphere) is a rather solid rock bulk surrounding the lower, more viscous
parts of the planet. It is subjected by damage typically along thin, usually flat weak surfaces, called
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faults, which exist within millions of years. The faults may exhibit slow sliding (so-called aseismic slip)
or fast rupture (causing tectonic earthquakes and emitting seismic waves) followed by long period
or reconstruction (healing) in between particular earthquakes. The former phenomenon needs some
extra creep-type rheology modeled using a plastic strain variable or some smoothing of the activated
character of the frictional resistance at very small rates (cf. Remark 3.3) and will not be scrutinized
in this article, while the latter phenomenon needs some friction-type rheology. Thus faults can be
modeled as frictional contact surfaces or as flat narrow stripes.

As for the frictional contact, the original Dieterich-Ruina rate-and-state friction model [Die07, Rui83]
prescribes the tangential stress σt on the frictional interface as

σt = σn

(
µ0 + a ln

v

vref
+ b ln

vrefθ

dc︸ ︷︷ ︸
= µ(v, θ) = frictional resistance

)
(2.1)

where the normal stress σn is considered to be given (= a so-called Tresca friction model) and v is (the
norm of) the tangential velocity jump along interface. The (given) parameters a and b are the direct-
effect and the evolution friction parameters, respectively, dc is the characteristic slip memory length,
and vref reference velocity. If a−b > 0, we speak about velocity strengthening while, if a−b < 0, we
speak about velocity weakening – the latter case may lead to instabilities and is used for earthquake
modeling. The friction coefficient µ = µ(v, θ) depends in this model on the velocity magnitude v and
an internal variable θ being interpreted as an aging variable, sometimes also as damage. The evolution
of θ is governed by a specific flow rule typically of the form of an ordinary differential equation at each
spot of the fault, say:

.
θ = f0(θ)− f1(θ)|v| (2.2)

with some continuous nonnegative functions f0 and f1 More specifically, f0(θ) = 1 and f1(θ) = θ/dc
with dc > 0 is most common, considered e.g. in [Biz11,BTG08,BiT01,DaC08,DaC109,KLA08,RD*09,
Sch98]; then for the static case v = 0, the aging variable θ grows linearly in time and has indeed the
meaning of an “age” as a time elapsed from the time when the fault ruptured in the past. The steady

state
.
θ = 0 leads to θ = dc/|v| so that µ = µ0 + (a−b) ln|v/vref |. Alternatively, one can consider

the flow rule (2.2) with some other f0:

f0(θ) = max
(

1− θ

θ∞
, 0
)

and f1(θ) =
θ

dc
, (2.3)

cf. [PRZ95], and then θ stays bounded and asymptotically approaches θ∞ in the steady state if v → 0,
namely θ = dcθ∞/(dc+θ∞|v|). This suggests to interpret θ rather as a certain hardening or “gradual
locking” of the fault in the “calm” steady state v = 0.

An obvious undesired attribute of (2.1) is, as already noted in [Die07, p.108], that, “as v or θ approach
zero, eqn. (2.1) yields unacceptably small (or negative) values of sliding resistance” µ. Therefore, (2.1)
obviously violates the Clausius-Duhem entropy inequality, although being used in dozens of geophysi-
cal articles relying that in specific applications the solutions might not slide into these physically wrong
regimes. Nevertheless, a regularization leading to µ > 0 and thus to a physically correct non-negative
dissipation is used, too, typically as [1], cf. e.g. also [PRZ95]:

µ = µ(v, θ) = µ0 + a ln
( |v|
vref

+1
)

+ b ln
(vref
dc
θ+1

)
. (2.4)

In what follows, we will therefore have in mind rather (2.4) than (2.1). For an analysis and numerics
of the rate-and-state friction in the multidimensional visco-elastic context we refer to [PSK13, PK*16,
Pip19,2].
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Since the velocity occurs in the aging flow rule (2.2), this nonisothermal friction model however does
not seem consistent with standard thermodynamics as pointed out in [Rou14] in the sense that the
evolution (2.2) does not come from any free energy. On top of it, it has been known from the beginning
of this rate-and-state model that it does not fit well some experiments [Rui80] and (rather speculative)
modifications e.g. by using several aging variables (which naturally opens a space for fitting more
experiments) have been devised, cf. [Rui83].

A rather formal attempt to overcome the mentioned thermodynamical inconsistency has been done
in [PSK13] by introducing two energy potentials. Thermodynamically consistent models have been
devised either by using isothermal damage with healing [RSV13] or by nonisothermal damage when
temperature variation was interpreted approximately as a sliding velocity magnitude v. The latter op-
tion uses the idea that the slip of the lithospheric fault generates heat which increases temperature on
the fault. In geophysical literature, the heat produced during frictional sliding is believed “to produce
significant changes in temperature, thus the change of strength of faults during seismic slip will be a
function of ... also temperature”, cf. [Che94, p.7260]. The usage of an (effective) interfacial tempera-
ture discussed in [DaC08,DaC109] following ideas from [Lan08]. In [BBC99,Che94,Che95,Sch02] the
classical rate-and-state friction law is also made temperature dependent. Experimentally, even melting
of rocks due to frictional heating is sometimes observed.

A simplified friction model µ(v) = µ0 + aln(b|v|+1) or µ(v) = µ0 + (a−b)ln|v/vref | is some-
times also considered under the name rate-dependent friction [Die79, LBA05, Rui83, ToL18] and was
analyzed in [Mie18] as far as its stability. In contrast, the above mentioned variant of temperature
dependent friction can be called purely state dependent.

The friction model is sometimes “translated” into a bulk model involving a plastic-like strain and the
sliding-friction coefficient µ then occurs as a threshold (a so-called yield stress) in the plastic flow
rule, cf. [Rou14, Sect. 6], or [DaC09,DaC109,HGvD18,LBA05,ToL18], known also under the name a
shear-transformation-zone (STZ) concept referring to a (usually narrow) region in an amorphous solid
that undergoes plastification when the material is under a big mechanical load. Instead of velocity
dependence (2.4), one should play with dependence on the strain rate, cf. (2.7) below. These options
can be “translated” into the bulk model by making the yield stress µ dependent, beside the strain rate,
also on an aging variable θ, or on an temperature, or on a damage, or on various combination of those.
Altogether, one thus get a wide menagerie of friction-type models.

Here we consider, as rather standard in geophysical modeling as (2.4), an isothermal variant and
make µ dependent on strain rate and on aging. We consider also damage (or phase-field) as usual
in fracture mechanics to illustrate its a different position in the model. The main phenomena are that
aging evolution does not directly contribute to energetics when influencing only dissipative “friction”
µ. This is similar to a cam-clay model [DDS11, DDS12] where the dissipative response is controlled
through an internal variable whose rate, however, does not explicitly contribute to energetics. On the
other hand, damage (or phase-field) influences the elastic response through the elastic response in
the stored energy and is also driven by the resulting driving force from it. Also, we adopt the (realistic)
assumption that the elastic strain (as well as its rate) is small, which makes possible to let µ dependent
on the plastic strain rate rather than elastic strain rate and to put it into the standard framework of rate-
dependent plasticity. The plasticity is consider without any hardening which otherwise might dominate
with big slips on long time scales and would unacceptably corrupt the autonomy of the model. In
principle, damage may also influence friction µ like in [RSV13,RoV16] but we will not consider it.
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2.2 The one-dimensional steady-state model

It is generally understood that fracture mechanics and in particular fault mechanics is very complex
and difficult to analyze. Therefore, we focus to a very simplified situation: a flat fault which is perfectly
homogeneous in its tangential direction. Thus all variables depend only on the position in the normal
direction and the problem reduces to be one dimensional, cf. Figure 2.1.

Figure 2.1: Schematic geometry: a cross-section through a fault.

We ask a question about existence of a steady state in the situations where the sides of the fault move
with a constant speed in opposite directions. The model is thus expressed in rates rather than dis-
placements and plastic strains. Such steady states are also called aseismic slips (sliding), in contrast
to seismic slips which are dynamical phenomena related with a stick-slip motion and earthquakes. For
the relation of the aseismic slip (fault growth) and orientation of faults see [PH*19]. The aseismic slip
can be also understood as creep, within which the Maxwellian viscoelastic rheology is manifested.

The variables of our steady-state model will thus be:
• v velocity (in m/s),
• π plastic strain rate (in 1/s),
• ε elastic strain (dimensionless),
• α damage (dimensionless, ranging over [0, 1]), and
• θ aging (in seconds), and later also
• σ a stress (or, in one-dimensional case, rather a force in J/m=N).

These first five variables are to satisfy the following system of five equations (inclusions):

(C(α)ε)x = 0 (momentum equilibrium) (2.5a)

π = vx (plastic shear rate) (2.5b)

µ(π, θ)Sign(π) 3 C(α)ε+ ηπxx , (plastic flow rule) (2.5c)
1

2
C′(α)ε2 +Gc

α−1

`2
= Gc`

2αxx , (damage flow rule) (2.5d)

|π|f1(θ)− f0(θ) = κθxx , (aging flow rule) (2.5e)

where (·)x denotes the derivative (later also partial derivative) in x. Actually, (2.5c) contains a set-
valued term ∂πR(π, θ) = µ(π, θ)Sign(π) and is thus an inclusion rather than an equation. There, we
have denoted by “ Sign” in set-valued sign function, i.e.

Sign(π) =


1 for π > 0,

[−1, 1] for π = 0.

−1 for π < 0.

(2.6)
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This system arises as a steady state from an evolution model (2.12) below. In particular, the equation
(2.5b) arises from the additive (Green-Naghdi’s) decomposition of the total strain into the elastic strain
and the plastic strain, cf. (2.12b) below. Written in terms of rates and taking into account that the rate
of the elastic strain is zero in the steady state, we arrive at (2.5b). In fact, the velocity v here enters the
rest of the system only through the boundary condition (2.8) below, in contrast to the full evolutionary
model later in Section 4 where velocity acts through the inertial force.

The data (or constitutive relations) in the model (2.5) are:

µ = (π, α) a yield stress (in the one-dimensional model in N=J/m)),

C = C(α) elastic modulus (smooth, nondecreasing, in N=J/m),

f0 aging rate (dimensionless),

f1 “contra-aging” coefficient (in seconds),

Gc fracture toughness (in a one-dimensional model in N=J/m),

η > 0 a length scale coefficient for π (i.e. for the cataclastic zone, in W/m),

` > 0 a length scale coefficient for the damage (in meters),

κ > 0 a length scale coefficient for the aging (in m2/s),

while f0 and f1 are essentially borrowed from (2.3). Actually, v in (2.4) has the meaning rather of a
difference of velocities across the contact interface than a velocity itself which would not be Galilean
invariant. In a variant of the bulk model, µ should depend rather on a shear rate and, instead of the
coefficient 1/vref , one should consider a h/vref with h a certain characteristic width of the active slip
area, likely to be identified with the width of the cataclastic core zone, cf. Figure 2.1. Thus, we consider

µ = µ(π, θ) = µ0 + a ln
( h

vref
|π|+1

)
+ b ln

(vref
dc
θ+1

)
. (2.7)

In comparison with (2.2), the steady-state equation (2.5e) contains the length-scale term κθxx. Also
damage equation (2.5e) contains a length-scale term `2αxx competing with the driving force 1

2
C′(α)ε2

coming from the α-dependence in (2.5a). Note that the gradient term in (2.5c) applies to plastic rate
and no gradient term involves directly the plastic strain, similarly as in [DRS21,Rou22]. This eliminates
spurious hardening-like effects by large slips accumulated on faults in large time scales, which would
otherwise start dominating and corrupt the autonomous character of the model.

We have to complete the system (2.5) by suitable boundary condition. Specifically, we choose the
boundary conditions

v(±H) = ±v∞, π(±H) = 0, α(±H) = 1, θ(±H) = θ∞ (2.8)

with θ∞ from (2.3). Let us mention that we use the mathematical convention that α = 1 means
undamaged material while α = 0 means maximally damaged material.

From (2.5a), we can see that C(α)ε is constant on the damage domain D = [−H,H], say = σ.
From this, we can express

ε(x) =
σ

C(α(x))
for all x ∈ D . (2.9)

IfC(·) is increasing, one can conversely expressα as a function of ε, but we will eliminate ε rather than
α. Also the equation (2.5b) can be eliminated because the velocity v occurs only in the first boundary
condition in (2.8). This condition then turns into an integral side constraint

∫
D
π dx =

∫
D
vx dx =
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v(H)− v(−H) = 2v∞. We can thus reduce (2.5) to the system of three elliptic ordinary-differential
equations

µ(π, θ)Sign(π) 3 σ + ηπxx , (2.10a)

C′(α)

2C2(α)
σ2 +Gc

α−1

`2
= Gc`

2αxx , (2.10b)

|π|f1(θ)− f0(θ) = κθxx (2.10c)

with the integral and the boundary conditions

π(±H) = 0 with

∫
D

π dx = 2v∞, (2.11a)

α(±H) = 1, (2.11b)

θ(±H) = θ∞ . (2.11c)

It is noteworthy that (2.10b) decouples from (2.10a,c) which arises not from necessity but rather from
our desire for simplicity and for consistency with the standard rate-and-state friction as in Section 1: we
assumed that µ, f0, and f1 are independent of α. The system (2.10a,c)–(2.11a,c) thus represents a
nonstandard non-local two-point boundary-value problem for the functions (π, θ) onD and one scalar
variable σ. When solved, the two-point boundary-value problem (2.10b)–(2.11b) can be solved for α.
Then ε is obtained from (2.9). Eventually, the velocity v can be calculated from (2.5b) when using also
(2.11a).

2.3 The evolutionary model

We will now investigate an evolution version of the steady-state model (2.5), which in particular ex-
plains how (2.5) have arisen. In addition to the variables needed in Section 2.2, we now will exploit
also:
• p plastic strain (dimensionless) and
• % mass density (in one-dimensional model kg/m).
An additional ingredient will be a dissipation potential ζ for damage, which is convex with subdifferen-
tial ∂ζ and has physical dimension J/m.

The evolution variant of (2.5) then looks as:

%
.
v − (C(α)ε)x = 0 , (momentum equilibrium) (2.12a)

.
ε +

.
p = vx , (additive decomposition) (2.12b)

∂πR(
.
p, θ) 3 C(α)ε+ η

.
pxx , (plastic flow rule) (2.12c)

∂ζ(
.
α) +

1

2
C′(α)ε2 +Gc

α−1

`2
3 Gc`

2αxx , (damage flow rule) (2.12d)
.
θ = f0(θ)− |

.
p|f1(θ) + κθxx . (aging flow rule) (2.12e)

It is to be completed with boundary conditions as (2.8) with possibly time dependent boundary velocity
v∞ = v∞(t), i.e. here

v(±H) = ±v∞(t), p(±H) = 0, α(±H) = 1, θ(±H) = θ∞ . (2.13)

with θ∞ constant in time. The (Green-Naghdi’s) additive decomposition is written in rates, which just
gives (2.12b). Obviously, the steady-state variant of (2.12) where all time derivatives vanish yield just
(2.5).
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The system (2.12a-d) has a rational physical background while (2.12e) expresses some extra phe-
nomenology controlling the nonconservative part in (2.12c). For % = 0, the system (2.12a–d) rep-
resents the so-called Biot equation ∂.

qR(q, θ,
.
q) + ∂qE(q, θ) = 0 for the state q = (u, p, α) and

θ given with the total dissipation potential R(q, θ,
.
q) =

∫
D
ζtot(θ, α; π,

.
α) dx and the stored en-

ergy E(q, θ) =
∫
D
ψ(ε, α, θ) dx, while for % > 0 it arises from the Hamilton variational principle

generalized for the dissipative systems with internal variables.

The underlying specific stored energy and the dissipation potential (in terms of the rates of plastic
strain p and damage α) behind this model are

ϕ(ε, α) =
1

2
C(α)ε2 +Gc

((1−α)2

2`2
+
`2

2
α2
x

)
and (2.14a)

ζtot(θ;
.
p,

.
α) = R(

.
p, θ) + ζ(

.
α) +

η

2

.
p
2

x , (2.14b)

where often C(α) = (`2/`20 + α2)C0 with some `0. The constants ` and `0 are in meters while
the fracture toughness Gc is in J/m2, cf. [KrR19, Eqn. (7.5.35)], or rather in J/m in our 1-dimensional
model. This is known as the Ambrosio-Tortorelli functional [AmT92].

3 Analysis of the steady state model

Further on, we will use the standard notation for the function space. In particular, C(D) will be the
space of continuous functions on D and Lp(D) will denote the Lebesgue space of measurable func-
tions on the domain D = [−H,H] whose p-power is integrable (or, when p = ∞, which are
bounded), andW k,p(D) the Sobolev space of functions in Lp(D) whose k-th distributional derivative
belongs to Lp(D). We abbreviate Hk(D) = W k,2(D). Besides, H1

0 (D) will denote a subspace of
H1(D) of functions with zero values at x = ±H . In Section 4, for the time interval I = [0, T ] and
a Banach space X , we will also use the Bochner spaces Lp(I;X) of Bochner-measurable functions
I → X whose norm in in Lp(I), and the Sobolev-Bochner space H1(I;X) which belong, together
with their distributional time derivative, into Lp(I;X).

3.1 Existence of steady states

Let us recall the standard definition of a weak solution to the inclusion (2.5c) as a variational inequality∫
D

(
R(π̃, θ)− σ(π̃−π) + ηπx(π̃−π)x

)
dx ≥

∫
D

R(π, θ) dx (3.1)

to be satisfied for any π̃ ∈ L1(D), where ∂πR(π, θ) = µ(π, θ)Sign(π). We will prove existence of
solutions due to even a stronger concept of a classical (also called Carathéodory or strong) solution,
namely that |πxx| is integrable (actually in our case even bounded) and

∀ π̃ ∈ R : R(π̃, θ)− σ(π̃−π) + ηπxx(π̃−π) ≥ R(π, θ) (3.2)

holds a.e. onD. As mentioned in Section 1, the rate-and-state friction model lacks standard thermody-
namical consistency, which is reflected in the steady-state case by a lack of joint variational structure.
Nevertheless, the two equations (2.5c) and (2.5e) for π and θ, respectively, have an individual varia-
tional structure governed by the functionals

Aπ(θ) :=

∫
D

|π|ϕ1(θ)− ϕ0(θ) +
κ

2
|θx|2 dx and Bθ(π) :=

∫
D

R(π, θ) +
η

2
|πx|2 dx, (3.3)
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where ϕ0 and ϕ1 are primitive functions to f0 and f1, respectively. Then, the pair (θ, π) is a desired
solution if and only if θ minimizes Aπ(·) on {θ ∈ H1(D); θ(±H) = θ∞} and π minimizes Bθ(·)
on {π ∈ H1

0 (D);
∫
D
π dx = 2v∞}. Since both functionals Aπ(·) and Bθ(·) are strictly convex, the

solutions operators θ = SA(π) = argminAπ and π = SB(θ) = argminBθ(·) are well-defined. The
existence of steady states will be proved by a Schauder fixed-point theorem applied to SA ◦ SB.

Theorem 3.1 (Existence of steady states). Let the following assumptions hold:

µ : R2 → R continuous, µ(·, θ) non-decreasing on [0,+∞)

and non-increasing on (−∞, 0], infR µ(0, θ) > 0, (3.4a)

C : R→ R continuously differentiable, C′([1,∞)) = 0, infRC(α) > 0, (3.4b)

f0, f1 continuous, non-negative, f ′1(θ) > 0, f1(0) = 0,

f ′0(θ) < 0, f0(θ∞) = 0, (3.4c)

κ > 0, ` > 0, η > 0 . (3.4d)

Then:
(i) For all v∞ ∈ R, problem (2.5)–(2.8) has a solution in the classical sense (i.e. (2.5a,b,d,e) hold

everywhere and (3.2) holds a.e. on D) such that ε ∈ W 1,∞(D), v ∈ W 3,∞(D), and π, α, θ ∈
W 2,∞(D).

(ii) Moreover, any solution satisfied 0 ≤ θ ≤ θ∞ and 0 ≤ α ≤ 1 with α convex.

(iii) If v∞ 6= 0, then σv∞ > 0 with σ = C(α)ε denoting the stress, and if also C′ ≤ 0 with
C′(1) < 0, then α(x) < 1 except at x = ±H .

(iv) If C, f0, f1, and µ are smooth, then α, θ ∈ W 4,∞(D).

Proof. For a given θ̃, equation (2.10a) with the nonlocal condition in (2.11) is equivalent to π =
SB(θ̃) = argminBθ̃(·). The monotonicity of µ(·, θ̃) assumed in (3.4a) ensures the uniform convexity

of the functional Bθ(·). Therefore the minimizer π = SB(θ̃), which clearly exists by the direct method
in the calculus of variations, is uniquely determined. Moreover, it depends depends continuously on
θ̃ with respect to the weak topology on H1(D). Thanks to (3.4a), for v∞ given, Bθ(·) is coercive

uniformly with respect to θ̃, and therefore the minimizer π = SB(θ) can be a priori bounded inH1(D)

independently on θ̃.

With a Lagrange multiplier σ for the scalar-valued constraint
∫
D
π dx = 2v∞, the Lagrangian for

minimizing Bθ̃ reads

L (π, σ) =

∫
D

R(π, θ̃) +
η

2
π2
x + σ

(
π − v∞

H

)
dx (3.5)

and the optimality conditions ∂πL (π, σ) 3 0 and ∂σL (π, σ) = 0 with “∂” denoting the partial

subdifferentials (in the functional sense) give respectively the inclusion (2.10a) with θ̃ instead of θ
and the integral condition

∫
D
π dx = 2v∞ in (2.11). Also this multiplier is determined uniquely and

depends continuously on θ̃. From (2.10a) written as σ ∈ µ(π, θ̃)Sign(π)− ηπxx ∈ H1
0 (D)∗, we can

see that also σ ∈ R is a priori bounded independently of θ̃.

For a given π, equation (2.5e) is equivalent to θ = SA(π) = argminAπ(·). As f1 is nondecreasing
and f0 is nonincreasing, the functionalAπ(·) is convex, and it is to be minimized on the affine manifold
{θ ∈ H1(D); θ(±H) = θ∞}, cf. the boundary conditions (2.11). Therefore this boundary-value
problem has a unique weak solution θ ∈ H1(D), which depends continuously on π and can be

bounded independently of θ̃ when taking into account the mentioned a priori bound for π.

DOI 10.20347/WIAS.PREPRINT.2954 Berlin 2022
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x

f

−1 +1

x

fdr

−1 +1

x

fir

−1 +1

Figure 3.1: Two examples of func-
tions f and their decreasing and
increasing rearrangements fdr and
fir.

Using f1(0) = 0, f0(θ∞) = 0, and θ(±H) = θ∞, the maximum principle implies 0 ≤ θ ≤ θ∞.

Altogether, we obtain a mapping θ̃ 7→ θ = SA
(
SB(θ)

)
which is continuous with respect to the weak

topology on H1(D) and valued in some bounded set (depending possibly on a given v∞). By the
Schauder fixed-point theorem, this mapping has a fixed point θ. This thus determines also π = SB(θ)
and σ.

Having σ determined, we can find a unique weak solution α ∈ H1(D) to the equation (2.10b) with
the boundary conditions (2.11b) and then, from (2.9), we also obtain ε ∈ H1(D). From v(x) =∫ x
−H π(x̃) dx̃, we also obtain v ∈ W 2,2(D).

The quadruple (π, α, θ, σ) solves (2.10)–(2.11) in the weak sense. By comparison, we can also see
that πxx, αxx, θxx ∈ L∞(D), so that π, α, θ ∈ W 2,∞(D).

If v∞ 6= 0, then necessarily σ 6= 0. If also C′ ≤ 0 with C′(1) < 0, the (convex) solution α to (2.10b)
must be nontrivial, this α < 1 except the end points x = ±H .

Then, from (2.9) with σ already fixed and C(·) smooth, we obtain ε ∈ W 2,∞(D). Eventually v ∈
W 3,∞(D) can be reconstructed from (2.5b) with the boundary conditions (2.8); here we used the
constraint

∫
D
π dx = 2v∞.

We discuss further qualitative properties of solution pairs (θ, π) that arise from the specific form of the
steady state equations (2.5)–(2.8). As our above result does not imply uniqueness of solutions, our
next results states that there are solutions with symmetry and, under a weak additional condition, these
solutions are also monotone on [0, H]. For the latter we use the technique of rearrangements, which
strongly relies on the fact that we have no explicit x-dependence in our material laws. For general
function f ∈ L1(D) we define its even decreasing and even increasing rearrangements fdr and fir
via

{x ∈ D; fdr(x) > r} = (−X(r), X(r)) where X(r) :=
1

2
L1
(
{x ∈ D; f(x) > r}

)
and fir(x) = fdr(H−|x|), see Figure 3.1.

The new condition (3.6) for the following result is satisfied in our adaptation (2.7) of the classical
Dieterich-Ruina friction law (2.1).

Proposition 3.2 (Symmetric and monotone pairs). Let the assumption (3.4) of Theorem 3.1 hold.
Then, for all v∞ there exists an even solution pair (θ, π), i.e. θ and π are even functions on D =
[−H,H]. If we additionally assume

µ(π, θ) = µ(π, 0) +B(θ) with B : R→ [0,∞) nondecreasing, (3.6)

then there exists an even, monotone pair (θ, π), i.e. it is an even pair such that additionally [0, H] 3
x 7→ θ(x) is nondecreasing and [0, H] 3 x 7→ π(x) is nonincreasing.

Proof. Throughout the proof we will restrict to the case v∞ > 0 leading to σ > 0 and π ≥ 0. The
case v∞ = 0 is trivial with (θ, π) ≡ (θ∞, 0), and v∞ < 0 follows similarly with σ < 0 and π ≤ 0.
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To obtain the evenness we simply restrict the existence theory developed in the proof of Theorem 3.1
to the closed subspaces of even functions. By the uniqueness of the minimizers of Aπ and Bθ it is
clear that SA and SB map even functions to even functions. Hence, Schauder’s fixed-point theorem
produces an even solution.

For showing the existence of monotone pairs we rely on classical results for rearrangements, see
e.g. [Kaw85], namely the Polya-Szegö inequality∫

D

(fdr)
2
x dx =

∫
D

(fir)
2
x dx ≤

∫
D

f 2
x dx (3.7)

and the Hardy-Littlewood inequality (cf. [HLP34, Ch. 10])∫
D

fdr gir dx =

∫
D

fir gdr dx ≤
∫
D

f g dx ≤
∫
D

fdr gdr dx =

∫
D

fir gir dx. (3.8)

While the upper estimate is classical and works for integration over D = BR(0) ⊂ Rd or D = Rd,
the lower estimate is special to D ⊂ R1, see [HLP34, Eqn. (10.2.1)].

To exploit the theory of rearrangements we define the closed convex sets

Θir :=
{
θ ∈ H1(D); θ(x) ∈ [0, θ∞], θ(±H) = θ∞, θ = θir

}
and

Πdr :=
{
π ∈ H1(D); π(x) ≥ 0, π(±H) = 0, π = πdr,

∫
D
π dx = 2v∞

}
and show below the mapping properties SA : Πdr → Θir and SB : Θir → Πdr. Thus, Schauder’s
fixed-point theorem can be restricted to SA ◦ SB : Θir → Θir resulting in a fixed point θ∗ ∈ Θir.
With π∗ = SB(θ∗), we obtain the desired even, monotone solution pair (θ∗, π∗), namely θ∗ = θ∗ir and
π∗ = πdr.

To establish SA : Πdr → Θir, we start with π ∈ Πdr and show Aπ(θdr) ≤ Aπ(θ) for all θ ∈
H1(D). As θ = SA(π) is the unique minimizer ofAπ(·), we obtain θ = θdr as desired.

To show Aπ(θdr) ≤ Aπ(θ), we exploit |π| = π = πdr and the rearrangements estimates (3.7) and
(3.8) to obtain ∫

D

θ2x dx
(3.7)
≥
∫
D

(
θir
)
2
x dx,

∫
D

ϕ0(θ) dx =

∫
D

ϕ0

(
θir
)

dx,∫
D

|π|ϕ1(θ) dx
(3.8)
≥
∫
D

πdr
(
ϕ1(θ)

)
dr

dx =

∫
D

|π|ϕ1

(
θdr
)

dx.

For the last identity we use
(
ϕ1(θ)

)
dr

= ϕ1(θdr) which holds because of ϕ′1 = f1(θ) ≥ 0. Summing
the three relations givesAπ(θdr) ≤ Aπ(θ).

Similarly, we derive SB : Θir → Πdr from Bθ(πdr) ≤ Bθ(π) if θ ∈ Θir. For this we use assumption
(3.6), which gives R(π, θ) = R(π, 0) +B(θ)|π|, and the three relations∫

D

π2
x dx

(3.7)
≥
∫
D

(
πdr
)
2
x dx,

∫
D

R(π, 0) dx =

∫
D

R(πdr, 0) dx,∫
D

|π|B(θ) dx
(3.8)
≥
∫
D

πdr
(
B(θ)

)
dr

dx =

∫
D

|π|B
(
θdr
)

dx,

where we used that B is nondecreasing.

This finishes the proof of existence of even, monotone pairs.
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Remark 3.3 (Aseismic-slip regime). Under very low shear velocities |v∞| � 1, real faults may go
into so-called aseismic slip (also called aseismic creep), where one observes pure sliding like pre-
dicted by our steady state solutions constructed above. However, for our simplified evolutionary model
introduced in Section 5 (cf. (5.1)) numerical simulations predict instability of the steady state and the
development of stick-slip oscillations, see Section 5.4. In the former case, stresses remain low and
never challenge the plastic yield stress µ(0, θ∞) at the core of the faults, a fact which is unfortunately
not covered by our model. One possible modification for modeling this effect would be to replace the
set-valued Sign(·) in (2.5c) by some monotone smooth approximation, e.g. π 7→ tanh(π/δ) with
0 < δ � 1.

3.2 Asymptotics of the plastic zone for η → 0 and κ→ 0

The gradient term in (2.5c) and in (2.10a) controls in a certain way the width of the cataclastic zone
where the slip is concentrated. There is an expectation that, when suppressing it by η → 0, the slip
zone will get narrower. It is however a rather contra-intuitive effect that the zone eventually does not
degenerate to a completely flat interface like it would be in so-called perfect plasticity where the plastic
strain rate π would be a measure on D. Here, in the limit, π only looses its W 2,∞-regularity as stated
in Theorem 3.1 for η > 0 but remains in L1(D).

The definition of weak solutions (3.1) remains in its variational form or in its strong form (3.2) just
putting η = 0. It should be emphasized that the boundary conditions π(±H) = 0 are now omitted.
It will turn out that in the limit η = 0 the plastic variable π becomes a pointwise function of θ and σ.
By the strict convexity of π 7→ R(π, θ) the set-valued mapping π 7→ ∂π(π, θ) = µ(π, θ)Sign(π)
is strictly monotone (cf. (3.4a)). Thus, π in µ(π, θ)Sign(π) ∈ σ can be uniquely determined as a
function of σ and θ. Specifically,

π =
[
µ(·, θ)Sign(·)

]−1
(σ) =: Π(σ, θ) , (3.9)

and the mapping Π : R2 → R is continuous.

In this section, let us denote the solution obtained as a Schauder fixed point in the proof of Theorem 3.1
by (εη, vη, πη, αη, θη, ση).

Proposition 3.4 (Convergence for η → 0). Let assumptions (3.4) hold together with

∃Φ : R→ [0,∞) continuous, superlinear ∀ (π, θ) : R(π, θ) ≥ Φ(π) and (3.10a)∣∣µ(π, θ)−µ(π, θ̃)
∣∣ ≤ o

(
|θ−θ̃|

)
with some o : R+ → R+ continuous, o(0) = 0 . (3.10b)

There is a subsequence such that, for some π ∈ L1(D), v ∈ W 1,1(D), α ∈ W 2,∞(D), ε ∈
W 1,∞(D), θ ∈ W 1,∞(D), and σ ∈ R, it holds

εη → ε weakly* in W 2,∞(D), (3.11a)

vη → v weakly in W 1,1(D), (3.11b)

πη → π weakly in L1(D), (3.11c)

αη → α weakly* in W 2,∞(D), (3.11d)

θη → θ strongly in H1(D), (3.11e)

ση → σ in R, and (3.11f)

π(x) = Π(σ, θ(x)) for a.a. x ∈ D. (3.11g)

Moreover, (ε, v, π, α, θ, σ) is a classical solution to (2.5)–(2.8) in the sense that (2.5a,b,d,e) and (3.2)
with η = 0 hold pointwise everywhere on D. More specifically, π ∈ C(D) and v ∈ C1(D).
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Proof. From the proof of Theorem 3.1, we can see that the a priori bounds for

(εη, vη, πη, αη, θη, ση) ∈ W 2,∞(D)×W 1,1(D)2×L1(D)×W 2,∞(D)×W 2,1(D)2×R
are independent of η > 0 and ‖πη‖H1(D) = O(1/

√
η). Moreover, from πη = SB(θη), we can easily

see that evenR(πη, θη) is bounded in L1(D). Using (3.10a) we can apply the criterion of de la Valleé
Poussin [dVP15] and obtain that {πη}η>0 is weakly compact in L1(D).

Then the limit passage in the weak solution to (2.5)–(2.8) for η → 0 is quite easy. The only nontrivial
point is the limit passage in the variational inequality (3.1). We first use η(πη)x = O(

√
η) in L2(D)

and obtain, for all π̃ ∈ H1(D), the relations∫
D

R(π̃, θ)− σ(π̃−π) dx = lim
η→0

∫
D

R(π̃, θη)− ση (π̃−πη) + η(πη)xπ̃x dx

≥ lim sup
η→0

∫
D

R(π̃, θη)− ση (π̃−πη) + η (πη)x(π̃−πη)x dx
(3.1)
≥ lim inf

η→0

∫
D

R(πη, θη) dx

≥ lim inf
η→0

∫
D

R(πη, θ) dx+ lim
η→0

∫
D

R(πη, θη)−R(πη, θ) dx ≥
∫
D

R(π, θ) dx + 0 . (3.12)

The liminf estimate follows because R(·, θ) is convex and continuous such that
∫
D
R(·, θ) dx is

weakly lower semicontinuous on L1(D). The penultimate integral in (3.12) converges to 0 because
θη → θ uniformly on D due to the compact embedding W 2,1(D) ⊂ C(D). Hence,

lim
η→0
|
∫
D

R(πη, θη)−R(πη, θ)| dx ≤ lim
η→0

∫
D

|πη|o(θη−θ) dx

≤ lim
η→0
‖πη‖L1(D)o(‖θη−θ‖L∞(D)) = 0

where the function o is from (3.10b).

The variational inequality (3.12) does not contain any x-derivatives any more and hence is equiva-
lent to the pointwise inequality R(π̃, θ(x)) − σ(π̃−π(x)) ≥ R(π(x), θ(x)) a.e. in D. But this is
equivalent to σ ∈ ∂πR(π̃(x), θ(x)) and hence (3.11g) holds.

Since the mapping Π : R2 → R from (3.9) is continuous and since θ ∈ H1(D) ⊂ C(D), we see
that x 7→ π(x) = Π(σ, θ(x)) is continuous as well, i.e. π ∈ C(D).

We are now ready to study the limit κ → 0 as well, which is really surprising because we are losing
all control over spatial derivatives and all the modeling length scales induced by η and κ tend to 0. In
such a situation the usual compactness arguments fail and fast spatial oscillations, i.e. microstructures,
may appear. Indeed we will see in Remark 3.6 that there are indeed many complicated solutions
without any length scale. However, it is surprising that it is possible to show that natural solutions exist,
namely even, monotone pairs (θ, π). The idea is to use for κ > 0 and η = 0 the even, monotone
pairs (θκ, πκ) obtained from Proposition 3.2 and the subsequent limit η → 0 in Proposition 3.4. The
monotonicity of the pairs (θκ, πκ) allows us to deduce pointwise convergence, which is good enough
to pass to the limit κ→ 0 even in nonlinear functions.

Under the additional assumptions (3.14), which are satisfied by our example treated in Section 5.1,
we then obtain the typical behavior. There is a critical value π∗ > 0 such that for small positive v∞
the cataclastic zone is (−h, h) with h = v∞/π∗, where (θ, π) assume constant values (θ∗, π∗)
independent of v∞, whereas for x with h < |x| < H we have (θ, π) = (θ∞, 0), see (3.15).

Proposition 3.5 (The limit κ → 0 for monotone pairs). Let the assumptions (3.4), (3.6), and (3.10)
hold and let us consider a family

(
(θκ, πκ)

)
κ>0

of even, monotone solutions to (2.5) with η = 0 and
v∞ > 0. Then:
(i) there exists a subsequence (not relabeled) and an even, monotone pair (θ0, π0) ∈ L∞(D) ×

L∞(D) such that for κ→ 0 we have the convergence
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(θκ(x), πκ(x)) → (θ0(x), π0(x)) for a.a. x ∈ D

and that (θ0, π0) solves the minimization problems

A0
π0(θ0) ≤ Aπ0(θ) :=

∫
D

|π0|ϕ0(θ)−ϕ0(θ) dx and B0
θ0(π

0) ≤ Bθ0(π) :=

∫
D

R(π, θ0) dx

(3.13)
for all (θ, π) ∈ L1(D)×L1(D) with

∫
D
π dx = 2v∞.

(ii) Moreover, if we define θ = Θf (π) to be the unique solution of f0(θ) = |π|f1(θ), set µ̃ :
[0,∞)→ (0,∞); π 7→ µ(π,Θf (π)), and assume that there exists π◦ > 0 such that

µ̃ is strictly decreasing on [0, π◦] and µ̃ is strictly increasing on [π◦,∞), (3.14)

then there exists a unique π∗ > π◦ such
∫ π∗
0
µ̃(π) dπ = π∗µ̃(π∗) and the above solutions

(θ0, π0) are uniquely given by

(θ0, π0)(x) =


(Θf (π∗), π∗) for |x| < v∞/π∗ ≤ H,

(θ∞, 0) for v∞/π∗ < |x| ≤ H,(
Θf (v∞/H), v∞/H

)
for v∞ ≥ π∗H.

(3.15)

In particular, in this case the whole family
(
(θκ, πκ)

)
κ>0

converges pointwise.

Proof. By Proposition 3.2 and Proposition 3.4 we know that for all κ > 0 even, monotone pairs
(θκ, πκ) exist and satisfy θκ ∈ W 1(D) and πκ ∈ C(D). Moreover, we have θκ(x) ∈ [0, θ∞] and
πκ(x) = Π(σκ, θκ(x)) for all x ∈ D.

Step 1. Superlinear a priori bound for πκ: We again use the uniform superlinearity of the dissipa-
tion potential R(·, θ) from (3.10a). As πκ is a minimizer of Bθκ(·) we obtain the uniform bound∫
D
Φ(πκ) dx ≤ C∗ < ∞. Thus, we have weak compactness (by de la Valleé Poussin [dVP15]) and

along a subsequence (not relabeled) we have πκ ⇀ π0 and conclude
∫
D
π0 dx = 2v∞. Moreover,

using πκ = πκdr this implies the a priori bound

0 ≤ πκ(x) ≤ R for |x| ≥ C∗
Φ(R)

. (3.16)

Step 2. Pointwise convergence: Exploiting the monotonicity and the a priori bounds θκ ∈ [0, θ∞]
and (3.16), we can apply the classical Helly’s selection principle to obtain pointwise convergence
(everywhere in D). Along a subsequence (not relabeled) we have

σκ → σ0, (θκ(x), πκ(x))→ (θ0(x), π0(x)) for all x ∈ D.

Here the monotonicities are kept, i.e. θ0 = θir and π0 = π0
dr, but the continuity of the limits might be

lost. Moreover, π0(0) =∞ might be possible.

Step 3. Limit passage in the equations: Since Π is continuous, the pointwise convergence yields the
limit relation

π0(x) = Π(σ0, θ0(x)) for all x ∈ D. (3.17)

For the equation determining θ we can use the a priori estimate κ‖θκ‖2L2 ≤ C∗ and pass to the limit
in the weak form of (κ θκx)x + f0(θ

κ) = πκf1(θ
κ), i.e. in the integral identity∫

D

κ θκx θ̃x − f0(θκ) θ̃ + πκf1(θ
κ) θ̃ dx = 0 for all µ̃ ∈ H1

0 (D).
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ππ◦ π∗
µ̃(π) ππ◦ π∗

R(π)

R∗∗(π)

Figure 3.2: The functions µ̃, R,
and R∗∗.

This provides the pointwise relation

f0(θ
0(x)) = π0(x) f1(θ

0(x)) for a.a. x ∈ D. (3.18)

From (3.17) and (3.18) we immediately see that (3.13) holds.

We next observe that θ = Θf (π) is well-defined by the implicit function theorem using (3.4c). Thus,
the solutions satisfy θ0(x) = Θf (π

0(x)) for a.a. x ∈ D. Henceforth, recalling µ̃(π) = µ(π,Θf (π)),
the minimization problem (3.13) is equivalent to σ ∈ µ̃(π)Sign(π) and

∫
D
π dx = 2v∞. Defining the

function R(π) =
∫ π
0
µ̃(s) ds, this is equivalent to the following problem:

minimize π 7→
∫
D

R(π(x)) dx subject to π ≥ 0 and

∫
D

π dx = 2v∞ > 0.

However, this minimization problem is well understood via the convex hull R∗∗, see [Bra02, Ch. 2]. By
our assumption (3.14) we know that R∗∗ has the form

R∗∗(π) =

{
R(π∗)π/π∗ for π ∈ [0, π∗],

R(π) for π ≥ π∗,
. (3.19)

and satisfies R∗∗(π) � R(π) for π ∈ (0, π∗) and R′′(π) > 0 for π ≥ π∗, see Figure 3.2.

As our R is superlinear, a minimizer always exists. Moreover, recalling that v∞/H > 0 is the average
value of π : D → R, the minimizer is unique if and only if the tangent at π = v∞/H is not in
the interior of an interval on which R∗∗ is affine. In the open interval (0, v∞/H) the minimizers π
attain only the values 0 and π∗ on sets with the corresponding measures to fit the average. However,
by constructing the even, nonincreasing rearrangement, we find a unique minimizer, where only the
value at the two jump points x = ±h = v∞/π are free.

From these uniqueness results we also obtain the convergence of the full family by the standard
contradiction via compactness. With this, Proposition 3.5 is established.

The new condition (3.14) can be checked numerically for our example specified in (5.4) giving π∗ ≈
1.4923 and π◦ = 0.6193. Indeed, to see the desired effect of a fixed π∗ leading to a cataclastic
zone of width 2h = 2v∞/π∗, our condition (3.14) is sufficient, but far from being necessary. What
we really need is that R∗∗ is affine in an interval [0, π∗], which automatically follows if R′′(0+) =
limpi↘0 R

′′(π) < 0. In fact, in general we can consider the case µ(π, θ) = µ0 + A(π) + B(θ) and
general f0 and f1. Using Θf (0) = θ∞ following from f0(θ∞) = 0, an explicit calculation gives

R′′(0+) = µ̃′(0+) = ∂πµ(0+, θ∞) + ∂θµ(0+, θ∞)
f1(θ∞)

f ′0(θ∞)
,

which may be negative because of f ′0(θ∞) < 0.
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Remark 3.6 (Nonuniqueness of solutions). We want to emphasize that the uniqueness result for κ =
η = 0 at the end of Proposition 3.5 concerns only even, monotone solutions. Because of κ = η = 0
there are indeed infinitely many solutions, as we can “rearrange” the function values of (θ, π) freely.
In the case v∞ < π∗H , we can choose any open set P ⊂ D with

∫
D

1P dx = 2v∞/π∗ and the
function (

θ(x), π(x)
)

=

{(
Θf (π∗), π∗

)
for x ∈ P,(

θ∞, 0
)

for x ∈ D \ P
is a solution of (3.13) as well.

4 Analysis of the evolutionary model

We now consider the evolutionary model (2.12). The energetics (2.14) behind this model can be re-
vealed by testing momentum balance (2.12a) by ṽ = v − w∞ with w∞(t, x) := v∞(t)x/H , the
plastic flow rule (2.12b) by

.
p, and the damage rule (2.12c) by

.
α. Using the Dirichlet boundary condi-

tion for the velocity at x = ±H , we have ṽ(±H) = 0, as needed. The first test gives, in particular,
the term ∫

D

C(α)ε
(
vx −

v∞
H

)
dx =

∫
D

C(α)ε(
.
ε+

.
p) dx− v∞

H

∫
D

C(α)ε dx

=
d

dt

∫
D

1

2
C(α)ε2 dx+

∫
D

C(α)ε
.
p− 1

2
C′(α)ε2

.
α dx− v∞

H

∫
D

C(α)ε dx , (4.1)

where also (2.12b) has been used. This test of the inertial form gives∫
D

%
.
v
(
v − v∞

x

H

)
dx =

d

dt

∫
D

%

2
v2 dx− v∞

∫
D

%
.
v
x

H
dx .

Combining it with the tests of (2.12b) by
.
p and of (2.12c) by

.
α which give∫

D

C(α)ε
.
p dx =

∫
D

µ(
.
p, θ)|.p|+ η

.
p2x dx and (4.2a)∫

D

−1

2
C′(α)ε2

.
α dx =

∫
D

.
α∂ζ(

.
α) +

(1

2
C′(α)ε2+Gc

α−1

`2

) .
α dx+

d

dt

∫
D

1

2
Gc`

2α2
x dx, (4.2b)

we altogether obtain the energy balance

d

dt

∫
D

%

2
v2 + ϕ(ε, α) +

1

2
Gc`

2α2
x︸ ︷︷ ︸

kinetic and stored
energies

dx

+

∫
D

µ(
.
p, θ)|.p|+ .

α∂ζ(
.
α) + η

.
p2x︸ ︷︷ ︸

dissipation rate

dx = 〈τ, (v∞ ,−v∞)〉︸ ︷︷ ︸
power of

external load

, (4.3)

where τ ∈ R2 is the traction on the boundary (i.e. here two forces at x = ±H) defined as a functional
〈τ, (z(H), z(−H))〉 =

∫
D
%
.
vz + C(α)εzx dx for any z ∈ H1(D), cf. e.g. [KrR19, Sect.6.2].

Further on, we will be interested in an initial-value problem. For this, we prescribe some initial condi-
tions, i.e.

v(·, 0) = v0 , ε(·, 0) = ε0 , α(·, 0) = α0 , and θ(·, 0) = θ0 . (4.4)
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A definition of the weak solutions of particular equations/inclusions in (2.12) can be cast by standard
way, using convexity of the involved functionals. Let us specify, rather for illustration, the weak formula-
tion for the inclusion (2.12c) exploiting that µ(

.
p, θ)Sign(

.
p), i.e. µ(π, θ)Sign(π) = ∂πR(

.
p, θ) where

R(π, θ) is convex in the variable π =
.
p. This leads to the variational inequality∫ T

0

∫
D

R(π̃, θ)− C(α)ε(π̃−.
p)− η.px(π̃−.

p)x dxdt ≥
∫ T

0

∫
D

R(
.
p, θ) dxdt (4.5)

to be valid for any π̃ ∈ L∞(I×Ω).

Beside the previous assumptions, we now also assume

v0 ∈ L2(D) , ε0 ∈ L2(D) , α0 ∈ H1(D) , θ0 ∈ H1(D) . (4.6)

The definition of weak solutions to (2.12) with (2.13) and (4.4) is standard and we will not write it
explicitly; the variational inequality (3.1) is to hold integrated over I . Furthermore, we also exploit the
superlinear growth of R(·, θ) from (3.10a), namely

µ(π, θ)|π| ≥ R(π, θ) ≥ Φ(π), (4.7)

which is a standard estimate for µ̃ ∈ ∂ψ(π), namely πµ̃ = ψ(π) + ψ∗(µ̃) ≥ ψ(π) as ψ∗ ≥ 0. Note
that the standard model (2.4) complies with assumption (3.10a).

Relying formally on the tests leading to (4.3), after integration in time on the interval [0, t] when using
also the by-part integration, we obtain∫

D

%

2
v2(t) + ϕ(ε(t), α(t)) +

1

2
Gc`

2α2
x(t) dx+

∫ t

0

∫
D

µ(
.
p, θ)|.p|+ .

α∂ζ(
.
α) + η

.
p2x dxdt

=

∫
D

%

2
v20 + ϕ(ε0, α0) +

1

2
Gc`

2[α0]
2
x dx+

∫ t

0

∫
D

%
.
vw∞ + C(α)εxw

∞
x dxdt

=

∫
D

%

2
v20 + ϕ(ε0, α0) +

1

2
Gc`

2[α0]
2
x + %v(t)

(
v∞(t)−v∞(0)

) x
H

dx

+

∫ t

0

∫
D

C(α)εx
v∞
H
− %v .v∞ x

H
dxdt. (4.8)

Moreover, the aging equation (2.12e) has to be tested separately by using the test function θ−θ∞,
which has zero traces for x = ±H . Integrating the result over [0, t] leads to∫

D

1

2
θ2(t) dx+

∫ t

0

∫
D

κθ2x dx dt =

∫
D

(θ(t)−θ0)θ∞ dx

+

∫ t

0

∫
D

|.p|f1(θ)(θ−θ∞)− f0(θ)(θ−θ∞) dx . (4.9)

When summing (4.8) and (4.9), we can use the Hölder and a (generalized) Young inequality to estimate
the resulting right-hand side. Actually, the only nontrivial term is | .p|f1(θ)(θ−θ∞) in (4.9) and it can
be estimated as∫

D

|.p|f1(θ)(θ−θ∞) dx ≤
∫
D

1

2
Φ
(
|.p|)+

1

2
Φ∗
(
2f1(θ)(θ−θ∞)

)
dx

(4.7)
≤
∫
D

1

2
µ(

.
p, θ)|.p|+ 1

2
Φ∗
(
2f1(θ)(θ−θ∞)

)
dx , (4.10)

where Φ∗ is the Fenchel-Legendre conjugate of Φ, i.e. Φ∗(s) = supπ∈R
(
πs− Φ(π)

)
.
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The term 1
2
µ(

.
p, θ)| .p| in (4.10) can then be absorbed in the left-hand side of (4.8), whereas the term

1
2
Φ∗(2f1(θ)(θ−θ∞)) is a priori bounded since 0 ≤ θ ≤ θ∞. Eventually, the last term in (4.8) can be

estimated as %(1+|v|2)| .v∞|.
Assuming v∞ ∈ W 1,1(I) and using Gronwall’s inequality, from the left-hand sides of (4.8) and (4.9)
we can read the a priori estimates

‖v‖L∞(I;L2(D)) ≤ C, (4.11a)

‖ε‖L∞(I;L2(D)) ≤ C, (4.11b)

‖p‖H1(I;H1(D)) ≤ C, (4.11c)

‖α‖L∞(I;H1(D))∩H1(I;L2(D)) ≤ C, (4.11d)

‖θ‖L∞(I;L2(D))∩L2(I;H1(D)) ≤ C. (4.11e)

By comparison, we will get also an information about
.
v = (C(α)ε)x/% ∈ L∞(I;H1(D)∗), about

.
ε = vx −

.
p ∈ L2(I;H1(D)∗), and also about

.
θ = f0(θ)− |

.
p|f1(θ) + κθxx ∈ L2(I;H1(D)∗).

The rigorous existence proof of weak solutions is however very nontrivial and seems even impossible
for the full dynamical model (2.12) with damage. Some modifications by involving some additional
dissipative terms or some higher-order conservative terms seem necessary, cf. [KrR19, Sect.7.5] or
also [RSV13] for the model without aging. Consistently also with the computational experiments in
Section 5 below, we thus present the rigorous proof only for a model without damage, i.e. for C > 0
constant.

Theorem 4.1 (Damage-free case – existence and regularity of solutions). Let (3.4a,c,d) with µ smooth,
(4.6), and (4.7) hold, and % > 0 be a constant and v∞ ∈ W 1,1(I). Then:
(i) There is a weak solution (v, ε, p, θ) ∈ L∞(I;L2(D))2 ×H1(I;H1(D))× (L∞(I;L2(D))∩

L2(I;H1(D))) to the initial-boundary-value problem for the system (2.12a-c,e) with the bound-
ary conditions (2.13) and the initial conditions (4.4).

(ii) If sup0≤θ≤θ∞ µ(·, θ) does not have a growth more than O(|π|s), then these solutions are, in
fact, regular in the sense that p ∈ W 1,s(I;H2(D)) and, if s ≥ 2, also θ ∈ H1(I;L2(D)) ∩
L∞(I;H1(D))∩L2(I;H2(D)) and also each such weak solution satisfies the energy balance
(4.3) without α-terms integrated over a time interval [0, t] with any t ∈ I .

Let us note that the O(|π|s)-growth condition in the point (ii) surely covers the model (2.7) for any
1 ≤ s <∞.

Sketch of the proof. Actually, the above formal procedure is to be made first for a suitable approx-
imation whose solutions exist by some specific arguments, and then to pass to the limit. Imitating
the split for the static problem used in the proof of Theorem 3.1, we choose a staggered time dis-
cretization. We take an equidistant partition of the time interval I by using the time step τ > 0,
assuming T/τ integer and considering a sequence of such τ ’s converging to 0. Then, recalling
∂πR(π, θ) = µ(π, θ)Sign(π), we consider a recursive boundary-value problem for the system

%
vkτ − vk−1τ

τ
− (Cεkτ )x = 0 , (4.12a)

εkτ − εk−1τ

τ
= (vkτ )x − πkτ , (4.12b)

µ(πkτ , θ
k−1
τ )ξkτ = Cεkτ + η(πkτ )xx with ξkτ ∈ Sign(πkτ ) , (4.12c)

θkτ − θk−1τ

τ
= f0(θ

k
τ )− |πkτ |f1(θkτ ) + κ(θkτ )xx (4.12d)
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to be solved for k = 1, 2, ..., T/τ starting for k = 1 from the initial conditions v0τ = v0, ε0τ = ε0, and
θ0τ = θ0. The boundary conditions for (4.12) are like in (2.8) but now with time-varying velocity v∞, i.e.

vkτ (±H) = ±vk∞ =:

∫ kτ

(k−1)τ

v∞(t)

τ
dt, πkτ (±H) = 0, θkτ (±H) = θ∞ . (4.13)

The system (4.12a-c) has a variational structure with a convex coercive potential

(v, ε, π) 7→
∫
D

%
(v−vk−1τ )2

2τ
+ Cε(vx−π) + C

(ε−εk−1τ )2

2τ
+R(π, θk−1τ ) +

η

2
π2
x dx . (4.14)

For a sufficiently small τ > 0, this potential is convex and coercive on L2(D)2 × H1(D). Mini-
mization of this functional on an affine manifold respecting the boundary conditions v(±H) = ±vk∞,
π(±H) = 0, and θ(±H) = θ∞ gives by the standard direct-method argument existence of an
(even unique) minimizer, let us denote it by (vkτ , ε

k
τ , π

k
τ ) ∈ L2(D)2×H1(D). This minimizer satisfies

(4.12a,b) in the weak sense and also the inclusion ∂πR(πkτ , θ
k−1
τ ) 3 Cεkτ +η(πkτ )xx. Therefore, there

exists ξkτ ∈ Sign(πkτ ) ⊂ H1(D)∗ such that µ(πkτ , θ
k−1
τ )ξkτ = Cεkτ + η(πkτ )xx in the weak sense.

Then we can solve (4.12d) by minimization of the convex functional

θ 7→
∫
D

(θ − θk−1τ )

2τ
+ |πkτ |ϕ1(θ)− ϕ0(θ) +

κ

2
θ2x dx , (4.15)

where ϕi are the primitive functions to fi, i = 0, 1. This functional is coercive on a linear manifold of
the space H1(D) respecting the boundary condition (2.8). Let us denote its unique minimizer by θkτ .

We introduce the piecewise affine continuous and the piecewise constant interpolants. Having {vkτ}
T/τ
k=0,

we define

vτ (t) := vkτ , vτ (t) := vk−1τ , and vτ (t) :=
( t
τ
−k+1

)
vkτ +

(
k− t

τ

)
vk−1τ (4.16)

for (k−1)τ < t ≤ kτ with k = 0, 1, ..., T/τ . Analogously, we define also ετ , or θτ , etc. This allows
us to write the system (4.12) in a “compact” form:

%
.
vτ − (Cετ )x = 0 , (4.17a)

.
ετ = (vτ )x − πτ , (4.17b)

µ(πτ , θτ )ξτ = Cετ + η(πτ )xx with ξτ ∈ Sign(πτ ) , (4.17c)
.
θτ = f0(θτ )− |πτ |f1(θτ ) + κ(θτ )xx . (4.17d)

By modifying appropriately the procedure which led to the a priori estimates (4.11a-c,e), we obtain
here

‖vτ‖L∞(I;L2(D)) ≤ C , (4.18a)

‖ετ‖L∞(I;L2(D)) ≤ C , (4.18b)

‖πτ‖L2(I;H1(D)) ≤ C , (4.18c)

‖θτ‖L∞(I×D)∩L2(I;H1(D)) ≤ C , and here also (4.18d)

‖ξτ‖L∞(I×D)∩L2(I;H1(D)∗) ≤ C . (4.18e)

All these estimates hold also for the piecewise affine interpolants, and (4.18d) holds also for θτ . The
last estimate is obtained by comparison from ξτ = (Cετ+η(πτ )xx)/µ(πτ , θτ ) when testing it by
functions bounded in L2(I;H1(D)) and using the smoothness of 1/µ(πτ , θτ ).
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Then, by the Banach selection principle, we obtain subsequences indexed, for simplicity, again by τ )
weakly* converging in the topologies indicated in (4.18), and we pass to a limit for τ → 0 and are to
show that such limit (let us denote it by (v, ε, π, θ, ξ)) solve the continuous problem with π =

.
p. For

this, one uses the Aubin-Lions compactness theorem adapted for the time-discretization method as
in [Rou13, Sect. 8.2]. Thus we can rely on that

θτ → θ strongly in Lc(I×D) for any 1 ≤ c <∞. (4.19)

The limit passage in the linear hyperbolic equation (2.12a) is due to a weak convergence of both v and
ε and also the limit passage in the linear equation (2.12b) is easy via weak convergence. Yet, there is
one peculiarity in the limit passage in the nonlinearity in (2.12c) for which a strong convergence of ε is
needed, but we do not have any information about space gradient of ε. The other peculiarity is a need
of the strong convergence of

.
p which is needed for (2.12e), but we do not have any information about.

π, so that mere compactness arguments cannot be used. This can be obtained from the momentum
equation (2.12a) and from (2.12c) when using the strong monotonicity of the operators in (2.12a)
and (2.12c) simultaneously. As for (2.12c), note that µ(π, θ)Sign(π) = ∂πR(π, θ) and that R(·, θ)
is convex, to that ∂πR(·, θ) is monotone. In particular, for any ξτ ∈ Sign(πτ ) and ξ ∈ Sign(π),
we have

∫ t
0
〈ξτ−ξ, πτ−π〉 dt ≥ 0, where 〈·, ·〉 denotes the duality pairing between H1(D)∗ and

H1(D).

The usage of this monotonicity of the set-valued mapping ∂πR(·, θ) should be done carefully. The
time-discrete approximation of (4.5) gives some πτ ∈ L2(I;H1(D)) and ξτ ∈ L2(I;H1(D)∗)
satisfying (4.17c) together with the boundary conditions p(±H) = 0 in the weak form. From the
mentioned monotonicity and by using (4.17a) and (4.17c) tested by vτ−v and πτ−π and integrated
over a time interval [0, t] and the domain D, we obtain∫

D

%

2
(vτ (t)−v(t))2 +

1

2
C(ετ (t)−ε(t))2 dx+

∫ t

0

∫
D

η(πτ−π)2x dxdt

≤
∫ t

0

(〈
%
.
vτ−%

.
v, vτ−v

〉
+
〈.
ετ−

.
ε,Cετ−Cε

〉
+
〈
µ(πτ , θτ )ξτ − µ(π, θτ )ξ, πτ−π

〉
+
〈
%
.
v, vτ−vτ

〉
+
〈.
ε,Cετ−Cετ

〉
+

∫
D

η(πτ−π)2x dx

)
dt

= −
∫ t

0

(〈
%
.
v, vτ−v

〉
+
〈.
ετ−

.
ε,Cε

〉
+
〈
µ(π, θτ )ξ, πτ−π

〉
−
〈
%
.
v, vτ−vτ

〉
−
〈.
ε,Cετ−Cετ

〉
+

∫
D

ηπx(πτ−π)x dx

)
dt→ 0 , (4.20)

where 〈·, ·〉 again denotes the duality pairing betweenH1(D)∗ andH1(D). The meaning of 〈µ(πτ , θτ )ξτ , πτ−π〉
for ξτ valued in H1(D)∗ is rather 〈ξτ , µ(πτ , θτ )(πτ−π)〉, relying that µ(πτ , θτ )(πτ−π) is val-
ued in H1(D); here we need µ smooth so that (µ(πτ , θτ )(πτ−π))x = µ(πτ , θτ )(πτ−π)x +
(µ′π(πτ , θτ )(πτ )x+µ

′
θ(πτ , θτ )(θτ )x)(πτ−π) is valued inL2(D). Similarly, it applies also for 〈µ(π, θτ )ξ, πτ−π〉.

For the inequality in (4.20) see [Rou13, Remark 8.11]. For the equality in (4.20), we used (4.17b) to-
gether with its limit obtained by the weak convergence, i.e.

.
ε = vx − π, and also (4.17a,c) for the

identity〈.
ετ−

.
ε,Cετ−Cε

〉
=
〈
(vτ−v)x,Cετ

〉
−
〈
πτ−π,Cετ

〉
−
〈.
ετ−

.
ε,Cε

〉
= −

〈
%
.
vτ , vτ−v

〉
−
〈
µ(πτ , θτ )ξτ , πτ−π

〉
−
∫
D

η(πτ )x(πτ−π)xdx−
〈.
ετ−

.
ε,Cε

〉
.

It is important, that (4.20) holds for any ξ ∈ Sign(π) and, at this moment, we do not assume that ξ
comes as a limit from the (sub)sequence {ξτ}τ>0.
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For obtaining the convergence in (4.20), we used that
.
v ∈ L2(I;H1(D)∗) while vτ−v → 0 weakly

L2(I;H1(D)), and that
.
ετ−

.
ε → 0 weakly in L2(I;H1(D)∗), and eventually that µ(π, θτ ) con-

verges (to a limit which is not important here) strongly in Lc(I×D) due to (4.19) while πτ−π → 0
weakly in L2(I;H1(D)) so that also µ(π, θτ )(πτ−π) → 0 weakly in L2(I;H1(D)). Therefore,
considering (4.20) integrated over I , we obtain

vτ → v strongly in L2(I×D) , (4.21a)

ετ → ε strongly in L2(I×D) , (4.21b)

πτ → π strongly in L2(I;H1(D)) . (4.21c)

In fact, by interpolation, (4.21a,b) holds even in Lc(I;L2(D)) for any 1 ≤ c < ∞. For (4.21c), we
used the strong convergence of gradients of

.
pk and the fixed boundary conditions, so that we do not

need to rely on the monotonicity of ∂πR(·, θ) which may not be strong.

Having the strong convergence (4.21) at disposal, the limit passage is then easy, showing that the
previously obtained weak limit (v, ε, π, θ) is a weak solution to the system (2.12). In particular, from
the inclusion in (4.17c) one obtains ξ ∈ Sign(π) by using maximal monotonicity of the graph of the
set-valued mapping Sign : L2(I;H1(D)) ⇒ L2(I;H1(D)∗) and the strong convergence (4.21c).
Thus (i) is proved.

As to (ii), if µ(π, θ) ≤ O(|π|s), then ηπxx ∈ Cε − µ(π, θ)Sign(π) is bounded in Ls(I;L2(D) so
that π ∈ Ls(I;H2(D)).

If s ≥ 2, the procedure which led to the energy balance (4.3) considered here without α-terms but
integrated over a time interval [0, t] was indeed rigorous. This is because v ∈ L2(I;H1(D)), as
can be seen by comparison from (2.12b), is in duality with %

.
v ∈ L2(I;H1(D)∗) and with (Cε)x ∈

L2(I;H1(D)∗), so that testing the momentum equation (2.12a) and the related by-part integration is
legitimate. Similar arguments concern also the aging rule (2.12e). Since ηπxx ∈ L2(I×D) if s ≥ 2,
also the test of the plastic rate equation (2.12c) by π ∈ Ls(I×D) is legitimate together with the
related by-part integrations.

In this case, when s ≥ 2, also (4.17d) can be tested by
.
θτ , which gives the additional regularity

θ ∈ H1(I;L2(D)) ∩ L∞(I;H1(D)). By comparison κθxx =
.
θ + |π|f1(θ)− f0(θ) ∈ L2(I×D),

we obtain also θ ∈ L2(I;H2(D)).

Remark 4.2 (Stability and time-periodic solutions). In geodynamics the phenomenon called episodic
tremor and slip describes time-periodic motions in subduction zones where shorter periods of plastic
slips alternate with longer periods with slow slip events. Hence, it would be interesting to complement
our existence result for “transient events” governed by the above initial-value problem by a theory for
time-periodic solutions. The aim would be show that there is a period t∗ > 0 and a solution of the

system (2.12) with the boundary conditions (2.8) satisfying (
.
v,

.
ε,

.
α,

.
θ) 6≡ 0 and

v(·, t∗) = v(·, 0) , ε(·, t∗) = ε(·, 0) , α(·, t∗) = α(·, 0) , and θ(·, t∗) = θ(·, 0) (4.22)

instead of (4.4). Of course, a general question is that of stability of the steady state solutions (π, θ)
obtained in Section 3 or potentially of such time-periodic solutions as described here. As we will see
in the following section, one indication of the existence of time-periodic solutions is the loss of stability
of the steady state solution. But because of the complexity of the model, these questions are beyond
the scope of this paper.

Remark 4.3 (Asymptotics for η → 0 and κ → 0). Unlike to the case for steady solutions for (2.5)
as in Section 3.2, it is not possible in the evolutionary model (2.12) to pass to the limit for η → 0. In
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particular, a limit passage in the term Cεη(π̃η− .
pη) occurring in (4.5) seems to be out of reach. The

substitution (4.2a) by a convex term in
.
p could not help, being not weakly upper-semicontinuous. If

also (3.10a) holds, then like in Propositions 3.4 and 3.5, we can at least obtain some uniform bounds,
in particular for the plastic strain rate π =

.
p in the Orlicz space LΦ(I×D) with Φ from (3.10a), i.e.∫

I

∫
D
Φ(π(t, x)) dx dt < ∞. Yet, the limit passage for η → 0, even while keeping κ > 0 fixed,

remains intractable.

5 Illustrative numerical simulations

We illustrate the response of the evolutionary model in Section 4 by a simplified model derived in
Section 5.1. This model still has exactly the same steady states as the full model, such that all the
theory of Section 3 applies to it, when ignoring statements about the damage variable α. We expect
that the simplified model is still relevant as far as usually observed dynamical features concern. More-
over, it also displays the effect of the free boundary occurring between the elastic zone and the plastic
zone. In Section 5.2 we show by numerical simulations that the steady states localize for v∞ → 0 in
such a way that πstst has support (i.e. the so-called cataclastic zone) in [−h∗(v∞, κ), h∗(v∞, κ)] with
h∗(v∞, κ) ∼

√
κ for κ → 0+. Moreover, we show that, when keeping v∞ 6= 0 fixed but sufficiently

small, we obtain a support with h∗(v∞, κ)→ v∞/π∗ for κ→ 0+.

In Section 5.3 we study an ODE model for scalars θ(t) and σ(t) which displays the effect of oscillatory
behavior for |v∞| < vcrit while solutions converge to the unique steady state for |v∞| > vcrit. Finally
Section 5.4 presents simulations for the simplified evolutionary model. In particular, we observe again
that for small nontrivial values of |v∞| we have oscillatory behavior, where the plastic zone is spatially
and temporarily localized in the sense that the support of π(t, ·) is compactly contained in D =
[−H,H] for all t ∈ [0, Tper] and that π(t, x) = 0 for all x ∈ D and all t ∈ [t1, t2] for a nontrivial
interval [t1, t2] ⊂ [0, Tper]. For |v∞| large, we find convergence into a steady state with a nontrivial
plastic (cataclastic) zone. All the following results are derived from numerical experiments only.

5.1 The simplified model without damage

To display the main features of our rate-and-state friction model we reduce the full evolutionary model
(2.12) by making the following simplifications:
• we neglect inertial effects (i.e. we set % = 0 in (2.12a)), thus

making the system quasistatic but still keeping a rate-and-state dependent plasticity;
• we choose η = 0 for the length-scale parameter in (2.12c)

as analyzed in Section 3.2 for the steady-state solutions;
• we neglect all damage effects through α and omit (2.12d) as we did in Theorem 4.1.

Because of % = 0, the momentum balance leads to a spatially constant stress σ(t) = Cε. As now C
is constant, also ε(t) is spatially constant. Integrating (2.12b) over x ∈ D = [−H,H] and using the
boundary condition for v from (2.13) gives the following coupled system for σ, π =

.
p, and θ:

2H

C
.
σ +

∫
D

π dx = 2v∞(t), (5.1a)

µ(π, θ)Sign(π) 3 σ, (5.1b)
.
θ = f0(θ)− |π|f1(θ) + κθxx, θ(t,±H) = θ∞. (5.1c)
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Throughout this section we assume that µ has the form

µ(π, θ) = µ0 + A(π) +B(θ) with A(π), B(θ) ≥ 0 and A(−π) = A(π) ;

cf. also (2.7). Assuming further A′(π) > 0 for π > 0 we can solve (5.1b) in the form

π = Π(σ, θ) with Π(σ, θ) =


0 for |σ| ≤ µ0+B(θ),

A−1
(
σ−µ0−B(θ)

)
for σ > µ0+B(θ),

−A−1
(
|σ−µ0−B(θ)|

)
for σ < −µ0−B(θ).

(5.2)

Thus, we obtain our final coupled system of a scalar ODE for σ with a non-locally coupled scalar
parabolic PDE for θ, namely

.
σ =

C
H
v∞(t)− C

2H

∫
D

Π(σ, θ) dx, (5.3a)

.
θ = f0(θ)− |Π(σ, θ)|f1(θ) + κθxx, θ(t,±H) = θ∞. (5.3b)

Here the nonsmoothness due to the plastic behavior is realized by the nonsmooth function π =
Π(σ, θ) defined in (5.2).

For all the following simulation we choose the following parameters and functions:

H = 1, C = 1, θ∞ = 10, µ0 = 1, f0(θ) = 1− θ/θ∞,
f1(θ) = 10 θ, A(π) = ln(|π|+1), B(θ) = ln(4θ+1).

(5.4)

Subsequently, we will only vary the coefficient κ > 0 and the shear velocity v∞.

5.2 Steady states

We first discuss the steady states for (5.3), which are indeed a special case of the steady states
obtained in Proposition 3.4. Numerically, we always found exactly one steady state θstst = Θ(v∞, κ),
but were unable to prove its uniqueness rigorously. When varying the parameters v∞ and κ we can
easily observe clear trends for (θstst, πstst), where the associated plastic flow rate is given by πstst =
P (σstst, θstst), see Figure 5.1. We first observe that for fixed κ the functions θstst and πstst depend
monotonically on v∞ in the expected way, namely θstst decreases with the shear velocity v∞, while
πstst increases, which fits to the relation 2v∞ =

∫
D
πstst(v∞, κ;x) dx.

Moreover, for v∞ → 0+ the scaled plastic rate πstst/v∞ converges to a nontrivial limit with localized
support, while θstst converges uniformly to θ∞. For larger and larger v∞ the plastic zone occupies
more and more of the domain D = [−1, 1] and θstst is very small in most of the plastic zone, namely
θ ≈ Θf (π) = θ∞/(1+10πθ∞) ≈ 1/(10π).

When reducing the size of κ we also see that the size of the plastic zone shrinks. For small v∞ it can
be seen that the support of πstst is [−h∗(v∞, κ), h∗(v∞, κ)] with h∗(v∞, κ) ∼

√
κ, see Figure 5.2.

Finally, we want to study the case corresponding to Proposition 3.5, where v∞ is kept fixed and the
limit κ → 0 is performed. In Figure 5.3 we show plots of the steady states (θκstst, π

κ
stst) for three

different values of v∞ for a sequence of decreasing κ. We clearly see the predicted development of
convergence against towards the limit (θ0stst, π

0
stst) taking only two different values. Moreover, the

values are roughly independent of v∞, where the active plastic zone (−h, h) behaves like h =
v∞/π∗, as proved in Proposition 3.5.
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Stationary profiles θstst of the aging variable
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Stationary profiles πstst of the plastic strain rate
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Figure 5.1: Each picture shows ten curves that correspond to the shear velocities v∞ ∈
{0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}, respectively. The rows shows θstst (decreasing with
v∞) and the lower rows shows πstst (growing v∞).

Rescaled stationary profiles πstst/v∞ of the plastic strain rate
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Figure 5.2: The figures display the rescaled plastic strain rates πstst/v∞ for shear velocities v∞ ∈
{0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}, respectively. For v∞ → 0 one sees convergence
to a limit shape with minimal support [−h∗(κ), h∗(κ)] where κ(0.01) ≈ 0.055, κ(0.04) ≈ 0.11, κ(0.16) ≈
0.21, and κ(0.64) ≈ 0.41. Effectively, we can see a free boundary between active cataclastic core zone and
the rest of the fault.

5.3 An ODE model showing oscillations in time

Oscillatory behavior is most easily seen in a simple finite dimensional model, consisting only of σ(t)
and θ(t), where we may consider θ(t) as the average of θ(t, x) over the critical plasticity region where
π(t) = P (σ(t), θ(t)) is positive. We also refer to the analysis of a spring-slider model in [Mie18] as
well as the geophysical paper [AbK12].

Thus, our simplified model (5.3) is even more simplified to the ODE system

2H

C
.
σ = 2v∞ − 2hΠ(σ, θ) and

.
θ = 1− θ

θ∞
− 10Π(σ, θ) θ. (5.5)

Here h ∈ ]0, H[ represents the width of the plastic zone, which has to be adapted accordingly.
We may consider (5.5) as an evolutionary lumped-parameter system, which in geophysical literature
is often referred to as a 1-degree-of-freedom slider and is considered as a basic test of every new
friction model.

The nice feature of this ODE model is that the steady states can be calculated explicitly, and even a
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Figure 5.3: A study for the limit κ→ 0+ of the steady state solutions (θstst, πstst). For v∞ ∈ {0.4, 0.8, 1.2}
the profiles are plotted for κ ∈ {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. Convergence to rectangular pro-
files is observed.

stability analysis can be performed. Indeed there is exactly one steady state, namely

θstst =
θ∞

1+10(v∞/h)θ∞
and σstst = µ0 + A

(v∞
h

)
+B(θstst).

Instead of performing a rigorous analysis, we simply display the solution behavior of this ODE by a few
numerical results. We find that for small positive v∞ we obtain oscillatory behavior, while for larger v∞
the solutions converge to the steady state, see Figure 5.4. Indeed, the oscillations can be interpreted
physically in terms of geophysical processes as seismic cycles.

During the oscillatory behavior there is a large part of the interval where there is no plastic slip (i.e.
π(t) = 0). In these intervals the stress is growing linearly with a slope that is proportional to v∞, and
the aging variable θ is relaxing exponentially back to its equilibrium value θ∞. However, if the stress
reaches a critical value, then the plastic strain rate is triggered, which leads to reduction of the aging
variable. This leads to a simultaneous weakening of the plastic yields stress µ(π, θ) such that π can
grow even more. As a result the stress is drastically reduced in a rather short time interval, and θ is
reduced almost down to 0 (refreshing). If the inertial term would be included, then this fast rupture-like
processes could emit elastic waves, i.e. earthquakes. Because of the stress release the plastic strain
rate reduces to 0, and the process starts again by a slow aging and building up the stress.
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Figure 5.4: Solutions (θ(t), σ(t)) together with π(t) = P (σ(t), θ(t)) for h = 0.3 and three different values
of v∞. In the first two cases the solutions start very close to the unstable steady state. In the third case the
solution starts far away but soon returns to the stable fixed point.

In fact, choosing h = 0.3 a closer analysis of the system shows that the steady states are stable if and
only if v > v

(1)
∞ ≈ 0.17462. However, stable oscillations are already seen for v < v

(2)
∞ ≈ 0.175452.
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A careful analysis of the trajectories in the phase plane for (θ, σ) reveals that for v∞ ∈ (v
(1)
∞ , v

(2)
∞ )

there are two periodic solutions, as smaller unstable one that encircles the stable fixed point and a
larger stable one that encircles the unstable one, see Figure 5.5. Thus, in the small parameter interval
(v

(1)
∞ , v

(2)
∞ ) we have coexistence of a stable fixed point and a stable periodic orbit.
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Figure 5.5: The (σ, θ) phase plane for h = 0.3 and v∞ = 0.175, where all trajectories rotate clockwise
around the fixed point (σstst, θstst) ≈ (1.973, 0.168). There are two periodic solutions. The outer one is stable
and is approached by the blue trajectories from inside and outside. The unstable periodic orbit lies between the
orange and the brown trajectory.

5.4 Convergence to steady states versus oscillations for (5.3)

The behavior of the evolutionary coupled system (5.3) coupling the parabolic PDE for the aging vari-
able θ(t, x) to the ODE for the stress σ(t) displays roughly a similar behavior as the lumped ODE sys-
tem (5.5). For large |v∞| one observes convergence into the steady states analyzed in Section 3 and
displayed numerically in Section 5.2. For small nontrivial values of v∞ one observes oscillatory behav-
ior. Of course, the new feature is the spatial distribution of the plastic rate π(t, x) = Π(σ(t), θ(t, x))
and the aging variable θ(t, x). In most cases one observes that π(t, x) has a nontrivial support in the
sense that the support of π(t, ·) is compactly contained in (−H,H). Moreover, in the oscillatory case,
we also observe that there are large parts of the periodicity interval, in which there is no plastic flow at
all (i.e. π =

.
p = 0), but there is aging and slow building up of stress. Then, in sudden plastic bursts

there is a strong plastic flow that leads to stress release and refreshing, i.e. reduction of θ almost down
to 0 inside the cataclastic zone.

Figure 5.6 displays two simulation results featuring convergence into steady state.

In the case κ = 0.04 and the smaller shear rate v∞ = 0.15 one observes oscillatory behavior. In
fact, we start the solution very close to the steady state and the solution needs some time to develop
the instability but then it switches quickly into a periodically looking regime, see Figure 5.7.
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