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Connectivity in mobile device-to-device networks in urban
environments

Alexander Hinsen, Benedikt Jahnel, Elie Cali, Jean-Philippe Wary

Abstract

In this article we setup a dynamic device-to-device communication system where devices,
given as a Poisson point process, move in an environment, given by a street system of random
planar-tessellation type, via a random-waypoint model. Every device independently picks a target
location on the street system using a general waypoint kernel, and travels to the target along
the shortest path on the streets with an individual velocity. Then, any pair of devices becomes
connected whenever they are on the same street in sufficiently close proximity, for a sufficiently
long time. After presenting some general properties of the multi-parameter system, we focus on
an analysis of the clustering behavior of the random connectivity graph. In our main results we
isolate regimes for the almost-sure absence of percolation if, for example, the device intensity is
too small, or the connectivity time is too large. On the other hand, we exhibit parameter regimes
of sufficiently large intensities of devices, under favorable choices of the other parameters, such
that percolation is possible with positive probability. Most interestingly, we also show an in-and-out
of percolation as the velocity increases. The rigorous analysis of the system mainly rests on com-
parison arguments with simplified models via spatial coarse graining and thinning approaches.
Here we also make contact to geostatistical percolation models with infinite-range dependencies.

1 Introduction and Setting

The ever increasing demand for fast and reliable data exchange in communication systems poses
great challenges but also offers opportunities for network operators around the globe. One very impor-
tant aspect here is the exponentially increasing use of mobile devices such as cellphones or communi-
cating cars. This is also reflected in the 5G specifications, where faster connections, higher throughput,
and more capacity are envisioned via an enhanced mobile broadband, and ultra-reliable low-latency
communications should enable the system to support time-crucial applications such as car-to-car
communication.

In this context, device-to-device (D2D) communications is considered one of the key concepts per-
vading a highly diverse set of use cases. On the one hand, D2D systems hold the potential to relief
present day cellular networks from at least some of the system’s pressure. On the other hand, D2D
communications can provide for example faster and more robust connectivity. However, from an oper-
ator’s perspective, D2D systems are much less controllable than traditional cellular network due to the
dependence on the individual user behavior. This lack of control becomes even more severe, when
the devices are mobile. Thus, in order to properly predict the performance of D2D systems, either
with or without additional infrastructure, a detailed and comprehensive modeling and model analysis
of such mobile ad-hoc networks (MANets) is imperative. Here, a natural ansatz is to incorporate the
uncertainties of the system with the help of probability theory and more precisely stochastic geome-
try [BB09a, BB09b, Hae12, JK20]. The starting point is the modeling of random initial locations of the
devices and their individual movements in cities. Based on this, the transmission mechanism between
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any pair of devices has to be represented with a reasonable level of detail, for example not neglecting
that the devices need to spend some minimal amount of time in close proximity. Here also different
operating systems (e.g., Android versus IOS systems) and their specific properties, as well as fluctu-
ations in the transmission rates play an important role. Ultimately, then the distribution of data through
the D2D system over time can be analyzed, leading to predictions for examples for the connectivity,
throughput, or more generally, the quality-of-service of the network.

Against the background of the current pandemic crisis of the SARS-CoV-2 human-to-human virus,
let us highlight that such mobile D2D networks and the associated mathematical theory of stochastic
geometry can also be employed (and partially is already in use) to model and analyze connectivity
models in the context of the spatial epidemiology of communicable diseases. In fact, the approach
and results presented in this article can be easily adjusted and interpreted with respect to human-
to-human connectivity and the associated spreading of a contagious virus in a population, especially
with the application of contact-tracing. The general connection mechanism outline in this manuscript
features a relatively realistic setting for the human-to-human transmission of a contagious viruses,
but needs appropriate parameter adjustments. In systems with more complex interaction, i.e. virus
transmission, this model can serve as a lower bound to see if long-range communication is possible.

We start by describing our general model for a mobile multilayered D2D telecommunication network
in detail. The first network layer, described in Section 1.1, is given by the street system. In Section 1.2
we describe the system of initial device positions on the street system. In Section 1.3 we introduce the
paradigmatic mobility model for the devices given by the random waypoint model. Finally, in Section 1.4
we introduce our notion of connectivity in the system.

1.1 Street systems via random segment processes

The first model layer consists of a stationary random planar segment process S ⊂ R2, i.e., a simple
point process of line segments of lengths in (0,∞) embedded in R2 (see [DVJ08]), that represents a
street system. The most common choice for the street system model is the Poisson–Voronoi tessella-
tions (PVT) based on statistical analysis of urban maps [Cou12]. However, some of our results also
cover for example the case of Poisson–Delaunay tessellations (PDT), which shares with the PVT the
feature of translation-invariance and isotropy, i.e., the distribution of S is invariant both under transla-
tions as well as rotations in R2, see Figure 1 for an illustration. We recall that the edges of a PVT are
defined as the boundaries of the Voronoi cells of a stationary Poisson point process, where such a
Poisson–Voronoi cell associated to the Poisson point Φi is a (almost-surely bounded) convex subset
of R2 containing all points that are closer to Xi than to any other Poisson point, see [OBSC00] for
more details. Another relevant choice for which some of our results are valid, is the Manhattan grid
or rectangular Poisson line tessellation, where infinite horizontal and vertical lines are attached to two
independent Poisson processes on the axis in R2. We denote by S the law of the street system.

It will become important that the underlying street system exhibits a certain spatial stochastic inde-
pendence known as stabilization, which has its roots in central limit theorems in stochastic geom-
etry [Lee97, PY02, PY03]. Loosely speaking, for our main results to hold, in two distant regions in
space, the distribution of streets should not depend on one another. More precisely, we write S ∩ B
to indicate the restriction of the street system S to the area B ⊂ R2 and |S ∩B| for the total lengths
of the street system in B. Further, we write

Qn(x) = x+ [−n/2, n/2]2

for the square with side length n ≥ 1 centered at x ∈ R2 and put Qn = Qn(o). We will assume
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Figure 1: Realization of a street system given by a Poisson–Voronoi tessellation.

throughout the manuscript that S is normalized, i.e., E[|S ∩ Q1|] = 1. We write dist(ϕ, ψ) =
inf{|x− y| : x ∈ ϕ, y ∈ ψ} to denote the distance between sets ϕ, ψ ⊂ R2. Then, we reproduce
the definition from [HJC19].

Definition 1.1. A stationary random segment process S is called stabilizing, if there exists a random
field of stabilization radii R = {Rx}x∈R2 that is measurable with respect to S and satisfies

(1) (S,R) are jointly stationary,

(2) limn↑∞ P
(

supy∈Qn∩Q2 Ry < n
)

= 1,

(3) for all n ≥ 1, all non-negative bounded measurable functions f and all finite ϕ ⊂ R2 with
dist(x, ϕ \ {x}) > 3n for all x ∈ ϕ, the following random variables are independent{

f(S ∩Qn(x))1
{

sup
y∈Qn(x)∩Q2

Ry < n
}}

x∈ϕ
.

A stabilizing segment process S is called exponentially stabilizing if there exists c > 0 such that
P(supy∈Qn∩Q2 Ry ≥ n) ≤ exp(−cn) for all sufficiently large n.

Note that PVT and PDT are even exponentially stabilizing, see for example [HJC19], while the Man-
hattan grid is not stabilizing. In the following, we will always assume that S is stabilizing.

Next, it will also become important that the underlying street system exhibits a sufficient amount of
connectedness with high probability. We encode this in a notion of asymptotically essentially connect-
edness as follows.
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Definition 1.2. A stabilizing random segment process S with stabilization radii R is asymptotically
essentially connected if for all sufficiently large n ≥ 1, whenever supy∈Q2n∩Q2 Ry < n/2 we have
that

(1) |S ∩Qn| > 0 and

(2) S ∩Qn is contained in one of the connected components of S ∩Q2n.

Again, street systems S that are given as edges of a PVT or PDT, are asymptotically essentially
connected, see for example [HJC19, Example 3.1] and in the following, we will always assume that S
is asymptotically essentially connected.

1.2 Initial device positions via Cox point processes

The second model layer consists of the point process Xλ = {Xi}i≥1 representing initial positions
of devices scattered at random in R2. More precisely, we assume Xλ to be a Cox point process with
random intensity measure

ΛS(A) = λ|S ∩ A|
for every measurableA ⊂ R2. Here, λ ≥ 0 is a scaling parameter that allows us to tune the expected
number of devices per unit of street length, see Figure 2 for an illustration.

Figure 2: Realization of initial device positions (blue) confined to a street system given by a Poisson–
Voronoi tessellation.

Note that, Xλ can be seen an independent Poisson point processes with parameter λ confined to the
environment S. In particular for any stationary street system S, also the associated Cox point process
of initial device positions Xλ is stationary.
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1.3 Device mobility via random-waypoint models

The third layer of the model concerns device mobility. We present an augmented version of the clas-
sical random-waypoint model, in which a device moves at constant speed and visits a sequence of
waypoints distributed in space [BHPC04]. This model describes basic features of device mobility, but
neglects the important constraint that in cities, devices can only move along the street system. For
this, we assume that each initial device position x ∈ S picks a target location y ∈ S independently at
time zero, using the probability kernel probability kernel

κS(x, dy)

that respects the street system S. In the following, we will always assume that κ is translation covari-
ant, i.e., for all z ∈ R2, probability kernel

κS(x, dy) = κS+z(x+ z, dy + z).

Examples that we will use for this waypoint kernel κ are

κ′S(x, dy) = |BL(x)|−1|q−1S (dy∩S)∩BL(x)| or κ′′S(x, dy) = |S∩BL(x)|−1|dy∩S∩BL(x)|,

where qS(y) denotes the closest point on S to y and BL(x) denotes the disc of radius L, centered
at x ∈ R2. In words, in the kernel κ′ the target location is chosen to be the point on the street system
that is closest to a uniformly chosen point within a disc with radius L > 0 around the location of
the device. In the kernel κ′′ the target location is chosen uniformly on the street system within a disc
around the position of radius L > 0. Note that both κ′ and κ′′ are probability kernels in the sense that
for almost-all S and all x ∈ S, κ′S(x,R2) = κ′′S(x,R2) = 1. The support of κS(x, dy) is defined
via

supp(κS(x, dy)) = {y ∈ S : κS(x,Bε(y)) > 0 for all ε > 0},
and, roughly speaking, contains all reachable points on the street system from the position x ∈ S.
We say that κ is of bounded support, if there exists L′ > 0 such that supp(κS(x, dy)) ⊂ BL′(x) for
almost-all S and all x ∈ S. Note that κ′′ is of bounded support with L′ = L and also κ′ is of bounded
support with L′ = 2L for street systems of Poisson–Voronoi type since the projection qS(y) of any
point y ∈ BL(x) towards the street system can not be at distance larger than |x− y|.
Next, we equip each deviceXi ∈ Xλ with a velocity Vi that is an independent random variable drawn
from a general mutual distribution µv. In the simplest case, we can set µv = δv, where v ≥ 0 then
represents a globally fixed velocity. Slightly more generally, Vi can have only two possible values,
representing a pedestrian speed vp ≥ 0 and a driving speed vd ≥ 0, appearing with a probability p
and 1− p, respectively, i.e., µv = pδvp + (1− p)δvd . In the most general case, we assume that 0 <
vmin ≤ vmax <∞, where vmin := sup{v : µv([v,∞)) = 1} and vmax := inf{v : µv([0, v]) = 1}.
Then, we assume that each device Xi moves towards its individual target Yi with speed Vi on the
shortest path along the street system. As S is asymptotically essentially connected, Xi and Yi lie
in the same component and such a connecting path exists. Upon arrival at the target location, each
device immediately returns to its initial position using the same path and velocity and subsequently
repeats this commute until the end of the mutual time horizon T > 0, see Figure 3 for an illustration.

On the general level, we will use the notation

κSt (x, dy),

for the transition kernel that describes the probability to see the devices with initial position at x ∈ R2

at position dy ∈ R2 at time t, depending on the street-system realization S as well as the choice of
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Figure 3: Realization of initial device positions (dotted blue) confined to a street system given by a
Poisson–Voronoi tessellation and their respective positions at a fixed positive time (blue), with arrows
indicating the corresponding displacement.

the target location under the waypoint kernel. In order to simplify the notation, similarly to the street
system, we are going to suppress the dependence of the theorems on the movement kernel wherever
it is possible.

1.4 Connectivity in mobile D2D networks via space-time vicinity rules

We have now defined the individual movement patterns of the devices. Let us abbreviate by Ti =
(Ti,t)0≤t≤T the whole trajectory of deviceXi up to time T based on the scheme just described, where
Ti,t denotes the position of device Xi at time t, started at the initial position Ti,0 = Xi. We now turn
to the description of a connection between device Xi and Xj . For this, we will call any intersection
point of two distinct segments in S or the end of a segment a crossing. Two distinct crossings are
considered to be neighbors if and only if they are associated to the same segment and not separated
by another crossing. Any part of a segment that lies between two neighboring crossings is called a
street. Using these definitions, we let

Z(Xi, Xj) = {t ≥ 0: |Ti,t − Tj,t| < r and Ti,t, Tj,t are on the same street}

denote the set of contact times between the devices, i.e., the set of times at which the devices associ-
ated with the initial positions Xi and Xj are on the same street and close together, where closeness
is defined via the euclidean distance being smaller than a global parameter r > 0. The condition that
connections are only possible if devices are on the same street reflects the shadowing phenomenon,
i.e., the fact that transmissions through houses is effectively blocked. Let us note that such a constraint
was already introduced and investigated in [LGBCEN21, LGBCEN19], although in a non-dynamic sit-
uation.

DOI 10.20347/WIAS.PREPRINT.2952 Berlin 2022



Connectivity in mobile device-to-device networks in urban environments 7

Further, let ρ = ρo + ρ1 be the sum of a fixed initialization time ρo ≥ 0 and a fixed transmission time
ρ1 > 0. In other words, ρ represents the minimal amount of time that two devices have to be in contact
with each other in order to successfully complete a data transmission. Now, using these definitions,
we say that the devices Xi and Xj are connected, represented by an edge in the random graph with
vertices Xλ, if there exists T ≥ t ≥ 0 such that

[t, t+ ρ] ⊂ Z(Xi, Xj), (1)

see Figure 4 for an illustration of the resulting space-time connectivity network.

Figure 4: Realization of initial device positions (blue, up and left) confined to a street system (visually
suppressed) and the appearance of edges (black lines) over time (up and left to down and right).

2 Results

In the previous section we have described a multi-parameter connectivity network and the set of re-
sults presented in this article evolve around its clustering behavior. More precisely, we consider the
associated random graph of connections up to time T

gT,µv,ρ,r(X
λ) = gκ,T,S,µv,ρ,r(X

λ),

in which we will suppress the dependence on the street-system as well as the mobility kernel κ,
since we will mostly assume those parameters to be fixed. Recall that gT,µv,ρ,r(X

λ) is the graph
with vertices given by the Cox points in Xλ and in which any pair of Cox points is connected if (1)
holds for at least one t ∈ [0, T − ρ], i.e., their associated trajectories (described via κ and µv) are
sufficiently close together (indicated by the parameter r) on the same street, for a sufficient amount of
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time (indicated by the parameter ρ). Let us highlight that, although the underlying mechanism for the
edge-drawing depends on time, the graph gT,µv,ρ,r(X

λ) is static, see also below for more comments.

In view of the propagation of malware, or more generally any data, through the system, we start
our analysis by considering percolation properties of gT,µv,ρ,r(X

λ). That is, we say that the graph
percolates if it contains an unbounded connected component. Here, percolation can be seen as a
certain best-case scenario for the dissemination of data in the system. Indeed, our notion of percolation
does not reflect that connections are in fact established at specific points in time, and that the actual
path of a message through the dynamical network depends on when the message can hop from
one device to another. In that sense, from the perspective of a message in the system, percolation
assumes an optimal space-time placement of the connection events. In other words, in the absence
of percolation, even an optimal space-time placement of the connection events will not lead to the
possibility that data travels very far.

Let us mention that a percolation analysis can additionally be motivated by assuming that the devices
travel along their trajectory repeatedly (e.g., every day). Then, in case the handover of a message
over multiple hops is impossible in one time window [0, T ], in the second iteration, when the possible
transmissions in the first iteration are already performed, another set of transmissions will happen.
Repeating this mechanism ultimately leads to a complete coverage of the connected component and
then percolation indicates whether or not this component is large enough to support long-distance
transmissions.

Consider for a > 0 the following rescaled distributions,

� κS[a](x, dy) := κS/a(x/a, dy/a),

� Sa(dS) := S(dS/a), and

� µav(dv) := µv(dv/a),

then, we have the following scaling relations with respect to percolation for which we will present the
short proof in Section 3.1.

Proposition 2.1. For all a > 0 we have that

(1) gκ[a],T,S1/a,µav,ρ,ar(X
λ/a) percolates if and only if gκ,T,S,µv,ρ,r(X

λ) percolates and

(2) gκ,T/a,S,µav,ρ/a,r(X
λ) percolates if and only if gκ,T,S,µv,ρ,r(X

λ) percolates.

Let us now fix κ and S and define the following critical parameters for percolation,

Tc = Tc(λ, µv, ρ, r) := inf{Tc > 0: P(gT,µv,ρ,r(X
λ) percolates) > 0}

λc = λc(T, µv, ρ, r) := inf{λ ≥ 0: P(gT,µv,ρ,r(X
λ) percolates) > 0}

ρc = ρc(T, λ, µv, r) := sup{ρ ≥ 0: P(gT,µv,ρ,r(X
λ) percolates) > 0}

rc = rc(T, λ, µv, ρ) := inf{r ≥ 0: P(gT,µv,ρ,r(X
λ) percolates) > 0}

and note that these critical thresholds describe subcritical regimes in the sense that for T < Tc,
λ < λc, ρ > ρc or r < rc, the system features percolation with probability zero. Further note
that percolation is indeed monotone with respect to these parameters since longer time horizons,
more devices, shorter connection-time thresholds and larger vicinity thresholds can only increase
connectivity. Hence, we will present conditions under which 0 < Tc, λc, ρc, rc <∞.
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However, considering the dependence of percolation on the velocity µv, the situation is substantially
more complicated. Indeed, keeping all other parameters fixed and assuming for example a small den-
sity of devices, then, slow velocities may not allow any message to travel very far, and thus we expect
to see absence of percolation. On the other hand, if velocities are large, then large gaps between
devices can be bridged, but at the same time, the probability to be in close proximity for a sufficiently
long time becomes small, again leading to absence of percolation. In an intermediate speed regime in
which also the other parameters allow for percolation, we then expect to see percolation with positive
probability.

Let us recall that we generally assume the support of µv to be contained in the minimal interval
[vmin, vmax] with 0 < vmin ≤ vmax <∞. We hence define two critical speed parameters

vc = vc(T, λ, ρ, r) := inf{avmax ≥ 0: P(gT,µav,ρ,r(X
λ) percolates) > 0}

vc = vc(T, λ, ρ, r) := sup{avmin ≥ 0: P(gT,µav,ρ,r(X
λ) percolates) > 0}

and present conditions under which 0 < vc < vc <∞.

In the following Section 2.1 we present our results on absence of percolation and in Section 2.2 we
present our results on percolation regimes.

2.1 Regimes for absence of percolation

Our first result establishes that indeed, insufficiently many devices and a too slow speed lead to ab-
sence of percolation.

Theorem 2.2. For any κ, S and all r, ρ ≥ 0 the following holds:

(1) For all λ ≥ 0 and µv we have that Tc(λ, µv, ρ, r) > 2ρ.

(2) For all T ≥ 0 and µv we have that λc(T, µv, ρ, r) > 0.

(3) For all T, λ ≥ 0 we have that vc(T, λ, ρ, r) > 0.

The proof of (2) rests on the idea that we can bound the process by the easier-controllable Cox–
Gilbert graph. For (1) and (3) this comparison fails, and we need to couple our space-continuous
model to site-percolation in Zd and employ stabilization arguments. We present the detailed proof in
Section 3.2.

Let us mention that the comparison to Gilbert graphs also provides rough upper bounds for λc(T, µv, ρ, r)
and vc(T, λ, ρ, r) with the help of the numerical analysis provided in [CGH+18,HJC19].

Let us mention that item (3) in Theorem 2.2 does not hold for T = ∞. In this case we have
vc(∞, λ, ρ, r) = 0 once P(g∞,µv,ρ,r(X

λ) percolates) > 0 for some parameter configuration. In-
deed, using Part (2) in Proposition 2.1, we also have percolation for all 0 < a < 1, i.e., 0 <
P(g∞,µav,ρ/a,r(X

λ) percolates) ≤ P(g∞,µav,ρ,r(X
λ) percolates), where we also used monotonicity

in ρ.

Next, note that rc can very well be zero, since devices with non-parallel movement on a street share
the same position exactly once, leading to a connection even for r = 0, if ρ = 0. However, devices that
move together in the same direction can not exchange messages if r = 0. For the consequences of
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this observation regarding the critical connectivity threshold, see Theorem 2.4 below. Let us note that,
in principle, absence of percolation for r = 0 could still imply rc(T, λ, µv, ρ) = 0. This would be the
case if gT,µv,ρ,r(X

λ) percolates for all positive r, which indicates that the parameters (T, λ, µv, ρ, 0)
are critical for percolation, rendering a mathematical analysis extremely hard.

In order to see absence of percolation for large speeds vmin, first note that any street s such that
2|s|/vmin < ρ can not be used to exchange messages. However, every street can be used for
traveling. More precisely, in order to establish a connection, any device has to remain at least a time
of ρ on some street and during that time travels at least a distance of ρvmin. As devices reverse
their direction when they reach either their destination or their initial position, the minimal length of
a street such that communication on it is possible is given by ρvmin/2. Although staying on a street
of length smaller than ρvmin/2 is possible if both the initial position and the destination are on that
street, those devices can only connect to the same type of devices that have both their initial position
and destination on the same street. In that way, only local connective components are formed, we will
ignore this possibility in the following considerations.

We have the following result on absence of percolation for sufficiently high velocities.

Theorem 2.3. We consider street systems of Poisson–Voronoi or Poisson–Delaunay type. Then, for
any κ with bounded support and all T, λ, r, ρ ≥ 0 we have that vc(T, λ, ρ, r) <∞.

Let us note that we in fact prove that vc(∞, λ, 0, r) <∞, which implies a uniform bound in T and ρ
by the corresponding monotonicites.

The proof rests on the following ideas. As vmin tends to infinity, any deviceXi ∈ S eventually reaches
its target location Yi ∈ S before time T . In particular, it is very unlikely to see a path from Xi to
any of its possible target locations that reaches very far away from Xi in R2, and these shortest
paths can be determined independently of the device process. Additionally, only devices that have a
sufficiently long street on a shortest path to at least one of their possible target locations can contribute
to the connectivity, and again this can be determined independently of the device process. However,
as v tends to infinity, existence of these long streets becomes also unlikely, leading to a thinning
of the devices and eventually to a subcritical regime. Formally, we dominate our percolation model
by a subcritical geostatistical Cox–Boolean model, see also [AT18, SRJD04], where the (random)
environment determines both, the random radii associated to the points, and a sufficiently strong
thinning of the Cox points. We present the complete proof in Section 3.3.

We still have to deal with the connection-time parameter ρ. For this, note that we have a trivial bound
for the connection time, given by ρc ≤ T/2 since for ρ > T/2, in order to establish a connection on at
least two different streets, the device has to stay on one street for at least T/2 time, leaving not enough
time to form connections on any different street. Therefore, any device can only have connections to
other devices that also spend the majority of their time on the same street. As a consequence, each
street forms its local connection cluster and communication between different clusters is impossible,
which implies absence of percolation due to the stabilization assumption. However, this trivial bound
can be substantially improved, see below.

Let us first make a statement on the absence of percolation for any positive ρ if r = 0. As almost
surely devices do not share the same position while moving in the same direction, communication
is only possible between devices that move in opposite direction and ρ = 0 becomes a necessary
condition. Therefore

ρc(T, λ, µv, 0) ∈ {0,−∞},
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since even with ρ = 0, percolation might not be possible if the device density λ is too small. Inter-
estingly, ρ = 0 is the only case where the model becomes monotone in v, as the distance a device
travels during a successful communication ρv = 0 does not increase in v.

In order to provide potentially better upper bounds for the critical connection time ρc, we consider the
following percolation model based on the street system. For all S first denote by Sa the thinned street
system consisting of all streets in S with length not smaller than a ≥ 0. Second, we connect any pair
of vertices that are endpoints of any of the long streets (with length not shorter than a) if and only if
the length of the shortest path along the streets between them does not exceed b ≥ 0. The resulting
graph Sa,b now consists of long streets and special edges between some of the endpoints of the
long streets, see Figure 5 for an illustration. We say that Sa,b percolates, if Sa,b contains an infinitely-

Figure 5: Realization of a street system given by a Poisson–Voronoi tessellation (red). Streets of
length greater than ρv/2 are drawn thick. Their endpoints (blue) are connected if their graph distance
(indicated in dashed blue lines) is less than v(T − 2ρ). The blue vertices, combined with the thick red
and thick blue edges form the percolation graph Svρ/2,v(T−2ρ).

long component of connected streets and edges. Note that ρ 7→ 1{Svminρ/2,vmax(T−2ρ) percolates}
is decreasing since we see less surviving streets and also less connections between endpoints of
long streets. Here the graph is defined only for 0 ≤ ρ ≤ T/2. For ρ > T/2, the allowed distance
v(T − 2ρ) becomes negative. Hence, we can define a unique critical threshold via

ρ′c(T, µv) := sup{0 ≤ ρ ≤ T/2: P(Svminρ/2,vmax(T−2ρ) percolates) > 0}.

Let us mention that v 7→ 1{Svρ/2,v(T−2ρ) percolates} is not monotone since, for example, large
velocities lead to more streets being eliminated, while also leading to the possibility to travel larger
distances between remaining long streets. Even for T being much larger than 2ρ, it is this interplay
between the possibility to connect on sufficiently long streets and the ability to bridge between long
streets (using all streets), that makes this percolation picture interesting.
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We have the following theorem.

Theorem 2.4. For any κ,S , µv and all λ, T, r ≥ 0 we have that ρc(T, λ, µv, r) ≤ min{T/2, ρ′c(T, µv)}.

Let us note that we in fact prove that ρc(T,∞, µv,∞) ≤ min{T/2, ρ′c(T, µv)}, which provides a
uniform upper bound in λ and r by monotonicity. Let us note that, for any fixed λ, it is possible to even
prove that ρc(T, λ, δv, r) < T/2 with the help of a coupling towards a discrete site-percolation model
similar to the one used in the proof of Theorem 2.2, see Section 3.2. However, this approach leads to
limλ↑∞ ρc(T, λ, δv, r) = T/2.

On the other hand, for any κ, λ and r we have ρc(T, λ, δv, r) ≤ ρ′c(T, δv) due to the construction of
the auxiliary model Sa,b. Thus the analysis of subcritical regimes for the auxiliary model is the main
idea of the proof, which we present in Section 3.4.

In order to complement Theorem 2.4, as a final result for this section on absence of percolation, let us
isolate a regime of fast velocities such that ρ′c(T, δv) < T/2. Recall that this is in general a nontrivial
task since v 7→ 1{Svρ/2,v(T−2ρ) percolates} is not monotone. Let us denote by

ac(b) := sup{a > 0: P(Sa,b percolates) > 0} (2)

the largest street-thinning parameter such that we see percolation with positive probability in the pres-
ence of additional edges between endpoints of long streets. We further write ac := limb↓0 ac(b),
where we note that the limit is in fact an infimum since b 7→ ac(b) is decreasing. Then we have the
following result.

Theorem 2.5. Let S be a street system, then ac < ∞. Further, for any κ and T ≥ 0 as well as
v > 4ac/T it holds that ρ′c(T, δv) < T/2.

The proof for the finiteness of ac rests on stabilization arguments. Then, we can use the monotonicity
of Sa,b to prove that, if the velocity of the devices is high enough, constructing a subcritical regime for
a ρ < T/2 is possible. We present the details in Section 3.5.

2.2 Regimes for percolation

In order to see percolation we have a variety of parameters for possible adjustments. In view of The-
orem 2.2, note that for too small device intensity or speed, we can never see percolation. Hence, we
assume the speed to be positive, i.e., vmin > 0 and naturally also the time horizon to be positive. In
order to avoid complications coming from streets that are too short to support communications, in the
first step, let us suppose that ρ = 0 and prove existence of percolation for large device intensities.
For this, let us present a condition for the waypoint kernel that relaxes isotropy around the starting
position. We say that a kernel κ is c-well behaved if for almost-all S and all x ∈ S,

Bc(x) ∩ S ⊂ supp
(
κS(x, dy)

)
.

Further, we say that κ is well behaved if κ is c-well behaved for some c > 0. Let us note that both κ′

and κ′′ are L-well behaved. Here is our first result for the immediate connectivity ρ = 0.

Theorem 2.6. Let κ be well behaved and T > 0 then, λc(T, µv, 0, r) <∞.
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The proof rests on a coupling of the original process to an auxiliary process of open streets such that
existence of an unbounded component of open streets implies percolation of the original model. Here,
we say that a street is open if devices on that street can connect to devices on all its neighboring
streets and also inter-connect on that street. In particular, any infinite connected component of open
streets contains an infinite connected component of devices. However, as λ increases, the probability
for a street to be open converges to one, resulting in a percolation regime for open streets. We present
the complete proof in Section 3.6.

We have now exhibited the existence of a percolation regime for ρ = 0, if λ is sufficiently large. In
order to move beyond this setting, note that for ρ > 0, very short streets s with |s| < ρvmin/2 can
never be used to establish a connection, however, they can be used for traveling. As a consequence,
for the case where ρ > 0 we need stronger assumptions on µv and r in order to guarantee that
λc(T, µv, ρ, r) <∞.

Again, we want to compare our original model to the simpler model on street systems Sa, where all
streets in S that have length less than a are eliminated. Recall that we say that Sa percolates if it
contains an infinite connected component of streets and

ac(0) = sup{a > 0: P(Sa percolates) > 0}.

In principle, ac(0) could very well be zero, however, in Theorem 2.8 below, we show that indeed,
ac(0) > 0 for all asymptotically essentially connected street systems. Let us note that ac(0) ≤ ac,
where ac is defined below Definition (2). In general it is not clear whether we also have that ac(0) ≥ ac.
This is a question of continuity of critical values, which is not always guaranteed.

Unfortunately, asymptotically essentially connectedness can be easily violated by thinned street sys-
tems, since, with positive probability, there are disconnected components. Let us give a different ver-
sion of percolation that is beneficial for thinned street systems. We denote by Ra

x the distance of the
furthest point from x that is reachable without crossing Sa. Now, if limn↑∞ P

(
supx∈Qn∩Q2 Ra

x <

n
)

= 1 we say that the thinned graph is Ra-connected and define

a+c := sup{a > 0: Sa is Ra-connected}.

With these definition, we are in the position to state the following result.

Theorem 2.7. Let κ be c-well behaved for some c > 0, r, ρ, ac(0) > 0 and T > 2ρ. Then, for all
sufficiently small vmin we have λc(T, µv, ρ, r) < ∞. If furthermore a+c > 0, then the first statement
holds for all vmin < min(rρ−1, a+c ρ

−1, c(2ρ)−1).

Similar to the proof of Theorem 2.6, the main argument is a comparison of our model to a street
system in which we eliminate short streets, large streets and additionally perform an independent
random thinning of street. The removal of short streets becomes necessary, since for positive ρ, short
streets can never be used to establish connections. The independent thinning comes from the fact
that, even for large device intensities, a street has good intrinsic connectivity properties only with high
probability. In order to get uniform control on this probability, we have to disregard long streets. We
present the complete proof in Section 3.7.

The previous theorem heavily rests on the assumption that Sa percolates. In the following theorem we
will show that, indeed, there are regimes where this is the case.

Theorem 2.8. Let S be a street system, then ac(0) > 0 and a+c > 0.
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Note that this can be seen as a complementary result to Theorem 2.5, in which ac < ∞ is verified
under general assumptions.

The proof rests on a comparison with a finitely-dependent site-percolation process on Z2, leveraging
stabilization and asymptotic-essential-connectedness arguments. We present the complete proof in
Section 3.8.

2.3 Simulations

Finally, let us present some simulations for two of the key results presented above. More precisely,
we focus on the interplay between the Theorems 2.3, 2.7 and 2.2. Recall that Theorem 2.3 features
absence of percolation for large velocities, which is roughly due to the fact that in this regime only very
long streets can be used to form connections. On the other hand, Theorem 2.7 establishes percolation
for intermediate velocities for sufficiently large intensities of devices. But then again, Theorem 2.2
features absence of percolation if the velocities are too small, which is due to the fact particles have
insufficient time to move far enough to establish connections. Combining those results, we observe
a double phase transition in the sense of an in-and-out of percolation in certain configurations of the
parameters. In Figure 6 we present a simulated graph that illustrates this behavior in a situation in
which all parameters are fixed except the velocity.

Let us give some details about the simulation setting. We use PVT with an edge intensity of 20km/km2

in order to simulate the street system of a city center, see also [Cou12] for a statistical justification of
this parameter choice. We mention that, in order to reduce boundary effects, we simulate on a torus.
We also note that we could effectively use Item (2) of Proposition 2.1 in order to significantly reduce
the simulation time: As a reminder, gκ,T/a,S,µav,ρ/a,r(X

λ) percolates if and only if gκ,T,S,µv,ρ,r(X
λ)

percolates as the connections in both graphs are the same. Now, as

gκ,T,S,µav,ρ,r(X
λ) = gκ,aT,S,µv,aρ,r(X

λ),

by adjusting T and ρ, we can use the same movement from the simulation with µv if we save for each
a the connection graph individually. This significantly reduces the simulation load.

3 Proofs

3.1 Proof of Proposition 2.1

Proof of Proposition 2.1. For the spatial rescaling, note that, if we scale the initial device positions
(and the underlying street system) by a factor of a, then we see the same waypoint selection, if we
also scale the waypoint kernels such that device aXi chooses position aYi on the street system aS
with the same probability asXi chooses Yi on S, leading to the kernel κ[a] and S1/a. The associated
device densities per street is given by λ/a. Now, in order to see the same contact times, we also have
to rescale the vicinity parameter r by a factor a, and also rescale the velocity by a. In particular, the
time horizon as well as the connection times are not rescaled, since a times the length traveled with a
times the speed leads to the same travel times.

On the other hand, for the time rescaling, note that, keeping the device positions, streets and waypoint
kernels fixed, while rescaling the velocity by a, reproduces the percolation picture if we adjust the time
horizon by a factor of 1/a and also the connection-time parameter accordingly by 1/a.
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Figure 6: In-and-out of percolation: Simulation of the largest connected cluster at different times T =
3min (black), T = 4.5min (blue), and T = 6min (red). Furthermore, we used ρ = 10sec, r = 20m,
λ = 20devices/km and a street intensity of 20km/km2. For the velocities we chose a normal
distribution, conditioned to be positive µv = N+(v, v/5).

3.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Let us first prove λc(T, µv, ρ, r) > 0. Each device can travel at most to a
distance Tvmax from its starting position. Any connected component of gT,µv,ρ,r(X

λ) is contained in
a connected component of the Cox–Gilbert graph g2(T−ρ)vmax+r(X

λ), where any two devices in Xλ

are connected if their mutual distance is less than 2(T − ρ)vmax + r. Indeed, as the devices need
time ρ to form a connection, the connection attempt must start before time T −ρ with distance at most
r from each other. But g2(T−ρ)vmax+r(X

λ) percolates with probability zero for all sufficiently small λ,
see, for example [HJC19].

In order to prove vc(T, λ, ρ, r) > 0, note that the previous comparison argument can not be used
if the Cox–Gilbert graph gr(Xλ) already percolates. However, using that communication on different
streets is not possible, in order to see a connection between devices that have started on different
streets, at least one device has to move across a crossing. Using this, we construct a coupling to
a site-percolation model on Z2. For this, we call a crossing Ci speed-open if there is at least one
device within distance vmaxT along the adjacent streets, and speed-closed otherwise. Note that the
probability for a crossing to be speed-open is given by 1 − exp(−λ|BS

vmaxT
(Ci) ∩ S|), where, for

x ∈ S, we denote by BS
l (x) ⊂ S all the points within distance l measured along the street system.

Unfortunately, |BS
vmaxT

(Ci) ∩ S| is not bounded. Therefore, more refined arguments using the sta-
tionarity and regularity of the street system are required. We are going to construct boxes where we
both control the number of crossings and the number of streets per area. Recall the random field of
stabilization radii {Rx}x∈R2 for the segment process S and the notationR(V ) = supy∈V ∩Q2 Ry. For
fixed parameters s,m, and n, we say that z ∈ Z2 is closed, if we have that

(a) R(Q6n(nz)) < n,

(b) |{i : Ci ∈ Q6n(nz)}| < m
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(c) minCi∼Cj∈Q6n(nz) |Ci − Cj| > s

(d) every crossing in Q3n(nz) is speed-closed,

and open otherwise. Here we write Ci ∼ Cj to indicate that the crossings are associated to the same
street. We denote by A,B,C, and D respectively the events that the conditions (a), . . . , (d) are not
fulfilled for the origin. Then

P(o is open) = P(A ∪B ∪ C ∪D) ≤ P(A) + P(B ∪ C) + P(D ∩ Ac ∩Bc ∩ Cc).

As the model is stabilizing, we are able to choose n = n(ε) big enough such that P (A) < ε/3. Now,
since S is locally finite, we can choose m = m(n, ε) and s = s(n, ε) such that P(B ∪ C) < ε/3.
Finally, under the event Ac∩Bc∩Cc, for vmax sufficiently small such that vmaxT < s and Ci ∈ Q3n

we can bound
|BS

vmaxT (Ci)| = deg(Ci)vmaxT ≤ mvmaxT.

For the equality we used that, due to (c), no other crossing is within distance vmaxT . Due to (a),
Ci ∈ Q3n(nz) is not connected to a crossing outside Q6n(nz). Therefore deg(Ci) can be bounded
bym due to (b). For the special case where S is a PVT this much care is not required as deg(Ci) = 3.
Now,

P(D ∩ Ac ∩Bc ∩ Cc) < m(1− exp(−λmvmaxT )).

Therefore, we can choose vmax = vmax(n,m, s, ε) small enough such that P(D∩Ac∩Bc∩Cc) <
ε/3. Therefore,

lim sup
n↑∞

lim sup
m↑∞

lim sup
s↓0

lim sup
vmax↓0

P(o is open) = 0. (3)

Now, in order to see absence of percolation of open sites in Z2, note that the process of open sites,
due to condition (a) (which implies stabilization), is 6n-dependent and stationary due to the translation
covariance of the waypoint kernel and the street system. Thus, we can invoke the domination-by-
product-measures theorem [LSS97, Theorem 0.0] to dominate the process of open sites, for suffi-
ciently small vmax, by a subcritical Bernoulli percolation process on Z2. Finally, note that absence of
percolation of open sites implies absence of percolation in our original model.

In order to prove Tc(λ, µv, ρ, r) > 2ρ, we compare to a similar site-percolation model. As the original
model is monotone in T , we show existence of ε > 0 such that for T = 2ρ+ε we see no percolation.
In order for a device to transmit on two different streets, it has to spend a time of ρ on each street it
transmits on. Therefore, any street change of the device has to occur in the time interval [ρ, ρ+ ε].

We say that a crossing Ci is time-open if there is a device Xj such that both Tj,t = Ci for a t ∈
[ρ, ρ + ε] and there is an time interval of length at least ρ that the device spends on a street. We call
the crossing time-closed otherwise. Similar to the arguments for vmax ↓ 0, a control on the regularity
of the street system yields the desired result that site percolation is not possible if ε is chosen small
enough. For this, let us replace Condition (d) above by the condition

(d’) every crossing in Q3n(nz) is time-closed,

and say that z ∈ Z2 is closed if (a), (b), (c) and (d’) are fulfilled, and open otherwise. It remains to
prove a uniform bound to see a time-open crossing in order to prove that the open vertices in Z2 do not
percolate. In order to ensure that no device moves across the crossing in a fixed time-interval, we have
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to ensure that no device is positioned on certain intervals on the streets. Unfortunately, the position of
the interval depends on the velocities of the devices. For devices of fixed speed vmin ≤ v ≤ vmax,
we can ensure that no device moves across the crossing Ci if there are no devices positioned in
BS
v(ρ+ε)(Ci) \ BS

vρ(Ci). Here, we can ignore devices Xj ∈ BS
vρ(Ci), as any sub-path of a shortest

path is a shortest path itself and therefore can not spend a time of ρ on any street before crossing Ci,
almost surely.

Let us assume that ε is small enough such that εvmax < s. As εvmax is lower than the minimum
street length, it is not possible for a device to fully traverse one street of length vρ and (before or
afterwards) fully traverse an additional street. As there is at most one crossing, using deg(Ci) < m
for all Ci ∈ Q3n(nz) we obtain for all speeds vmin ≤ v ≤ vmax the uniform bound

|BS
v(ρ+ε)(Ci) \BS

vρ(Ci)| < m2vmaxε,

where we used deg(Ci) < m to bound the number of streets. We then sum over all the crossings in
Q3n ≤ m. Interchanging the order of integration of the Cox point process Xλ and its attached paths,
Fubini’s Theorem yields that

P(D′ ∩ Ac ∩Bc ∩ Cc) ≤ mE
[
1− exp

(
−
∫
µv(dv)λ|BS

v(ρ+ε)(Ci) \BS
vρ(Ci)|

)
1{Ac ∩Bc ∩ Cc}

]
≤ m(1− exp(−λm2vmaxε)),

which converges to 0 as ε ↓ 0.

Using the same domination argument as above, sufficiently small ε leads to absence of percolation of
good sites. Further, if the site-percolation process of open sites does not percolate, there is also no
percolation in the original model. Choosing ε > 0 small enough that the site-percolation process is
subcritical, implies Tc(λ, µv, ρ, r) ≥ 2ρ+ ε > 2ρ.

3.3 Proof of Theorem 2.3

For x, y ∈ R2 denote by `S(x, y) ⊂ R2 the shortest path between x and y on S. Further denote
by `′S(x) = sup{|`S(x, y)| : y ∈ supp(κS(x, dy))} the length of the shortest path starting in x
towards any reachable target on S. It will be convenient to write `S(x) = `′S(x)+r/2 for the extended
shortest-path lengths. Further, we consider the following set

A′S(v) = {x ∈ S : there exists y ∈ supp(κS(x, dy)) such that

`S(x, y) contains a street s of length |s| > vρ/2},

and note that it only depends on the street system S, but not on the point process of devices. Denote
by

Xv,S,λ = {Xi ∈ Xλ : Xi ∈ A′S(v)}

the thinned version of Xλ, where the thinning rule depends only on S and v. Then, we consider the
following geostatistical Cox–Gilbert graph hv(Xλ) with vertex setXv,S,λ and edges between any pair
of vertices Xi, Xj ∈ Xv,S,λ if and only if

|Xi −Xj| ≤ `S(Xi) + `S(Xj).

Note that indeed, the interaction range `S(Xi) associated toXi is determined by the underlying street
system. Additionally, the thinning of the Cox point process is also determined by the street system.
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Any edge in gv,ρ,r(Xλ) is also contained in hv(Xλ) and thus it suffices to prove absence of percola-
tion in hv(Xλ).

Our approach rests on a generalization of arguments first presented in [Gou08], for Poisson–Boolean
models and their extensions towards Cox–Boolean models in [JTC22], which leverage scaling prop-
erties of the process and adjustments towards our geostatistical setting. It will be thus convenient to
reformulate our results in terms of the associated geostatistical Cox–Boolean model

C =
⋃

Xi∈Xv,S,λ

B`S(Xi)(Xi),

where we note that C contains an infinite connected component, if and only if hv(Xλ) contains an
infinite connected component.

Let Cx(V ) denote the connected component containing x of the geostatistical Cox–Boolean model,
based on points in V ⊂ R2. Then, we define for any x ∈ R2 and α > 0 the event

G(x, α) =
{
Cx(B10α(x)) 6⊂ B8α(x)

}
that the cluster of x, only using points in B10α(x), reaches beyond B8α(x). Consider the event

AS(α) = {x ∈ S : `S(x) < α},

and note that AS only depends on the street system S and κ. Let S∗ denote the Palm version of S,
and recall the stabilization radii Ry of the street system. We write R(V ) = supy∈V ∩Q2 Ry for any
V ⊂ R2. Then, we have the following key lemma that establishes a scaling relation in the model.

Lemma 3.1. Consider the geostatistical Cox–Boolean model. Then, there exists a constant c > 0
such that for all α > 0, we have

P
(
G(o, 10α)

)
≤ cP

(
G(o, α)

)2
+ cα2P

(
o ∈ Ac

S∗(α)
)

+ cP
(
R(Q10α) ≥ α

)
Proof of Lemma 3.1. For a measurable set B ⊂ R2, consider the event

FB(α) = {for all Xi ∈ Xλ ∩B we have that Xi ∈ AS(α)},

and let Kα denote a finite subset of the sphere Sα = {x ∈ Rd : |x| = α} such that

Sα ⊂
⋃
x∈Kα

B1(x).

Then, using arguments first presented in [Gou08,JTC22] gives

P
(
G(o, 10α)

)
≤ P

{( ⋃
k∈K10

(
G(αk, α) ∩ FB10α(αk)(α)

))
∩
( ⋃
l∈K50

(
G(αl, α) ∩ FB10α(αl)(α)

))}
+ P(FB100α(α)c)

≤
∑

k∈K10, l∈K50

E
[
P
(
G(αk, α) ∩ FB10α(αk)(α)|S

)
P
(
G(αl, α) ∩ FB10α(αl)(α)|S

)]
+ P(FB100α(α)c),

sinceG(o, 10α) ⊂
((⋃

k∈K10
G(αk, α)

)
∩
(⋃

l∈K50
G(αl, α)

))
and under the event FB100α(α),

the events are independent, conditioned on S. Indeed, if a path exists with length smaller than α, then
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also the shortest path must be contained in a disc of radius α around the starting position. The idea
here is that if the process can percolate beyond B80α(o) and the individual traveling ranges are all
small, then the process must pass through two circles of discs and percolate in at least one smaller
disc in the inner circle and in the outer circle. Introducing the stabilization events, we can further bound
this and arrive at the desired expression using also stationarity, once we realized that, by Campbell’s
formula,

P(FB100α(α)c) ≤ E
[ ∑
Xi∈Xλ∩B100α

1{Xi ∈ Ac
S(α)}

]
≤ λE

[ ∫
S∩B100α

dx1{x ∈ Ac
S(α)}

]
= λπ1002α2P(o ∈ Ac

S∗(α)),

where we used that the street system is normalized.

Note that, since we assume stabilization, we have that P(R(Q10α) ≥ α) tends to zero as α tends to
infinity. The same is true for the other error term, as we show now.

Lemma 3.2. We have that α2P
(
o ∈ Ac

S∗(α)
)

tends to zero as α tends to infinity.

Proof of Lemma 3.2. The idea is to first ensure existence of paths via asymptotic essential connect-
edness. Then, we bound the length of that path via the total street length. This is achieved by coupling
the number of streets to the number of faces with the Euler formula. Using different scales for α, we
arrive at the desired result.

First, we have that P
(
o ∈ Ac

S∗(α)
)

= α−1/2E
[ ∫

S∩Q
α1/4

dx1{x ∈ Ac
S(α)}

]
. Next,

E
[ ∫

S∩Q
α1/4

dx1{x ∈ Ac
S(α)}

]
= E

[ ∫
S∩Q

α1/4

dx1{x ∈ Ac
S(α)}1{R(Q4α1/4) < α1/4}

]
+O

(
exp(−α1/4)

)
,

where the error term vanishes exponentially fast in α1/4 since we work with PVT or PDT, see [HJC19]
for details. For the main term, under the event for the stabilization radii and sufficiently large α (larger
than the support of κ), for every pair of points in x, y ∈ S∩Q2α1/4 there exists a path within S∩Q4α1/4

and this path has maximal length given by |S ∩ B4α1/4|. This is due to the asymptotic-essential-
connectedness property of the PVT and PDT. Hence we can bound,

E
[ ∫

S∩Q
α1/4

dx1{x ∈ Ac
S(α)}1{R(Q4α1/4) < α1/4}

]
≤ E

[
|S ∩Qα1/4|1{|S ∩B4α1/4| > α}1{R(Q2α1/4) < α1/4}

]
.

Since PVT is a simple planar graph where every vertex has degree 3, we can employ Euler’s formula
and bound the number of streets in S ∩Qα1/4 by 3Y (Q2α1/4) and obtain

|S ∩Qα1/4| ≤ 6α1/4Y (Q2α1/4),

where we used that every street in Qα1/4 has maximal length given by
√

2α1/4 and Y denotes the
underlying Poisson point processes for the street system, in particular Y (A) denotes the number of
points of Y in A ⊂ R2, i.e., is a Poisson random variable. Note that we also used the stabilization
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event here. Hence, introducing another stabilization event, we can further bound,

E
[ ∫

S∩Q
α1/4

dx1{x ∈ Ac
S(α)}1{R(Q4α1/4) < α1/4}

]
≤ 6α1/4E

[
Y (Q2α1/4)1{Y (Q8α1/4) >

1

24
α3/4}

]
+O(exp(−α1/4))

≤ 48α3/4P(Y (Q8α1/4) >
1

24
α3/4 − 1) +O(exp(−α1/4)).

Using Poisson concentration inequalities, we see that the last probability tends to zero exponentially
fast in α1/4, which gives the desired convergence. In the case where PVT is replaced by PDT, we note
that every face in the PDT is a triangle and hence another application of Euler’s formula implies the
result.

Next we show that the local percolation probability becomes zero for large velocities.

Lemma 3.3. There exists c > 0 such that P
(
G(o, α)

)
≤ cα2P

(
o ∈ A′S∗(v)

)
and P

(
o ∈ A′S∗(v)

)
tends to zero as v tends to infinity.

Proof of Lemma 3.3. Note that

P
(
G(o, α)

)
≤ P

(
Xv,S,λ(B10α) > 0

)
≤ E

[
Xv,S,λ(B10α)

]
≤ λE

[ ∫
S∩B10α

dx1{x ∈ A′S(v)}
]
≤ λ102α2P

(
o ∈ A′S∗(v)

)
.

Using the dominated-convergence theorem, it suffices to show that limv↑∞ 1{o ∈ A′S∗(v)} = 0 for
almost-all realizations of S∗. But this is true by the almost-sure uniqueness of shortest paths in S∗.

Next we show that indeed, the probability to see large connected components can be bounded by the
local percolation probability and some error term.

Lemma 3.4. Consider the geostatistical Cox–Boolean model C. Then, there exists a constant c > 0,
such that for all α > 0, we have

P
(
Xv,S,λ(Co(R2)) > Xv,S,λ(B8α)

)
≤ P

(
G(o, α)

)
+ λE

[ ∫
S

dx1{10α ≤ |x| ≤ 9α + `S(x)}
]
.

Proof of Lemma 3.4. Consider the event,

H(α) = {there exists Xi ∈ Xv,S,λ ∩Bc
10α : |Xi| ≤ 9α + `S(Xi)}.

Then, we have that
(
G(o, α)c ∩H(α)c

)
⊂ {Co(R2) ⊂ B8α} since, under the event H(α)c, points

outside B9α cannot help the cluster Co to reach outside of B8α. But since {Co(R2) ⊂ B8α} ⊂
{Xv,S,λ(Co(R2)) ≤ Xv,S,λ(B8α)}, we have

P
(
Xv,S,λ(Co(R2)) > Xv,S,λ(B8α)

)
≤ P

(
G(o, α)

)
+ P

(
H(α)

)
.

Finally, using Campbell’s formula

P
(
H(α)

)
≤ λE

[ ∫
S

dx1{10α ≤ |x| ≤ 9α + `S(x)}
]
,

which finishes the proof.
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The error term becomes small for large α, this is the content of the next result.

Lemma 3.5. We have that E
[ ∫

S
dx1{10α ≤ |x| ≤ 9α + `S(x)}

]
tends to zero as α tends to

infinity.

Proof of Lemma 3.5. We again want to employ asymptotic essential connectedness in order to bound
`S(x) against the total street length in a disc. We need slightly more sophisticated arguments com-
pared to the proof of Lemma 3.2. We want to cover Bc

10α by layers of squares with side-length of
smaller order than α where each layer has a growing diameter such that also the number of squares
in the layers increases polynomially. For this, consider first a sequence of auxiliary squares Q′

n4α1/4

and the associated partition of R2 given by the union of annuli Q′
(n+1)4α1/4 \Q′n4α1/4 . We call this an-

nulus Q′
(n+1)4α1/4 \ Q′n4α1/4 the n-th layer. Then, we cover the n-th layer by shifted non-overlapping

squares of the form Qnα1/4 and note that this can be done with c′n5 many squares for some constant
c′ > 0. We write Q′

(n+1)4α1/4 \Q′n4α1/4 ⊂
⋃
j∈U(n,α)Q

j

nα1/4 for such a covering. In particular,

E
[ ∫

S

dx1{10α ≤ |x| ≤ 9α + `S(x)}
]

≤
∑
n≥0

∑
j∈U(n,α)

E
[ ∫

S∩Qj
nα1/4

dx1{10α ≤ |x| ≤ 9α + `S(x)}
]
.

Now we introduce the asymptotic-essential-connectedness event {R(Qj

4nα1/4) < nα1/4} and its
complement, leading to a sum of two term, which we estimate separately. For the term, under the
asymptotic-essential-connectedness event, we can use similar estimates as in the proof of Lemma 3.2
via the total street length, to see that

E
[ ∫

S∩Qj
nα1/4

dx1{10α ≤ |x| ≤ 9α + `S(x)}1{R(Qj

4nα1/4) < nα1/4}
]

≤ E
[
|S ∩Qnα1/4 |1{|S ∩Q4nα1/4| ≥ (n4α1/4/2 ∨ 10α)− 9α}

]
,

where we used that |x| > n4α1/4/2 for all x ∈ S ∩ Qj

nα1/4 . Again, using Euler’s formula, we can
further estimate against Poisson random variables Y ,

E
[
|S ∩Qnα1/4|1{|S ∩Q4nα1/4| ≥ (n4α1/4/2 ∨ 10α)− 9α}

]
≤
√

2 6nα1/4E
[
Y (Q8nα1/4)1{Y (Q8nα1/4) ≥

(n4α1/4 ∨ 10α)− 9α√
2 48nα1/4

}
]
.

In particular, using Poisson concentration inequalities, we see that the last expression tends to zero
exponentially fast, both in n and in α1/4. The crucial observation here is that, in the indicator on the
right-hand side, the lower bound on the right increases on a larger order than the intensity of the
Poisson random variable, both in n as well as in α. In particular, there exists constants c1, c2 > 0,
such that,∑

n≥0

∑
j∈U(n,α)

E
[ ∫

S∩Qj
nα1/4

dx1{10α ≤ |x| ≤ 9α + `S(x)}1{R(Qj

4nα1/4) < nα1/4}
]

≤ c1
∑
n≥0

n7α3/4 exp(−c2nα1/4),

DOI 10.20347/WIAS.PREPRINT.2952 Berlin 2022



A. Hinsen, B. Jahnel, E. Cali, J.-P. Wary 22

which tends to zero as α tends to infinity.

For the error term, due to absence of stabilization {R(Qj

4nα1/4) ≥ nα1/4}, note that this term van-

ishes exponentially fast also both in n and α1/4 and hence, there exists constants c1, c2, c3 > 0, such
that, ∑

n≥0

∑
j∈U(n,α)

E
[ ∫

S∩Qj
nα1/4

dx1{10α ≤ |x| ≤ 9α + `S(x)}1{R(Qj

4nα1/4) ≥ nα1/4}
]

≤ c1
∑
n≥0

n6α1/4E
[
Y (Qnα1/4)1{R(Q4nα1/4) ≥ nα1/4}

]
≤ c2

∑
n≥0

n8α3/4P1/2
(
R(Q4nα1/4) ≥ nα1/4

)
≤ c2

∑
n≥0

n8α3/4 exp(−c3nα1/4),

where we used Hölder’s inequality and the fact that the second moment of a Poisson random variable
with parameter b is given by b2 + b. But the last expression tends to zero as α tends to infinity, which
finishes the proof.

We will also need the following essential result about convergence properties of functions satisfying
some scaling inequality.

Lemma 3.6 ( [Gou08, Lemma 3.7]). Let f and g be two bounded measurable functions from [1,∞] to
[0,∞). Additionally, let f be bounded by 1/2 on [1, 10], g be bounded by 1/4 on [1,∞] and assume

f(α) ≤ f(α/10)2 + g(α), for all α ≥ 10.

Then, limα↑∞ g(α) = 0 implies that limα↑∞ f(α) = 0.

We have now assembled all necessary tools in order to proof existence of a subcritical percolation
regime for large speeds.

Proof of Theorem 2.3. We assume that S to be a PVT or PDT. In order to prove that vc < ∞, it
suffices to show that limα↑∞ P(Xλ(Co) > Xλ(B8α)) = 0 for all sufficiently large v. But this is
true if limα↑∞ P

(
G(0, α)

)
= 0, by an application of Lemma 3.4 and Lemma 3.5. In order to show

limα↑∞ P
(
G(0, α)

)
= 0 we apply Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.6 for proper

choices of f and g.

For this, first define

α1 := inf{s ≥ 1: φ1(α) = α2P
(
o ∈ Ac

S∗

)
< (8c2)−1 for all α ≥ s}

α2 := inf{s ≥ 1: φ2(α) = P
(
R(Q10α) ≥ α

)
< (8c2)−1 for all α ≥ s},

and define αc = α1 ∨ α2. Note that αc < ∞ by the assumption of stabilization and Lemma 3.2.
Based on this, we make the following definitions. We define

v′c = inf{v ≥ 1: P
(
o ∈ A′S∗(v)

)
<

1

2
(100cαc)

−2 for all v ≥ s},

where vc <∞ by Lemma 3.3. With this, define

f(α) = cP
(
G(o, 10αcα)

)
and g(α) = c2

(
φ1(αcα) + φ2(αcα)

)
.
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Then, indeed, using again Lemma 3.3, we have that

f(α) ≤ 1

2
, for all 1 ≤ α ≤ 10 and v > v′c.

Further, using Lemma 3.2, we have that

g(α) ≤ 1

4
, for all 1 ≤ α.

Finally, using Lemma 3.1, we have that

f(α) ≤ c2
(
P
(
G(o, αcα)

)2
+ φ1(αcα) + φ2(αcα)

)
= f(α/10)2 + g(α) for all α ≥ 10.

Hence, since limα↑∞ g(α) = 0, an application of Lemma 3.6 gives the result.

3.4 Proof of Theorem 2.4

Proof of Theorem 2.4. The central idea is that, even in a best-case scenario, where the device inten-
sity is extremely large and the vicinity threshold is very small, in order for devices to form connections
on at least two different streets, we must have that 2ρ + b/v ≤ T , where b is the graph distance be-
tween two endpoints of streets that are sufficiently long, and v is a speed in the support of the speed
distribution µv. On the other hand, if every device can form a connection only on one single street,
then the connected components in the original graph can only consist of either individual devices (that
are unable to connect to any other device) or precisely those (finitely-many) devices associated to
the street on which they form their connection. In particular, the initial position of a device does not
have to lie on the street on which it establishes its connection. Hence, if Svminρ/2,vmax(T−2ρ) does not
percolate, then also our system cannot percolate.

3.5 Proof of Theorem 2.5

Proof of Theorem 2.5. First, we will prove that for any S we have that ac < ∞. It suffices to exhibit
0 < a, b <∞ such that P(Sa,b percolates) = 0. For this we employ stabilization. More precisely, we
construct a subcritical percolation process of finite-dependent open sites in Z2 that dominates Sa,b.
For this, recalling the stabilization radii {Rx}x∈R2 and the notation R(V ) = supx∈V ∩Q2 Rx, we say
that a site z ∈ Z2 is n-open if

(a) R(Q3n(nz)) < n and

(b) Q3n(nz) ∩ Sa = ∅.

We say that z ∈ Z2 is n-closed if it is not n-open. In particular, percolation of Sa,b implies percolation
of n-closed sites once we pick n > b. Then, in order to establish absence of percolation for the
process of n-closed sites, note that the stabilization event in Condition (a) implies that the process of
n-closed sites is 3-dependent. Since the whole system is also translation invariant, we can use the
domination-by-product-measures theorem [LSS97, Theorem 0.0] to establish a subcritical Bernoulli
site percolation on Z2 once we have shown that

lim sup
n↑∞

lim sup
a↑0

P(o is n-closed) = 0.
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For this, let us denote byA(n) the event described in Condition (a) and byB(n, a) the event described
in Condition (b), for z = o. Then, it suffices to show that

lim sup
n↑∞

P
(
Ac(n)

)
= 0,

and that for all n ∈ N,

lim sup
a↑∞

P
(
Bc(n, a) ∩ A(n)

)
= 0.

But, the first statement is true since we assume stabilization. For the second statement, note that,
under the event A(n), any street s ⊂ S such that s ∩ Qn 6= ∅ has maximal length given by |s| <√

2 3n and hence for a >
√

2 3n, we have P
(
Bc(n, a) ∩ A(n)

)
= 0.

It remains to prove that, under the conditions, ρ′c(T, µv) < T/2. For this, note that, under the assump-
tion that ac <∞, since vmin > 4ac/T , there exist ε, b > 0 such that vmin(T/2− ε)/2 > ac(b). In
particular, P(Svmin(T/2−ε)/2,b′ percolates) = 0 for all b′ < b. The fact that Sa,b is decreasing in a and
increasing in b yields for max(T/2−ε, T/2−b/(2vmax)) < ρ thatP(Svminρ/2,vmax(T−2ρ) percolates) =
0. Thus, since max(T/2− ε, T/2− b/(2vmax)) < T/2, we have that ρ′c(T, µv) < T/2, which fin-
ishes this part of the proof.

3.6 Proof of Theorem 2.6

Proof of Theorem 2.6. First note that it suffices to assume that r = 0 since larger values of r only
increase the percolation thresholds. The first main step consists in constructing a coupled process of
good streets that will support percolation. For a street s, let us denote by s1, . . . , sn all neighboring
streets of s. Then, we will call s open, if we can find devices Xs

1 , . . . , X
s
n on s at time t = 0 such that

(1) Xs
1 , . . . , X

s
n are connected in gT,µv,0,0(X

λ ∩ s) and

(2) for all i ∈ {1, . . . , n}, there are times 0 < ti < t′i < T such that TXs
i ,t
∈ s for t ∈ [0, ti] and

T sXs
i ,t
∈ si for t ∈ [ti, t

′
i].

In words, a street is open if it contains initial positions of devices that are inter-connected on the street
and where each device then travels towards its associated neighboring street, see Figure 7 for an
illustration.

Let us note that we cannot assume that the probability for a street to be open is monotone in the length
of the street as there are for example the following two opposing effects: If the length of the street
increases, the probability of the event described in Condition (2) increases. However, the probability
of the event described in Condition (1) is not monotone: While longer streets have more devices to
establish connections, the distance between the crossings that needs to be bridged increases. The
property of a street to be open can be seen as a local event, since it depends only on the devices that
start their movement on that street. As κ is well behaved, the probability to see a device that fulfills the
role of one of the special device in Condition (2) is positive. Therefore, P(s is open) converges to one
as λ increases, by monotone convergence.

Now, if two adjacent streets s and s′ are both open, due to Condition (2), there is both a node on s that
moves to street s′ and a node on street s′ that moves to street s. As they move in opposite directions,
they will meet, and thus form a connection. The special devices on street s are therefore connected
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Figure 7: Realization of an open street (thick red) with four neighboring streets. Four interconnected
(connections drawn in grey) devices move towards the four neighboring streets (indicated by black
arrows).

to the special devices on street s′ and hence, if the street system that only consists of open streets
contains an unbounded component, we obtain percolation of gT,µv,0,0(X

λ).

Further, in order to establish percolation, in the second main step, we use a familiar discretization
argument via large boxes in R2 in combination with stabilization and asymptotically essentially con-
nectedness. Recall the random field of stabilization radii {Rx}x∈R2 for the street system S. We say
that z ∈ Z2 is n-open, if we have that

(a) R(Q6n(nz)) < n/2,

(b) the number of streets that are fully contained in Q6n(nz) is smaller than m, and

(c) every street fully contained in Q6n(nz) is open.

Now, if two adjacent boxesQn(nz) andQn(nw) are open, they are both non-empty due to the asymp-
totic essential connectedness, which is implied by Condition (a) since R(Q6n(nz)) < n/2 implies
R(Q2n(nz)) < n/2. Additionally, under Condition (a), there is a path inQ6n(nz)∩S connecting the
streets in Qn(nz) and Qn(nw). In particular, due to Condition (c), all streets on this path are open.
Therefore, the devices Qn(nz) ∩Xλ and Qn(nw) ∩Xλ are in the same connected component on
gT,µv,0,0(X

λ). Consequently, percolation of n-open boxes implies percolation of gT,µv,0,0(X
λ).

In order to see percolation of n-open sites in Z2, note that the process of n-open sites, due to Con-
dition (a) (which implies stabilization), is 6-dependent. For z = o, let us denote by A(n) the event
described in Condition (a), by B(m,n) the event described in Condition (b), and by C(λ,m, n) the
event described in Condition (c). Thus, similar to the proof in Section3.5 we can invoke the domination-
by-product-measures theorem [LSS97, Theorem 0.0] to establish Bernoulli site percolation on Z2 if

lim sup
n↑∞

P(Ac(n)) = 0 and for all n ∈ N lim sup
m↑∞

P(Bc(m,n)) = 0

and that for all n,m ∈ N

lim sup
λ↑∞

P(Cc(λ,m, n) ∩B(m,n)) = 0.
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The first statement holds as S is stabilizing. The second statement holds by the locally finiteness of
the street system. Finally, for the third statement, note that, under the event B(m,n), the number of
fully contained streets is bounded bym and hence we can apply the dominated convergence theorem
together with the well-behavedness of the waypoint kernel to deduce

lim sup
λ↑∞

P(Cc(λ,m, n) ∩B(m,n)) ≤ E
[
1{B(m,n)}

∑
s∈S∩Q6n

lim sup
λ↑∞

P(s is not open)
]

= 0

This finishes the proof.

3.7 Proof of Theorem 2.7

Proof of Theorem 2.7. The proof for this theorem is similar to the proof of Theorem 2.6, although for
ρ > 0 we have to add additional constraints to ensure that devices moving in opposite directions
can actually connect as we can not control the moment devices turn around a corner, thus loosing
connections.

To begin with, for a street s, let us denote by s1, . . . sn the neighboring streets that share a joint
crossing (C1, C2) with s. Next, we will call s open, if there exist devicesXs

i , i ∈ {1, . . . , n, n+1, n+
2}, on s at t = 0 such that,

(1) {Xs
i }i∈{1,..,n+2} are connected in gT,µv,ρ,r(X

λ ∩ s),

(2) for all i ∈ 1, . . . , n, there are times ti < ρ + ε and ti < t′i < T such that TXs
i ,t
∈ s for

t ∈ [0, ti] and TXs
i ,t
∈ si for t ∈ [ti, t

′
i] and

(3) For all t ∈ [0, T ] we have TXs
n+1,t
∈ s, |TXs

n+1,t
− C1 | < ρvmin, TXs

n+2,t
∈ s, and |TXs

n+2,t
−

C2 | < ρvmin.

In words, Condition (1) ensures that the devices on s are connected using only devices on s. The
Condition (2) makes a statement for devices Xs

i , for i ∈ 1, . . . , n which play the role of ’transmitter’
devices. They spend enough time on s to become connected, by Condition (1), but not too much time,
so that they can move to street si and still spend enough time on si to be able to ’transmit’ there.
The Condition (3) makes a statement about two devices that play the role of ’receiver’ devices. They
become connected, by Condition (1), and, due to their proximity to the crossing, are able to ’receive’ a
connection from an incoming device from a neighboring street.

Therefore, if two adjacent streets are both open, the ’transmitter’ device that moves to the other street
is able to connect to the ’receiver’ device before time T and vice versa. As a consequence, percolation
of open streets implies percolation of gT,µv,ρ,r(X

λ).

Next, we use our conditions to ensure that streets are open with high probability as λ increases and
that open streets percolate. For this, first note that we assume that 2ρvmin < ac(0), and hence there
exist δ > 0 and 0 < ε < T − 2ρ such that also 2(ρ + ε)(vmin + δ) < ac(0). This is useful
since devices have to spend at least time ρ + ε on s to satisfy Condition (2) and to connect with
each other as demanded by Condition (1). This can only be satisfied for streets of length larger than
(ρ+ ε)(vmin + δ). However, a length of 2(ρ+ ε)(vmin + δ) is needed to ensure that the path of the
device is a shortest path and moves through the joint crossing.

Further note that for any pair of devices that moves in opposite directions on the same street, in order
to be in contact for time ρ, the vicinity parameter needs to satisfy r > ρvmin, and this is the reason
why we introduce this assumption.
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In particular, by possibly making δ even smaller, we have adjusted all the parameters ρ > 0, r >
ρ(vmin +δ) and T > 2ρ, such that the probability for any given street s with |s| > 2(ρ+ε)(vmin +δ)
to be open tends to one as λ tends to infinity. Here we also use the c-well-behavedness of the waypoint
kernel, since this ensures that transmitting devices can be found. To see this, recall that the distance
transmitting devices have to travel is at least 2ρvmin. Also note, that the conditions are designed in
such a way that, conditioned on S, openness of a given street s ⊂ S can be checked independently
of all the other streets in S \ s, and independently of the spatial position of the streets, by translation
covariance of κ.

Unfortunately, the probability of a street to be open depends on the whole surrounding street system,
its length, its number of neighboring streets, its angle towards the neighboring streets and many more
local properties of the street system. Therefore, there is no uniform bound for the probability that a
street is open. However, we are able to guarantee two things: For each street s, with length larger than
2ρvmin, we have limλ↑∞ P(s is open) = 1 and that streets with lengths larger than 2ρvmin percolate,
by our assumption concerning ac(0). Those arguments were sufficient in the proof of Theorem 2.6,
as we were able to use that the street system of open streets is asymptotically essentially connected.
Unfortunately, the probability of streets with length smaller than 2ρvmin to be open may be zero. In
order to prove percolation, we thus need a notion of asymptotically essentially connectedness on
the thinned cluster. This notion can be achieved either by definition, more precisely by the requirement
2ρvmin < a+c , or by choosing vmin small enough such that discrete arguments can use the asymptotic-
essential connectedness of the underlying street system. In the former case, the edges of length
greater than a+c form an infinite cluster that is asymptotically essentially connected and the proof of
Theorem 2.6 can be adapted to obtain percolation.

In the following proof we will focus on the second approach of choosing vmin small enough, Let
(Rx)x∈R2 be the field of stabilization radii of the street system. We say that z ∈ Z2 is n-open if

(a) R(Q3n(nz)) < n,

(b) every street in Q3n(nz) has length larger than 2ρvmin, and

(c) every street in S2ρvmin ∩Q3n(nz) is open.

Under those three conditions the existence of an infinite open path can be guaranteed by the original
underlying street system. Due to the 3-dependence, guaranteed by Condition (a), we are able to
use the domination-by-product-measure theorem [LSS97, Theorem 0.0] to establish Bernoulli site
percolation on Z2, once we have shown that

lim sup
n↑∞

lim sup
vmin↓0

lim sup
λ↑∞

P(o is not open) = 0.

This is indeed the case. We label by A(n), B(n, vmin), and C(n, vmin, λ) the events that the corre-
sponding conditions are fulfilled for z = o. Then, note that

P(o is not open) ≤ P(Ac(n))+P(Bc(n, vmin)∩A(n))+P(Cc(n, vmin, λ)∩B(n, vmin)∩A(n)),

where lim supn↑∞ P(Ac(n)) = 0 by stabilization. Further, for any fixed n ∈ N, by Fatou’s lemma,

lim sup
vmin↓0

P(Bc(n, vmin) ∩ A(n)) ≤ E
[

lim sup
vmin↓0

1{Bc(n, vmin) ∩ A(n)}
]

= 0,
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where we used that the street system is concentrated on streets of positive lengths. Finally, again by
Fatou’s lemma, for all n ∈ N and vmin > 0, we have that also

lim sup
λ↑∞

P(Cc(n, vmin, λ) ∩B(n, vmin) ∩ A(n)) = 0.

Here, we also used that, under the eventB(n, vmin), every relevant street is sufficiently long and thus
large λ leads to openness of every street. This finishes the proof.

3.8 Proof of Theorem 2.8

Proof of Theorem 2.8. We need to show that there exist a > 0 such that Sa percolates with positive
probability. Similarly to previous proofs, we construct a percolation process of finite-dependent open
sites in Z2 that implies percolation of Sa. For this, we say that z ∈ Z2 is n-open if

(a) R(Q6n(nz)) < n/2 and

(b) Q6n(nz) ∩ S = Q6n(nz) ∩ Sa.

Note that Condition (b) simply represents the event that no elimination of streets appears in Q6n(nz).
Now the argument goes as follows. Due to Condition (a), by asymptotic essential connectedness, we
have that Qn(nx) ∩ S 6= ∅ and that Q3n(nz) ∩ S is connected within Q6n(nz) ∩ S. Then, for any
two neighboring open sites z, w ∈ Z2, we have that Qn(nz) ∩ S and Qn(nw) ∩ S are connected,
as Qn(nw) ⊂ Q3n(nz). Next, due to Condition (b), all streets inside Qn(nz) and Qn(nw) lie in
the same connected component of Sa. Therefore, percolation of open sites implies percolation of Sa.
Now, for the final argument we are able to use the domination-by-product-measures theorem [LSS97,
Theorem 0.0] to establish supercritical Bernoulli site percolation on Z2 similar to the previous proofs.

In order to prove that also a+c > 0, we are going to modify the definition of the random field of stabiliz-
ing radii (Rx)x∈R2 and build a new stationary random field (R̄x)x∈R2 based on the same probability
space as S. For this, for any point x ∈ R2, recall that

Ra
x = sup{|y − x| : x and y are connectable by a continuous path in R2 that does not intersect Sa},

and set R̄a
x := max(Rx, R

a
x). We first prove that the field R̄a

x is a legitimate alternative random
field of stabilization radii in the sense of Definition 1.1 and Definition 1.2. Since it is defined as a
maximum, it suffices to show that limn↑∞ P(R̄a(Qn) < n) = 1 for some a > 0, where again
R̄a(Qn) = supx∈Qn∩Q2 R̄a

x.

We will prove this in two steps first using Bernoulli site percolation on Z2 and then a Russo–Seymour–
Welsh-type argument. Let us fix n > 0. We say that z ∈ Z2 is n-good if

(a) R(Qn) < n and

(b) S ∩Q6n(nz) = Sa ∩Q6n(nz).

As S is asymptotically essentially connected and Condition (b) guarantees that no streets were re-
moved, adjacent n-good sites guarantee that the street system in the associated n-squares Qn are
connected. As the good sites are 6-dependent, we can link it with the domination-by-product-measures
theorem [LSS97, Theorem 0.0] to establish Bernoulli site percolation on Z2 once we have shown that
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3mn

Figure 8: Illustration of a good box: The gray box consists of m2 boxes [0, n]2. It is surrounded by
left-right and up-down crossings of n-good boxes.

lim supn↑∞ lim supa↓0 P(o is not n-good) = 0. This is indeed the case, as we can first take n large
enough such that Condition (a) is satisfied with high probability, and later choose a(n) small enough
such that the probability of the joint event is arbitrarily close to one. Now, as we consider Bernoulli site
percolation, we can apply a Russo–Seymour–Welsh-type argument as follows. The probability to see
a left-right crossing in the lattice of open vertices in a m × 3m box converges to one for m ↑ ∞.
Therefore, by surrounding a box of sizem with four of those corridors from each side, we see that with
high probability, them-box is surrounded, see Figure 3.8. Now, that them-box is surrounded, we have
a joint bound for R̄a

x < 2
√

2mn for all x ∈ Qmn. Putting things together, we first pick n sufficiently
large and a sufficiently small, such that limm↑∞ P(R̄a(Qmn) ≥ 2

√
2mn) = 0. Then, using a union

bound and shift invariance, this implies that also limm↑∞ P(R̄a(Qmn) ≥ mn) = 0 as required.

==================================================== ====================================================

References

[AT18] D. Ahlberg and J. Tykesson. Gilbert’s disc model with geostatistical marking. Advances
in Applied Probability, 50(4):1075–1094, 2018.

[BB09a] F. Baccelli and B. Błaszczyszyn. Stochastic Geometry and Wireless Networks: Volume
1: Theory. Now Publishers Inc, 2009.

[BB09b] F. Baccelli and B. Błaszczyszyn. Stochastic Geometry and Wireless Networks: Volume
2: Application. Now Publishers Inc, 2009.

[BHPC04] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa. Stochastic properties of the random
waypoint mobility model. Wirel. Netw., 10:555–567, 2004.

[CGH+18] E. Cali, N.N. Gafur, C. Hirsch, B. Jahnel, T. En-Najjary, and R.I.A. Patterson. Percolation
for D2D networks on street systems. In Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), 2018 16th International Symposium on. IEEE, 2018.

DOI 10.20347/WIAS.PREPRINT.2952 Berlin 2022



A. Hinsen, B. Jahnel, E. Cali, J.-P. Wary 30

[Cou12] T. Courtat. Promenade dans les cartes de villes-phénoménologie mathématique et
physique de la ville-une approche géométrique. These de doctorat de l’Université Paris-
Diderot, 2012.

[DVJ08] D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes I/II.
Springer, New York, 2005/2008.

[Gou08] J.-B. Gouéré. Subcritical regimes in the Poisson Boolean model of continuum percola-
tion. The Annals of Probability, 36(4):1209–1220, 2008.

[Hae12] M. Haenggi. Stochastic Geometry for Wireless Networks. Cambridge University Press,
2012.

[HJC19] C. Hirsch, B. Jahnel, and E. Cali. Continuum percolation for Cox point processes.
Stochastic Processes and their Applications, 129(10):3941–3966, 2019.

[JK20] B. Jahnel and W. König. Probabilistic Methods in Telecommunications. Springer, 2020.

[JTC22] B. Jahnel, A. Tóbiás, and E. Cali. Phase transitions for the Boolean model of contin-
uum percolation for Cox point processes. Brazilian Journal of Probability and Statistics,
36(1):20–44, 2022.

[Lee97] S. Lee. The central limit theorem for Euclidean minimal spanning trees. I. Ann. Appl.
Probab., 7(4):996–1020, 1997.

[LGBCEN19] Q. Le Gall, B. Błaszczyszyn, E. Cali, and T. En-Najjary. The influence of canyon shad-
owing on device-to-device connectivity in urban scenario. In 2019 IEEE Wireless Com-
munications and Networking Conference (WCNC). IEEE, 2019.

[LGBCEN21] Q. Le Gall, B. Błaszczyszyn, E. Cali, and T. En-Najjary. Continuum line-of-sight percola-
tion on Poisson–Voronoi tessellations. Advances in Applied Probability, 53(2):510–536,
2021.

[LSS97] T. Liggett, R. Schonmann, and A. Stacey. Domination by product measures. Ann.
Probab., 25(1):71–95, 1997.

[OBSC00] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. Series in Probability and Statistics. John Wiley and
Sons, Inc., 2nd ed. edition, 2000.

[PY02] M. Penrose and J. Yukich. Limit theory for random sequential packing and deposition.
Ann. Appl. Probab., 12(1):272–301, 2002.

[PY03] M. Penrose and J. Yukich. Weak laws of large numbers in geometric probability. Ann.
Appl. Probab., 13(1):277–303, 2003.

[SRJD04] M. Schlather, P. Ribeiro Jr, and P. Diggle. Detecting dependence between marks and
locations of marked point processes. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 66(1):79–93, 2004.

DOI 10.20347/WIAS.PREPRINT.2952 Berlin 2022


	Introduction and Setting
	Street systems via random segment processes
	Initial device positions via Cox point processes
	Device mobility via random-waypoint models
	Connectivity in mobile D2D networks via space-time vicinity rules

	Results
	Regimes for absence of percolation
	Regimes for percolation
	Simulations

	Proofs
	Proof of Proposition 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	Proof of Theorem 2.7
	Proof of Theorem 2.8


