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Adaptive weights community detection
Franz Besold, Vladimir Spokoiny

Abstract

Due to the technological progress of the last decades, Community Detection has become a
major topic in machine learning. However, there is still a huge gap between practical and theo-
retical results, as theoretically optimal procedures often lack a feasible implementation and vice
versa. This paper aims to close this gap and presents a novel algorithm that is both numerically
and statistically efficient. Our procedure uses a test of homogeneity to compute adaptive weights
describing local communities. The approach was inspired by the Adaptive Weights Community
Detection (AWCD) algorithm by [2]. This algorithm delivered some promising results on artifi-
cial and real-life data, but our theoretical analysis reveals its performance to be suboptimal on a
stochastic block model. In particular, the involved estimators are biased and the procedure does
not work for sparse graphs. We propose significant modifications, addressing both shortcomings
and achieving a nearly optimal rate of strong consistency on the stochastic block model. Our
theoretical results are illustrated and validated by numerical experiments.

1 Introduction

1.1 Community detection

Community detection has become a major topic in modern statistics with applications in various fields.
A very illustrative example is social graphs. Originally discussing relatively small examples such as the
famous Zachary’s network of karate club members [40] consisting of only 34 vertices, it is nowadays
possible to process huge data with millions of vertices such as the Facebook graph [37, 12], the ama-
zon purchasing network [8], mobile phone networks [7] or most recently, data of COVID-19 infections
[39]. Moreover, community detection has various applications in biology and bioinformatics [20]. Other
popular examples are citation networks [34] and the world wide web [10]. For a more exhaustive list of
applications we refer to [28, 14, 17].

The topics of community detection and clustering are clearly related. In fact, after embedding the
nodes in a metric space, the problem of community detection can be reduced to the problem of clus-
tering. Nevertheless, the underlying data of a graph is fundamentally different from a point cloud in Rn

and there is no canonical method to embed the vertices in a metric space. Consequently, the theoret-
ical analysis and underlying models differ for each field. This has motivated the development of many
methods that deal specifically with community detection.

Similar to the topic of clustering, the task of community detection lacks a clear definition leading to a
vast amount of algorithms with varying objectives. Most generally, the goal of community detection can
be described as recovering groups of vertices with a similar connection pattern from a given graph.
The graph may be weighted or directed. The most common case is that vertices inside each commu-
nity are more densely connected to each other than to vertices of other communities. The set of groups
may be a partition, a set of overlapping communities or a hierarchical structure. One of the earliest and
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best-known methods is the Kernighan-Lin algorithm [21] which aims to find a bisection of a graph with
a minimal number of edges connecting the two components through successively swapping vertices
between the two communities. Applying it iteratively, this method produces a partition of the vertices.
The number and size of the communities need to be known. A similar but faster method is the spectral
graph bisection [13, 5, 32]. However, the cut size, i.e. the number of edges connecting the different
components, is not a suitable quality measure of a community structure where the number and size
of the communities are unknown. Instead, the so-called modularity [27] has become the most popular
quality function. It measures the discrepancy between the given number of edges between different
communities and the expectation of this term for a similar random graph without the community struc-
ture. Originally, it was introduced as a stopping criterion for the algorithm of [16]. However, there have
been introduced many algorithms since that directly maximize modularity, starting with the greedy op-
timization [25, 8, 7] and including for example spectral optimization [26] and simulated annealing [18].
Modularity can be extended to the case of weighted graphs [24], directed graphs [3] and overlapping
communities [35]. There are plenty of other methods available besides modularity maximization, such
as the Clique Percolation Method [29] constructing each community as a union of heavily overlapping
cliques and thus allowing for overlapping communities, or most recently, also neural networks [36].
Hierarchical methods can be separated into agglomerative and divisive methods. Divisive algorithms
iteratively split the communities into smaller communities. An example is the algorithm by [16] starting
with the original graph and successively removing edges based on a certain measure of betweenness,
e.g. of the number of shortest paths containing a given edge. Conversely, agglomerative algorithms
iterative merge communities into larger communities. An example is the greedy optimization of modu-
larity proposed by [25] starting by removing all edges from the graph and successively adding edges
based on the impact on the modularity. Considering the communities as connected components, a hi-
erarchical structure can be obtained. For a comprehensive survey on community detection algorithms,
we refer to [14].

A big challenge in Community Detection is the gap between theoretical results and practically relevant
algorithms. Many of those lack a rigorous statistical analysis even on the most basic models, while
statistically efficient algorithms are often not numerically feasible. For example, the rate-optimal proce-
dure suggested by [41] offers no implementation of polynomial complexity, whereas surprisingly little
is known about the performance of the popular Louvain algorithm [7] on the stochastic block model
despite some recent progress [9].

1.2 Stochastic block model

The stochastic block model (SBM) [19] is the simplest and by far the most studied model for community
detection. Under the SBM, edges are generated by independent Bernoulli variables, with the param-
eters only depending on the corresponding communities for each pair of vertices. The minimax rates
are well known for different forms of recovery [1]. In this paper we will only discuss exact recovery,
also known as strong consistency, i.e. we want to recover the entire partition with large probability and
without any misclassified vertices.

The SBM is of course not a very realistic model, as the degree distribution inside communities is
usually not uniform in applications. It has for example been shown, that the SBM provides a poor fit
for the famous karate club network [6]. However, there has been recently a lot of progress on the
theoretical foundations of community detection that go beyond the SBM, such as the study of degree-
corrected block models [15] or graphons [22, 30]. And also for practical simulation, there have been
various models introduced that are much more realistic than the standard SBM such as the LFR
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Adaptive weights community detection 3

benchmark [23] or [4] where the degree distribution follows a power law.

Nonetheless, the study of the SBM for a new method can be very useful, as this model already cap-
tures a major information theoretic bottleneck for random graphs. We will start discussing a very simple
version of the SBM, which is also called symmetric SBM. We consider the size of each community to
be deterministic.

Definition 1. SupposeK ∈ Z≥2 is fixed, n > 0 and 0 ≤ ρ < θ ≤ 1. By SBM(n,K, θ, ρ) we denote
a random graph with nK vertices that are divided intoK communities of size n and whose edges are
generated according to independent Bernoulli variables of mean θ inside the communities and mean
ρ between different communities.

We will later also discuss the generalization of our results to a more general SBM.

1.3 AWCD revisited

This paper follows up on a proposal by Larisa Adamyan, Kirill Efimov and Vladimir Spokoiny for a novel
community detection method based on a hypothesis test of homogeneity for an SBM called adaptive
weights community detection (AWCD) [2]. The idea of this test originates from a likelihood-ratio test
for local homogeneity [31] with applications to image processing. Later, the same test was also used
for the problem of adaptive clustering [11]. Unfortunately, no theoretical analysis was provided for the
AWCD algorithm. We will provide the first theoretical study in this paper and demonstrate that signifi-
cant modifications are necessary to achieve a good performance on the SBM. We start by introducing
the original algorithm and the idea behind it: Let us consider a general SBM with two disjoint commu-
nities C∗1 and C∗2 . The communities may have different sizes. The edges are independent and follow
Bernoulli distributions. For i = 1, 2, edges inside community C∗i follow a Bernoulli distribution with
parameter θi, the remaining edges between the two communities follow a parameter ρ. We consider
the null hypothesis

H0: θ1 = θ2 = ρ ∈ [0, 1]

against the alternative

H1: θ1, θ2, ρ ∈ [0, 1].

The likelihood-ratio test statistic turns out to be

T = N11K
(
θ̃11, θ̃1∨2

)
+N22K

(
θ̃22, θ̃1∨2

)
+N12K

(
θ̃12, θ̃1∨2

)
,

where

� θ̃ii denotes MLE of θi under H1,

� θ̃12 denotes MLE of ρ under H1,

� Nij denotes the sample size of the respective MLEs and

� θ̃1∨2 denotes MLE of ρ under H0.
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Given data in form of an adjacency matrix Y , the AWCD algorithm applies this test iteratively on local
communities Ci that are computed for each node i and represented by a weight matrix W such that
Ci = {j : Wij = 1}. An exact description is given in Algorithm 1. [2] propose to use the usual
graph theoretic neighborhood Y as a starting guess. Ideally, for some tuning parameter λ, the local
community structure W , which is updated at each step of the procedure, converges towards the true
underlying community structure W ∗. Note that the proposed starting guess violates the setup of the
likelihood ratio test w.r.t. the following points:

� Local Communities are overlapping.

� Local Communities are small compared to true communities.

� Local Communities are of low precision, i.e. they contain many false members.

As we will discuss in the following, these violations lead to practical and theoretical limitations of the
procedure and motivated us to propose substantial modifications.

In this paper, we address the current gap between theoretical and practical results in Community
Detection. Our contributions include:

� A novel procedure based on [11] with the following modifications:

� Reducing the bias of the involved estimators.

� Increasing the size of the initial communities.

� Rates of strong consistency of the new algorithm on the SBM: Contrary to [11], the rate is nearly
optimal in the most common case where the quotient between two Bernoulli parameters of a
symmetric stochastic block model is constant.

� Numerical illustrations and validation for our theoretical results.

The rest of the paper is organized as follows. In section 2 we present our main results. We start in
subsection 2.1 by discussing rates of strong consistency for both the original version of the algorithm
as well as a modified version that removes bias terms. In subsection 2.2 we will show that these results
can be extended to sparse graphs by increasing the size of the initial starting guess for each neighbor-
hood. In particular, this extension of the algorithm achieves a nearly optimal rate of strong consistency
for stochastic block models using two Bernoulli parameters having a constant quotient. For simplicity,
these results are stated for the symmetric stochastic block model. We discuss the generalization to a
more general stochastic block model in subsection 2.3. In the following section 3 we present numerical
results illustrating the main results of section 2. All proofs are collected in section 4. In appendix A we
discuss further details on the presented rates of consistency.

2 Results

2.1 Improvement of rates via bias correction

For simplicity, we start by considering the very simple model SBM(n,K, ρ, θ) introduced in Definition
1. As we are interested in the asymptotics n → ∞, the parameters θ and ρ may depend on n.
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Adaptive weights community detection 5

Algorithm 1 AWCD algorithm from [2]

1: input: adjacency matrix Y , number of iterations lmax and a test threshold λ ∈ R
2: initialize the weight matrix W (0) = Y
3: for l from 1 to lmax do
4: S =

(
W (0)YW (0)

)
i,j

5: Nij = |Ci| (|Cj| − 1(i = j))

6: θ̃ij =
Sij
Nij

7: θ̃i∨j =
Sii+2Sij+Sjj

Nii+2Nij+Njj

8: compute test statistic T = N11K
(
θ̃11, θ̃1∨2

)
+N22K

(
θ̃22, θ̃1∨2

)
+N12K

(
θ̃12, θ̃1∨2

)
9: update weight matrix W = (1 (Tij ≤ λ))i,j

10: update initial weight matrix W (0) = W
11: end for
12: output: matrix of binary weights W

However, we will not use the index n explicitly to simplify the notation. In contrast to θ and ρ, we
consider the number of communities K to be fixed. We denote the corresponding adjacency matrix
by Y . Moreover, we will only consider the first step of algorithm 1 for our theoretical analysis, i.e.
lmax = 1.

The first modification of the algorithm that we propose is related to the definition of Sij . This sum is
supposed to count the number of edges connecting the initial communities Ci and Cj . In particular,
after conditioning on Ci and Cj , we would like to have a sum of independent Bernoulli variables.
However, if we also condition on Yij = 1, the sum contains a deterministic part of size |Ci|+ |Cj| − 1
which is with large probability of order θn:

Sij =
∑

k,l/∈{i,j}

YilYlkYkj + Yij
∑
k/∈{i,j}

(YikYki + YjkYkj) + Y3
ij

=
∑

k,l/∈{i,j}

YilYlkYkj︸ ︷︷ ︸
O(θ3n2)

+1(Yij = 1)

|Ci|+ |Cj| − 1︸ ︷︷ ︸
O(θn)



As the sum Sij is of order θ3n2, it can only be informative as long as θ � n−
1
2 . This problem can be

easily fixed by redefining

Sij :=
(
W (0)YW (0)

)
i,j
− 1(Yij = 1) (|Ci|+ |Cj| − 1)

=
∑

Yil=1,Ykj=1,k,l/∈{i,j}

Ykl.

Let us call this debiased version of the algorithm AWCD1 and the original version AWCD◦1. Indeed, this
modification improves the rate of θ − ρ significantly:

Theorem 1. For both versions of the algorithm we consider the asymptotics θ
ρ
≡ C as well as the

more general condition θ
ρ
≤ C for the symmetric SBM(n,K, θ, ρ) with a fixed number of communities

K . Consistent exact recovery, i.e.

P(∀i, j : Wij = W ∗
ij)→ 1,
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is achieved after the first step as long as θ ≤ 1
2

and
θ
ρ
≡ C θ

ρ
≤ C

AWCD◦1 θ � n−
1
2 θ − ρ� max{n− 1

3 θ
1
3 , n−

1
6 θ

5
6 (log n)

1
6}

AWCD1 θ � n−
2
3 (log n)

1
3 θ − ρ� max{n− 1

3 θ
1
2 (log n)

1
6 , n−

1
6 θ

5
6 (log n)

1
6}.

Remark 1. In the above table, we use the notation x � y to describe the following: There exists a
constant c such that the statement of the theorem holds as long as cx > y.

Remark 2. The constant 1
2

may be replaced by any positive constant smaller than 1.

We have visualized the consistency regime for θ
ρ
≤ C in a logn-logn plot of the quotient θ−ρ

θ
against

the parameter θ in Figure 1. Note that in the case θ
ρ
≡ C , the minimax rate of consistent exact

recovery is (log n)n−1, matching the minimal rate ensuring consistent connectivity of the graph, c.f.
[1].

0.6 0.4 0.2 0.0
logn( )

0.15

0.10

0.05

0.00

lo
g n

(
p

)

AWCD1
AWCD1

Figure 1: A logn-logn plot of the regime of strong consistency for AWCD1 and AWCD◦1

2.2 Increase of starting neighborhood for sparse graphs

Although the introduced modification improves the rate of strong consistency, the obtained rate is still
far from optimal. As previously mentioned, the algorithm violates the likelihood-ratio test setup with
respect to the assumptions on the starting guess. In particular, the local communities are relatively
small and also contain many members from different communities. The following observation shows,
that a better starting guess does indeed improve the rate further.

Observation 1. Suppose instead of W (0) = Y we are given an improved starting guess for each i in
form of a random subset of its true community of the same size � θn as before. We assume θ

ρ
≡ C

and θ < 1
2
. Then AWCD1 achieves consistent exact recovery after the first step as long as

θ � n−
2
3 (log n)

1
3 .

If the size of the above starting guess is increased to � θ
1
2n, then this rate improves to

θ � (log n)
1
2n−1.
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1.0 0.8 0.6 0.4 0.2 0.0
logn( )

0.5

0.4

0.3

0.2

0.1

0.0
lo

g n
(

p
)

minimax regime
AWCDk

0.9 0.8 0.7 0.6 0.5
logn( )

0.05

0.04

0.03

0.02

0.01

0.00

lo
g n

(
p

)

AWCD2
AWCD +

2
AWCD2

Figure 2: Left: A logn-logn plot of the strong consistency regime of AWCDk under a proper choice
of the neighborhood parameter k in comparison to the minimax regime [41]. Right: A logn-logn plot
compares the consistency regime of the three versions of the algorithm in case k = 2.

Considering that the reconstruction of the community structure from such a good starting guess is
trivial, it is surprising, that the rate from Theorem 1 does not improve from increased precision of the
starting guess (at least in the case θ

ρ
≡ C). However, we observe the expected improvement after

additionally increasing the size of the starting guess. The reason for this phenomenon is that for the
computation of each test statistic Tij we only use a part of the available data Y . The larger the starting
guess is, the larger part of the data we use. If the size of the starting guess is too small, we cannot
expect the algorithm to recover the community structure correctly, even if the starting guess is a subset
of the true community.

As we will see in the following, the algorithm also benefits from an increased starting guess if the
precision is not increased or even slightly worse. A simple way to increase the size of the starting
guess is to take into account members that are connected via a path of minimal path length k. We
call this set of members k-neighborhood of i and denote it by Cki . Similarly, we can also work with the
neighborhood C≤ki of members that are connected via a path of length k or smaller. If the graph is
sparse enough, these neighborhoods are almost of the same size and we expect very similar results.
To simplify some technical details, we will focus on using the neighborhood Cki .

Moreover, an alternative but similar approach to increase the part of the data Y used for the compu-
tation of test statistic Tij is to instead (or additionally) change the way how we count the number of
connections between two different local communities: Instead of only counting the edges that directly
connect the two local communities, we can also count connections via paths of a certain (maximum)
length. This approach should lead to very similar results to those presented in the following.

Let us modify the definitions in the first step of algorithm 1 to

Sij :=
∑

v1∈Cki ,v2∈Ckj

Yv1v2 and

Nij := |Cki |
(
|Ckj | − 1(i = j)

)
.

We will call this version of the algorithm AWCD◦k. Moreover, we also consider an analogous bias
correction term as before:

Sij :=
∑

v1∈Cki ,v2∈Ckj

Yv1v2 − 1(i = j)
(
|Cki |+ |Ckj |

)

DOI 10.20347/WIAS.PREPRINT.2951 Berlin 2022



F. Besold, V. Spokoiny 8

We denote the corresponding algorithm by AWCDk. We will show that the bias correction does signifi-
cantly improve the rates. However, this is only an approximate bias correction. A completely unbiased
version AWCD+

k can for example be defined via

Sij :=
∑

v1∈Cki \C
k−1
j ,v2∈Ckj \C

k−1
i

Yv1v2 and

Nij :=
∑

v1∈Cki \C
k−1
j 6=v2∈Ckj \C

k−1
i

1.

leading to even better rates. Unfortunately, we do not know if there exists an efficient implementation.
Conversely, the other two versions can be implemented efficiently using matrix multiplications: The
starting neighborhood guesses Ck

i can be represented by the weight matrix

W (0) =

1
( k∑

l=1

Y l
)
ij

> 0

− 1

(k−1∑
l=1

Y l
)
ij

> 0


i,j

allowing us to compute S as previously as a product of matrices S = W (0)YW (0). Computation of
N and the bias correction only requires O(n2) operations. Thus, the overall complexity is the same
as the complexity of the involved (sparse) matrix multiplications. Consequently, AWCDk is the main
algorithm that we propose in this paper. The other two versions are just considered for the sake of
comparison.

This extension of the algorithm adds a tuning parameter k to the procedure. However, this does not
increase the parameter space much, as k will only take very few different values in practice, e.g.
k ∈ {1, 2, 3, 4}. Moreover, it may be estimated from the sparsity of the given adjacency matrix.

[2] demonstrated, that starting from the 1-neighborhood, multiple iterations of the algorithm can im-
prove the quality of the result further if the first step already produces a reasonably good estimation
of the community structure. This idea of using the output of the previous iteration as a new starting
guess can of course also be applied to the algorithms introduced above. However, this approach will
not improve the rate any further, see section 3.

In the following theorem, we collect the rates of strong consistency for the cases θ
ρ
≡ C and θ

ρ
≤ C

for each of the three algorithms introduced above. The rates are visualized in a logn-logn plot in Figure
2.

Theorem 2. Suppose k ≥ 2. Consistent exact recovery is achieved on SBM(n,K, θ, ρ) after the first
step as long as

θ
ρ
≡ C θ

ρ
≤ C

AWCD◦k n−
k

k+1 � θ � n−
k−1
k θ − ρ� max{C1, C

◦
2}

AWCDk n−
2k+1
2k+3 (log n)

1
2k+3 � θ � n−

k−1
k θ − ρ� max{C1, C2}

AWCD+
k n−

2k
2k+1 (log n)

1
2k+1 � θ � n−

k−1
k θ − ρ� max{C1, C

+
2 }
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for

C1 = θ
3k+1
2k+1n

k−1
2k+1 + θ

4k+1
4k+2n−

1
4k+2 (log n)

1
4k+2 ,

C◦2 = θ
k

2k+1n−
k

2k+1 ,

C2 = θ
2k−1
4k+2n−

1
2 (log n)

1
4k+2 and

C+
2 = θ

1
2n−

k
2k+1 (log n)

1
4k+2 .

Remark 3. In particular, if k is tuned correctly, the algorithm AWCDk nearly achieves the optimal rate
of strong consistency for the case θ

ρ
≡ C as the regimes for different k are overlapping.

2.3 General SBM

We suspect that any of the above results may be generalized to an SBM having communities of
different sizes and more Bernoulli parameters. Indeed, continuing the study of AWCD1, we can extend
the results of Theorem 1 to more general stochastic block models.

Proposition 1. We consider the SBM with communities of different sizes n1, . . . , nK and only two
Bernoulli parameters θ > ρ as before. We denote the minimal and maximal community size by nmin

and nmax. Then AWCD1 achieves consistent exact recovery after the first step (under the asymptotics
nmin →∞ and θ

ρ
≤ C) as long as

θ − ρ�
(
nmax

nmin

) 2
3

max{n−
1
3

minθ
1
2 (log nmin)

1
6 , n

− 1
6

minθ
5
6 (log nmin)

1
6}

and θ < 1
2

(or any constant smaller than 1).

Remark 4. The lower bound no longer simplifies to a single term in the case θ
ρ
≡ C but rather to

θ � max

{(
nmax

nmin

) 4
3

n
− 2

3
min(log nmin)

1
3 ,

(
nmax

nmin

)4

n−1min log nmin

}
.

Only for n10
max . n11

min does the condition further simplify to

θ �
(
nmax

nmin

) 4
3

n
− 2

3
min log nmin,

similarly to the rate of Theorem 1.

Proposition 2. We consider a stochastic block model with two blocks of block sizes n1 and n2 with
parameters θ1, θ2 > ρ under the asymptotics nmin →∞. Then AWCD1 achieves consistent exact
recovery after the first step as long as

θmin − ρ�
(
θmax

θmin

) 7
3
(
nmax

nmin

)2

max
{
n
− 1

3
minθ

1
2
max(log nmin)

1
6 , n

− 1
6

minθ
5
6
max(log nmin)

1
6

}
and θmax <

1
2
(or any constant smaller than 1).

Remark 5. Note that we do in general allow for nmax

nmin
→ ∞ or θmax

θmin
→ ∞. If nmax

nmin
and θmax

θmin
are

bounded by a constant M , then the rates in Proposition 1 and 2 are exactly the same as in Theorem
1. However, the respective implicit constant factor in the lower bound depends on M .
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Figure 3: We consider a realization of SBM(2000, 2, 0.01, 0.0025). Top: Adjacency matrix of the start-
ing guess W (0) of the community structure from AWCDk for k = 1, 2, 3. Bottom: The corresponding
test statistics.

3 Experiments

[2] already demonstrated a state-of-the-art performance of the original algorithm on the LFR bench-
mark [23] for a total sample size of n = 1000 as well as on smaller real-life examples such as the
famous Zachary’s karate club network [40]. Moreover, it has been shown that optimizing modularity
is a reasonable method to choose the tuning parameter λ. In this section, we focus on validating
our theoretical results and consider only the simple symmetric stochastic block model SBM(n, 2, θ, ρ)
consisting of two communities of identical size n and having two Bernoulli parameters θ > ρ. We want
to study two questions:

1 How does the performance of the procedure depend on the starting neighborhood via the pa-
rameter k

2 Can we observe the stated rates of consistency?

We do not study the effect of the bias correction term. This aspect of the algorithm is important for
strong consistency. However, in terms of the accuracy of the final weight matrix, also known as Rand
index [33], the effect is rather small: If the matrix is relatively dense, then the bias term is also relatively
small, whereas the bias correction only applies to a relatively small fraction of the test statistics Tij , if
the matrix is sparse.

We start by studying one realization of the SBM as described above with the parameters n = 2000,
θ = 0.01 and ρ = 0.0025. In Figure 3 we see the original adjacency matrix, the corresponding 2- and
3-neighborhood adjacency matrix as well as the test statistics of the algorithm AWCDk for k = 1, 2, 3.
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Figure 4: Rand index achieved by AWCDk on SBM(2000, 2, θ, ρ) for different algorithm parameters
(k, λ) and for several Bernoulli parameter combinations (θ, ρ)

We can see that the test statistic is only informative for k = 2: For k = 1, each sum Sij consists
only of a few summands, so the test statistic cannot be reliable, whereas, for k = 3, each starting
neighborhood contains almost all members of the network. This is confirmed by a plot of the Rand
index of the final weight matrices corresponding to these test matrices and different tuning parameters
λ in Figure 4 (bottom, middle): Only for k = 2 does the algorithm correctly identify the community
structure. [2] have demonstrated in the case k = 1 that multiple iterations of the algorithm can improve
the final weight matrix further if enough information on the community structure is recovered after the
first step. However, in this example, we do not benefit from these additional iterations, as the data is
too sparse and the weight matrix after the first step is not informative enough. This is demonstrated in
Figure 5.

We repeated the above experiment for several other parameter combinations (θ, ρ) and plotted the
resulting Rand indices in Figure 4. We can see that the performance of the algorithm is stable with
respect to the tuning parameter λ. Moreover, for any parameter combination of the SBM, we find
parameters k and λ which recover the community structure with a non-negligible accuracy. As ex-
pected by Theorem 2, increasing the sparsity of the data significantly enough requires also increasing
the parameter k. Note that the overall sparsity depends on both parameters θ and ρ: In the case of
θ = 0.004 we see on the right-hand side of Figure 4 that the optimal parameter k depends on ρ. Un-
surprisingly, we also observe that for a given θ, an increase of the quotient θ

ρ
allows a more accurate

recovery of the community structure.

Lastly, we discuss the second question raised above: Can we observe the stated rates of consistency
in numerical experiments? To minimize the computation time, we will focus on the case k = 1. We
have repeated the above experiment for many different parameter combinations (n, θ) with a fixed
quotient θ

ρ
≡ 4. For each parameter combination, we computed the maximum Rand index that can

be achieved by optimizing the tuning parameter λ. We repeated this experiment ten times for each
parameter combination with n ≤ 2000 and averaged the resulting maximum Rand index. The results
are shown in Figure 6. According to Theorem 1, AWCD1 achieves strong consistency at a rate of
n−

2
3 up to logarithmic factors. Indeed, it seems that the function yielding the minimum θ necessary to

achieve a certain level of accuracy for a given community size n can be reasonably well approximated
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by a function of the form Cn−
2
3 .

4 Proofs

Lemma 1. For X ∼ Binom(m, q) and a > 0 we have

P (|X − EX| ≥ am) ≤ 2 exp

(
− a2m

2
(
q + a

3

)) .

Proof. This is a special case of Bernstein’s inequality for bounded variables [38, Theorem 2.8.4].

Lemma 2. Suppose Xi are independent Bernoulli variables of mean θi ≤ θ and a > 0. Then for
ci ∈ {1, 2} and m :=

∑N
i=1 ci we have

P

(∣∣∣∣∣
N∑
i=1

ciXi − EciXi

∣∣∣∣∣ ≥ am

)
≤ 2 exp

(
− a2m

6θ + 4a
3

)
.

Proof. This is a special case of Bernstein’s inequality for bounded variables [38, Theorem 2.8.4].
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Proof of Theorem 1. Let us first consider the AWCD algorithm. Suppose ε > 0 andα ∈ {1, 2, . . . , K}.
We will denote the corresponding true community by C∗α. According to Lemma 1 we have

|Ci ∩ C∗α| = θαi n+O (εn+ θ) (1)

for

θαi =

{
θ , i ∈ C∗α
ρ , i /∈ C∗α

on an event of probability at least

1− 2 exp

(
−ε

2(n− 2)

2θ + ε

)
.

Similarly, we conclude for i 6= j

|Ci ∩ Cj| = O(θ2n+ εn) (2)

on an event of the probability of at least the same lower bound. The above identities are still valid if
we replace Ci by Cji := Ci \ {j}. In the following, we will restrict to an event where (1) and (2) are
satisfied for any i 6= j. By union bound, this event is of asymptotic probability 1 as long as

min

{
ε2n

θ
, εn

}
� log n. (3)

Note that according to our assumptions θn→∞. We conclude from (1) and (2) for ε < θ

E[Sij|Cji , Cij] = θ
∑
α

|Cji ∩ C∗α||Cij ∩ C∗α|+ p
∑
α 6=β

|Cji ∩ C∗α||Cij ∩ C∗β|+O(θ|Ci ∩ Cj|)

= θ
∑
α

θαi θ
α
j n

2 + ρ
∑
α 6=β

θαi θ
β
j n

2 +O(θ3n+ θ2εn2)

=

{
a+O(θ3n+ θ2εn2) ,∃α : i, j ∈ C∗α
c+O(θ3n+ θ2εn2) , otherwise

(4)

for

a := n2[θ3 + 3(K − 1)θρ2 + (K − 1)(K − 2)ρ3] and

c := n2
[
3θ2ρ+ 3(K − 2)θρ2 + ((K − 1)(K − 2) + 1)ρ3

]
.

Note that we have to add the term O(θ|Ci ∩ Cj|) because for any point l in the overlap, we have
YilYllYlk = 0. To simplify the notation, we will drop the superindex in Cji from now on. Similarly, we
have

E[Sii|Ci] = θ
∑
α

|Ci ∩ C∗α|2 + p
∑
α 6=β

|Ci ∩ C∗α||Ci ∩ C∗β|+O(θ|Ci|)

= θ
∑
α

(θαi )
2n2 + p

∑
α 6=β

θαi θ
β
j n

2 +O(θ2n+ θ2εn2)

= a+O(θ2n+ θ2εn2)
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as well as

E[Nij|Ci, Cj] = Nij

=

(∑
α

|Ci ∩ C∗α|

)(∑
α

|Cj ∩ C∗α|

)
= d+O(θ2n+ εθn2)

for
d := n2

[
θ2 + 2(K − 1)θρ+ (K − 1)2ρ2

]
and

E[Nii|Ci] = d+O(θn+ εθn2).

For

R := θn+ εθn2 (5)

we conclude

E[θ̃ii|Ci] =
a+O (θR)

d+O (R)
.

For

δ := max

{
1

θn
,
ε

θ

}
(6)

under the assumption δ � 1 we can rewrite

E[θ̃ii|Ci] =
a

d
(1 +O(δ))

and analogously

E[θ̃ij|Ci, Cj] =

{
a
d
(1 +O(δ)) ,∃α : i, j ∈ C∗α

c
d
(1 +O(δ)) , otherwise

and E[θ̃i∨j|Ci, Cj] =

{
a
d
(1 +O(δ)) ,∃α : i, j ∈ C∗α

a+c
2d

(1 +O(δ)) , otherwise.

In the case of i and j belonging to different communities we conclude for large enough n

E[θ̃i∨j − θ̃ij|Ci, Cj] =
a+ c

2d
(1 +O(δ))− c

d
(1 +O(δ))

=
a− c
2d

+O(δθ)

∝ (θ − ρ)3

θ2
+O(δθ) (7)

and otherwise

E[θ̃i∨j − θ̃ij|Ci, Cj] =
a

d
(1 +O(δ))− a

d
(1 +O(δ))

= O (δθ) . (8)
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Recall that with large probability, Nij = d(1 +O(δ)). From Lemma 2 we deduce that on an event of
large probability,

log

(
1

2
P
(
|Sij − E[Sij|Cji , Cij]| ≥

ρd

3

∣∣∣∣Cji , Cij)) . −ρd
. −θ3n2.

As the RHS does not depend on Cji or Cij , the bound is valid for the unconditional probability as well.
From our assumption θ3n2 � log n and θ < 1

2
we deduce that with large probability for some

x ∈ {a, c} ⊆ [ρd, θd]

θ̃ij ∈
[
x− ρ

3

d
(1 +O(δ)),

x+ ρ
3

d
(1 +O(δ))

]
⊆
[ρ
2
, θ +

ρ

2

]
. (9)

Similarly, with large probability

θ̃i∨j ∈
[ρ
2
, θ +

ρ

2

]
.

In particular, the Fisher information of a Bernoulli variable with a mean parameter bounded as above
is up to bounded constants given by θ−1.

Analogously, the condition θ � (log n)
1
3n−

2
3 and Lemma 2 imply that with large probability

|Sij − E[Sij|Ci, Cj]| . (log n)
1
2 θ

3
2n

and

|Si∨j − E[Si∨j|Ci, Cj]| . (log n)
1
2 θ

3
2n.

In particular,
|θ̃ij − E[θ̃ij|Ci, Cj]| . (log n)

1
2 θ−

1
2n−1 (10)

and
|θ̃i∨j − E[θ̃i∨j|Ci, Cj]| . (log n)

1
2 θ−

1
2n−1.

Using the quadratic Taylor expansion of the Kullbach-Leibler and (7), we conclude in the case where i
and j belong to different communities

θ
1
2K

1
2 (θ̃ij, θ̃i∨j) & |θ̃ij − θ̃i∨j|

≥
∣∣∣E[θ̃ij|Ci, Cj]− E[θ̃i∨j|Ci, Cj]

∣∣∣− ∣∣∣θ̃ij − E[θ̃ij|Ci, Cj]
∣∣∣− ∣∣∣θ̃i∨j − E[θ̃i∨j|Ci, Cj]

∣∣∣
& (θ − ρ)3θ−2 +O

(
δθ + (log n)

1
2 θ−

1
2n−1

)
, (11)

whereas in the other case we conclude analogously from (8)

θ
1
2K

1
2 (θij, θi∨j) . δθ + (log n)

1
2 θ−

1
2n−1. (12)

The same inequalities hold for K 1
2 (θ̃ii, θ̃i∨j) and K 1

2 (θ̃jj, θ̃i∨j). To ensure that the Kullback-Leibler
divergence in the second case (12) is significantly smaller than in the first case (11), it will suffice to
check

δθ � (θ − ρ)3

θ2

⇔ max

{
1

θn
,
ε

θ

}
�
(
θ − ρ
θ

)3

(13)
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and √
log n

θn2
� (θ − ρ)3

θ2
. (14)

With · � · we denote that inequality is satisfied for small enough yet not specified constant. These
are all conditions in the proof that remain to be checked except the large probability assumption

min

{
ε2n

θ log n
,
εn

log n

}
� 1 (15)

given in (3). An ε > 0 satisfying (13) and (15) exists as long as

log n

n
+

√
θ log n

n
� (θ − ρ)3

θ2
, (16)

whereas the ε-independent part of conditions (13) and (14) can be summarized by

1

n
+

√
log n

θn2
� (θ − ρ)3

θ2
. (17)

By simple calculus, we can verify that our assumption

θ − ρ� max{n−
1
3 θ

1
2 (log n)

1
6 , n−

1
6 θ

5
6 (log n)

1
6}

implies conditions (16) and (17). In view of the fact that test is scaled with Nij = d(1 + O(δ)) and
δ � 1 this also ensures consistency of the test (provided a proper threshold is given).

Next, let us consider the original AWCD algorithm. The proof deviates because we need to add an
additional summand O(|Ci| + |Cj|) = O(θn) to the conditional expectation of Sij in (4). Therefore
we also need to modify the definitions R := n + εθn2 and δ := max{ 1

θ2n
, ε
n
}, cf. (5) and (6).

Otherwise, we can follow the above proof, although Sij is, after conditioning on Ci and Cj , not any
longer a sum of independent Bernoulli variables. However, it can be split into a deterministic part and
the same sum of independent Bernoulli variables as above. By bounding the deterministic part, we
can still establish inequality (9). Similarly to (16) and (17) we end up with the sufficient condition

1

θn
+

√
θ log n

n
+

√
log n

θn2
� (θ − ρ)3

θ2

which is satisfied by our condition

θ − ρ� max{n−
1
3 θ

1
3 , n−

1
6 θ

5
6 (log n)

1
6}.

Proof of Observation 1. We can follow the proof of theorem 1 by modifying (1) to

|Ci ∩ C∗α| = 1(i ∈ Cα)θn

in the first case and in the second case to

|Ci ∩ C∗α| = 1(i ∈ Cα)θ
1
2n.
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In both cases, we end up with

E[θ̃i∨j − θ̃ij|Ci, Cj] ∝ θ − ρ+O(n−1).

However, using the larger starting guess, the stochastic bound (10) can be improved to

|θ̃ij − E[θ̃ij|Ci, Cj]| . (log n)
1
2n−1.

Finally, we end up with the sufficient condition

θ − ρ� (log n)
1
2 θ−

1
2n−1

in the case of the smaller starting guess and in the other case with

θ − ρ� (log n)
1
2n−1.

Lemma 3. Suppose K , k and ε > 0 are fixed. We assume

� min
{
ε2n
θ
, εn
}
� log n,

� ε� θ,

� θn� 1, and

� θknk−1 � 1.

Then with large probability, we have

|Cki ∩ C∗α| = ai,αk nk
(
1 +O

(
ε

ρ
+ θknk−1

))
,

where we define recursively

a1 = θ,

b1 = ρ,

ak = θak−1 + (K − 1)ρbk−1,

bk = ρak−1 + θbk−1 + (K − 2)ρbk−1 and

ai,αk =

{
ak , i ∈ C∗α
bk , i /∈ C∗α.

The upper bound can be improved to

|Cki ∩ C∗α| ≤ ai,αk nk
(
1 +O

(
ε

ρ

))
.

Remark 6. As |Ck−1i ∩ C∗α| is significantly smaller than |Cki ∩ C∗α|, exactly the same concentration
result holds for |C≤ki ∩C∗α|. The increase corresponds to an additional factor

(
1 +O

(
1
θn

))
- however

in view of ε
ρ
� 1

θn
this factor can be omitted.
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Remark 7. By induction, we can compute an explicit formula for the difference

ak − bk = (θ − ρ)(ak−1 − bk−1)
= (θ − ρ)k.

Proof of Lemma 3. Applying Lemma 1 and the union bound, a simple induction yields the following
upper bound

|Cki ∩ C∗α| ≤ ai,αk nk
(
1 +

ε

ρ

)k
(18)

as long as

min

{
ε2n

θ
, εn

}
≥ c(k) log n. (19)

The lower bound is not as simple because of the potential overlap of the involved 1-neighborhoods.
First of all, our assumptions ε � θ, θn � 1 as well as θknk−1 � 1 are designed to ensure the
upper bound

|C≤ki ∩ C∗α|
(18)

≤
k∑
l=1

K l−1θlnl
(
1 +

ε

ρ

)l
≤ n

2
.

This allows us to apply Lemma 1 to the set of members not contained in C≤ki,j while the large prob-
ability of the bound is still ensured by condition (19). The obtained lower bounds on the size of the
1-neighborhoods around points in Ck−1i take into account the potential overlaps and can thus be
summarized. To be precise, let us condition on the event that the (k − 1)-neighborhood is equal to
{v1, v2, . . . vm}. Let us fix v ∈ Ck−1 and denote by S(C≤li ) the set of edges contained by a path of

length at most l starting from i. We condition additionally on S(C≤k−1i ) ∪
(⋃

vi 6=v S(Cvi)
)

. Now we

apply Lemma 1 to get a lower bound of the number of members in C∗α that are connected to v and

not contained in C≤k−1i ∪
(⋃

vi 6=v Cvi
)

. This is in fact a lower bound on the number of members in

Cki ∩ C∗α that are only connected to i via a k-path containing v. This lower bound is given by

(θαv − ε)
∣∣∣C∗α \ ({i} ∪ C≤ki ∩ C∗α)∣∣∣

≥(θαv − ε)

(
n− 1− ai,α1 n1

(
1 +

ε

ρ

)1

− · · · − αi,αk nk
(
1 +

ε

ρ

)k)

=(θαv − ε)

(
n− 1−

k∑
l=1

ai,αl nl
(
1 +

ε

ρ

)l)

≥(θαv − ε)

(
n− 1−

k∑
l=1

K l−1θlnl
(
1 +

ε

ρ

)l)

=(θαv − ε)

n− 1

K

Kk+1θk+1nk+1
(
1 + ε

ρ

)k+1

− 1

Kθn
(
1 + ε

ρ

)
− 1


=(θαv − ε)n(1− δk)
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for

δk =
1

n

 1

K

Kk+1θk+1nk+1
(
1 + ε

ρ

)k+1

− 1

Kθn
(
1 + ε

ρ

)
− 1

 .

This bound is of course valid in the unconditional form as well. By induction, we conclude

|Cki ∩ C∗α| ≥
∑
β

|Ck−1i ∩ C∗β| [θ1(α = β) + ρ1(α 6= β)− ε]n(1− δk)

≥ αki n
k

(
1− ε

ρ

)k k∏
l=1

(1− δl).

So we get in view of δk−1 < δk

|Cki ∩ C∗α| ∈

[
ai,αk nk

(
1− ε

ρ

)k
(1− δk)k, ai,αk nk

(
1 +

ε

ρ

)k]
.

Note that δk = O(θknk−1), so our assumptions ensure δk � 1. Also taking into account ε� θ, we
conclude

|Cki ∩ C∗α| = ai,αk nk
(
1 +O

(
ε

ρ
+ θknk−1

))
.

Lemma 4. Under the same assumptions as in Lemma 3 it holds on an event of large probability∣∣Cki ∩ Ckj ∩ C∗α∣∣ . θ2kn2k−1 + εθk−1nk.

If we further assume that there exists no path of length at most k − l between i and j for some
1 ≤ l < k, we have ∣∣Cli ∩ Ckj ∩ C∗α∣∣ . θl+knl+k−1 + εθl−1nl.

Proof. According to Lemma 3

|C≤ki ∩ C∗α| ≤ ai,αk nk
(
1 +O

( ε
θ
+ θknk−1

))
. (20)

From our assumptions, we conclude further for any β

|C≤ki ∩ C∗β| < 2Kk−1θknk.

Let us introduce the notation
m := n− 2Kk−1θknk.

Note that our assumptions imply m > n
2

. After conditioning on C1j , we can apply Lemma 1 to get a
lower bound on the number of edges between i and the remaining points in C∗β :

|C∗β ∩ C1i \ C1j | ≥ ai,β1 m−O(εn)

= ai,β1 m
(
1−O

( ε
θ

))
(21)

DOI 10.20347/WIAS.PREPRINT.2951 Berlin 2022



F. Besold, V. Spokoiny 20

Note that this holds for any β with large probability due to the lower bound on ε and m > n
2

. Let

us denote by S(C≤ki ) the set of all edges contained by a path starting at i of length at most k. After
additionally conditioning on C1i = {v1, . . . , vk′} and S(C≤2j ) as well as C1v2 , ... and C1vk′ , the same
argument yields for any α∣∣∣C∗α ∩ C1v1 \ (C≤2j ∪ (C1v2 ∪ · · · ∪ C

1
vk′
)
)∣∣∣ ≥ av1,α1 m

(
1−O

( ε
θ

))
. (22)

Summarizing the lower bound (22) yields in view of (21) and ε
θ
� 1

|C∗α ∩ C2i \ C
≤2
j | ≥ ai,α2 m2

(
1−O

( ε
θ

))
.

Iterating the argument further, we end up with

|C∗α ∩ Cki \ C
≤k
j | ≥ ai,αk mk

(
1−O

( ε
θ

))
. (23)

From (20), (23) and θknk−1 � 1 we conclude

|C∗α ∩ Cki ∩ C
≤k
j | ≤ ai,αk

(
nk −mk

)
+O

(
εθk−1nk

)
= ai,αk nk(1− (1−O(θknk−1))k) +O

(
εθk−1nk

)
. θ2kn2k−1 + εθk−1nk.

This is of course also an upper bound for |Cki ∩ Ckj ∩ C∗α|. Next, we discuss the overlap of two neigh-
borhoods of different sizes |Cli ∩ Ckj ∩ C∗α| with l < k in case there exists no path of length at most

k − l between i and j. We can then argue very similar (after conditioning on S(C≤k−l+1
j )) as in the

case of l = k and start the induction with a lower lower bound analogous to (21):

|C∗β ∩ C1i \ C
≤k−l+1
j | ≥ ai,β1 m

(
1−O

( ε
θ

))
Analogously to (22) and (23) we iterate this argument further and end up with

|C∗α ∩ Cli \ C
≤k
j | ≥ ai,αl ml

(
1−O

( ε
θ

))
.

Together with the upper bound from Lemma 3

|Cli ∩ C∗α| ≤ αi,αl nl
(
1 +O

( ε
θ
+ θlnl−1

))
we conclude

|Cli ∩ Ckj ∩ C∗α| ≤ αi,αl
(
nl −ml

)
+O

(
εθl−1nl

)
. θl+knl+k−1 + εθl−1nl.

Proof of Theorem 2. We start discussing the algorithm AWCDk and consider i 6= j. Let us condition
on S(C≤ki ) ∪ S(C≤kj ) and write

E[Sij|S(C≤ki ) ∪ S(C≤kj )] =
∑

v1∈Cki ,v2∈Ckj

Yv1v2

= D + S,
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where D denotes the deterministic part of the sum and S denotes the stochastic part (i.e. an inde-
pendent sum of Bernoulli variables). Note that a summand Yv1v2 is deterministic and ≡ 1 if and only
if v1 ∈ Ck−1j or v2 ∈ Ck−1i . First of all, let us consider the case Yij = 0. According to Lemma 4 we
have w.h.p.

|Ck−1i ∩ Ckj ∩ C∗α| . θ2k−1n2k−2 + εθk−2nk−1. (24)

Moreover, the 1-neighborhood around any member is of size at mostO(θn(1 + ε
θ
)), so

D . θ2kn2k−1 + εθk−1nk.

Next, let us discuss the case where Yij = 1. We start studying the case when we do not correct the
bias at all, i.e. with the algorithm AWCD◦k. Then the upper bound (24) is no longer valid, instead we
get

|Ck−1i ∩ Ckj ∩ C∗β| ≤ |Ck−1i ∩ C∗β|

≤ ai,βk−1n
k−1
(
1 +O

( ε
θ

))
. (25)

Again, using the upper bound θαv n(1+O( εθ )) on size of the intersection of C∗α with the 1-neighborhood
around any member v we conclude from (25)

D ≤
∑
α

(
ai,αk + aj,αk

)
nk
(
1 +O

( ε
θ

))
.

Next, we want to compute a lower bound on D. Note that if v2 ∈ Ckj ∩ Ck−1i , then any neighbor v of

v2 that is not contained by C≤k−1i contributes to a deterministic summand Yvv2 ≡ 1 of D. From the
proof of Lemma 4 we already have the lower bound (23)

|Ckj ∩ Ck−1i ∩ C∗β| = |C∗β ∩ Ck−1i \ C≤k−1j |

≥ ai,βk−1(n− 2Kk−2θk−1nk−1)k−1
(
1−O

( ε
θ

))
= ai,βk−1n

k−1 (1−O (θk−1nk−2)) (1−O ( ε
θ

))
. (26)

At the same time, any member v has at least θαv n
(
1−O

(
θk−1nk−2

))
(1−O( ε

θ
)) neighbors inside

C∗α \ C
≤k−1
i . Combining this with (26) yields

D ≥
∑
α

(ai,αk + aj,αk )nk
(
1−O

(
θk−1nk−2

)) (
1−O

( ε
θ

))
.

Considering that according to Lemma 3

|Cki |+ |Ckj | =
∑
α

(ai,αk + aj,αk )nk
(
1 +O

( ε
θ
+ θknk−1

))
,

the deterministic part D is significantly smaller after we adjust the definition of Sij to∑
v1∈Cki ,v2∈Ckj

Yv1v2 − 1(Yij = 1)(|Cki |+ Ckj |).
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To be precise, considering again AWCDk, we now have the same bound as in the case Yij = 0

D = O
(( ε

θ
+ θknk−1

)
θknk

)
= O

(
θ2kn2k−1 + εθk−1nk

)
. (27)

Next, let us consider the stochastic part S. Note that if v1 ∈ Cki \ C
≤k−1
j and v2 ∈ Ckj \ C

≤k−1
i ,

then even after conditioning on S(C≤ki ) ∪ S(C≤kj ), the term Yij is still a Bernoulli variable and not
deterministic. In view of

|C∗α ∩ Cki \ C
≤k−1
j | = |Cki ∩ C∗α|

(
1 +O

(
|C≤k−1j ∩ C∗α|
|Cki ∩ C∗α|

))

= |Cki ∩ C∗α|
(
1 +O

(
1

θn

))
we conclude similar to (4) from Lemma 3 and Lemma 4

S =θ
∑
α

|Cki ∩ C∗α||Ckj ∩ C∗α|
(
1 +O

(
1

θn

))
+ ρ

∑
α 6=β

|Cki ∩ C∗α||Ckj ∩ C∗β|
(
1 +O

(
1

θn

))
+O

(
θ|Cki ∩ Ckj |

)
=

{
an2k

(
1 +O

(
ε
θ
+ θknk−1 + 1

θn

))
+O(θ2k+1n2k−1 + εθknk +D) ,∃α : i, j ∈ C∗α

cn2k
(
1 +O

(
ε
θ
+ θknk−1 + 1

θn

))
+O(θ2k+1n2k−1 + εθknk +D) , otherwise

=

{
an2k +O (θR) ,∃α : i, j ∈ C∗α
cn2k +O (θR) , otherwise

(28)

for

a = θ
[
a2k + (K − 1)b2k

]
+ ρ

[
2(K − 1)akbk + (K − 1)(K − 2)b2k

]
,

c = θ
[
2akbk + (K − 2)b2k

]
+ ρ

[
a2k + 2(K − 2)akbk + ((K − 1)(K − 2) + 1)b2k

]
and

θR = O
(
θ2k+1n2k

(
ε

θ
+ θknk−1 +

1

θn

)
+ θ2k+1n2k−1 + εθknk + θ2kn2k−1 + εθk−1nk

)
= O

(
θ3k+1n3k−1 + εθk−1nk + εθ2kn2k

)
.

Note that according to Remark 7 we have

a− c = θa2k + θb2k − 2θakbk + 2ρakbk − ρa2k − ρb2k
= (θ − ρ)(ak − bk)2

= (θ − ρ)2k+1.

In case i = j the concentration result (28) on S as well as the upper bound (27) for D are still valid:
After conditioning on S(C≤ki ) we have D ≡ 0 as the only deterministic edges are Yvv = 0 for any
v ∈ Cki . This leads to an additional termO(θk+1nk) that needs to be considered in (28), however this
is much smaller thanO(θR).
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Using again Lemma 3, we compute for the denominator in case i 6= j

Nk
ij =

(∑
α

ai,αk

)2

n2k
(
1 +O

( ε
θ
+ θknk−1

))
= dn2k +O

(
εθ2k−1nk + θ3kn3k−1)

= dn2k +O(R)

for

d = ak + (K − 1)bk.

In case i = j the above is still valid: We only need to add a termO(Ck
i ) = O(θknk) which is in view

of εθ2k−1n2k � θ2k−1n2k−1 � θknk already contained inO(R).
The rest of the proof is very similar to the proof of Theorem 1: From the above, we conclude

E[θ̃ij|S(C≤ki ) ∪ S(C≤kj )] =

{
a
d
(1 +O(δ)) ,∃α : i, j ∈ C∗α

c
d
(1 +O(δ)) , otherwise

and E[θ̃i∨j|S(C≤ki ) ∪ S(C≤kj )] =

{
a
d
(1 +O(δ)) ,∃α : i, j ∈ C∗α

a+c
2d

(1 +O(δ)) , otherwise

for

δ =
R

θ2kn2k

and under the assumption δ � 1, which we discuss later. For large enough n in the case of i and j
belonging to different communities we have

E[θ̃i∨j − θ̃ij|S(C≤ki ) ∪ S(C≤kj )] =
a+ c

2d
(1 +O(δ))− c

d
(1 +O(δ))

=
a− c
2d

+O(δθ)

∝ (θ − p)2k+1

θ2k
+O(δθ) (29)

and otherwise

E[θ̃i∨j − θ̃ij|S(C≤ki ) ∪ S(C≤kj )] =
a

d
(1 +O(δ))− a

d
(1 +O(δ))

= O (δθ) . (30)

Next we apply Lemma 2: Considering that the sum Sij consists of O(θ2kn2k) summands, we have
with large probability

|Sij − E[Sij|S(C≤ki ) ∪ S(C≤kj )]| . log n+ (log n)
1
2 θk+

1
2nk.

The upper bound simplifies under the condition θ2k+1n2k & log n to

|Sij − E[Sij|S(C≤ki ) ∪ S(C≤kj )]| . (log n)
1
2 θk+

1
2nk,
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implying

|θ̃ij − E[θ̃ij|S(C≤ki ) ∪ S(C≤kj )]| . (log n)
1
2

θk−
1
2nk

. (31)

As θ2k+1n2k � log n, the upper bound is� θ, implying furthermore

θ̃ij, θ̃i∨j ∈
[ρ
2
, θ +

ρ

2

]
.

Consequently, the corresponding Fisher information is up to bounded constants given by θ−1. Using
the quadratic Taylor expansion of the Kullbach-Leibler, we conclude in the case where i and j belong
to different communities from (29) and (31)

θ
1
2K

1
2 (θ̃ij, θ̃i∨j) &|θ̃ij − θ̃i∨j|

≥
∣∣∣E[θ̃ij|S(C≤ki ) ∪ S(C≤kj )]− E[θ̃i∨j|S(C≤ki ) ∪ S(C≤kj )]

∣∣∣
−
∣∣∣θ̃ij − E[θ̃ij|S(C≤ki ) ∪ S(C≤kj )]

∣∣∣
−
∣∣∣θ̃i∨j − E[θ̃i∨j|S(C≤ki ) ∪ S(C≤kj )]

∣∣∣
&
(θ − ρ)2k+1

θ2k
+O

(
δθ +

(log n)
1
2

θk−
1
2nk

)
, (32)

whereas in the other case we conclude analogously from (30)

θ
1
2K

1
2 (θ̃ij, θ̃i∨j) . δθ +

(log n)
1
2

θk−
1
2nk

. (33)

From (33) and (32) we conclude: A sufficient condition (together with the lower bound from Lemma 3
on ε that guarantees the large probability of the concentration results) for concistency of the algorithm
is

(θ − ρ)2k+1

θ2k
� δθ +

(log n)
1
2

θk−
1
2nk

⇔ (θ − ρ)2k+1 � θRn−2k + (log n)
1
2 θk+

1
2n−k

⇔ (θ − ρ)2k+1 � θ3k+1nk−1 + εθk−1n−k + εθ2k + (log n)
1
2 θk+

1
2n−k. (34)

At the same time, considering θ � logn
n

, all of the above concentration results above only hold with
large probability as long as ε satisfies the lower bound (c.f. Lemma 2)

min

{
ε2n

θ log n
,
εn

log n

}
� 1

⇔ ε� log n

n
+

√
θ log n

n

⇔ ε�
√
θ log n

n
, (35)

whereas the ε-dependent part of (34) is equivalent to the upper bound

ε� min

{
(θ − ρ)2k+1

θ2k
,
(θ − ρ)2k+1nk

θk−1

}
. (36)
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An ε > 0 satisfying (35) as well as (36) exists if and only if

min

{
(θ − ρ)2k+1

θ2k
,
(θ − ρ)2k+1nk

θk−1

}
�
√
θ log n

n

⇔ (θ − ρ)2k+1 � θ2k+
1
2n−

1
2 (log n)

1
2 + θk−

1
2n−k−

1
2 (log n)

1
2 . (37)

Because we only discuss the case k ≥ 2, our assumptions ensure θ � n−
k−1
k � n−

1
2 and in

particular θk−
1
2n−k−

1
2 (log n)

1
2 � θk+

1
2n−k(log n)

1
2 . Thus we can simplify (34) and (37) into the

following sufficient condition for consistency of the algorithm

θ − ρ� max{A,B,C}

for

A = θ
3k+1
2k+1n

k−1
2k+1 ,

B = θ
4k+1
4k+2n−

1
4k+2 (log n)

1
4k+2 and

C = θ
2k−1
4k+2n−

1
2 (log n)

1
4k+2 .

Next, let us consider the algorithm AWCD+. The proof is almost identical - we only need to modify
D = 0, leading to

θR = O(θ3k+1n3k−1 + εθ2kn2k).

Consequently, in the lower bound (34) we can drop the term εθk−1n−k leading to the following analo-
gous condition

(θ − ρ)2k+1 � θ3k+1nk−1 + εθ2k + (log n)
1
2 θk+

1
2n−k

and (37) simplifies to

(θ − ρ)2k+1 � θ2k+
1
2n−

1
2 (log n)

1
2 .

We end up with the final sufficient condition

θ − ρ� max{A,B,C+}

for

C+ = θ
1
2n−

k
2k+1 (log n)

1
4k+2 .

Finally, let us consider the algorithm AWCD◦k without any correction of the bias term. The deterministic
part of the conditional expectation of Sij increases to D = O(θknk) implying

θR = O(θ3k+1n3k−1 + εθ2kn2k + θknk).

We end up with the following lower bound corresponding to (34)

(θ − ρ)2k+1 � θ3k+1nk−1 + εθ2k + θkn−k + (log n)
1
2 θk+

1
2n−k

⇔ (θ − ρ)2k+1 � θ3k+1nk−1 + εθ2k + θkn−k
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and instead of (37) we have again

(θ − ρ)2k+1 � θ2k+
1
2n−

1
2 (log n)

1
2 .

This leads to the final sufficient condition

θ − ρ� max{A,B,C◦}

with

C◦ = θ
k

2k+1n−
k

2k+1 .

Proof of Proposition 1. We proceed analogously as in the case of identical block size. Suppose ε > 0
and α ∈ {1, 2, . . . , K}. Moreover, we use the notation αi for a member i to denote the corresponding
community index such that i ∈ C∗αi

. According to Lemma 1 we have

|Cji ∩ C∗α| = θαi nα +O (εnmax + θ) (38)

for

θαi =

{
θ , i ∈ C∗α
ρ , i /∈ C∗α

on an event of probability at least

1− 2 exp

(
−ε

2nmin

2θ + ε

)
.

Similarly, we conclude for i 6= j

|Cji ∩ C
j
j | = O(θ2nmax + εnmax) (39)

on an event of probability of at least the same lower bound. In the following, we will restrict to an event
where (38) and (39) are satisfied for any i 6= j. By union bound, this event of asymptotic probability 1
as long as

min

{
ε2nmin

θ
, εnmin

}
� log nmin.

Before moving on, we introduce the following notation:

T =
∑

α/∈{αi,αj}

nα

a◦i = θ3n2
i + θρ2(n2

j + 2ninj)

c◦ij = θ2ρ(n2
i + n2

j + ninj) + ρ3ninj

ri = θρ2(
∑

α/∈{αi,αj}

n2
α + 2niT ) + 2ρ3njT + ρ3

∑
α6=β,α,β /∈{αi,αj}

nαnβ

rij = θρ2

 ∑
α/∈{αi,αj}

n2
α + (ni + nj)T

+ ρ3(ni + nj)T + ρ3
∑

α 6=β,α,β /∈{αi,αj}

nαnβ
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Note that according to our assumptions θnmin →∞. We conclude from (38) and (39) for ε < θ

E[Sij|Cji , Cij] = θ
∑
α

|Cji ∩ C∗α||Ci
j ∩ C∗α|+ ρ

∑
α 6=β

|Cji ∩ C∗α||Cij ∩ C∗α|+O(θ|C
j
i ∩ Cij|)

= θ
∑
α

θαi θ
α
j n

2
α + ρ

∑
α 6=β

θαi θ
β
j nαnβ +O(θ3nmax + θ2εn2

max)

=

{
ai +O(θ3nmax + θ2εn2

max) ,∃α : i, j ∈ C∗α
cij +O(θ3nmax + θ2εn2

max) , otherwise

for

ai := a◦i + ri and

cij := c◦ij + rij.

Similarly

E[Sii|Ci] = ai +O(θ2nmax + θ2εn2
max)

as well as

E[Nij|Ci, Cj] = Nij

=

(∑
α

|Ci ∩ C∗α|

)(∑
α

|Cj ∩ C∗α|

)
= dij +O(θ2nmax + εθn2

max)

for

dij = (N◦i + ρT )(N◦j + ρT ),

N◦i = θni + ρnj and

N◦j = ρni + θnj.

Analogously as before, we introduce

R := θnmax + εθn2
max

and get

E[θ̃ii|Ci] =
ai +O (θR)

dii +O (R)
.

For

δ := max

{
1

θnmax

,
ε

θ

}
and under the assumption δ � 1 we can rewrite

E[θ̃ii|Ci] =
ai
dii

(1 +O(δ))
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and analogously

E[θ̃ij|Ci, Cj] =

{
ai
dii

(1 +O(δ)) ,∃α : i, j ∈ C∗α
cij
dij

(1 +O(δ)) , otherwise.

Let us consider the case i ∈ αi. In this case, we have

E[θ̃ii − θ̃ij|Ci, Cj] =
ai
dii

(1 +O(δ))− ai
dii

(1 +O(δ))

= O (δθ) .

Since θ̃i∨j is the weighted mean of θ̃ii, θ̃jj and θ̃ij , we conclude also

E[θ̃i∨j − θ̃ij|Ci, Cj] = O (δθ) . (40)

Next, we consider the other case i /∈ αi. First, we need to calculate a lower bound for the difference
ai
dii
− ci

dij
. We have

ai
dii
− ci
dij

=
a◦i + ri

(N◦i + ρT )2
−

c◦ij + rij

(N◦i + ρT )(N◦j + ρT )

=
1

(N◦i + ρT )2(N◦j + ρT )
(Aij +Bij + Cij)

for

Aij = a◦iN
◦
j − c◦ijN◦i ,

Bij = ρT (a◦i − c◦ij) and

Cij = ri(N
◦
j −N◦i ) + (ri − rij)(N◦i + ρT ).

We have

ri − rij = θρ2(ni − nj)T + ρ3(nj − ni)T
= ρ2T (θni + ρnj − (θnj + ρni))

= ρ2T (N◦i −N◦j ).

Consequently,

Cij = (N◦i −N◦j )(ρ2TN◦i + ρ3T 2 − ri)

= −(N◦i −N◦j )

(θ − ρ)ρ2
∑

α/∈{αi,αj}

n2
α + θρ2niT + ρ3njT


= −(N◦i −N◦j )

(θ − ρ)ρ2
∑

α/∈{αi,αj}

n2
α + ρ2N◦i T


and

Cij + Cji = (N◦i −N◦j )(−ρ2N◦i T + ρ2N◦j T )

= −(N◦i −N◦j )2ρ2T
= −(θ − ρ)2(ni − nj)2ρ2T.
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Moreover,

Bij +Bji = ρT (a◦i + a◦j − 2c◦ij)

= ρT
[
θ3(n2

i + n2
j) + θρ2(n2

i + n2
j + 4ninj)− 2θ2ρ(n2

i + n2
j + ninj)− 2ρ3ninj

]
= ρT

[
ρ(θ − ρ)2(ni − nj)2 + (θ − ρ)3(n2

i + n2
j)
]
.

The first term Aij simplifies to

Aij = a◦iN
◦
j − c◦ijN◦i

= [θ3n2
i + θρ2(n2

j + 2ninj)](ρni + θnj)− [θ2ρ(n2
i + n2

j + ninj) + ρ3ninj](θni + ρnj)

= θ4n2
inj + θ2ρ2nin

2
j + θρ3nin

2
j + θρ3n2

inj − θ3ρnin2
j − θ3ρn2

inj − θ2ρ2n2
inj − ρ4nin2

j

= nin
2
j (θ

4 − 2θ3ρ+ 2θρ3 − ρ4)︸ ︷︷ ︸
=(θ+ρ)(θ−ρ)3

+ninj(ni − nj) (θ4 − θ3ρ− θ2ρ2 + θρ3)︸ ︷︷ ︸
=θ(θ+ρ)(θ−ρ)2

= nin
2
j(θ + ρ)(θ − ρ)3 +Dij

for

Dij = (ni − nj)ninjθ(θ + ρ)(θ − ρ)2.

Note that

Dij +Dji︸ ︷︷ ︸
=0

+Bij +Bji + Cij + Cji = ρ(θ − ρ)3(n2
i + n2

j)T.

So w.l.o.g. we can assume

Dij +Bij + Cij ≥
1

2
ρ(θ − ρ)3(n2

i + n2
j)T,

implying

Aij +Bij + Cij >
1

2
ρ(θ − ρ)3(n2

i + n2
j)T.

We conclude w.l.o.g. (possibly after exchanging the indices i and j)

ai
dii
− ci
dij
&

(θ − ρ)3

θ2
n2
min

n2
max

and thus

E[θ̃ii − θ̃ij|Ci, Cj] =
ai
dii

(1 +O(δ))− cij
dij

(1 +O(δ))

&
(θ − ρ)3

θ2
n2
min

n2
max

+O(δθ).

Since θ̃i∨j is the weighted mean of θ̃ii, θ̃jj and θ̃ij , there exists indices (i′, j′) ∈ {(i, i), (j, j), (i, j)}
such that

E[θ̃i∨j − θ̃i′j′|Ci, Cj] &
(θ − ρ)3

θ2
n2
min

n2
max

+O(δθ). (41)

Similar as in the proof of Theorem 1, we deduce from our assumptions θ3n2
min � log nmin and θ ≤ 1

2

as well as Lemma 2 that
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� the estimates θ̃· (including θ̃ii, θ̃jj , θ̃ij and θ̃i∨j) are with large probability inside an intervall of
the form [ρ

2
, θ + ρ

2
], implying that the corresponding Fisher information of a Bernoulli variable

with such a mean is up to bounded constants given by θ−1 and

� with large probability,

|θ̃· − E[θ̃·|Ci, Cj]| . (log nmin)
1
2 θ−

1
2n−1min.

Combining the above with the quadratic Taylor expansion of the Kullbach-Leibler and (41), we conclude
in the case where i and j belong to different communities

θ
1
2K

1
2 (θ̃i′j′ , θ̃i∨j) & |θ̃i′j′ − θ̃i∨j|

≥
∣∣∣E[θ̃i′j′ |Ci, Cj]− E[θ̃i∨j|Ci, Cj]

∣∣∣− ∣∣∣θ̃i′j′ − E[θ̃i′j′ |Ci, Cj]
∣∣∣− ∣∣∣θ̃i∨j − E[θ̃i∨j|Ci, Cj]

∣∣∣
&

(θ − ρ)3

θ2
n2
min

n2
max

+O
(
δθ + (log nmin)

1
2 θ−

1
2n−1min

)
,

whereas in the other case we conclude analogously from (40)

θ
1
2K

1
2 (θ̃·, θ̃i∨j) . δθ + (log nmin)

1
2 θ−

1
2n−1min.

To ensure that the Kullback-Leibler divergence in the second case is significantly smaller than in the
first case, it will suffice to check

δθ � (θ − ρ)3

θ2
n2
min

n2
max

⇔ max

{
1

θnmax

,
ε

θ

}
�
(
θ − ρ
θ

)3
n2
min

n2
max

(42)

and √
log nmin

θn2
min

� (θ − ρ)3

θ2
n2
min

n2
max

. (43)

Those are all conditions in the proof that remain to be checked except the large probability assumption

min

{
ε2nmin

θ log nmin

,
εnmin

log nmin

}
� 1. (44)

An ε > 0 satisfying (42) and (44) exists as long as

log nmin

nmin

+

√
θ log nmin

nmin

� (θ − ρ)3

θ2
n2
min

n2
max

, (45)

whereas the ε-independent part of conditions (42) and (43) can be summarized by

1

nmax

+

√
log nmin

θn2
min

� (θ − ρ)3

θ2
n2
min

n2
max

. (46)

By simple calculus, we can verify that our assumption

θ − ρ�
(
nmax

nmin

) 2
3

max{n−
1
3

minθ
1
2 (log nmin)

1
6 , n

− 1
6

minθ
5
6 (log nmin)

1
6}

implies conditions (45) and (46). Note that dii, djj and dij only differ by bounded factors. Taking into
account the concentration result N· = d·(1+O(δ)) with δ � 1, this also ensures consistency of the
test - provided a proper threshold is given.
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Proof of Proposition 2. We proceed analogously as previously. Suppose ε > 0 and α ∈ {1, 2}.
According to Lemma 1 we have

|Cji ∩ C∗α| = θαi nα +O (εnmax + θmax) (47)

for

θαi =

{
θα , i ∈ C∗α
ρ , i /∈ C∗α

on an event of probability at least

1− 2 exp

(
−ε

2(nmin − 2)

2θmax + ε

)
.

Similarly, we conclude for i 6= j

|Cji ∩ C
j
j | = O(θ2maxnmax + εnmax) (48)

on an event of probability of at least the same lower bound. In the following, we will restrict to an event
where (47) and (48) are satisfied for any i 6= j. By union bound, this event of asymptotic probability 1
as long as

min

{
ε2nmin

θmax

, εnmin

}
� log nmin.

Note that according to our assumptions θminnmin →∞. We conclude from (47) and (48) for ε < θmin

E[Sij|Cji , Cij] =
∑
α

θα|Cji ∩ C∗α||Cij ∩ C∗α|+ ρ
∑
α 6=β

|Cji ∩ C∗α||Cij ∩ C∗α|+O(θmax|Cji ∩ Cij|)

=
∑
α

θαθ
α
i θ

α
j n

2
α + p

∑
α 6=β

θαi θ
β
j nαnβ +O(θ3maxnmax + θ2maxεn

2
max)

=


a11 +O(θ3nmax + θ2εn2

max) , i, j ∈ C∗1
a22 +O(θ3nmax + θ2εn2

max) , i, j ∈ C∗2
a12 +O(θ3nmax + θ2εn2

max) , otherwise

for

a11 := θ31n
2
1 + 2θ1ρ

2n1n2 + θ2ρ
2n2

2,

a22 := θ32n
2
2 + 2θ2ρ

2n1n2 + θ1ρ
2n2

1 and

a12 := θ21ρn
2
1 + θ22ρn

2
2 + θ1θ2ρn1n2 + ρ3n1n2.

Similarly

E[Sii|Ci] = ai +O(θ2maxnmax + θ2maxεn
2
max)

as well as

E[Nij|Ci, Cj] = Nij

=

(∑
α

|Ci ∩ C∗α|

)(∑
α

|Cj ∩ C∗α|

)

=


d11 +O(θ2maxnmax + εθmaxn

2
max) , i, j ∈ C∗1

d22 +O(θ2maxnmax + εθmaxn
2
max) , i, j ∈ C∗2

d12 +O(θ2maxnmax + εθmaxn
2
max) , otherwise
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for

d11 := (θ1n1 + ρn2)
2,

d22 := (θ2n2 + ρn1)
2 and

d12 := (θ1n1 + ρn2)(θ2n2 + ρn1).

For

R := θmaxnmax + εθmaxn
2
max

we conclude

E[θ̃ii|Ci] =
ai +O (θmaxR)

dii +O (R)
.

For

δ :=

(
θmax

θmin

)2(
nmax

nmin

)2

max

{
1

θminnmax

,
ε

θmin

}
and under the assumption δ � 1 we can rewrite

E[θ̃ij|Ci, Cj] =


a11
d11

(1 +O(δ)) , i, j ∈ C∗1
a22
d22

(1 +O(δ)) , i, j ∈ C∗2
a12
d22

(1 +O(δ)) , otherwise.

Let us consider the case i ∈ αj . W.l.o.g. let us assume αi = 1. Then

E[θ̃ii − θ̃ij|Ci, Cj] =
a11
d11

(1 +O(δ))− a11
d11

(1 +O(δ))

= O (δθmax) .

Since θ̃i∨j is the weighted mean of θ̃ii, θ̃jj and θ̃ij , we also conclude

E[θ̃i∨j − θ̃ij|Ci, Cj] = O (δθmax) . (49)

Next, we consider the other case i /∈ αi. W.l.o.g. let us assume αi = 1 and αj = 2. We compute(
a11
d11
− a22
d22

)
+

(
a11
d11
− a12
d12

)
=

x

(θ1n1 + ρn2)2(θ2n2 + ρn1)2

with

x = 2a11(θ2n2 + ρn1)
2 − a22(θ1n1 + ρn2)

2 − a12(θ1n1 + ρn2)(θ2n2 + ρn1)

= n1n2(θ1θ2 − ρ2)
[
(θ2 − ρ)(θ21 − ρ2)n1n2 +Rij

]
for

Rij = 3ρ(θ2 − ρ)(θ1n2
1 − θ2n2

2) + (θ1 − θ2)
[
n1n2(θ1θ2 + θ1ρ+ ρ2) + 3ρθ1n

2
1

]
.

Note that

Rij +Rji = 3ρ(θ2 − θ1)(θ1n2
1 − θ2n2

2) + (θ1 − θ2)
[
ρn1n2(θ1 − θ2) + 3ρ(θ1n

2
1 − θ2n2

2)
]

= ρn1n2(θ1 − θ2)2

≥ 0.
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So w.l.o.g. (after possibly exchanging the two indices) we can assume(
a11
d11
− a22
d22

)
+

(
a11
d11
− a12
d12

)
≥ (θ1θ2 − ρ2)(θ1 − ρ)(θ2 − ρ)(θ1 + ρ)n2

1n
2
2

(θ1n1 + ρn2)2(θ2n2 + ρn1)2

&

(
θmin

θmax

)2(
nmin

nmax

)2
(θmax − ρ)(θmin − ρ)2

θ2max

and thus

E[(θ̃ii − θ̃jj) + (θ̃ii − θ̃ij)|Ci, Cj]

=

(
a11
d11

(1 +O(δ))− a22
d22

(1 +O(δ))
)
+

(
a11
d11

(1 +O(δ))− a12
d12

(1 +O(δ))
)

&

(
θmin

θmax

)2(
nmin

nmax

)2
(θmax − ρ)(θmin − ρ)2

θ2max

+O(δθmax).

Since θ̃i∨j is the weighted mean of θ̃ii, θ̃jj and θ̃ij , there exists indices (i′, j′) ∈ {(i, i), (j, j), (i, j)}
such that

E[θ̃i∨j − θ̃i′j′ |Ci, Cj] &
(
θmin

θmax

)2(
nmin

nmax

)2
(θmax − ρ)(θmin − ρ)2

θ2max

+O(δθmax). (50)

Similar as in the proof of Theorem 1, we deduce from our assumptions θ3minn
2
min � log nmin and

θmax ≤ 1
2

as well as Lemma 2 that

� the estimates θ̃· (including θ̃ii, θ̃jj , θ̃ij and θ̃i∨j) are with large probability inside an intervall of
the form [ρ

2
, θmax+

ρ
2
], implying that the corresponding Fisher information of a Bernoulli variable

with such a mean is up to bounded constants bounded from below by θ−1max and

� with large probability,

|θ̃· − E[θ̃·|Ci, Cj]| . (log nmin)
1
2 θ
− 1

2
minn

−1
min.

Combining the above with the quadratic taylor expansion of the Kullbach-Leibler and (50), we conclude
in the case where i and j belong to different communities

θ
1
2
maxK

1
2 (θ̃i′j′ , θ̃i∨j) & |θ̃i′j′ − θ̃i∨j|

≥
∣∣∣E[θ̃i′j′|Ci, Cj]− E[θ̃i∨j|Ci, Cj]

∣∣∣− ∣∣∣θ̃i′j′ − E[θ̃i′j′|Ci, Cj]
∣∣∣− ∣∣∣θ̃i∨j − E[θ̃i∨j|Ci, Cj]

∣∣∣
&

(
θmin

θmax

)2(
nmin

nmax

)2
(θmax − ρ)(θmin − ρ)2

θ2max

+O
(
δθmax + (log nmin)

1
2 θ
− 1

2
minn

−1
min

)
,

whereas in the other case we conclude analogously from (49)

θ
1
2
maxK

1
2 (θ̃·, θ̃i∨j) . δθmax + (log nmin)

1
2 θ
− 1

2
minn

−1
min.

Recall that the concentration result N· = d·(1 + O(δ)) and with δ � 1 and note that dii, djj and

dij differ only by a factor .
(
θmax

θmin

)2 (
nmax

nmin

)2
. We conclude that to show the consistency of the test

under a proper choice of the threshold, it will suffice to check

δθmax �
(
θmin

θmax

)4(
nmin

nmax

)4
(θmax − ρ)(θmin − ρ)2

θ2max

⇔ max

{
1

θminnmax

,
ε

θmin

}
�
(
θmin

θmax

)6(
nmin

nmax

)6
(θmax − ρ)(θmin − ρ)2

θ3max

(51)
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and √
log nmin

θminn2
min

�
(
θmin

θmax

)4(
nmin

nmax

)4
(θmax − ρ)(θmin − ρ)2

θ2max

, (52)

while also considering the large probability assumption

min

{
ε2nmin

θmax log nmin

,
εnmin

log nmin

}
� 1. (53)

An ε > 0 satisfying (42) and (44) exists as long as

log nmin

nmin

+

√
θmax log nmin

nmin

�
(
θmin

θmax

)7(
nmin

nmax

)6
(θmax − ρ)(θmin − ρ)2

θ2max

, (54)

whereas the ε-independent part of conditions (42) and (43) is implied by(
θmax

θmin

)
1

nmax

+

√
log nmin

θminn2
min

�
(
θmin

θmax

)6(
nmin

nmax

)6
(θmax − ρ)(θmin − ρ)2

θ2max

. (55)

By simple calculus we can verify that our assumption

θmin − ρ�
(
θmax

θmin

) 7
3
(
nmax

nmin

)2

max
{
n
− 1

3
minθ

1
2
max(log nmin)

1
6 , n

− 1
6

minθ
5
6
max(log nmin)

1
6

}
implies conditions (54) and (55).

A Equivalent formulations and logn-logn plot for rates of consis-
tency

Recall that for k = 1, Theorem 1 guarantees strong consistency as long as

θ − ρ� max{n−
1
3 θ

1
2 (log n)

1
6 , n−

1
6 θ

5
6 (log n)

1
6}. (56)

Considering θ − ρ < θ, condition (56) implies θ � n−
2
3 (log n)

1
3 . This is equivalent to (56) in case

θ
ρ
≡ C . Furthermore, in view of

n−
1
3 θ

1
2 (log n)

1
6 > n−

1
6 θ

5
6 (log n)

1
6

⇔ θ < n−1

2

we can rewrite the consistency condition (56) as

θ − ρ�

{
n−

1
6 θ

5
6 (log n)

1
6 , n−

1
2 . θ < 1

2

n−
1
3 θ

1
2 (log n)

1
6 , n−

2
3 (log n)

1
3 . θ . n−

1
2 ,

or equivalently, using the notation θ = nγ

logn(θ − ρ)−
c

log n
≥{

5γ−1
6

+ 1
6
logn(log n) ,−1

2
+O((log n)−1) ≤ γ < 0 + logn

(
1
2

)
3γ−2
6

+ 1
6
logn(log n) ,−2

3
+ 1

3
logn(log n) ≤ γ +O((log n)−1) ≤ −1

2
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for a large enough constant c ∈ R. Up to the logarithmic terms (which are vanishing for n → ∞),
this can be visualized in a plot of logn

(
θ−ρ
θ

)
versus logn(θ) by the area of a polygon consisting of

the following points:

(0, 0)(
0,−1

6

)
(
−1

2
,− 1

12

)
(
−2

3
, 0

)
Using the original algorithm AWCD◦ instead, we have the sufficient condition for strong consistency

θ − ρ� max{n−
1
3 θ

1
3 , n−

1
6 θ

5
6 (log n)

1
6}. (57)

Considering θ − ρ < θ, condition (57) implies θ � n−
1
2 . This is equivalent to (57) in case θ

ρ
≡ C .

Furthermore, because of

n−
1
3 θ

1
3 > n−

1
6 θ

5
6 (log n)

1
6

⇔ θ < n−
1
3 (log n)−

1
3

we can rewrite the consistency condition (57) as

θ − ρ�

{
n−

1
6 θ

5
6 (log n)

1
6 , n−

1
3 (log n)−

1
3 . θ < 1

2

n−
1
3 θ

1
3 , n−

1
2 . θ . n−

1
3 (log n)−

1
3

or equivalently, using the notation θ = nγ

logn(θ − ρ)−
c

log n
≥{

5γ−1
6

+ 1
6
logn(log n) ,−1

3
− 1

3
logn(log n) +O((log n)−1) ≤ γ < 0 + logn

(
1
2

)
γ−1
3

,−1
2
≤ γ +O((log n)−1) ≤ −1

3
− 1

3
logn(log n).

Again ignoring the logarithmic terms, this can be visualized in a plot of logn
(
θ−ρ
θ

)
versus logn(θ) by

the area of a polygon consisting of the following points:

(0, 0)(
0,−1

6

)
(
−1

3
,−1

9

)
(
−1

2
, 0

)
Next, we discuss the case k ≥ 2, starting with main version AWCD. Recall from Theorem 2 the
sufficient consistency condition

θ − ρ� max{A,B,C}
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for

A = θ
3k+1
2k+1n

k−1
2k+1 ,

B = θ
4k+1
4k+2n−

1
4k+2 (log n)

1
4k+2 and

C = θ
2k−1
4k+2n−

1
2 (log n)

1
4k+2 .

Since B
A
= θ−

1
2n−

2k−1
4k+2 (log n)

1
4k+2 , we have

B > A⇔ θ < n−
2k−1
2k+1 (log n)

1
2k+1 .

Since C
B
= θ−

k+1
2k+1n−

k
2k+1 , we have

C > B ⇔ θ < n−
k

k+1 .

Furthermore, θ � A implies the upper bound

θ � n−
k−1
k

and θ � C implies the lower bound

θ � n−
2k+1
2k+3 (log n)

1
2k+3 .

This allows us to rewrite the consistency condition as

θ − ρ�


A , n−

2k−1
2k+1 (log n)

1
2k+1 . θ . n−

k−1
k

B , n−
k

k+1 . θ . n−
2k−1
2k+1 (log n)

1
2k+1

C , n−
2k+1
2k+3 (log n)

1
2k+3 . θ . n−

k
k+1

for

n−
2k+1
2k+3 (log n)

1
2k+3 � θ � n−

k−1
k .

Note that the latter is in fact equivalent to the consistency condition in case θ
ρ
≡ C . Using the notation

θ = nγ,

we can write equivalently

logn(θ − ρ)−
c

log n
≥

γ(3k+1)+k−1
2k+1

, γ +O((log n)−1) ∈ [−2k−1
2k+1

+ 1
2k+1

logn(log n),−k−1
k
]

γ(4k+1)−1
4k+2

+ 1
4k+2

logn(log n) , γ +O((log n)−1) ∈ [− k
k+1

,−2k−1
2k+1

+ 1
2k+1

logn(log n)]
γ(2k−1)
4k+2

− 1
2
+ 1

4k+2
logn(log n) , γ +O((log n)−1) ∈ [−2k+1

2k+3
+ 1

2k+3
logn(log n),− k

k+1
]

for a large enough constant c ∈ R. Up to the logarithmic terms (which are vanishing for n→∞), we
can visualize the consistency regime in a plot of logn

(
θ−ρ
θ

)
versus logn(θ) by the area of a polygon
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consisting of the following points: (
−
(
k − 1

k

)
, 0

)
(
−
(
2k − 1

2k + 1

)
,−
(

1

(2k + 1)2

))
(
−
(

k

k + 1

)
,− 1

(4k + 2)(k + 1)

)
(
−
(
2k + 1

2k + 3

)
, 0

)

Next, we consider AWCD+. Recall the consistency condition

θ − ρ� max{A,B,C+}

for

C+ = θ
1
2n−

k
2k+1 (log n)

1
4k+2 .

Since C+

B
= θ−

k
2k+1n−

2k−1
4k+2 we have

C+ > B ⇔ θ < n−
2k−1
2k .

Moreover, θ � C+ implies the lower bound

θ � n−
2k

2k+1 (log n)
1

2k+1 .

The condition

n−
k

2k+1 � θ � n−
k−1
k

is in fact equivalent to the final sufficient condition above in case of θ
ρ
≡ C . Moreover, according to

the above, the consistency condition can be rewritten as

θ − ρ�


A , n−

2k−1
2k+1 (log n)

1
2k+1 . θ . n−

k−1
k

B , n−
2k−1
2k . θ . n−

2k−1
2k+1 (log n)

1
2k+1

C+ , n−
2k

2k+1 (log n)
1

2k+1 . θ . n−
2k−1
2k .

Using the notation
θ = nγ,

we can write equivalently

logn(θ − ρ)−
c

log n
≥

γ(3k+1)+k−1
2k+1

, γ +O((log n)−1) ∈ [−2k−1
2k+1

+ 1
2k+1

logn(log n),−k−1
k
]

γ(4k+1)−1
4k+2

+ 1
4k+2

logn(log n) , γ +O((log n)−1) ∈ [−2k−1
2k

,−2k−1
2k+1

+ 1
2k+1

logn(log n)]
γ
2
− k

2k+1
+ 1

4k+2
logn(log n) , γ +O((log n)−1) ∈ [− 2k

2k+1
+ 1

2k+1
logn(log n),−2k−1

2k
].
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The corresponding polygon in a plot of logn
(
θ−ρ
θ

)
versus logn(θ) is defined by the following points:(
−
(
k − 1

k

)
, 0

)
(
−
(
2k − 1

2k + 1

)
,−
(

1

(2k + 1)2

))
(
−
(
2k − 1

2k

)
,− 1

2k(4k + 2)

)
(
−
(

2k

2k + 1

)
, 0

)

Lastly, we also discuss the version AWCD◦ without bias correction. Recall the consistency condition

θ − ρ� max{A,B,C◦}

for

C◦ = θ
k

2k+1n−
k

2k+1 .

Since C◦

B
= θ−

1
2n−

2k−1
4k+2 (log n)−

1
4k+2 , we have

C◦ > B ⇔ θ < n−
2k−1
2k+1 (log n)−

1
2k+1 .

Moreover, θ � C◦ implies the lower bound

θ � n−
k

k+1 .

The condition

n−
k

2k+1 � θ � n−
k−1
k

is equivalent to the final sufficient condition above in case of θ
ρ
≡ C . Moreover, we can rewrite the

consistency condition as

θ − ρ�


A , n−

2k−1
2k+1 (log n)

1
2k+1 . θ . n−

k−1
k

B , n−
2k−1
2k+1 (log n)−

1
2k+1 . θ . n−

2k−1
2k+1 (log n)

1
2k+1

C◦ , n−
k

k+1 . θ . n−
2k−1
2k+1 (log n)−

1
2k+1 .

The corresponding polygon in a plot of logn
(
θ−ρ
θ

)
versus logn(θ) is defined by the following points:(
−
(
k − 1

k

)
, 0

)
(
−
(
2k − 1

2k + 1

)
,−
(

1

(2k + 1)2

))
(
−
(

k

k + 1

)
, 0

)
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