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Multi-agent simulations for virus propagation in D2D 5G+
networks

Ziyad Benomar, Chaima Ghribi, Elie Cali, Alexander Hinsen,
Benedikt Jahnel, Jean-Philippe Wary

Abstract

In this paper we present results for an extended class of multi-agent simulation models for
malware propagation in device-to-device 5G networks, first exhibited in [1]. The models allow to
understand and analyze mobile malware spreading dynamics in highly dynamical networks and
also to assess the effectiveness of a proposed counter measure policy for reversing attacks and
securing the system. Our main simulation studies identify critical thresholds for maximal malware
propagation and isolate two distinguished regimes for malware survival and extermination de-
pending on a variety of parameters. We further predict via simulations the malware spreading
velocities, depending on device density and speed, as well as the percentage of counter agents
that have to be introduced into the network for malware elimination. We complement these find-
ings and state also an associated theoretical study that highlights the key parameters of our
agent-based model and exhibit certain linear relationships between them.1

1 Introduction

Device-to-device (D2D) communications is one of the key emerging technologies for 5G networks
and beyond. It enables a direct exchange of data between mobile devices which extends coverage
for devices lacking direct access to the cellular infrastructure and therefore enhances the network
performance. However, security issues are very challenging for D2D systems as malware can easily
compromise mobile devices and propagate across the decentralized network. Compromised devices
represent infection threats for all of their connected neighbors as they can, in their turn, propagate
malware through susceptible devices and form an epidemic outbreak. This enables attackers to infect
a larger population of devices and to launch cyber- and physical malicious attacks. Therefore, it is of
great importance to have a good understanding of vulnerability and security issues, particularly the
malware propagation processes, in such networks and to be able to design optimal defence strategies
against attacks.

Modeling malware propagation in D2D is challenging due to the complexity of such networks induced
for example by topology for device mobility. In order to cope with this, D2D can be investigated and
analyzed using analytical models (e.g., stochastic geometry, point processes, etc.). Some of these
approaches have been proposed to model malware spreading in D2D networks [11,22,23]. Neverthe-
less, classical simulation and analytical tools are often not suitable for capturing the global dynamics
of complex systems.

In this paper we propose to tackle the problem from the perspective of complex-systems science and
present a new agent-based model (ABM) in order to analyze and understand malware propagation

1This is an extended version of the conference contribution [1] with additional material on counter measures. Other
parts are reported unchanged.
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in D2D networks. For this, the agent-based simulation approach provides the possibility to simulate
complex-systems dynamics and to test theories about local behaviors and their emergence. Unlike tra-
ditional techniques of simulation, based on mathematical or stochastic models, multi-agent simulation
is more suitable for complex problem modeling and simulation. In fact, applying classical simulation
and analytical tools, such as differential equations, to complex systems often produces undesired com-
plications. Indeed, many challenges that arise in the traditional numerical modeling come from the fact
that individual actions (activities that result in a modification of the system) and their impact on the dy-
namics of the system are often underrepresented. Usually, individual behaviors, i.e., decisions made
at the individual or group level, cannot be incorporated into these simulations. On the other hand, in
a multi-agent simulation, the model is not a set of equations as in mathematical models, but a set of
entities. Here agents represent the set of all the simulated individuals, objects encode the set of all
represented passive entities, and the environment is the topological space where agents and objects
are located and which they can move in and act upon.

Although agent-based simulations have been successfully used to model complex systems in different
areas like biology, sociology, political science and economics, it is still insufficiently explored in the
field of telecommunication networks, specifically for malware spreading in D2D. In this work, we aim
to shed more light on whether such highly dynamical D2D networks can be treated as a complex sys-
tem and whether complex-systems science can give insights on the emergent properties of malware
propagation. The main contributions of this paper are as follows:

� We propose a new ABM for studying malware propagation in D2D 5G+ networks and we for-
mally prove its correctness for predicting different properties of agents over the time horizon.

� We present a theoretical study to estimate the critical values of the model’s parameters and to
identify the most important ones to consider for simulations.

� We exhibit a variety of simulations that analyze malware spreading dynamics. In particular, we
report on results about critical thresholds for maximal malware infection and for the separation
of survival and extermination regimes. Further we examine important characteristics such as
the malware infection rate and velocity under a change of parameters.

� Additionally, we exhibit simulation results on counter measure efficiency for the control of mal-
ware propagation. In particular, we estimate the percentage of anti-malware devices needed in
the network in order to eliminate the virus.

The rest of the manuscript is organized as follows. Section 2 reviews related work. Section 3 describes
the ABM for malware propagation in D2D networks. Section 4 shows details of our multi-agent simula-
tion implementation. Section 5 presents a theoretical study for the problem in some specific scenarios.
Section 6 shows simulation results followed by conclusions in Section 7.

2 Related work

ABMs are effective and robust tools in simulating complex and dynamic phenomena like epidemic
spreading. These models have been used primarily in epidemiological studies of infectious diseases
and have recently gained a great importance also in the epidemiological modeling as can be seen
from the vast literature in the context of the COVID-19 pandemic, see for example [2,7,17,18].

However, ABMs are still in their infancy with regard to telecommunication networks. Let us mention
that some ABMs have been proposed in the literature for IoT networks [4, 13, 21]. Other applications
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of ABMs to telecommunication networks are proposed in [19] and [20], where the authors analyze the
effectiveness of ABMs to understand self-organization in peer-to peer and ad-hoc networks. These
studies provide further motivation to our investigation on applying ABMs for the study of malware
spreading dynamics and possible counter measures in D2D 5G networks.

Let us again note that conventionally D2D systems are modeled using analytical methods (e.g.,
stochastic geometry) which have proven to be powerful tools for modeling spatial device and road
systems. For example, in several recent works dealing with D2D modeling (see e.g., [5, 15]), streets
are represented by random tessellations. Then, devices are placed on the streets according to Poisson
point processes, thus forming Cox point processes (see for instance [6]). In this context, for example
shadowing, being a critical feature for 5G in urban environments, can be efficiently encoded by a
line-of-sight connectivity as described and studied in [16].

Let us further mention that the authors in [22, 23] present a framework for the modeling and analy-
sis of malware spread in D2D with mobile devices and study some strategies of both defenders and
attackers. The proposed model is based on an analytical approach and does not consider urban envi-
ronments. In view of this, a standard SIR model, as presented in [12], studies malware propagation in
D2D considering urban environments but mobility is not taken into account. Even though the obtained
results were promising, some questions remained open regarding the convergence of the malware
propagation speed, the shape theorem of the infection and the critical thresholds. This mainly comes
from the fact that the dynamics of the system were insufficiently captured.

In relation to this, our prior work [11] studies malware propagation and counter measures in D2D
networks also in urban environments. Here we present a stochastic-geometry-based model that takes
into account street systems as well as shadowing effects (important for 5G) in urban environments (as
proposed in [16]) but does not consider device mobility.

3 Multi-agent models for virus propagation in D2D

In this section we give a detailed description of the D2D malware-propagation model in urban environ-
ments. For this, we will first introduce the different model layers as a dynamical stochastic-geometry
system, before rephrasing the model in the language of multi-agent systems. We stress that in this
ABM description, devices are represented as reactive agents that move in the environment and have
a variety of capabilities like neighborhood discovery, malware propagation and malware removal.

In short terms, the system has the following composition. We first consider an urban environment.
Then, at initial time, devices are placed randomly on the streets, where we make the simplifying as-
sumption that devices that are situated in buildings are not to be taken into account. This can be
justified by the high frequencies used in 5G. The devices move independently and randomly at a con-
stant speed. Moreover, two devices can communicate directly with each other if they are close enough
and on the same street. Let us note that this approach takes shadowing into account, but not interfer-
ence. At time zero, a virus is introduced carried by a device near to the center of the city. The virus
can now propagate from one device to another if they can communicate for a long enough time that
represents both the discovery time plus the transmission time. In the final step, following [12], we will
introduce devices called white knights, carrying a patch that ts able to erase the virus from attacking
devices if under attack, and then transmit this white-knight ability to the attacker.
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3.1 Stochastic geometry for communication systems

As already mentioned, our model is composed of several different layers: First, we model the street
system, then we model the initial placement of devices and their mobility, then we define the connection
graph, then the infection rules, and then, optionally, we choose some part of the devices to be white
knights.

3.1.1 Street systems and devices

We consider our urban street environment E as a two-dimensional planar Poisson–Voronoi tessella-
tion (PVT, see [6]) induced by an homogeneous Poisson point process XE of intensity λ > 0. The
PVT has been shown to be a good fit for the street systems of European cities (see [8–10]) and has
been widely used to model different urban environments as random tessellations. We will denote by
S the set of edges of E (representing the streets). The devices are placed on S as a linear Poisson
point process of intensity θ > 0, thus forming a Cox point process on the plane with random intensity
measure Λ(B) = θ|S ∩ B| for every measurable B ∈ R2. Here |S ∩ B| stands for the total length
of S in the area B.

3.1.2 Mobility behavior

Devices move at the same constant speed v repeating indefinitely the following mobility scheme
(random-waypoint model adapted to streets):

� Each device independently picks a destination on the street system. For this we sample a
random point P in the plane using a Gaussian distribution centered on the device X , and with
a standard deviation equal to σX = (15min) × v. The destination we take for X is then the
closest point of P in E. This choice of σX shows that devices will go to destinations that they
can reach in an average time of 15min if they take a straight path.

� Devices move to their destinations following the shortest path along the streets,

� Once arrived, devices go back to their starting position following again the shortest path along
the streets.

3.1.3 Communication behavior

In order to exchange messages, two communicating devices must obey the following rules:

� (RAD): The Euclidean distance between the two devices is less than a given constant threshold
r.

� (LOS): The two devices are on the same street.

The first rule supposes that the emission power of the devices is a constant and that we do not take into
account interference. The second rule means that the signal cannot go through the buildings, and that
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reflections and diffractions are not taken into account. More precisely, letXi,t denote the position of de-
vice Xi at time t andN (Xi, Xj) := {t ≥ 0; |Xi,t −Xj,t| < r and ∃s ∈ S such that (Xi,t, Xj,t) ∈
s}. Then Xi and Xj are connected at time t if and only if t ∈ N (Xi, Xj).

3.1.4 Infection behavior

We will follow a standard compartmental model, which is a version of SIR model (see for instance [3]).
We will call it SIW (susceptible, infected, white knight). In this model, at time zero, only one device
will be in the infected state, while a Cox point process XS with intensity θS will define the susceptible
devices, and a Cox point processXW with intensity θW , independent of the former one given the PVT
tessellation, will define the white knights. When an infected device is connected to a susceptible device
for a time longer than a given threshold ρI , the susceptible device will become infected. When an
infected device is connected to a white knight for a time longer than another threshold ρW , the infected
device will become a white knight. More precisely, if the device Xi,t is infected and if [t, t + ρI ] ∈
N (Xi, Xj), then Xj,t+ρI is infected. In the same way, if the device Xi,t is a white knight, and if
[t, t+ ρW ] ∈ N (Xi, Xj), then Xj,t+ρW is a white knight.

3.2 Mapping the stochastic geometry model to the ABM framework

Let us next describe how the multi-layered stochastic geometry model is represented in the ABM
framework. For this, note first that the environment is modeled as an undirected graph, relying on
some stochastic geometry concepts, as described in 3.1.1.

As for the ABM description, we define our system of virus propagation in D2D as consisting of a finite
number of agents, states, actions and rules

MAS := 〈A, St,Act,R,T〉.

More precisely, we consider a set of n agents A = { ai : i ∈ [1, n] } and a state space St =
{S, I,W} where S refers to the agent state susceptible, I to infected and W to white knight. Fur-
ther, Act = { move, discover, connect, infect, remove } denotes the set of actions that each agent
can perform according to its state/type. R represents the set of the behavioral rule base. Time T is
assumed to be divided in time units called slots, where each slot k is a positive integer.

Initially, agents of type susceptible and white knight are respectively distributed on the edges of E
(i.e., streets of the city) as described in Section 3.1. One agent of type infected is introduced around
the centre of the map.

Formally, each agent ai is defined at each time slot by a tuple

Mi,k := 〈Xi,k, Vi,k, Ni,k,Acti,k, ξi,k, T
(I)
i,k , T

(W )
i,k 〉.

Here Xi,k specifies the agent’s location in terms of coordinates at time kdt, Vi,k = v represents
the agent’s moving velocity and Ni,k represents the knowledge base, representing what each agent
ai knows about its neighborhood agents and the environment at time slot k. ξi,k ∈ St represents

the state of agent ai. Acti,k is the set of actions that could be performed by ai. Further, T (I)
j,k , T

(W )
j,k

represent respectively the first time when ai becomes infected and the first time when it becomes a
white knight. The variables T (I)

j,k , T
(W )
j,k will be updated during the simulation depending on the agent’s
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Figure 1: State diagram

interactions. They are both initially set to +∞ for susceptible agents. T (I)
i,0 and T (W )

i,0 are respectively
set to 0 and +∞ for infected agents and to +∞ and 0 for white knight ones. These variables allow
to track the state of agents over time. The state ξi,t of ai at t ≥ 0 is either white knight if t ≥ T

(W )
i,k ,

infected if T (I)
i,k ≤ t < T

(W )
i,k or susceptible if t < T

(I)
i,k .

3.3 Agent states

Agent states specify what state an agent is in. Agent state transitions are driven by the rule base R, see
Figure 1 for an illustration. Rules are represented, in this model, by deterministic condition-action rules
where each rule consists of a condition part and an action part (like e.g., “if condition1 then action1”).
The rule base R implements the reactive behavior of agents. It allows to select actions to take for agent
ai depending on its current local state ξi,k and its knowledge base Ni,k. More specifically, we write
R = {Θ} where Θ(ξi,k, Ni,k) are the active rules, which map the set of states and observations to
actions for reactive tasks

Θ : (ξi,k, Ni,k) −→ Acti,k.

Let T (C)
i,j be the connection duration between agents ai and aj , ρI be the needed time for the virus

transmission from one agent to another and ρW the time needed for malware removal. The rule-based
functions are described as follows.

� Malware infection rule: If agent ai is infected, agent aj is susceptible (ξi,k = I , ξj,k = S) and

ai was connected to aj for a time longer than the infection threshold (T (C)
i,j ≥ ρI ), then the state

of agent aj will be transited from susceptible to infected (the action infect will be activated),

ΘI : (ξi,k, Ni,k) −→ Infect.

� Malware removal rule: If agent ai is a white knight, agent aj is infected (ξi,k = W , ξj,k = I )

and ai was connected to aj for a time longer than the malware removal threshold (T (C)
i,j ≥ ρW ),

then the state of agent aj will be transited from infected to white knight (the action remove will
be activated).

ΘW : (ξi,k, Ni,k) −→ Remove.

A more detailed description of the algorithms associated to malware infection/removal will be given in
Section 4.

3.4 Agent mobility

In addition to malware infection and removal behavior, managed by the rule base, agents have other
actions that are continuously triggered over the simulation: move and discover. More precisely, each
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agent will have a constant speed during the simulation and will move according to a modified ver-
sion of the random-waypoint model, called Ä∗Waypoint”, that we propose to reduce computational
complexity. Details about this algorithm will be given in Section 4.1. We also will consider that all the
agents can move on any street of the map in the two directions, and that the streets do not have any
limitation on the maximum number of agents they can contain.

4 The multi-agent simulation

In this section we present more details on the implementation of our multi-agent simulation tool. First,
we list the key model parameters in Table 1.

Parameter Description
dt Elapsed time in each step (s)
ρI Connection time needed for virus transmis-

sions between agents (s)
ρW Connection time needed for antivirus transmis-

sions between agents (s)
r Communication radius of agents (km)
λ Intensity of Voronoi seeds (seed/km2)
θS Intensity of susceptible agents (agent/km)
θW Intensity of white knights (agent/km)
v Speed of agents (km/h)

Table 1: Simulation parameters

Let

P := {dt, ρI , ρW , r, λ, θS, θW , v}

denote the set of parameters as presented in Table 1. Other parameters such as the dimensions of the
map can be added to this list, but we will not focus on these in our study. Note that we decided to give
the same speed to all the agents in order to keep a restraint number of parameters, but we can easily
have a more general model where the speeds of the agents are distributed following some probability
law. Each agent could have for example a speed taken uniformly at random in some interval [v1, v2].

Our simulation is done over steps, each step corresponds to a time instant kdt. In the following we
will denote by Mk the model at step k. It represents the map, the agents and all their attributes
(coordinates, states, etc.) at step k.

In the simulation, we first generate a random map, then the agents, and after that we run the function
Step(Mk), that updates the variables of the model, taking it from a step k to the next step k + 1, for
a number kmax of iterations. Algorithm 1 describes the entry function of the simulation.

The function GenerateMap(λ) returns a random PVT based on the parameter λ, whereas the function
Generate(θS, θW , v) returns the set of agents A := AS ∪ AW ∪ {ai0}, where AS and AW are
respectively the sets of initially susceptible and white-knight agents distributed on M using homoge-
neous Poisson point processes with parameters θS and θW , and ai0 is the initially infected agent,
chosen uniformly somewhere near the center of the map.

DOI 10.20347/WIAS.PREPRINT.2953 Berlin 2022
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Algorithm 1: Main(P , kmax): The main function describing the simulation
Input : The set of parameters P and the maximum number of steps kmax

Output: The state of a randomly generated model at time kmaxdt
1 M← GenerateMap(λ);
2 A ← GenerateAgents(θS, θW );

3 M0 ← (P ,M,A, (Xi,0)i, (T
(I)
i,0 )i, (T

(W )
i,0 )i);

4 for k ∈ {1, . . . , kmax} do
5 Mk ← Step(Mk−1);

6 returnMkmax

4.1 Mobility algorithm: A* WayPoint

The classical WayPoint algorithm is a mobility algorithm where each agent has a home, that is some
point on the map. When an agent is at its home, it chooses a destination on the map, goes towards it
via a shortest path, and then comes back to its home. Each agent repeats this process indefinitely.

In our simulation, we consider the homes of the agents and the destinations they choose to be nodes
of the map. Whenever an agent ai comes back to its home, the choice of a new destination will be
done as follows:

� Sample a point (xd, yd) using a Gaussian distribution centered on the home of ai and with a
standard deviation σD,

� Set the destination of ai to the node of the map that is the closest to (xd, yd) in terms of the
euclidean distance.

σD is independent of the agent, but in the scenario where agents can have different speeds, we can
imagine replacing σD by viσT , where vi is the speed of the agent, and the standard deviation depends
linearly on its speed, meaning that the faster is ai the further it can go.

The classical WayPoint algorithm has the advantage of delivering a realistic movement of the agents
and being easy to implement. The problem in using it lays in the time complexity of finding shortest
paths from the homes of the agents to their destinations. That is why we propose a modified version
of the WayPoint algorithm inspired by the A∗ algorithm.

Our adaptation consists simply in going to the destination via a "good enough"path instead of a short-
est path: a path to the destination can be constructed by greedily choosing the neighboring node that
minimizes the Euclidean distance to the destination. That is to say that when an agent is heading
towards a direction P , and is on a nodeQ having neighborsQ1, . . . , Qs, the agent will go to nodeQi

such that i = arg min1≤j≤s d(Qj, P ), where d(·, ·) is the Euclidean distance. Since degrees of the
nodes are equal to 3 with probability 1 in PVTs, this decision can be made in a O(1) time.

However, agents moving with this algorithm can be stuck in cycles. To overcome this, we make each
agent memorize each node it visits with a probability pm � 1, and we do not allow it to go to mem-
orized nodes. In order to prevent some other unwanted phenomena that might occur, when an agent
visits a new node, its whole memory is erased with a probability pe � pm. This simple solution is
efficient and saves memory space. Our experiments gave a mean value of the ratio R between the
lengths of the paths constructed using it and those constructed with the classical WayPoint algorithm
that is less than 1.31. We computed this ratio over 100, 000 simulations with different values of λ. The
values we took for the algorithm’s parameters are σD = 1 km, pm = 0.05, and pe = 0.005. Note
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that one of the main reasons why the A∗ WayPoint is efficient here is the topology of the PVTs: these
maps are very strongly connected and a lot of paths exist from each node to another. Our algorithm
could turn out to be much less efficient if other types of maps are used.

4.2 The step function

Our simulation is done over steps, each step k corresponds to a time instant kdt. What we analyze
is therefore the state of the system at the discrete instants 0, dt, 2dt, . . .. A difficulty lies in finding a
way to correctly update the positions and the states of the agents respecting the virus propagation
rules. From step k to k + 1, each agent moves independently as described in Section 4.1, which
means that in our simulation, we can access the position of each agent at the beginning of each step,
and we know also its speed and the edges it has been through, but we do not know if it met other
agents, if some of them were infected, or if it connected to one of them for more than ρI . Retrieving
this information would be very complicated given only the paths taken by the agents between t and
t+dt, and it would also require a big time complexity. To overcome this, we first impose the constraint
dt ≤ min{ρI , ρW}. This guarantees that, by only observing the positions of the agents at the time
instants kdt for k ∈ N, we will not miss any two devices that connect for a duration longer that ρI or
ρW . Let k ∈ N, and let us assume ai, aj are connected to each other at kdt, i.e., they are on the same
street s and ‖Xi,k −Xj,k‖ ≤ r. We will treat the general case where they can have different speeds
vi and vj , and we will compute the connection duration of ai, aj using their movement equations.

Let us denote by t(in)i,s (respectively t(out)
i,s ) the time when ai gets in (respectively out of) the street s.

These can easily be computed knowing Xi and the length L(s) of the street s. Since s has two
different directions, we need to consider their velocities vi, vj . Let P1, P2 be the positions of the two
extremities of the street s, let us fix a direction e := (P2 − P1)/‖P2 − P1‖ (we can take −e as
well), and νi, νj be such that vi = νie, vj = νje. Recall that the absolute speed vi of ai satisfies
vi = ‖vi‖ = ±νi and the same holds for aj . Finally, let us also define the coordinates of aj, aj on
the street s by di,k := (Xi,k−P1) · e and dj,k := (Xj,k−P1) · e. Then we have the following result.
Lemma 1. If ai, aj are connected at the time instant kdt, and if νi 6= νj , then the larger time interval

containing kdt and during which ai, aj are connected is [t
(C,i)
i,j , t

(C,f)
i,j ], where

t
(C,i)
i,j := max{kdt− di,k − dj,k

νi − νj
− r

|νi − νj|
, t

(in)
i,s , t

(in)
j,s },

t
(C,f)
i,j := min{kdt− di,k − dj,k

νi − νj
+

r

|νi − νj|
, t

(out)
i,s , t

(out)
j,s }.

If νi = νj , then

t
(C,i)
i,j = max{t(in)i,s , t

(in)
j,s } and t(C,f)i,j = min{t(out)

i,s , t
(out)
j,s }.

The connection duration of ai, aj is then T (C)
i,j := t

(C,f)
i,j − t(C,i)i,j .

We saw in Section 3.2 that, at each step k ≥ 1, the states of the agents will be determined by
the variables T (I)

i,k−1, T
(W )
i,k−1. We call Sk, Ik,Wk the sets of susceptible, infected, and white-knight

agents. Let ConnectionInterval(ai, aj) be a function computing t(C,i)i,j , t
(C,f)
i,j as in Lemma 1, and let

GetNeighbors(ai) be a function returning the set of neighbors of ai defined as Nk(ai) := {aj ∈
A : ‖Xi,k −Xj,k‖ ≤ r and ai, aj are on the same street}. Searching the neighbors of all the agents
would normally require a O(n2) time complexity, but since only agents on a same street can connect
to each other, we considerably reduced this complexity by searching neighbors of each agent only
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among those that are on the same street. From here, we can write Algorithm 2 that updates the values
T

(I)
j,k for the neighbors of an infected agent ai.

Algorithm 2: InfectNeighbors(ai)
Input : An infected agent ai
Output: Updates T (I)

j,k for all susceptible neighbors of ai

1 N (S)
i,k ← GetNeighbors(ai) ∩ Sk;

2 for aj ∈ N (S)
i,k do

3 t
(C,i)
i,j , t

(C,f)
i,j ← ConnectionInterval(ai, aj);

4 t1 ← max{t(C,i)i,j , T
(I)
i,k−1};

5 t2 ← min{t(C,f)i,j , T
(W )
i,k , (k + 1)dt};

6 if t2 − t1 ≥ ρI then

7 T
(I)
j,k ← min{T (I)

j,k , t1 + ρI};

Lines 4 and 5 make sure that we only compute the time when the agents are connected and ai is
infected and that the update is made only at the last step before the neighbor becomes infected. Also,
in the line 7, we cannot set the value of T (I)

j,k simply to t(C,i)i,j + ρI because the agent aj might be
connected to several infected agents, and it will become infected as soon as it stays connected to one
of them for longer than ρI . We can define a similar function HealNeighbors(ai), see Algorithm 3, that
takes as argument a white knight ai and updates the values T (W )

j,k of its infected neighbors. Again, for

Algorithm 3: HealNeighbors(ai)
Input : A white-knight agent ai
Output: Updates T (W )

j,k for all infected neighbors of ai

1 N (I)
i,k ← GetNeighbors(ai) ∩ Ik;

2 for aj ∈ N (I)
i,k do

3 t
(C,i)
i,j , t

(C,f)
i,j ← ConnectionInterval(ai, aj);

4 t← max{t(C,i)i,j , T
(W )
i,k−1, T

(I)
j,k−1};

5 if t(C,f)i,j − t ≥ ρW then

6 T
(W )
j,k ← min{T (W )

j,k , t+ ρW};

each infected neighbor aj of ai, we must make sure to compute their connection time while ai is white
knight and aj is infected.

Finally, we can write the core function of our simulation, that is Algorithm 4.

Note that it is important to update the variables (T
(W )
j,k )j before (T

(I)
j,k )j , because the connection time

computed when calling InfectNeighbors(aj) depends also on T (W )
j,k .

4.3 Equivalence of discrete and continuous time

We denote by ξi(t) the state of agent ai at continuous time t for any ai ∈ A, i.e., its state according
the mathematical malware propagation model, which is defined in continuous time. On the other hand,
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Algorithm 4: The step function
Input : The modelMk−1 at step k − 1
Output: The modelMk at step k

1 for ai ∈ A do
2 Xi,k ← Move(ai, Vi, Xi,k−1, dt); //Update the positions

3 T
(I)
i,k , T

(W )
i,k ← T

(I)
i,k−1, T

(W )
i,k−1; //Initialization

4 Sk, Ik,Wk ← The sets of susceptible, infected and white-knight agents;
5 for ai ∈ Wk do

6 HealNeighbors(ai); //Update the variables T (W )
j,k

7 for ai ∈ Ik do

8 InfectNeighbors(ai); //Update the variables T (I)
j,k

9 Mk ← (P ,M,A, (Xi,k)i, (T
(I)
i,k )i, (T

(W )
i,k )i);

10 returnMk;

for each k ∈ N, we denote as before by ξi,k the state of ai at discrete time kdt as described by our
ABM. The following theorem states that, for sufficiently small time slots, at the discrete time points, our
model is equivalent to its continuous-time version and is thus equivalent.
Theorem 2. If dt < min{ρI , ρW}, then we have

∀aj ∈ A,∀k ∈ N, ξj,k = ξj(kdt).

In words, Theorem 2 guarantees that, via discretizing, we do not miss infection events and the intro-
duced time differences do not induce errors in the discretized model. We define the first continuous
times when aj ∈ A is respectively infected and healed as T̃ (I)

j := inf{t ≥ 0: ξj(t) = I} and

T̃
(W )
j := inf{t ≥ 0 | ξj(t) = W}. Regarding our malware propagation rules, we can write

T̃
(I)
j = inf

ai 6=aj
inf

t≥T̃ (I)
i

{t+ ρ : [t, t+ ρ] ⊂ N (ai, aj)}, (1)

T̃
(W )
j = inf

ai 6=aj
inf

t≥max{T̃ (I)
j ,T̃

(W )
i }
{t+ ρW : ∀h ∈ [t, t+ ρW ], aj ∈ Ni(h)}, (2)

where N (ai, aj) is as defined in Section 3.1.3. Let us also denote Sk := {ai : kdt < T
(I)
i,k−1},

Ik := {ai : T (I)
i,k−1 ≤ kdt < T

(W )
i,k−1} andWk := {ai : T (I)

i,k−1 ≤ kdt < T
(W )
i,k−1}, and similarly S̃k, Ĩk

and W̃k by replacing T (I)
i,k−1 by T̃ (I)

i and T (W )
i,k−1 by T̃ (W )

i . They correspond respectively to the sets
of agents that are susceptible, infected or white knights, in the simulation and in the continuous-time
model at time kdt. Finally, for convenience, let T (I)

i,−1 := T
(I)
i,0 and T (W )

i,−1 := T
(W )
i,0 for all ai ∈ A. We

have the following lemma.
Lemma 3. If dt < min{ρI , ρW}, then for any k ∈ N,

(Bk) : ∀aj ∈ A,


T̃

(I)
j ≤ T

(I)
j,k−1,

T̃
(W )
j ≤ T

(W )
j,k−1,

T̃
(I)
j ≤ kdt =⇒ T̃

(I)
j = T

(I)
j,k−1,

T̃
(W )
j ≤ kdt =⇒ T̃

(W )
j = T

(W )
j,k−1.
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The third statement of Bk gives correctness of the states for infected agents, the fourth for white
knights, while the first and second guarantee that there are no false infected agents or false white
knights in the simulation, and therefore correctness of the states of susceptible agents. We will prove
this lemma by induction on k, and once we are done, we can directly deduce Theorem 2 using the
following lemma.
Lemma 4. Let k ∈ N. If the assertion Bk is true, then we have

Sk = S̃k, Ik = Ĩk, Wk = W̃k,

and for any aj ∈ A :

aj ∈ Ik =⇒ T
(I)
j,k−1 = T̃

(I)
j , aj ∈ Wk =⇒ T

(W )
j,k−1 = T̃

(W )
j .

Proof. Let k ∈ N and let us assume that Bk is true. For any agent aj ∈ A, we have the following:

Since T (I)
j,k−1 ≥ T̃

(I)
j , then aj ∈ S̃k ⇐⇒ kdt < T̃

(I)
j =⇒ kdt < T

(I)
j,k−1 ⇐⇒ aj ∈ Sk. The

second and third statements of Bk give that aj ∈ Ĩk ⇐⇒ T̃
(I)
j ≤ kdt < T̃

(W )
j =⇒ T

(I)
j,k−1 ≤

kdt < T
(W )
j,k−1 ⇐⇒ aj ∈ Ik. The fourth statement of Bk gives aj ∈ W̃k ⇐⇒ kdt ≥ T̃

(W )
j =⇒

kdt ≥ T
(W )
j,k−1 ⇐⇒ aj ∈ Wk. This means that we have S̃k ⊂ Sk, Ĩk ⊂ Ik and W̃k ⊂ Wk, but

since |A| = |S̃t| + |Ĩk| + |W̃k| = |St| + |Ik| + |Wk|, we deduce that the previous inclusions are

in fact set equalities. Now if aj ∈ Ik = Ĩk then necessarily T̃ (I)
j ≤ kdt and therefore T̃ (I)

j = T
(I)
j,k−1,

and if aj ∈ Wk then T̃ (W )
j ≤ kdt and T̃ (W )

j = T
(W )
j,k−1.

From this lemma, we have directly that if Bk is true then ∀aj ∈ A : ξj,k = ξj(kdt), and therefore if
we prove Lemma 3 then Theorem 2 is true. Now, before starting the proof of Lemma 3, observe that
we have the following monotonicities during the steps of our algorithm.
Proposition 5. For any agent aj ∈ A, we have

� T̃
(W )
j ≥ T̃

(I)
j + ρW ,

� the sequences (T
(I)
j,k )k and (T

(W )
j,k )k are non-increasing.

Proof. Let aj ∈ A. If aj is initially susceptible or infected, then the first assertion is trivial given

Equation 2, and if aj is initially a white-knight then it is again true because T̃ (I)
j = −∞ and T̃ (W )

j = 0.

For the second assertion, let aj ∈ A and k ∈ N. T (I)
j,k is initialized in the kth call of the step function to

the value T (I)
j,k−1. The only place in the simulation where T (I)

j,k is updated is in line 7 of Algorithm 2, and

the updating formula is T (W )
j,k ← min{T (W )

j,k , t + ρW}. Hence each update assigns to T (I)
j,k a value

not larger than the previous one it had, the value it will have by the end of the step k is then smaller
than its initialization T (I)

j,k−1. We prove with similar arguments that (T
(W )
j,k )k is non-increasing.

Proof of Lemma 3. Let us assume that dt < min{ρI , ρW}. The proof proceeds via induction on k.

Initialization: For k = 0, we have for any agent aj ∈ A:

� If aj is initially susceptible, then T (I)
j,−1 = T

(W )
j,−1 = +∞ and T̃ (I)

j ≥ ρI , T̃
(W )
j ≥ ρI + ρW ,

� if aj is initially infected, then T (I)
j,−1 = 0, T

(W )
j,−1 = +∞ and T̃ (I)

j = 0, T̃
(W )
j ≥ ρW ,

� if aj is initially a white-knight, then T (I)
j,−1 = −∞, T (W )

j,−1 = 0 and T̃ (I)
j = −∞, T̃ (W )

j = 0.
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In any of these three cases, the assertions given in B0 concerning aj are satisfied, and therefore B0
is true.

Induction: Now, let k ∈ N and let us assume that Bk is true, then we have the following lemmas in
order to verify Bk+1.

Lemma 6. For any agent aj ∈ A we have the implications

aj ∈ Ik =⇒ T̃
(I)
j = T

(I)
j,k−1,

aj ∈ Wk =⇒ T̃
(I)
j = T

(I)
j,k−1 and T̃ (W )

j = T
(W )
j,k−1.

Given Lemma 4, these implications are true with Ĩk and W̃k instead of Ik andWk.

Proof. Let aj ∈ A. If aj ∈ Ik then by Lemma 4 we have aj ∈ Ĩk = Ik, which means that ξj(kdt) =

I . This implies that T̃ (I)
k ≤ kdt, and by the induction hypothesis we deduce that T̃ (I)

j = T
(I)
j,k−1.

If aj ∈ Wk, then similarly we deduce that aj ∈ W̃k and that T̃ (W )
j ≤ t, which implies by the induction

hypothesis that T̃ (W )
j = T

(W )
j,k−1. Moreover, Proposition 5 gives that T̃ (I)

j ≤ T̃
(W )
j −ρI < T̃

(W )
j ≤ kdt

and therefore T̃ (I)
j = T

(I)
j,k−1 again by the induction hypothesis.

Lemma 7. For any agent aj ∈ A we have T̃ (W )
j ≤ T

(W )
j,k .

Proof. Let aj ∈ A. If T (W )
j,k = T

(W )
j,k−1 then the result is true by the induction hypothesis. Oth-

erwise, T (W )
j,k was updated during the kth call of the step function (Algorithm 4). Therefore there

is necessarily an agent ai ∈ Wk for which HealNeighbors(ai) has been called such that aj ∈
N (I)
i,k := Ni(kdt) ∩ Ik (See Algorithms 4 and 3), and such that T (W )

i,k = t + ρW ≤ t
(C,f)
i,j and

t := max{t(C,i)i,j , T
(W )
i,k−1, T

(I)
j,k−1}. We have then aj ∈ N (I)

i,k ⊂ Ik and ai ∈ Wk, Lemma 6 gives

T
(I)
j,k−1 = T̃

(I)
j and T (W )

i,k−1 = T̃
(W )
i therefore t ≥ max{T̃ (I)

j , T̃
(I)
i }, and since [t, t + ρW ] ⊂

[t
(C,i)
i,j , t

(C,f)
i,j ] then ∀h ∈ [t, t+ ρW ] : aj ∈ Ni(h), it follows that

T
(W )
j,k = t+ ρW ≥ inf

t′≥max{T̃ (I)
j ,T̃

(W )
i }
{t′ + ρW | ∀h ∈ [t′, t′ + ρW ] : aj ∈ Ni(h)}

≥ inf
az 6=aj

inf
t′≥max{T̃ (I)

j ,T̃
(W )
z }
{t′ + ρW | ∀h ∈ [t′, t′ + ρW ] : aj ∈ Nz(h)} = T̃

(W )
j ,

as desired.

Lemma 8. For any aj ∈ A, we have the implication T̃ (W )
j ≤ (k + 1)dt =⇒ T̃

(W )
j = T

(W )
j,k .

Proof. Let aj ∈ A. If T̃ (W )
j ≤ kdt then by the induction hypothesis and Proposition 5 we have

T̃
(W )
j = T

(W )
j,k−1 ≥ T

(W )
j,k , and with Lemma 7 we deduce that T̃ (W )

j = T
(W )
j,k . Otherwise, we have

kdt < T̃
(W )
j ≤ (k + 1)dt. Let t̃ := T̃

(W )
j − ρW , by Equation (2) we know that there exists an agent

ai such that
t̃ ≥ max{T̃ (W )

i , T̃
(I)
j } and ∀h ∈ [t̃, t̃+ ρW ] : aj ∈ Ni(h). (3)

From this and with dt < min{ρI , ρW} we have

max{T̃ (W )
i , T̃

(I)
j } ≤ t̃ := T̃

(W )
j − ρW ≤ (k + 1)dt− ρW < kdt < T̃

(W )
j = t̃+ ρW . (4)
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In particular, max{T̃ (W )
i , T̃

(I)
j } ≤ kdt < T̃

(W )
j implies that aj ∈ Ĩk = Ik and ai ∈ W̃k =Wk (see

Lemma 4), and kdt ∈ [t̃, t̃ + ρW ] together with (3) imply that aj ∈ N (I)
i,k := Ni(kdt) ∩ Ik. Now, ai

being inWk ensures that the function HealNeighbors will be called with ai as input in Algorithm 4, and
aj being in N (I)

i,k ensures that aj is visited in the "for"loop of HealNeighbor(ai) in Algorithm 3. During
this call, a variable t will be defined as

t := max{t(C,i)i,j , T
(W )
i,k−1, T

(I)
j,k−1} = max{t(C,i)i,j , T̃

(W )
i , T̃

(I)
j }.

The second equality is a consequence of Lemma 6 because ai ∈ Wk and aj ∈ Ik. T (W )
j,k will be

updated if and only if t(C,f)i,j −t ≥ ρW (Line 5 in Algorithm 3). We will prove that this is verified and that

the new value of T (W )
j,k is at most T̃ (W )

j . Indeed, by (3) and (4) we have ∀h ∈ [t̃, t̃+ρW ] : aj ∈ Ni(h)

and kdt ∈ [t̃, t̃+ ρW ]. We deduce that [t̃, t̃+ ρW ] ⊂ [t
(C,i)
i,j , t

(C,f)
i,j ], and thus

t̃ ≥ t
(C,i)
i,j and t̃+ ρ ≤ t

(C,f)
i,j .

The first inequality combined with the inequality in (3), gives that t̃ ≥ max{t(C,i)i,j , T̃
(W )
i , T̃

(I)
j } = t.

Therefore t+ ρW ≤ t̃+ ρW ≤ t
(C,f)
i,j . The Ïf"condition in Line 5 of Algorithm 3 is then verified, which

means that T (W )
j,k is updated as

T
(I)
j,k ← min{T (I)

j,k , t1 + ρI} ≤ t1 + ρI ≤ t̃+ ρI = T̃
(W )
j .

It is possible that InfectNeighbors will be called after this with some inputs other than ai and that aj
will be visited again, but regarding the updating formula of T (W )

j,k , it can only decrease and therefore by

the end of Algorithm 4 we have T (W )
j,k ≤ t+ ρW ≤ t̃+ ρW = T̃

(W )
j . This, combined with Lemma 7,

gives that T (W )
j,k = T̃

(W )
j .

Lemma 9. For any agent aj ∈ A we have T̃ (I)
j ≤ T

(I)
j,k .

Proof. Let aj ∈ A. If T (I)
j,k = T

(I)
j,k−1 then the result is true by the induction hypothesis. Otherwise, T (I)

j,k

was updated during the kth call of the step function (Algorithm 4). Therefore there is necessarily an
agent ai ∈ Ik for which InfectNeighbors(ai) has been called such that aj ∈ N (S)

i,k := Ni(kdt) ∩ Sk
(See Algorithms 4 and 2), and such that T (I)

i,k = t1 + ρI ≤ t2 with t1 := max{t(C,i)i,j , T
(I)
i,k−1}

and t2 := min{t(C,f)i,j , T
(W )
i,k , (k + 1)dt}. We have directly [t1, t1 + ρI ] ⊂ [t1, t2] ⊂ [t

(C,i)
i,j , t

(C,f)
i,j ]

and therefore ∀h ∈ [t1, t1 + ρ] : ai ∈ Ni(h). On the other hand, we have that T̃ (W )
i ≥ t2. In

fact, if T̃ (W )
i ≤ (k + 1)dt then by Lemma 8: T̃ (W )

i = T
(I)
i,k ≥ t2, and in the other case T̃ (W )

i >

(k+ 1)dt ≥ t2. Also, since ai ∈ Ik, we have by Lemma 6 that T̃ (I)
i = T

(I)
i,k−1 ≤ t1. Finally t1 verifies

T̃
(I)
i ≤ t1 ≤ T̃

(W )
i − ρW and ∀h ∈ [t1, t1 + ρ] : ai ∈ Ni(h). We then have

T
(I)
j,k = t1 + ρI ≥ inf

az 6=aj
inf

T̃
(I)
z ≤t1≤T̃

(W )
z −ρI

{t+ ρI | ∀h ∈ [t, t+ ρI ] : aj ∈ Nz(h)} = T̃
(W )
j ,

as desired.

Lemma 10. For any agent aj ∈ A, we have the implication T̃ (I)
j ≤ (k + 1)dt =⇒ T̃

(I)
j = T

(I)
j,k .
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Proof. Let aj ∈ A. If T̃ (I)
j ≤ kdt then by the induction hypothesis and by Proposition 5 we have

that T̃ (I)
j = T

(I)
j,k−1 ≥ T

(I)
j,k , and with Lemma 9 we deduce that T̃ (I)

j = T
(I)
j,k . Otherwise, we have

kdt < T̃
(I)
j ≤ (k + 1)dt, and hence aj ∈ S̃k = Sk (Lemma 4). Let t̃ := T̃

(I)
j − ρI , by Equation (1)

we know that there exists an agent ai such that

T̃
(I)
i ≤ t̃ ≤ T̃

(W )
i − ρI and ∀h ∈ [t̃, t̃+ ρI ] : aj ∈ Ni(h). (5)

From the previous and with dt < min{ρI , ρW} we have the inequalities

T̃
(I)
i ≤ t̃ ≤ (k + 1)dt− ρI < kdt < T̃

(I)
j = t̃+ ρI ≤ T̃

(W )
i . (6)

In particular we deduce that T̃ (I)
i < kdt < T̃

(W )
i , which means that ai ∈ Ĩk = Ik, and kdt ∈

[t̃, t̃ + ρI ] therefore aj ∈ Ni(kdt) by (5), but we have also that aj ∈ Sk and thus aj ∈ N (S)
i,k :=

Ni(kdt) ∩ Sk. These two properties guarantee that during the kth call of the step function (see
Algorithm 4), the function InfectNeighbors is called with ai as input and aj is visited in the "for"loop of
InfectNeighbors(ai) in Algorithm 2. During this call, when aj is being visited, we will have

t1 = max{t(C,i)i,j , T
(I)
i,k−1}, t2 = min{t(C,f)i,j , T

(W )
i,k , (k + 1)dt}.

T
(I)
j,k will be updated here if and only if t2−t1 ≥ ρI (see Line 6 in Algorithm 2). We will prove that this is

indeed the case and that the update value is at most T̃ (I)
j . Hence we have [t̃, t̃+ ρI ] ⊂ [t

(C,i)
i,j , t

(C,f)
i,j ]

and thus t̃ ≥ t
(C,i)
i,j , and since ai ∈ Ik, Lemma 6 implies that T̃ (I)

j = T
(I)
j,k−1. Using this with the first

inequality in (6), we deduce that

t̃ ≥ max{t(C,i)i,j , T̃
(I)
j } ≥ max{t(C,i)i,j , T

(I)
j,k−1} = t1.

We deduce also that t1+ρI ≤ t̃+ρI ≤ t
(C,f)
i,j .What is left is to prove that t1+ρ ≤ min{T (W )

i,k , (k+
1)dt}, for that we will distinguish two cases:

� If T̃ (W )
j ≤ (k+ 1)dt then, by Lemma 10, we have T (W )

i,k = T̃
(W )
j and thus t1 +ρI ≤ t̃+ρI ≤

T̃
(W )
j = min{T (W )

i,k , (k + 1)dt}.

� In the other case where T̃ (W )
j > (k + 1)dt, we have, by Lemma 9, that T (I)

j,k ≥ T̃
(I)
j >

(k + 1)dt, and finally, with (6), we have t̃+ ρI ≤ (k + 1)dt = min{T (W )
i,k , (k + 1)dt}.

Hence we have t1 + ρI ≤ min{t(C,f)i,j , T
(W )
i,k , (k+ 1)dt} = t2. This means that T (I)

j,k will be updated
in InfectNeighbors(ai) such as

T
(I)
j,k ← min{T (I)

j,k , t1 + ρI} ≤ t1 + ρI ≤ t̃+ ρI = T̃
(I)
j .

In the next eventual calls of InfectNeighbors, T (I)
j,k can only decrease and therefore its final value by

the end of the step is such that T (I)
j,k ≤ T̃

(I)
j . Regarding the result of Lemma 9, this means that

T
(I)
j,k = T̃

(I)
j .

Conclusion of the proof of Lemma 3

By assuming that dt < min{ρI , ρW} and Bk is true, we proved Lemmas 7, 8, 9 and 10 proving that
Bk+1 is also true. This concludes our proof by induction. We deduce that Bk is true for any k ∈ N and
therefore, by Lemma 4, we have that:

∀k ∈ N : Sk = S̃k, Ik = Ĩk, Wk = W̃k,

and this means exactly that ∀aj ∈ A, ∀k ∈ N, ξj,k = ξj(kdt).
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5 Malware propagation in D2D networks: A theoretical study

The model that we presented so far is very rich with many parameters. It is therefore difficult to run
simulations varying all these parameters and see how each of them influences the propagation of the
virus. So, in order to better choose the values we will assign to them, in this section, we present a
theoretical study on a simplified model to identify critical relationships between parameters and values
that will lead to drastic changes in the system’s evolution. Let us highlight that we consider a different
model that does not arise as a limiting object. It is mainly introduced in order to sharpen the intuition
for threshold values of important parameters.

The model we consider in this section does not contain white knights, i.e., we only consider susceptible
and infected agents. To lighten the equations, we will write simple ρ instead of ρI and θ instead of θS
as there is no confusion.

As in the first model, we start with a single infected agent ai0 , and we will take interest in the time of
the first virus transmission, which we will denote by τ in the following. Let us stress that the simpli-
fied model that we present here is used only as a mathematical model. All the simulations results in
Section 6 are based on the original model and not this simplified one.

We consider the following mean-field approximation of our spatial model. Instead of considering ai0 to
be moving on a PVT, we will consider that it moves on a succession of streets s0, s1, . . ., each having
a length L(i)

λ that is a random variable with density fλ,L, where fλ,L is the density function of the
edges lengths in a PVT having a seeds intensity equal to λ (see Section 3.1.1). We will assume that,
when ai0 enters a street, other agents are distributed on it as an homogeneous Poisson point process
with parameter θ, and that they can move in any of the two possible directions. What we mainly loose
in this simplified model is the dependence between the lengths of the successive streets visited by
ai0 .

For each street si visited by ai0 , let Ci be the number of agents that ai0 infects while being on si. Let
p := Pr[Ci ≥ 1] denote the probability that ai0 infects at least some agent on si (p is independent of
i). Finally, let τ be the first time instant when some agent aj different from ai0 becomes infected

τ := inf{t ≥ 0: ∃j 6= i0 such that ξj(t) = infected}.

Then, we have the following main results whose proofs can be found in [1].
Theorem 11. If τ is the first time when ai0 infects another agent, then

2

3
√
λv

(1/p− 1) ≤ E[τ ] ≤ 2

3
√
λv
· 1/p.

Theorem 12. There exists a positive constant C̃ such that if p is sufficiently small, then for t0 =
1/(3
√
pλv) we have

Pr[τ ≥ t0] ≥ 1− C̃p1/4.

These theorems indicate that, if the probability of infecting another agent on a single street si is low,
then the waiting time before the virus transmission is very large, and therefore the virus propagation
is weak. In terms of the asymptotic behavior of the system, we can state that, when p = o(1), then
E[τ ] = Ω(1/(

√
λvp) and for t0 = 1/(3

√
pλv) we have Pr[τ ≥ t0] = 1−O(p1/4).
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6 Simulation results

This section presents and discusses simulations that were performed in order to analyze malware
propagation in D2D. First, we study virus propagation in PVTs without counter measures in order
to benchmark the predictions made in 5 and to understand how the different parameters accelerate
or slow down the propagation. Then, we study the evolution of the system when white knights are
introduced in the network. Conclusions on the conditions of survival or extermination of the virus have
been also drawn.

6.1 Simulation environment

Our ABM was built based on Mesa [14], which is a very suitable python framework for ABM. We
have extended Mesa framework to generate and visualize street system environments. The graphical
device interface was implemented using JavaScript and it allows visualizing the simulation evolution
over time, tuning the key parameters and visualizing the results to efficiently analyze information.

6.2 Evaluation indicators for malware propagation

We present some indicators that allow us to analyze and evaluate the malware propagation. They
should be independent of the dimensions of the map, since we theoretically want to study propagation
on an infinite plan, hence the interest in considering the propagation speed and the infection rate.
Definition 13 (Propagation speed). The propagation speed of the virus is the speed with which it
spreads in space. It is defined by

V := lim sup
u→+∞

uE[1/τu],

with τu the first time when the infection reaches the distance u from the initial infection point:

τu := inf{t ≥ 0 | ∃aj ∈ I(t) : ‖Xj(t)−XI0(0)‖ ≥ u}.

I(t) is the set of infected agents at time t, aI0 the only initially infected agent and XI0 its position at
time 0, that is the apparition place of the virus. aI0 is always chosen close to the center of the map.
Definition 14 (Infection rate). Inspired by Definition 13, we define the infection rate as the rate of
infected agents in the region reached by the virus

R := lim sup
u→+∞

|I(τu)|
|{Xj(τu) | aj ∈ A} ∩B(XI0(0), u)|

,

where B(XI0(0), u) is the open ball of center XI0(0) and radius u, and τu is as in Definition 13.

Note that |{Xj(τu)}∩B(XI0(0), u)| is simply the number of agents insideB(XI0(0), u) at time τu.

V andR are defined as limits, let Vu andRu be the expressions in Definitions 13 and 14 that converge
to them respectively. To study the behavior of the system, we will only set a value of u large enough
and observe the Vu,Ru considering that they approximate sufficiently the asymptotic values.

In order to avoid boundary effects because the agents would come too close to the boundary of the
map, we should have maps of side length H sufficiently large compared to u, at least H > 2u.
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6.3 Simulation settings

For all simulations, unless otherwise stated, parameters are set by default as follows: (u = 3.5km, H =
10km, λ = 50km−2, θS = 3km−1, v = 5km/h, ρI = 20s, r = 200m). We assume ρW = ρI and
dt = 0.9 min{ρI , ρW} = 0.9ρI . For agent mobility, the A∗ WayPoint algorithm was configured with
the parameters σD = 600m, pm = 0.05 and pe = 0.005, see 4.1. Each value in the diagrams we will
present later is the average over 20 simulations with the same set of parameters. In the simulations
where λ does not vary, we use the same 20 maps for all the points.

Since we want to observe Vu and Ru, we will stop the simulations as soon as some agent reaches
a distance u from the initial infection point. To do so, at each step k of the simulation, we define the
maximum propagation radius as uk := max{‖Xj,k − XI0(0)‖ | aj ∈ A}. The simulation ends
when uk ≥ u. In the cases where the virus does not propagate, this condition will never be verified.
The reason behind this can be either because aI0 could not infect other agents, or because the virus
was exterminated by the white-knights. In the first case, we will have uk/(kdt) → 0, and we need
to choose a threshold for which we consider the convergence to be achieved, we take it equal to
0.05km/h. In the second case, we will stop when |Ik| = 0. The stopping condition of our simulation
is therefore

(uk ≥ u or uk/(kdt) < 0.05km/h or |Ik| = 0) , (7)

and the output values are Vuk ,Ruk . In the case where |Ik| = 0, we will return Vuk = 0.

6.4 Malware propagation without white knights

6.4.1 The threshold
√
λρv

Let us omit the white knights now. The different critical regimes seen in Section 5 are relevant and
confirm the intuitive expectations one may have for the propagation of the virus. However, the most
remarkable result concerns the regime

√
λρv � 1, because the lower bound found for E[τ ] grows

with a speed of x 7→ exp(x2)/x in the quantity
√
λρv, we can thus expect to observe a rather tight

threshold at the level of which the propagation of the virus is no longer possible. To have meaningful
results, we will vary the value of λ from 10 to 200km−2 and the speed of the agents from 1 to 90km/h,
and the other parameters will be set as described in Section 6.3. However, when λ is very large, the
number of agents E[|A|] = 2

√
λH2θS will also be very large since even if it is only proportional to√

λ, the multiplicative constant is large. To keep a reasonable number of agents, we used maps with
side lengthHλ := 20λ−1/4 for each value of λ, and the stopping propagation radius uλ := 0.45×Hλ

to haveHλ > 2uλ. This will guarantee that the expected number of agents is E[A] = 2400 (θS = 3),
and the side lengths will vary from ≈ 11.24 to ≈ 5.32.

We observe in Figures 2 and 3 that the rate of infection and the speed of propagation both cancel
out above a certain threshold level line

√
λv = C with C ≈ 3/2. This confirms the hypothesis of

the exponential lower bound of E[τ ], although it is obtained with a simplified mathematical model.
It seems however that this threshold is sharper for R than for V . The reason why we have such a
threshold is that the distribution of the edges lengths in a PVT makes it very rare to have edges much
larger than the mean edge length E[Lλ] = 2/(3

√
λ), and therefore when aI0 never visits an edge

larger than ρv the virus cannot propagate, because only agents on a same street can connect to each
other.
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λ

v

Figure 2: Infection rateR

λ

v

Figure 3: Propagation speed V in km/h
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θS

v

Figure 4: Infection rateR

A surprising remark is that the maximum infection rate is always not far below the curve ρv = E[Lλ]
while the maximum propagation speed seems to be achieved exactly at the points verifying this equa-
tion.

In Figure 3 we also observe a lower threshold value of the speed: the virus hardly propagates for
v = 3, but as soon as v = 6, we see a remarkable jump in the values of V . It is to be expected to
have a weaker propagation for the small values of the speed because in the limit v = 0 the virus can
propagate at most in the street where it was initially placed.

The third observation is that the virus propagation becomes slower as λ becomes larger. The reason
is that, as predicted by the simplified model in 5, when

√
λ becomes much larger than θS : we have

too many streets compared to the number of agents, and therefore aI0 will only meet a few agents.

6.4.2 How is the propagation speed impacted by θS and v?

The propagation speed of the virus is certainly a function of all the parameters of our model. However,
the distance r is given by the technology and cannot be changed, and the intensity of streets λ
is known for a given city. Now, for a given malware, we want to see the influence of the intensity
and speed of users on the propagation speed and the infection rate. In fact, agents that move fast
enough but not too fast (to not have

√
λρv ≥ 3/2) will rapidly carry the virus to the other edges and

facilitate its spreading. Also, when the agent’s intensity is important, there will always be agents on
these streets that will get infected and carry the virus further. Considering Figures 4 and 5, the first
thing that stands out, even clearer than in the previous figures, is that the propagation speed and the
infection rate show different behaviors. For every θS , there is clearly an increase and then a decrease
of V when we increase v, going from ≈ 0km/h to the maximal value and then returning to 0km/h.
But the valueR does not change a lot in the first range of values of v. This means that when agents
are slow, they will stay sufficiently long on every street and therefore once an infected agent reaches
a street it will infect many agents being on it too, and since R takes into account only agents inside
the smallest ball containing the virus, it will have important values. Propagation speed is nevertheless
slow because the agents take a lot of time before exiting each street and carrying the virus to the next
one. This correlation betweenR and V confirms the need to study these two quantities together.
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θS

v

Figure 5: Propagation speed V in km/h

Returning to the threshold
√
λρv, the value of v verifying

√
λρv = 2/3 is v0 ≈ 16.97. Thus, we have

again thatR is maximal in the region below the level line
√
λρv = 2/3, and V is maximal exactly in

its close neighborhood. This property would therefore be true even when varying θS . For larger values
of v, we expect that the virus will not propagate anymore because of the streets being too short, and
for larger θS , the propagation can only be more important because the more agents we have the more
easily the virus spreads, the propagation speed and the infection rate would however be bounded and
will not increase to infinity.

6.5 White-knights counter measure

Let us bring back the white knights to our model. Now we will talk not only about the propagation speed
and the infection rate, but also about the survival of the virus. We will consider in the simulations that
the virus survives if, by the end of the simulation, we have at least 1% of the population that is infected,
i.e.,R ≥ 0.01. Define the virus survival probability by Σ1%.

Two practical questions we can ask are how many white knights do we need to exterminate the virus,
and then how does ρI impact the rate of white knights needed? The answer to the first question is
given in Figure 6. It shows that the virus is exterminated beginning from θW ≥ θS/3. Note that this
threshold depends on the survival criterion we are considering. If we say for example that the virus
survives if more than 10% of the population is infected then we would have different results.

Note that the value of Σ1% is 1 for the point (θS, θW ) = (0.1, 0.1). Of course, this cannot be the
case. This particular value is biased because of our definition of Σ1%: for this point the virus does not
propagate at all, but neither is it exterminated because there are too few agents and they rarely meet
one another. Also because of the small number of agents, we will have that one agent represents more
than 1% of the population, and therefore the virus is considered to have survived.

Figure 6 also suggests that only the ratio θW/θS is important when it comes to the virus survival.
This would mean that with a given configuration of the parameters other than θS, θW , there exists a
threshold β such that if θW/θS > β then the virus is eliminated, independently from the values of θS
and θW themselves. In order to verify this hypothesis, we ran simulations similar to the one in Figure
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θS

θW

Figure 6: Σ1% for θS ∈ [0.1, 3](km−1), θW ∈ [0, 1.9](km−1). In white: the level line θW = θS/3

θW/θS

ρI

Figure 7: Σ1% for θW/θS ∈ [0, 2/3] and ρI = ρW ∈ [10, 190].

6 but with different values of ρI = ρW ∈ {40, 60, 80}, and we always have similar observations:
the virus does not propagate beginning from a threshold value of θW/θS , different for each ρI . This
brings us to answering our second question, that is to identify the dependency between this threshold
and ρI , and this is given in Figure 7. We remind that ρW is always taken equal to ρI . The figure was
realized by fixing θS = 3km−1 and varying θW .

We first observe that in the region were both θW and ρI are small, the survival is maximum, which
is to be expected because the virus is easily transmitted and the white-knights are rare. Then, when
ρI increases, through the observations made for Figure 2, the virus will not be able to propagate for
ρI ≥ ρ0 such as

√
λρ0v = 3/2. Numerically we find ρ0 ≈ 152.73s, and this corresponds well to

what we have in Figure 4.

The relevant phenomenon we observe here is that for ρI < ρ0, the intensity of white knights needed
to eliminate the virus grows with ρI . Moreover, the boundary delimiting the virus survival zone is very
thin for small values of ρI , and it becomes more and more spread out when ρI grows. We believe that
the reason for this shape of the survival zone is the time lag between the wave of virus propagation
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and the wave of white knights propagation. Indeed, the virus will be able to propagate easily at the
beginning if the intensity of the susceptible agents is sufficient. On the other hand, white knights will
only spread rapidly after there are enough infected agents. This delay between the two waves gives to
the virus a step ahead, letting it infect a lot of agents, and hence allowing him a better chance to reach
the radius u.

With this, given the value of θS and ρI = ρW , we can know the white knight’s intensity needed for
eliminating the virus simply by choosing the suitable ratio θW/θS from Figure 7.

Summary of simulation results

From all the simulations we made, we can deduce the following properties:

� The virus does not propagate when
√
λρIv > 3/2.

� If we vary, λ, ρI or v we find that V is maximal on the level line
√
λρIv ≈ 2/3 and R is

maximal in its neighborhood where
√
λρIv < 2/3.

� If ρI = ρW , then the intensity of white knights necessary for eliminating the virus would depend
on (but not only on) the ratio θW/θS and ρI . For small values of ρI there is a sharp threshold
value of θW/θS separating the survival and elimination regions of the virus.

7 Conclusion and future work

This paper presents a novel agent based simulation model for analyzing malware propagation dy-
namics in D2D networks. This approach, traditionally applied for complex systems, allows us to obtain
relevant and surprising findings about malware propagation in D2D, which demonstrates also its effec-
tiveness for such dynamic communication networks. Notably, malware propagation was not possible
above a first threshold (

√
λρIv > 3/2) and was maximal around a second threshold (

√
λρIv = 2/3),

which corresponds to having an average length of streets equal to the distance traveled by an agent
during the time ρI (needed for infection transmission). This shows, therefore, the importance of street
system characteristics, which has been traditionally neglected when studying malware propagation in
D2D.

Thanks to this model, two regimes have also been identified using phase diagrams showing bound-
aries between survival and elimination regions of the virus that depend on devices density (susceptible
and white knight) and on the connection time needed for malware infection. An other important result
was to estimate the percentage of counter measures (white-knight devices) to introduce in the network
in order to eliminate the malware and control its propagation.

We believe agent-based modeling and simulation has a great potential for studying malware spread in
D2D communication networks. As a future work, we aim to perform the same simulations on different
real urban maps. Comparing results obtained with real street systems and results with probabilistic
maps (PVTs), will allow us to deduce to what extent theoretical models can help to predict reality. It
would be also possible to study other theoretical models of maps, and try to have a match between
maps of real cities and the model that would best fit them.
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