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On a Cahn–Hilliard system with source term and thermal memory
Pierluigi Colli, Gianni Gilardi, Andrea Signori, Jürgen Sprekels

Abstract

A nonisothermal phase field system of Cahn–Hilliard type is introduced and analyzed mathe-
matically. The system constitutes an extension of the classical Caginalp model for nonisothermal
phase transitions with a conserved order parameter. It couples a Cahn–Hilliard type equation with
source term for the order parameter with the universal balance law of internal energy. In place
of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given
by the theory developed by Green and Naghdi, which accounts for a possible thermal memory
of the evolution. This has the consequence that the balance law of internal energy becomes a
second-order in time equation for the thermal displacement or freezing index, that is, a primitive
with respect to time of the temperature. Another particular feature of our system is the presence
of the source term in the equation for the order parameter, which entails additional mathemati-
cal difficulties because the mass conservation of the order parameter is lost. We provide several
mathematical results under general assumptions on the source term and the double-well nonlin-
earity governing the evolution: existence and continuous dependence results are shown for weak
and strong solutions to the corresponding initial-boundary value problem.

1 Introduction

A common assumption in phase segregation processes of binary mixtures is to postulate that the
mixture under investigation undergoes the phase separation at a constant temperature. However, in
numerous applications the evolution does not take place under isothermal conditions. The first con-
tribution aiming at including temperature effects in the theory of phase separation is due to Cagi-
nalp [7–9]. It was motivated by the Stefan problem for the evolution of the interface in a solid-liquid
phase transition and in a Hele–Shaw type flow between two fluids with different viscosities.

Another typical assumption in the context of the Cahn–Hilliard equation is the mass conservation
property that arises as a direct consequence of the standard no-flux boundary condition prescribed
for the chemical potential associated with the phase field variable. While this condition is very natural
for the engineering applications that Cahn and Hilliard had in mind originally (see [10]), the recent
employment of the Cahn–Hilliard equation to describe other phenomena driven by phase segregation
demands the incorporation of an external source term S in the model that reflects the fact that the
system may not be isolated and the loss or production of mass is possible. Without claiming to be
exhaustive, let us mention that numerous liquid-liquid phase segregation problems arise in cell biol-
ogy [16] and in tumor growth models [20]. For this reason, we also included the presence of a source
term in our investigation.

The standard isothermal Cahn–Hilliard system has been extensively studied in the past decades:
see, e.g., [28] and the references therein. On the other hand, the mathematical understanding of
nonisothermal Cahn–Hilliard systems is, thirty years after the seminal works by Alt and Pawlow (see
[1, 3] and, in particular, [2]) and twenty years after the groundbreaking work [17] by Gajewski for
the nonlocal case, still far from being complete. Before presenting our system, let us discuss some
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recent literature. Concerning some analytic results of the aforementioned system by Caginalp, we
mention the related contibutions [11, 12, 27]. Next, employing micro-force balance theory, Miranville
and Schimperna proposed a further derivation in [29], and the well-posedness of a related system has
been addressed in [26]. Moreover, we point out the recent contribution [15] by De Anna et al., where
two new thermodynamically consistent models related to nonisothermal Cahn–Hilliard systems have
been derived. Finally, we refer to [18, 19] for some mathematical results on a relaxed version of the
above systems endowed with dynamic boundary conditions.

Motivated by the aforementioned remarks, we aim at analyzing a nonisothermal Cahn–Hilliard type
system with source term in this paper. To this end, let Ω ⊂ R3 be the spatial domain where the
evolution takes place, and T > 0 a given final time. We then consider the following initial-boundary
value problem:

∂tϕ−∆µ+ γϕ = f in Q := Ω× (0, T ), (1.1)

µ = −∆ϕ+ F ′(ϕ) + a− b∂tw in Q, (1.2)

∂2
tw −∆(κ1∂tw + κ2w) + λ∂tϕ = g in Q, (1.3)

∂nϕ = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ = ∂Ω× (0, T ), (1.4)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = w1 in Ω. (1.5)

In the above system, the unknowns have the following physical meaning: ϕ is a normalized difference
between the volume fractions of pure phases in the binary mixture (the dimensionless order parameter
of the phase transformation, which should attain its values in the interval [−1, 1]), µ is the associated
chemical potential, and w is the so-called thermal displacement (or freezing index), which is directly
connected to the temperature ϑ (which in the case of the Caginalp model is actually a temperature
difference) through the relation

w(·, t) = w0 +

∫ t

0

ϑ(·, s) ds, t ∈ [0, T ]. (1.6)

Moreover, κ1 and κ2 in (1.3) stand for prescribed positive coefficients related to the heat flux; γ is
a positive physical constant related to the intensity of the mass absorption/production of the source,
where the source term in (1.1) is f − γϕ as explained below; λ stands for the latent heat of the phase
transformation; a, b are physical constants; g is a distributed heat source. Besides, the symbol ∂n rep-
resents the outward normal derivative on Γ := ∂Ω, while ϕ0, w0, and w1 indicate some given initial
values. Finally, F ′ stands for the (generalized) derivative of a double-well shaped nonlinearity. Proto-
typical and important examples for F are the so-called classical regular potential and the logarithmic
double-well potential, which are the functions given by

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.7)

Flog(r) :=

{
(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 if |r| ≤ 1,
+∞ otherwise,

(1.8)

with the convention 0 ln(0) := limr↘0 r ln(r) = 0. In (1.8), c1 > 1 so that Flog is nonconvex.
Another example is the double obstacle potential , where, with c2 > 0,

F2obs(r) := −c2r
2 if |r| ≤ 1 and F2obs(r) := +∞ if |r| > 1. (1.9)

Singular potentials like (1.8) and (1.9) are difficult to handle from the mathematical viewpoint, but
have the great advantage that if a solution exists, then it automatically inherits the property of being
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physically meaningful, that is, ϕ ∈ [−1, 1]. In general, this cannot be guaranteed for regular potentials
like the quartic (1.7), which, in this sense, provides just an approximation of the more physical choices.
In cases like (1.9), one has to split F into a nondifferentiable convex part β̂ (the indicator function of
[−1, 1] in the present example) and a smooth (usually quadratic) perturbation π̂. Accordingly, the
second equation (1.2) has then to be understood as the differential inclusion

µ ∈ −∆ϕ+ ∂β̂(ϕ) + π̂′(ϕ) + a− b∂tw,

or, equivalently, with the help of a selection ξ, as the identity

µ = −∆ϕ+ ξ + π(ϕ) + a− b∂tw with ξ ∈ ∂β̂(ϕ).

The above system is a formal extension of the Cahn–Hilliard system introduced by Caginalp in [8]
(see also the derivation in [6, Ex. 4.4.2, (4.44), (4.46)]); it corresponds to the Allen–Cahn counterpart
analyzed recently in [14]. The main differences between our system and the one originally introduced
in [8] are the following:

• In [8], we have a = λ (the specific latent heat).

• In [8], the heat flux is assumed in the standard Fourier form q = −κ1∇ϑ, while we follow the works
by Green and Naghdi [23–25] and Podio-Guidugli [32] and postulate that

q = −κ1∇(∂tw)− κ2∇w where κi > 0, i = 1, 2. (1.10)

Note that this assumption accounts for a possible previous thermal history of the phenomenon. We
also observe that the no-flux condition q · n = 0 then gives rise to the third boundary condition in
(1.4).

• The third – and main – difference is that (1.1)–(1.2) comprises a Cahn–Hilliard system with a source
term S := f − γϕ, which is independent of temperature.

The presence of S radically changes the behavior of the Cahn–Hilliard equation since the mass con-
servation property is no longer fulfilled. In fact, due to the no-flux boundary condition for µ in (1.4), a
formal consideration, i.e., testing (1.1) by 1/|Ω|, readily reveals that the mass balance law of the order
parameter ϕ is ruled by

d

dt

( 1

|Ω|

∫
Ω

ϕ(t)
)

=
1

|Ω|

∫
Ω

S(t) for a.a. t ∈ (0, T ).

In this direction, we highlight that, especially when working with singular potential like (1.9), the control
of the mean value of ϕ plays a crucial role in the mathematical analysis of Cahn–Hilliard-type systems.
Besides, in the case when f is a positive constant such that f ∈ (−γ, γ), the equations (1.1)–(1.2)
correspond to the so-called Cahn–Hilliard–Oono system, see, e.g., [22] and [13].

Finally, let us mention that the differential structure with respect to w in equation (1.3) is sometimes
also referred to as the strongly damped wave equation (see, e.g., [31] and the references therein).

Let us conclude this section by presenting an outline of the paper. In the following section, we state the
main results and list the corresponding assumptions. Then, from Section 3 onward, we start proving
the mentioned results. In particular, Section 3 is devoted to showing some continuous dependence
results enjoyed by the system (1.1)–(1.5). In Section 4, we then introduce and solve a preparatory
approximating problem that will allow us to prove in Section 5 the existence of weak solutions, as well
as some regularity results.
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2 Statement of the problem and main results

Throughout the paper, Ω indicates a bounded and connected open subset of R3 (the lower dimen-
sional cases can be treated in the same way) with smooth boundary Γ := ∂Ω. In the following,
|Ω| and n denote the Lebesgue measure of Ω and the outward unit normal vector field on Γ, respec-
tively. Given a final time T > 0, we set

Qt := Ω× (0, t) for t ∈ (0, T ] and Q := QT . (2.1)

Given a Banach space X , we denote its norm by ‖ · ‖X , with the exceptions of Lp spaces on Ω
and Q, whose norms are denoted by ‖ · ‖p for 1 ≤ p ≤ ∞ (if no confusion can arise), and of the
space H introduced below. For brevity, we use the same symbol for the norm in a space and in any
power thereof. Furthermore, for Banach spaces X and Y , we notice that the linear space X ∩ Y
becomes a Banach space when equipped with its natural graph norm

‖v‖X∩Y := ‖v‖X + ‖v‖Y , v ∈ X ∩ Y.

Then, we introduce the shorthands

H := L2(Ω), V := H1(Ω), and W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}, (2.2)

and endow these spaces with their natural norms. For simplicity, we write ‖ · ‖ instead of ‖ · ‖H .
Moreover, we denote by ( · , · ) and 〈 · , · 〉 the standard inner product of H and the duality pairing
between the dual space V ∗ of V and V itself, respectively. We identify H with a subspace of V ∗ in
the usual way, i.e., in order that

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .

This makes (V,H, V ∗) a Hilbert triplet. We notice that all of the embeddings

W ↪→ V ↪→ H ↪→ V ∗

are dense and compact. Next, we define the generalized mean value v of a generic element v ∈ V ∗
by setting

v :=
1

|Ω|
〈v, 1〉 , (2.3)

where we have written 1 for the constant function that takes the value 1 in Ω. It is clear that v reduces
to the usual mean value if v ∈ H . The same notation v is employed also if v is a time-dependent
function.

Let us come to the structural assumptions we make for our analysis. First,

γ, a, b, κ1, κ2 and λ are positive constants. (2.4)

Next, in order to allow for general double-well potentials in (1.2), we assume that

F : R→ (0,+∞] admits the decomposition F = β̂ + π̂, where (2.5)

β̂ : R→ [0,+∞] is convex, l.s.c., and fulfills β̂(0) = 0, (2.6)

π̂ ∈ C1(R), and its derivative is Lipschitz continuous. (2.7)

Moreover, we set
β := ∂β̂ and π := π̂′, (2.8)
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where ∂ denotes the subdifferential operator, and notice that β : R → 2R is maximal monotone
with corresponding domain D(β) and that 0 ∈ β(0). We observe that all of the examples (1.7)–(1.9)
of potentials introduced before do satisfy the conditions required above. Of course, in the case of
nonregular potentials like the double obstacle (1.9), the second equation (1.2) has to be intended as
the differential inclusion

µ ∈ −∆ϕ+ β(ϕ) + π(ϕ) + a− b∂tw,

or, equivalently, with the help of a selection ξ ∈ β(ϕ) a.e. in Q, as the identity

µ = −∆ϕ+ ξ + π(ϕ) + a− b∂tw.

As for the data, we assume that

f ∈ L∞(Q) and g ∈ L2(0, T ;H), (2.9)

ϕ0 ∈ W, w0 ∈ V and w1 ∈ H . (2.10)

However, we also need some compatibility conditions between the data f and ϕ0 and the domain
of β. These are in fact already expected, as we are dealing with possible singular potentials and a
mass source. In particular, let us repeat that the contribution S := f − γϕ in (1.1) plays the role of
a (phase-dependent) mass source/sink in the model. Indeed, by formally testing (1.1) by 1/|Ω|, and
using (1.4), we infer that the mass balance law of the system reads

d

dt

( 1

|Ω|

∫
Ω

ϕ(t)
)

=
1

|Ω|

∫
Ω

S(t) for a.a. t ∈ (0, T ).

Therefore, it is natural to expect to have some compatibility conditions between the structure of the
source term S, thus on the constant γ and the function f , and the possibly singular potential β.
Namely, setting

ρ :=
‖f‖∞
γ

, (2.11)

and noting that ϕ0 ∈ C0(Ω) by (2.10), we require that all of the quantities

min
x∈Ω

ϕ0(x), max
x∈Ω

ϕ0(x), −ρ− (ϕ0)− , ρ+ (ϕ0)+

belong to the interior of D(β), (2.12)

where ( · )− and ( · )+ denote the negative and positive part functions, respectively.

Remark 2.1. The assumptions on f and ϕ0 can be weakened slightly. However, in doing so, we would
have to replace (2.11)–(2.12) by more complicated compatibility conditions. Moreover, when regulariz-
ing our problem as we are going to do in the forthcoming Section 4, we would have to regularize ϕ0 as
well. This would lead to estimates depending on the regularization parameter, so that further uniform
estimates had to be performed.

At this point, we can rigorously state our notion of (weak) solution to the aforementioned problem under
study. A weak solution to the system (1.1)–(1.5) is a quadruplet (ϕ, µ, ξ, w) enjoying the regularity
properties

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.13)

µ ∈ L2(0, T ;V ), (2.14)
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ξ ∈ L2(0, T ;H), (2.15)

w ∈ H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V ), (2.16)

and satisfying

〈∂tϕ, v〉+

∫
Ω

∇µ · ∇v + γ

∫
Ω

ϕv =

∫
Ω

fv

for every v ∈ V and a.e. in (0, T ) , (2.17)

µ = −∆ϕ+ ξ + π(ϕ) + a− b∂tw and ξ ∈ β(ϕ) a.e. in Q , (2.18)

〈∂2
tw, v〉+

∫
Ω

∇(κ1∂tw + κ2w) · ∇v + λ

∫
Ω

∂tϕv =

∫
Ω

gv

for every v ∈ V and a.e. in (0, T ) , (2.19)

ϕ(0) = ϕ0, w(0) = w0, and ∂tw(0) = w1 . (2.20)

The present paper is devoted to the study of the well-posedness of the above problem and of the
regularity of its solutions. Our first result is an existence theorem.

Theorem 2.2. Assume (2.4)–(2.8) on the structure of the system and (2.9)–(2.12) on the data. Then,
problem (2.17)–(2.20) has at least one solution (ϕ, µ, ξ, w) satisfying (2.13)–(2.16) and

ϕ ∈ L2(0, T ;W 2,6(Ω)) and ξ ∈ L2(0, T ;L6(Ω)) , (2.21)

as well as the estimate

‖ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W 2,6(Ω)) + ‖µ‖L2(0,T ;V ) + ‖ξ‖L2(0,T ;L6(Ω))

+ ‖w‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ K1 , (2.22)

with a positive constantK1 that depends only on the structure of the system, Ω, T , and upper bounds
for the norms of the data and the quantities related to assumptions (2.9)–(2.12).

Uniqueness cannot be expected, in general, as it usually occurs in Cahn–Hilliard type problems with
nonregular potentials. However, we have the result stated below, which ensures continuous depen-
dence on f and g for the components ϕ andw of every solution with fixed initial data. In the statement,
we use the following notation for convolution products with 1:

(1 ∗ v)(t) :=

∫ t

0

v(s) ds for v ∈ L1(0, T ;H) and t ∈ [0, T ]. (2.23)

Theorem 2.3. Under the assumptions (2.4)–(2.8) on the structure of the system and (2.10)–(2.12) on
the initial data, let fi and gi, i = 1, 2, satisfy (2.9), and let (ϕi, µi, ξi, wi) be any two corresponding
solutions of problem (2.17)–(2.20) with the regularity (2.13)–(2.16). Then, the estimate

‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖w1 − w2‖H1(0,T ;H)∩L∞(0,T ;V )

≤ K2

(
‖f1 − f2‖L2(0,T ;V ∗)∩L1(Q) + ‖f1 − f2‖1/2

L1(Q) + ‖1 ∗ (g1 − g2)‖L2(0,T ;H)

)
(2.24)

holds true with a positive constant K2 that depends only on the structure of the system, Ω, T , and an
upper bound for the norms of ξ1 and ξ2 in L1(Q).

Partial uniqueness in general and full uniqueness if β is single valued trivially follow, as stated below.
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Corollary 2.4. Assume (2.4)–(2.8) on the structure of the system and (2.9)–(2.12) on the data. Then,
the components ϕ and w of any solution in the sense of Theorem 2.2 are uniquely determined.
Furthermore, if β is single valued, then even the components µ and ξ are uniquely determined and
the solution is unique.

Under proper regularity assumption on β and on the data, there exists a more regular solution. We
notice that all of the examples (1.7)–(1.9) of potentials still satisfy the stronger conditions required
below.

Theorem 2.5. In addition to the assumptions of Theorem 2.2, let the following conditions be fulfilled:

the restriction of β to the interior of D(β) is a single-valued C1-function, (2.25)

f ∈ H1(0, T ;V ∗), ϕ0 ∈ H3(Ω), and w1 ∈ V. (2.26)

Then the problem (2.17)–(2.20) admits at least one solution (ϕ, µ, ξ, w) that enjoys the further regu-
larity

ϕ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W 2,6(Ω)), µ ∈ L∞(0, T ;V ),

ξ ∈ L∞(0, T ;L6(Ω)), w ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ), (2.27)

and satisfies the estimate

‖ϕ‖H1(0,T ;V )∩L∞(0,T ;W 2,6(Ω)) + ‖µ‖L∞(0,T ;V ) + ‖ξ‖L∞(0,T ;L6(Ω))

+ ‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ K3 , (2.28)

with a positive constantK3 that depends only on the structure of the system, Ω, T , and upper bounds
of the norms of the data and the quantities related to assumptions (2.9)–(2.12) and (2.26).

Remark 2.6. Notice that (2.19) says that u := κ1∂tw + κ2w satisfies∫
Ω

∇u · ∇v =

∫
Ω

hv for every v ∈ V and a.e. in (0, T ),

where h := g − λ∂tϕ− ∂2
tw. In particular, if (ϕ, µ, ξ, w) is a solution in the sense of Theorem 2.5,

then h belongs to L2(0, T ;H), and the elliptic regularity theory yields that

u ∈ L2(0, T ;W ) and ‖u‖L2(0,T ;W ) ≤ CΩ

(
‖u‖L2(0,T ;V ) + ‖h‖L2(0,T ;H)

)
,

where CΩ depends only on Ω. Thus, the same norm can be estimated by a constant which is pro-
portional to K3. By solving κ1∂tw + κ2w = u for w, we obtain that w ∈ H1(0, T ;H2(Ω)) or
w ∈ H1(0, T ;W ), provided that w0 ∈ H2(Ω) or w0 ∈ W , respectively.

In the next sections, when proving our results, we widely use Hölder’s inequality, as well as the Young,
Poincaré, Sobolev and compactness inequalities recalled below:

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0. (2.29)

‖v‖V ≤ CΩ

(
‖∇v‖+ |v|

)
for every v ∈ V . (2.30)

‖v‖p ≤ CΩ ‖v‖V for every v ∈ V and p ∈ [1, 6]. (2.31)

DOI 10.20347/WIAS.PREPRINT.2950 Berlin 2022
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‖v‖p ≤ δ ‖∇v‖+ CΩ,p,δ ‖v‖∗ for every v ∈ V , p ∈ [1, 6) and δ > 0. (2.32)

Here,CΩ is a constant that depends only on Ω, whileCΩ,p,δ depends on p and δ, in addition. Moreover,
the symbol ‖ · ‖∗ denotes the norm in V ∗ defined by the forthcoming formula (2.35). The last two
inequalities are related to the (three-dimensional) embedding V ↪→ Lp(Ω) which holds for p ∈ [1, 6]
and is compact if p < 6.

Finally, we take advantage of a tool that is commonly used in the study of problems related to the
Cahn–Hilliard type equations: consider, for ψ ∈ V ∗, the problem of finding

u ∈ V such that

∫
Ω

∇u · ∇v = 〈ψ, v〉 for every v ∈ V . (2.33)

Obviously, if ψ ∈ H , then this problem is just the usual homogeneous Neumann problem for the
Poisson equation −∆u = ψ. Now, since Ω is connected, for ψ ∈ V ∗, (2.33) is solvable if and only
if ψ has zero mean value. Moreover, if this condition is satisfied, then there exists a unique solution
possessing zero mean value. This entails that the operator

N : dom(N) := {ψ ∈ V ∗ : ψ = 0} → {u ∈ V : u = 0}, given by the rule

ψ 7→ the unique solution u to (2.33) satisfying u = 0, (2.34)

is well defined and yields an isomorphism between the above spaces. Besides, it follows that the
formula

‖ψ‖2
∗ := ‖∇N(ψ − ψ)‖2 + |ψ|2 for ψ ∈ V ∗ (2.35)

defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm. From the above definitions
one trivially derives that∫

Ω

∇Nψ · ∇v = 〈ψ, v〉 for every ψ ∈ dom(N) and v ∈ V , (2.36)

〈ψ,Nζ〉 = 〈ζ,Nψ〉 for every ψ, ζ ∈ dom(N), (2.37)

〈ψ,Nψ〉 =

∫
Ω

|∇Nψ|2 = ‖ψ‖2
∗ for every ψ ∈ dom(N). (2.38)

Moreover, it turns out that∫ t

0

〈∂tv(s),Nv(s)〉 ds =

∫ t

0

〈v(s),N(∂tv(s))〉 ds =
1

2
‖v(t)‖2

∗ −
1

2
‖v(0)‖2

∗ (2.39)

for every t ∈ [0, T ] and every v ∈ H1(0, T ;V ∗) satisfying v = 0 a.e. in (0, T ).

We conclude this section by stating a general rule concerning the constants that appear in the esti-
mates to be performed in the following. The small-case symbol c stands for a generic constant whose
actual value may change from line to line, and even within the same line, and depends only on Ω,
the shape of the nonlinearities, and the constants and the norms of the functions involved in the as-
sumptions of the statements. In particular, the values of c do not depend on the parameters ε > 0
and n ∈ N that will be introduced in the next sections. A small-case symbol with a subscript like
cδ indicates that the constant may depend on the parameter δ, in addition. On the contrary, we mark
precise constants that we can refer to by using different symbols (see, e.g., (2.31)).

DOI 10.20347/WIAS.PREPRINT.2950 Berlin 2022



On a Cahn–Hilliard system with source term and thermal memory 9

3 Continuous dependence

This section is devoted to the proof of Theorem 2.3. Let fi and gi, i = 1, 2, satisfy (2.9), and let
(ϕi, µi, ξi, wi) be any two corresponding solutions as in the statement. We set, for convenience,
ϕ := ϕ1−ϕ2, and define µ, ξ,w, f and g analogously. We first make some preliminary observations.
Recalling (2.13) (see (2.2) for the definition of W ) and testing (2.17) by 1/|Ω|, we find that

d

dt
ϕ(t) + γ ϕ(t) = f(t) for a.a. t ∈ (0, T ). (3.1)

Then, on the one hand, by multiplying this equality by
∫

Ω
v, we deduce that∫

Ω

∂tϕv + γ

∫
Ω

ϕv =

∫
Ω

fv for every v ∈ V and a.e. in (0, T ) . (3.2)

On the other hand, by (formally) multiplying (3.1) by sign(ϕ), where sign : R→ R is the sign function
defined by sign(r) := r/|r| if r 6= 0 and sign(0) = 0, we infer that

|ϕ(t)|+ γ

∫ t

0

|ϕ(s)| ds ≤
∫ t

0

|f(s)| ds ,

whence

sup
t∈(0,T )

|ϕ(t)| ≤
∫ T

0

|f(s)| ds ≤ 1

|Ω|
‖f‖L1(Q) . (3.3)

We now start the proof of the theorem. We use the properties (2.34)–(2.39) of the operator N and
recall the notation (2.23) for convolution products with 1. We write equation (2.17) for both solutions
and take the difference, obtaining an equality from which we subtract (3.2) to arrive at the identity

〈∂t(ϕ− ϕ), v〉+

∫
Ω

∇µ · ∇v + γ

∫
Ω

(ϕ− ϕ)v =

∫
Ω

(f − f)v

for every v ∈ V and a.e. in (0, T ). Since (ϕ − ϕ)(t) has zero mean value for every t ∈ [0, T ], we
are allowed to test the above equation by N(ϕ−ϕ). Integration with respect to time then leads to, for
every t ∈ [0, T ],

1

2
‖(ϕ− ϕ)(t)‖2

∗ +

∫
Qt

µ(ϕ− ϕ) + γ

∫ t

0

‖ϕ− ϕ‖2
∗ =

∫
Qt

(f − f)N(ϕ− ϕ). (3.4)

Next, we write (2.18) for both solutions, multiply the difference by −(ϕ − ϕ), and integrate over Qt,
finding that ∫

Qt

|∇ϕ|2 +

∫
Qt

ξ ϕ−
∫
Qt

µ(ϕ− ϕ)− b
∫
Qt

∂twϕ

=

∫
Qt

ξ ϕ−
∫
Qt

(
π(ϕ1)− π(ϕ2)

)
(ϕ− ϕ)− b

∫
Qt

∂twϕ . (3.5)

Finally, we write (2.19) for both solutions and take the convolution with 1. Then, we test the difference
of the corresponding equalities by (b/λ)∂tw to obtain that

b

λ

∫
Qt

|∂tw|2 +
bκ1

2λ

∫
Ω

|∇w(t)|2 + b

∫
Qt

ϕ∂tw

= −bκ2

λ

∫
Qt

∇(1 ∗ w) · ∇∂tw +
b

λ

∫
Qt

(1 ∗ g)∂tw . (3.6)
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At this point, we add (3.4)–(3.6) to each other and notice that some cancellations occur. Moreover, β
is monotone, and thus all of the remaining terms on the left-hand side are nonnegative. We treat those
on the right-hand side individually. First, we have that∫

Qt

(f − f)N(ϕ− ϕ) ≤ c

∫ t

0

‖(f − f)(s)‖∗ ‖N(ϕ− ϕ)(s)‖V ds

≤ c

∫ t

0

‖(f − f)(s)‖∗ ‖(ϕ− ϕ)(s)‖∗ ds

≤
∫ t

0

‖(ϕ− ϕ)(s)‖2
∗ ds+ c ‖f − f‖2

L2(0,T ;V ∗) ≤
∫ t

0

‖(ϕ− ϕ)(s)‖2
∗ ds+ c ‖f‖2

L2(0,T ;V ∗) ,

where we have used the trivial inequalities ‖v‖∗ ≤ c |v| ≤ c ‖v‖∗, which hold for every v ∈ V ∗.
Next, we fix a constant M such that ‖ξi‖L1(Q) ≤M for i = 1, 2. Then, recalling (3.3), we have that∫

Qt

ξ ϕ ≤
∫
Qt

(
|ξ1|+ |ξ2|

)
|ϕ| ≤ 2M sup

s∈(0,t)

|ϕ(s)| ≤ 2M

|Ω|
‖f‖L1(Q) .

Also, in view of the Lipschitz continuity of π, the obvious inequality ‖v‖ ≤ ‖v‖ for v ∈ H , and the
compactness inequality (2.32), we find that

−
∫
Qt

(
π(ϕ1)− π(ϕ2)

)
(ϕ− ϕ) ≤ c

∫
Qt

|ϕ|2 ≤ 1

2

∫
Qt

|∇ϕ|2 + c

∫ t

0

‖ϕ(s)‖2
∗ ds .

Moreover, by Young’s inequality and arguing as above, we have that

−b
∫
Qt

∂twϕ ≤
b

4λ

∫
Qt

|∂tw|2 + c

∫
Qt

|ϕ|2 ≤ b

4λ

∫
Qt

|∂tw|2 + c ‖f‖2
L1(Q) ,

on account of (3.3). We deal with the next integral using integration by parts to infer that

−bκ2

λ

∫
Qt

∇(1 ∗ w) · ∇∂tw =
bκ2

λ

∫
Qt

|∇w|2 − bκ2

λ

∫
Ω

∇(1 ∗ w)(t) · ∇w(t)

≤ c

∫
Qt

|∇w|2 +
bκ1

4λ

∫
Ω

|∇w(t)|2 + c

∫
Ω

|∇(1 ∗ w)(t)|2 .

In addition, it is clear that∫
Ω

|∇(1 ∗ w)(t)|2 =

∫
Ω

∣∣∣∫ t

0

∇w(s) ds
∣∣∣2 ≤ ∫

Ω

t

∫ t

0

|∇w(s)|2 ds ≤ T

∫
Qt

|∇w|2 .

Finally, we note that

b

λ

∫
Qt

(1 ∗ g)∂tw ≤
b

4λ

∫
Qt

|∂tw|2 + c

∫
Qt

|1 ∗ g|2 .

Upon collecting (3.4)–(3.6) and the inequalities shown above, we obtain that

1

2
‖(ϕ− ϕ)(t)‖2

∗ +
1

2

∫
Qt

|∇ϕ|2 +
b

2λ

∫
Qt

|∂tw|2 +
bκ1

4λ

∫
Ω

|∇w(t)|2

≤ c
(
‖f‖2

L2(0,T ;V ∗)∩L1(Q) + ‖f‖L1(Q) + ‖1 ∗ g‖2
L2(0,T ;H)

)
+c
(∫ t

0

‖ϕ(s)‖2
∗ ds+

∫
Qt

|∇w|2
)
,
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where c has the dependence required for the constant K2 in the statement of the theorem. On the
other hand, (3.3) implies that

‖ϕ(t)‖∗ ≤ ‖(ϕ− ϕ)(t)‖∗ + c |ϕ(t)| ≤ ‖(ϕ− ϕ)(t)‖∗ + c ‖f‖L1(Q) for a.a. t ∈ (0, T ).

By combining this with the previous inequality, we are in a position to apply Gronwall’s lemma and
obtain the desired estimate (2.24), which concludes the proof.

4 Approximation

In this section, we introduce and solve a proper approximating problem depending on the parame-
ter ε ∈ (0, 1). First of all, we replace the functional β̂ and the maximal monotone graph β by their

Moreau–Yosida regularizations β̂ε and βε, respectively (see, e.g., [5, pp. 28 and 39]). We recall that

0 ≤ β̂ε(r) =

∫ r

0

βε(s) ds ≤ β̂(r) for every r ∈ R , (4.1)

βε is monotone and Lipschitz continuous with βε(0) = 0 , (4.2)

|βε(r)| ≤ |β◦(r)| for every r ∈ D(β) , (4.3)

where β◦(r) denotes the element of the section β(r) having minimum modulus. The approximating
problem to be considered consists in finding a triplet (ϕε, µε, wε) satisfying the regularity properties

ϕε ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ∩W 2,6(Ω)) , (4.4)

µε ∈ L2(0, T ;V ) , (4.5)

wε ∈ H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V ) , (4.6)

and solving the following system of variational identities or equations and initial conditions:

〈∂tϕε, v〉+

∫
Ω

∇µε · ∇v + γ

∫
Ω

ϕεv =

∫
Ω

fv

for every v ∈ V and a.e. in (0, T ) , (4.7)

µε = −∆ϕε + βε(ϕε) + π(ϕε) + a− b∂twε a.e. in Q , (4.8)

〈∂2
twε, v〉+

∫
Ω

∇(κ1∂twε + κ2wε) · ∇v + λ

∫
Ω

∂tϕε v =

∫
Ω

gv

for every v ∈ V and a.e. in (0, T ) , (4.9)

ϕε(0) = ϕ0, wε(0) = w0 and ∂twε(0) = w1 . (4.10)

We remark that here we obviously do not need to consider any selection ξ as βε is regular and single
valued. Here is our basic result.

Theorem 4.1. Let the assumptions of Theorem 2.2 be in force. Then problem (4.7)–(4.10) has, for
every ε ∈ (0, 1), a unique solution (ϕε, µε, wε) satisfying the regularity properties expressed in
(4.4)–(4.6).

The rest of this section is devoted to the proof of the above theorem. Clearly, uniqueness is a conse-
quence of Theorem 2.3, since βε satisfies all the assumptions postulated for β in (2.5)–(2.7), and it is
single valued, in addition (cf. Corollary 2.4).
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To prove the existence of a solution, we start from a Faedo–Galerkin scheme. To this end, we intro-
duce the nondecreasing (ordered) sequence {λj} of eigenvalues and the corresponding complete
orthonormal sequence {ej} of eigenfunctions of the eigenvalue problem for the Laplace operator with
homogeneous Neumann boundary conditions. Namely, we have that

−∆ej = λjej in Ω and ∂nej = 0 on Γ for j = 1, 2, . . . , (4.11)∫
Ω

eiej = δij for every i and j, (4.12)

with the standard Kronecker symbols δij . Moreover, we set

Vn := span{ej : 1 ≤ j ≤ n} for n = 1, 2, . . . (4.13)

and recall that the union of these spaces is dense in both V andH . Notice that all of the eigenfunctions
are smooth since Ω is smooth. Furthermore, as Ω is connected, we have that λ1 = 0 < λ2, and V1

is the subspace of constant functions.

The discrete problem consists then in finding a triplet (ϕn, µn, wn) of functions satisfying

ϕn ∈ H1(0, T ;Vn) , µn ∈ L2(0, T ;Vn) and wn ∈ H2(0, T ;Vn) , (4.14)

and solving the discrete problem∫
Ω

∂tϕn v +

∫
Ω

∇µn · ∇v + γ

∫
Ω

ϕnv =

∫
Ω

fv

for every v ∈ Vn and a.e. in (0, T ) , (4.15)∫
Ω

µnv =

∫
Ω

∇ϕn · ∇v +

∫
Ω

βε(ϕn)v +

∫
Ω

(π(ϕn) + a− b∂twn)v

for every v ∈ Vn and a.e. in (0, T ) , (4.16)∫
Ω

∂2
twn v +

∫
Ω

∇(κ1∂twn + κ2wn) · ∇v + λ

∫
Ω

∂tϕn v =

∫
Ω

gv

for every v ∈ Vn and a.e. in (0, T ) , (4.17)∫
Ω

ϕn(0) v =

∫
Ω

ϕ0 v,

∫
Ω

wn(0) v =

∫
Ω

w0 v, and

∫
Ω

∂twn(0) v =

∫
Ω

w1 v,

for every v ∈ Vn. (4.18)

The strategy of the proof can be schematized as follows. First, we show that the above problem has a
unique solution. Then, we perform a number of a priori estimates that allow us to pass to the limit as n
tends to infinity. In this way, we identify a limit triple (ϕε, µε, wε), which then is shown to be a solution
to the problem (4.7)–(4.10) enjoying the desired regularity properties.

Solution to the discrete problem. We represent the unknowns in terms of the basis of the space Vn.
Namely, we have for a.a. t ∈ (0, T ) that

ϕn(t) =
n∑
j=1

ϕnj(t)ej , µn(t) =
n∑
j=1

µnj(t)ej , and wn(t) =
n∑
j=1

wnj(t)ej ,

for some functions ϕnj ∈ H1(0, T ), µnj ∈ L2(0, T ) and wnj ∈ H2(0, T ). Moreover, we introduce
the Rn-valued functions defined a.e. in (0, T ) by

ϕ̂n := (ϕnj)
n
j=1 , µ̂n := (µnj)

n
j=1 , and ŵn := (wnj)

n
j=1 .
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In terms of these true unknowns the equations (4.15)–(4.17) take the form

ϕ̂′n +Aµ̂n + γϕ̂n = f̂ , (4.19)

µ̂n = Aϕ̂n + Fε(ϕ̂n)− bŵ′n , (4.20)

ŵ′′n +A(κ1ŵ
′
n + κ2ŵn) + λϕ̂′n = ĝ , (4.21)

where the matrixA = (Aij)
n
i,j=1 and the vectors f̂ = (fi)

n
i=1 and ĝ = (gi)

n
i=1 are given by

Aij :=

∫
Ω

∇ej · ∇ei , fi :=

∫
Ω

fei , and gi :=

∫
Ω

gei , for i, j = 1, . . . , n,

while Fε : Rn → Rn is the function whose i-th component (i = 1, . . . , n) is given by

Rn 3 r = (r1, . . . , rn) 7→
∫

Ω

(βε + π)
( n∑
j=1

rjej

)
ei + a

∫
Ω

ei .

Clearly, f̂ and ĝ are L2 functions and Fε is Lipschitz continuous. Moreover, the initial conditions
(4.18) provide initial conditions for the vectors ϕ̂n, ŵn and ŵ′n. We first eliminate ϕ̂′n from (4.21) by
exploiting (4.19) and then eliminate every occurrence of µ̂n by means of (4.20). In this way, we obtain a
well-posed Cauchy problem for the pair (ϕ̂n, ŵn) coupled with the chemical potential equation (4.20),
and it is clear that the new problem is equivalent to the previous one. Hence, we find a unique solution
with the regularity

ϕ̂n ∈ H1(0, T ;Rn), ŵn ∈ H2(0, T ;Rn), and µ̂n ∈ L2(0, T ;Rn),

so that the discrete problem has a unique solution, as claimed.

Before we start estimating, we remark a consequence of the compatibility assumptions in (2.12). We
choose some δ0 > 0 such that both the quantities −ρ− (ϕ0)− − δ0 and ρ + (ϕ0)+ + δ0 belong to
the interior of D(β). Then, for some C0 > 0, we have the inequality

βε(r)(r − r0) ≥ δ0|βε(r)| − C0

for every r ∈ R, r0 ∈ [−ρ− (ϕ0)−, ρ+ (ϕ0)+] and ε ∈ (0, 1). (4.22)

This is a generalization of [30, Appendix, Prop. A.1]. The detailed proof given in [21, p. 908] with a
fixed r0 also works in the present case with only minor changes.

Our first estimate prepares the way to apply the above inequality.

A preliminary estimate. We recall that Vn ⊃ V1 and that V1 is the subspace of constant functions.
Hence, we can test (4.15) by 1/|Ω| to obtain that

ϕn
′(t) + γ ϕn(t) = f(t) for a.a. t ∈ (0, T ), (4.23)

whence immediately

ϕn(t) = ϕ0 e
−γt +

∫ t

0

e−γ(t−s)f(s) ds for every t ∈ [0, T ],

and a simple calculation shows that (cf. (2.11))

−ρ− (ϕ0)− ≤ ϕn(t) ≤ ρ+ (ϕ0)+ for every t ∈ [0, T ]. (4.24)

Before continuing, it is worth making some observations on projections which are collected in the
following remark.
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Remark 4.2. Let Pn : H → Vn be the H-orthogonal projection operator. We list some inequalities
that hold true for every n ∈ N, as well as convergence properties as n tends to infinity. For every
v ∈ H , we clearly have that

‖Pnv‖ ≤ ‖v‖, and Pnv → v strongly in H.

Assume now that v ∈ V . Then it is easy to see that also

Pnv ∈ V, ‖∇Pnv‖ ≤ ‖∇v‖, and ‖Pnv‖V ≤ ‖v‖V .

For a detailed proof, see, e.g., [13, Rem. 4.2]. In particular, we deduce that

Pnv → v strongly in V , for every v ∈ V .

Next, assume that v ∈ W . Then, we have that

v =
∞∑
j=1

(v, ej)ej and −∆v =
∞∑
j=1

(v, ej)λjej .

We deduce that ∆Pnv = Pn∆v, and we can apply the above inequalities and convergence proper-
ties to ∆v as well in order to recover further information on Pnv. We obtain, with a constant CΩ that
depends only on Ω, that

‖Pnv‖H2(Ω) ≤ CΩ‖v‖H2(Ω) for every v ∈ W ,

‖Pnv‖H3(Ω) ≤ CΩ‖v‖H3(Ω) for every v ∈ H3(Ω) ∩W ,

Pnv → v strongly in H2(Ω) for every v ∈ W ,

Pnv → v strongly in H3(Ω) for every v ∈ H3(Ω) ∩W.

Notice that all this can be applied to the initial values of the discrete solution as they are projections
on Vn. Now, we consider time-dependent functions. A simple combination of the above properties
with the Lebesgue dominated convergence theorem shows the following: if we assume that v ∈
L2(0, T ;H) or v ∈ L2(0, T ;V ) and define vn by setting vn(t) := Pn(v(t)) for a.a. t ∈ (0, T ), then

vn → v strongly in L2(0, T ;H) or L2(0, T ;V ), respectively.

At this point, we can start estimating, and we recall that the symbol c stands for possibly different
constants independent of ε and n according to our general rule regarding constants stated at the
end of Section 2. We repeatedly owe to the properties (2.34)–(2.39) related to the operator N without
further reference.

First uniform estimate. We first observe that Nv ∈ Vn for every v ∈ Vn satisfying v = 0. Indeed,
both v and w := Nv can be expressed in terms of the eigenfunctions ej , and we have that

∞∑
j=1

λj(w, ej) ej = −∆w = v =
n∑
j=2

(v, ej) ej .

Hence, (w, ej) = 0 for every j > n (since λj > 0 for j > 1), i.e., w ∈ Vn. Once this is established,
we take the difference between (4.15) written for a generic v ∈ Vn and (4.23) multiplied by

∫
Ω
v, write
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the resulting equality at the time s ∈ (0, T ) and test it by N(ϕn − ϕn)(s). Then, by integrating over
(0, t) ⊂ (0, T ), we obtain that

1

2
‖ϕn(t)− ϕn(t)‖2

∗ +

∫
Qt

µn(ϕn − ϕn) + γ

∫ t

0

‖ϕn(s)− ϕn(s)‖2
∗ ds

=
1

2
‖ϕn(0)− ϕn(0)‖2

∗ +

∫
Qt

(f − f)N(ϕn − ϕn). (4.25)

At the same time, we test (4.16), written at the time s, by−(ϕn(s)−ϕn(s)) and integrate over (0, t).
It results that ∫

Qt

|∇ϕn|2 +

∫
Qt

βε(ϕn)(ϕn − ϕn)−
∫
Qt

µn(ϕn − ϕn)

= −
∫
Qt

(
a+ π(ϕn)

)
(ϕn − ϕn) + b

∫
Qt

∂twn(ϕn − ϕn). (4.26)

Finally, we take the convolution between (4.17) and 1 (see (2.23)) and test the resulting equality
by ∂twn. After time integration, we obtain that∫

Qt

(∂twn − ∂twn(0))∂twn +
κ1

2

∫
Ω

|∇(wn(t)− wn(0))|2

= −κ2

∫
Qt

∇(1 ∗ wn) · ∇∂twn − λ
∫
Qt

(ϕn − ϕn(0))∂twn +

∫
Qt

(1 ∗ g)∂twn . (4.27)

At this point, we add (4.25)–(4.27) to each other and notice that a cancellation occurs. After rearrang-
ing, we deduce that

1

2
‖ϕn(t)− ϕn(t)‖2

∗ + γ

∫ t

0

‖ϕn(s)− ϕn(s)‖2
∗ ds+

∫
Qt

|∇ϕn|2 +

∫
Qt

βε(ϕn)(ϕn − ϕn)

+

∫
Qt

|∂twn|2 +
κ1

2

∫
Ω

|∇(wn(t)− wn(0))|2

=
1

2
‖ϕn(0)− ϕn(0)‖2

∗ +

∫
Qt

(f − f)N(ϕn − ϕn)

−
∫
Qt

(
π(ϕn)− π(ϕn)

)
(ϕn − ϕn)−

∫
Qt

(
a+ π(ϕn)

)
(ϕn − ϕn)

+ b

∫
Qt

∂twn(ϕn − ϕn) +

∫
Qt

∂twn(0)∂twn − κ2

∫
Qt

∇(1 ∗ wn) · ∇∂twn

− λ
∫
Qt

(ϕn − ϕn)∂twn − λ
∫
Qt

(ϕn − ϕn(0))∂twn +

∫
Qt

(1 ∗ g)∂twn =:
10∑
i=1

Ii . (4.28)

The integral involving βε can be estimated from below by combining (4.22) and (4.24) as follows:∫
Qt

βε(ϕn)(ϕn − ϕn) ≥ δ0

∫
Qt

|βε(ϕn)| − c .

All of the other terms on the left-hand side are nonnegative. For those on the right-hand side, we
perform separate estimates.
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Since the embedding H ↪→ V ∗ is continuous, the first term I1 is uniformly bounded by the assump-
tion (2.10) on ϕ0, Remark 4.2, and estimate (4.24). Next, we have that

I2 =

∫
Qt

(f − f)N(ϕn − ϕn) ≤ c ‖f‖2
L2(0,T ;V ∗) + c

∫ t

0

‖N(ϕn − ϕn)(s)‖2
V ds

≤ c

∫ t

0

‖(ϕn − ϕn)(s)‖2
∗ ds+ c .

Owing to Young’s inequality, the Lipschitz continuity of π, and (4.24) once more, we have, for every
δ > 0,

I3 + I4 + I5 + I8 ≤
1

4

∫
Qt

|∂twn|2 + c

∫
Qt

|ϕn − ϕn|2 + c

≤ 1

4

∫
Qt

|∂twn|2 + δ

∫
Qt

|∇ϕn|2 + cδ

∫ t

0

‖ϕn(s)− ϕn(s)‖2
∗ ds ,

where in the second line we also used the compactness inequality (2.32). Next, arguing similarly, we
obtain that

I6 + I9 + I10 ≤
1

4

∫
Qt

|∂twn|2 + c

∫
Qt

(
|∂twn(0)|2 + |ϕn − ϕn(0)|2 + |1 ∗ g|2

)
≤ 1

4

∫
Qt

|∂twn|2 + c ,

thanks to (4.24) and to our assumptions on the initial data w1 and ϕ0 (by applying Remark 4.2) and
on g. The last term to be estimated is first treated by an integration by parts. Finally, by also using
Young’s inequality and the estimate for∇wn(0) obtained by applying Remark 4.2, we have, for every
δ > 0, that

I7 = −κ2

∫
Qt

∇(1 ∗ wn) · ∇∂twn

= κ2

∫
Qt

|∇wn|2 − κ2

∫
Ω

∇(1 ∗ wn)(t) · ∇wn(t)

≤ c

∫
Qt

|∇(wn − wn(0))|2 + δ

∫
Ω

|∇(wn(t)− wn(0))|2 + cδ

∫
Ω

|∇(1 ∗ wn)(t)|2 + c .

On the other hand, we also have that∫
Ω

|∇(1 ∗ wn)(t)|2 =

∫
Ω

∣∣∣∫ t

0

∇wn(s) ds
∣∣∣2 ≤ c

∫
Qt

|∇wn|2 ≤ c

∫
Qt

|∇(wn − wn(0))|2 + c .

At this point, we recall (4.28) and all the above estimates, choose δ small enough, and apply Gronwall’s
lemma. We obtain that

‖ϕn − ϕn‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖βε(ϕn)‖L1(Q)

+ ‖∂twn‖L2(0,T ;H) + ‖∇(wn − wn(0))‖L∞(0,T ;H) ≤ c ,

whence immediately

‖ϕn‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖βε(ϕn)‖L1(Q) + ‖wn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c . (4.29)
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Consequence. By testing (4.16) by 1/|Ω|, and owing to (4.29), we infer that

‖µn‖L1(0,T ) ≤ c . (4.30)

Second uniform estimate. We test the equations (4.15), (4.16), and (4.17), by µn, −∂tϕn, and
(b/λ)∂twn, respectively, sum up and notice that the terms involving the products ∂tϕn µn and
∂twn∂tϕn cancel each other. Then, we integrate in time and rearrange to obtain that∫

Qt

|∇µn|2 +
1

2

∫
Ω

|∇ϕn(t)|2 +

∫
Ω

β̂ε(ϕn(t))

+
b

2λ

∫
Ω

|∂twn(t)|2 +
κ1b

λ

∫
Qt

|∇∂twn|2 +
κ1b

2λ

∫
Ω

|∇wn(t)|2

=
1

2

∫
Ω

|∇ϕn(0)|2 +

∫
Ω

β̂ε(ϕn(0)) +
b

2λ

∫
Ω

|∂twn(0)|2 +
κ1b

2λ

∫
Ω

|∇wn(0)|2

−γ
∫
Qt

ϕnµn +

∫
Qt

fµn −
∫

Ω

π̂(ϕn(t)) +

∫
Ω

π̂(ϕn(0))

− a
∫

Ω

(ϕn(t)− ϕn(0)) +
b

λ

∫
Qt

g∂twn , (4.31)

where all of the terms on the left-hand side are nonnegative. Moreover, as before, we can recall
Remark 4.2 in order to estimate the terms involving the initial data, and just the one containing β̂ε
needs further comments. Since ϕ0 belongs to W by (2.10), ϕn(0) converges to ϕ0 strongly in W ,
hence uniformly. On the other hand, by the quoted assumption, minϕ0 and maxϕ0 belong to the
interior of D(β). Thus, for some n0 and every n ≥ n0, all of the values of ϕn(0) belong to a compact
interval I contained in the interior of D(β). By also recalling (4.1), we thus may conclude that∫

Ω

β̂ε(ϕn(0)) ≤
∫

Ω

β̂(ϕn(0)) ≤ max
r∈I

β̂(r) = c .

It is understood that n ≥ n0 from now on, which is no restriction since we aim at letting n tend to
infinity eventually. Let us come to the other terms on the right-hand side. The last one can be dealt
with employing Young’s inequality (and then Gronwall’s lemma), and the integral that precedes it has
already been estimated, since it is a multiple of the mean value. Moreover, since π̂ grows at most
quadratically by condition (2.7), we can infer from the compactness inequality (2.32) and (4.29) that∫

Ω

π̂(ϕn(t)) ≤ c

∫
Ω

|ϕn(t)|2 + c

≤ 1

4

∫
Ω

|∇ϕn(t)|2 + c ‖ϕn(t)‖2
∗ + c ≤ 1

4

∫
Ω

|∇ϕn(t)|2 + c .

The other integrals that need some treatment are those containing µn. We have that∫
Qt

(f − γϕn)µn =

∫
Qt

(f − γϕn)(µn − µn) +

∫
Qt

(f − γϕn)µn

≤ ‖f − γϕn‖L2(0,t;H) ‖µn − µn‖L2(0,t;H) + ‖f − γϕ‖L∞(0,T ;V ∗) ‖µn‖L1(0,T ;V )

≤ c ‖∇µn‖L2(0,t;H) + c ‖µn‖L1(0,T ) ≤
1

2

∫
Qt

|∇µn|2 + c ,
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where we have used the Poincaré inequality (2.30), our assumptions on f (see (2.9)), (4.29), and (4.30).
By coming back to (4.31), collecting the above estimates and observations, and applying the Gronwall
lemma, we conclude that

‖∇µn‖L2(0,T ;H) + ‖ϕn‖L∞(0,T ;V ) + ‖β̂ε(ϕn)‖L∞(0,T ;L1(Ω))

+ ‖wn‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ c . (4.32)

Third uniform estimate. Next, recalling that every constant is allowed as a test function, we test
(4.16) by ϕn(t) − ϕn(t) and rearrange. Omitting the time variable for brevity, we have a.e. in (0, T )
that ∫

Ω

|∇ϕn|2 +

∫
Ω

βε(ϕn)(ϕn − ϕn)

=

∫
Ω

µn(ϕn − ϕn)−
∫

Ω

π(ϕn)(ϕn − ϕn)− a
∫

Ω

(ϕn − ϕn)

+ b

∫
Ω

∂twn(ϕn − ϕn). (4.33)

In view of (4.24) and of our assumption (2.12), we can bound the integral involving βε from below
using (4.22): ∫

Ω

βε(ϕn)(ϕn − ϕn) ≥ δ0

∫
Ω

|βε(ϕn)| − c .

As for the right-hand side, the first term needs some treatment. Thanks to Poincaré’s inequality (2.30)
and to (4.32), we have that∫

Ω

µn(ϕn − ϕn) =

∫
Ω

(µn − µn)(ϕn − ϕn) ≤ c ‖∇µn‖ ‖ϕn − ϕn‖ ≤ c ‖∇µn‖ .

The sum of the other terms is bounded from above by

c
(
‖ϕn‖2 + |ϕn|2 + ‖∂twn‖2

)
+ c .

Combining (4.33), the inequalities just derived, and the previous estimates, we see that the function
t 7→

∫
Ω
|βε(ϕn(t))| is bounded from above by an L2(0, T ) function independently of both n and ε,

that is, it holds
‖βε(ϕn)‖L2(0,T ;L1(Ω)) ≤ c , (4.34)

whence we trivially derive an estimate in L2(0, T ) for the mean value of βε(ϕn). Then, from (4.16),
we can estimate the L2(0, T ) norm of µn. This, (4.32), and the use of the Poincaré inequality once
more, imply that

‖µn‖L2(0,T ;V ) ≤ c . (4.35)

Fourth uniform estimate. We recall Remark 4.2 and use the notations introduced there. We fix
some v ∈ L2(0, T ;V ) and define vn ∈ L2(0, T ;Vn) by setting vn(t) = Pn(v(t)) for a.a. t ∈
(0, T ). Then, we test (4.15) by vn, and integrate over time to obtain that∫

Q

∂tϕn vn = −
∫
Q

∇µn · ∇vn +

∫
Q

(f − γϕn)vn ≤ c‖vn‖L2(0,T ;V ) ≤ c‖v‖L2(0,T ;V ).

On the other hand, we have that ∫
Q

∂tϕn vn =

∫
Q

∂tϕn v ,
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since ∂tϕn is Vn-valued. Thus, we readily conclude that

‖∂tϕn‖L2(0,T ;V ∗) ≤ c . (4.36)

Fifth uniform estimate. Thanks to (4.36), the same argument, applied to equation (4.17) for wn,
yields that

‖∂2
twn‖L2(0,T ;V ∗) ≤ c . (4.37)

Passage to the limit. At this point, we can pass to the limit as n→∞. Indeed, by recalling (4.29),
(4.32) and (4.35)–(4.37), and applying well-known weak, weak star, and strong compactness results
(for the latter see, e.g., [33, Sect. 8, Cor. 4]), we deduce that there exists a triple (ϕε, µε, wε) such that

ϕn → ϕε weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V )

and strongly in C0([0, T ];H) , (4.38)

µn → µε weakly in L2(0, T ;V ) , (4.39)

wn → wε weakly star in H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V )

and strongly in H1(0, T ;H) ∩ C1([0, T ];V ∗) , (4.40)

as n tends to infinity (at least for a subsequence which is not relabeled). Moreover, since βε and π are
Lipschitz continuous, we also have that

βε(ϕn)→ βε(ϕε) and π(ϕn)→ π(ϕε) strongly in C0([0, T ];H). (4.41)

We claim that this triple is a (weak) solution to problem (4.7)–(4.10). Since ϕn(0),wn(0) and ∂twn(0)
are the H projections of ϕ0, w0 and w1, they strongly converge in H to ϕ0, w0 and w1, respectively.
On the other hand, they converge to ϕε(0), wε(0) and ∂twε(0), respectively, strongly (at least) in V ∗,
thanks to (4.38) and (4.40). Hence, the initial conditions (4.10) are satisfied. Now, we show that the
variational equations (4.7)–(4.9) are satisfied as well. We recall Remark 4.2, fix any v ∈ L2(0, T ;V ),
define vn ∈ L2(0, T ;Vn) by setting vn(t) := Pn(v(t)) for a.a. t ∈ (0, T ), and observe that vn
converges to v strongly in L2(0, T ;V ). Next, we test each of the equations (4.15)–(4.17) by vn and
integrate in time over (0, T ). At this point, on account of the convergence properties proved or men-
tioned, it is straightforward to pass to the limit as n → ∞ in the equalities we obtain. The resulting
equalities are the same equations with (ϕε, µε, wε) in place of (ϕn, µn, wn), i.e., the time-integrated
versions of (4.15)–(4.17) with arbitrary time-dependent test functions v ∈ L2(0, T ;V ), which are
equivalent to (4.15)–(4.17) themselves.

Conclusion of the proof. It remains to establish the stronger regularity requirements stated in
(2.21). To this end, we see that, a.e. in (0, T ), ϕε(t) is a solution u ∈ V to the nonlinear elliptic
problem ∫

Ω

∇u · ∇v +

∫
Ω

βε(u)v =

∫
Ω

hv for every v ∈ V , (4.42)

where h is the value of µε − π(ϕε)− a+ b∂twε evaluated at t in our case. On the other hand, every
solution u to problem (4.42) satisfies the estimate

‖βε(u)‖6 ≤ ‖h‖6 , (4.43)

whenever h ∈ L6(Ω). To show that (4.43) actually holds true, we can formally choose v = (βε(u))5

in (4.42) (to be more rigorous, we should use a suitable truncation). Next, we apply the generalized
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Young inequality with conjugate exponents 6 and 6/5 to the resulting right-hand side and rearrange.
Then, (4.43) plainly follows. Moreover, by elliptic regularity, we infer that

u ∈ W 2,6(Ω) ∩W and ‖u‖W 2,6(Ω) ≤ CΩ

(
‖u‖+ ‖h‖6) , (4.44)

with a constant CΩ that depends only on Ω. Then we apply (4.43) with u = ϕε(t), square and
integrate in time to deduce that

‖βε(ϕε)‖2
L2(0,T ;L6(Ω)) ≤ ‖µε − π(ϕε)− a+ b∂twε‖2

L2(0,T ;L6(Ω)) .

Since the right-hand side of this inequality is uniformly bounded owing to our previous estimates and
the continuous embedding V ↪→ L6(Ω), we conclude that

βε(ϕε) ∈ L2(0, T ;L6(Ω)) and ‖βε(ϕε)‖L2(0,T ;L6(Ω)) ≤ c . (4.45)

Similarly, by applying (4.44), we also have that

ϕε ∈ L2(0, T ;W 2,6(Ω)) and ‖ϕε‖L2(0,T ;W 2,6(Ω)) ≤ c . (4.46)

5 Existence and regularity

This final part of the paper is devoted to prove the existence and regularity results stated in Theo-
rems 2.2 and 2.5.

5.1 Proof of Theorem 2.2

To proceed rigorously, let us consider the discrete problem (4.15)–(4.18) analyzed in the previous
section. By the lower semicontinuity of norms, it is clear that the bounds (4.29), (4.32), and (4.35)–
(4.37), proved for the discrete solution (ϕn, µn, wn) are conserved with the same constants in the
limit as n→∞. By also accounting for (4.45)–(4.46), we thus have that

‖ϕε‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W 2,6(Ω)) + ‖µε‖L2(0,T ;V )

+‖βε(ϕε)‖L2(0,T ;L6(Ω)) + ‖wε‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ c , (5.1)

and we recall that, according to our general rule, the constant c in the above line has the same
dependence as the constant K1 of the statement. In particular, it is independent of ε. From (5.1) and
the compactness results already mentioned, we have that

ϕε → ϕ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V )

and strongly in C0([0, T ];H) , (5.2)

µε → µ weakly in L2(0, T ;V ) , (5.3)

βε(ϕε)→ ξ weakly in L2(0, T ;L6(Ω)) , (5.4)

wε → w weakly star in H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V )

and strongly in H1(0, T ;H) ∩ C1([0, T ];V ∗) , (5.5)

for some quadruplet (ϕ, µ, ξ, w) as ε tends to zero (at least for a not relabeled subsequence). Notice
that this quadruplet satisfies the estimate (2.22) by the lower semicontinuity of norms. We now prove
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that it is a solution to problem (2.17)–(2.20). Clearly, the initial conditions (2.20) are fulfilled. Moreover,
by the maximal monotonicity of β it is a standard matter to realize that the condition ξ ∈ β(ϕ)
that appears in (2.18) is satisfied as well. Indeed, it suffices to combine the strong convergence of
ϕε, the weak convergence of βε(ϕε), and a well-known property of the Yosida approximation (see,
e.g., [4, Prop. 2.2, p. 38]). Finally, as in the previous proof, it is straightforward to pass to the limit in the
time-integrated versions of the equations (4.7)–(4.9) in order to obtain the time-integrated versions of
the equations (2.17)–(2.19) with arbitrary time-dependent test functions v ∈ L2(0, T ;V ), which are
equivalent to (2.17)–(2.19) themselves. This completes the proof.

5.2 Proof of Theorem 2.5

Following the line of arguments of the proof of Theorem 2.2, we use the estimates already established
for the discrete solution (ϕn, µn, wn) and the approximating solution (ϕε, µε, wε) and perform further
estimates. So, we want to show that

‖ϕn‖H1(0,T ;V ) + ‖µn‖L∞(0,T ;V ) + ‖wn‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ c , (5.6)

at least for sufficiently large n ∈ N, as well as

‖βε(ϕε)‖L∞(0,T ;L6(Ω)) ≤ c and ‖ϕε‖L∞(0,T ;W 2,6(Ω)) ≤ c , (5.7)

with a constant c that has the same dependence as the constant K3 in the statement. To prove (5.6),
we first observe that the component µn of the discrete solution (ϕn, µn, wn) is more regular than
required: indeed, it is Lipschitz continuous, as follows from looking at µ̂n in equation (4.20). Hence,
we are allowed to take t = 0 in (4.16). It results that

µn(0) = Pn(−∆ϕ0 + βε(ϕn(0)) + π(ϕn(0)) + a− bw1) , (5.8)

where Pn : H → Vn is the orthogonal projection operator. Recall that µn(0) also depends on ε, of
course, despite of the used notation. It is convenient to first establish an estimate for µn(0).

Lemma 5.1. There exist a positive constant c and a positive integer n0 such that the inequality

‖µn(0)‖V ≤ c (5.9)

holds true for every ε ∈ (0, 1) and every n ≥ n0.

Proof. First, we prove that
‖βε(ϕn(0))‖V ≤ c (5.10)

for every ε ∈ (0, 1), some n0 and and every n ≥ n0. By recalling (2.10) and (2.12), we can find
elements r∗ and r∗ in the interior of D(β) satisfying r∗ < 0 < r∗, r∗ < min ϕ0 and r∗ > max ϕ0.
Next, since ϕ0 ∈ W , Remark 4.2 ensures that ϕn(0) converges to ϕ0 in H2(Ω) as n → ∞, thus
uniformly. Therefore, there exists some n0 ∈ N such that r∗ ≤ ϕn(0) ≤ r∗ for every n ≥ n0, so that
(by (4.3))

|βε(ϕn(0))| ≤ sup
s∈[r∗,r∗]

|β(s)| in Ω, for every n ≥ n0.

In particular, the sequence {βε(ϕn(0))} is uniformly bounded in H . On the other hand, since the
restriction of β to the interior of D(β) is a C1 function by (2.25), the following inequality holds:

|β′ε(r)| ≤ sup
s∈[r∗,r∗]

|β′(s)| =: C for every r ∈ [r∗, r
∗].
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For a detailed proof (with a different notation) see, e.g., [13, formula (5.2)]. Then, we have that

‖∇βε(ϕn(0))‖ = ‖β′ε(ϕn(0))∇ϕn(0)‖ ≤ C ‖∇ϕ0‖ ,

so that (5.10) follows. At this point, we easily derive (5.9). By also accounting for assumption (2.26)
and Remark 4.2 once more, we have indeed

‖µn(0)‖V ≤ ‖−∆ϕ0 + βε(ϕn(0)) + π(ϕn(0)) + a− bw1‖V
≤ c
(
‖ϕ0‖H3(Ω) + ‖βε(ϕn(0))‖V + ‖ϕn(0)‖V + ‖w1‖V + 1

)
≤ c .

Let us now continue with the proof. It is understood that n ≥ n0 (given by the lemma) from now on.
In order to make the argument more transparent, it is convenient to prepare an auxiliary estimate
depending on a positive parameter M whose value will be chosen later on.

Auxiliary estimate. We repeat part of the argument used to arrive at (4.34), but this time we avoid
time integration. We account for (4.24) in order to apply (4.22) once more. We test (4.16) a.e. in (0, T )
by M(ϕn − ϕn). Then, we invoke the Poincaré inequality (2.30) and the Young inequality (2.29) with
δ = (8MCΩ)−1. By also taking advantage of (4.32), we find (a.e. in (0, T )) that

δ0M |Ω||βε(ϕn)| ≤ δ0M

∫
Ω

|βε(ϕn)| ≤M
(∫

Ω

βε(ϕn)(ϕn − ϕn) + C0|Ω|
)

≤M

∫
Ω

(µn − µn)(ϕn − ϕn)−M
∫

Ω

π(ϕn)(ϕn − ϕn)

−M
∫

Ω

(a− b∂twn)(ϕn − ϕn) + cM

≤ 1

8

∫
Ω

|∇µn|2 + cM
(
‖ϕn‖2 + ‖∂twn‖2 + |ϕn|2 + 1

)
≤ 1

8

∫
Ω

|∇µn|2 + cM ,

with the positive constant C0 arising from (4.22). Since (4.16) and the already known estimates for ϕn
and ∂twn imply that

|µn| ≤ |βε(ϕn)|+ c a.e. in (0, T ),

we deduce that

δ0M |Ω||µn(t)| ≤ 1

8

∫
Ω

|∇µn(t)|2 + cM for a.a. t ∈ (0, T ). (5.11)

Sixth uniform estimate. By virtue of the already proved regularity of µn, we can now take ∂tµn as
a test function in (4.15) and, at the same time, we can differentiate (4.16) with respect to time and then
test the resulting equality by−∂tϕn. We do this and also test (4.17) by (b/λ)∂2

twn. Then, we sum up
and notice that four terms cancel each other. Finally, we integrate with respect to time and add (5.11)
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to the resulting equality. Collecting the terms, we obtain that

1

2

∫
Ω

|∇µn(t)|2 +

∫
Qt

|∇∂tϕn|2 +

∫
Qt

β′ε(ϕn)|∂tϕn|2

+
b

λ

∫
Qt

|∂2
twn|2 +

bκ1

2λ

∫
Ω

|∇∂twn(t)|2 + δ0M |Ω||µn(t)|

≤ 1

2

∫
Ω

|∇µn(0)|2 +

∫
Qt

(f − γϕn)∂tµn −
∫
Qt

π′(ϕn)|∂tϕn|2

+
bκ1

2λ

∫
Ω

|∇∂twn(0)|2 − bκ2

λ

∫
Qt

∇wn · ∇∂2
twn +

b

λ

∫
Qt

g ∂2
twn

+
1

8

∫
Ω

|∇µn(t)|2 + cM , (5.12)

where all of the terms on the left-hand side are nonnegative. The first term on the right-hand side is
estimated by the above lemma. The other term involving an initial value is bounded by the V -norm
of w1. As for the first volume term on the right-hand side, we integrate by parts in time and have that

∫
Qt

(f − γϕn)∂tµn

= −
∫
Qt

(∂tf − γ∂tϕn)µn +

∫
Ω

(f − γϕn)(t)µn(t)−
∫

Ω

(f − γϕn)(0)µn(0).

The volume integral on the right is estimated by ‖∂tf − γ∂tϕn‖L2(0,T ;V ∗) ‖µn‖L2(0,T ;V ), which is
bounded on account of (2.26), (4.35) and (4.36). The last term is easily treated once again with the
help of the lemma. The remaining term is dealt with by using the Young and Poincaré inequalities:

∫
Ω

(f − γϕn)(t)µn(t) =

∫
Ω

(f − γϕn)(t)(µn − µn)(t) +

∫
Ω

(f − γϕn)(t)µn(t)

≤ 1

8

∫
Ω

|∇µn(t)|2 + c ‖f − γϕn‖2
L∞(0,T ;H) + C∗ |µn(t)|

≤ 1

8

∫
Ω

|∇µn(t)|2 + C∗ |µn(t)|+ c , (5.13)

where we have used the special symbolC∗ to mark the constant in front of |µn(t)| for future reference.
Notice that C∗ is a multiple of an upper bound for the norm of ‖f − γϕn‖ in L∞(0, T ;V ∗), which is
known by (2.26) and (4.29). Next, it turns out that

−
∫
Qt

π′(ϕn)|∂tϕn|2 ≤
1

2

∫
Qt

|∇∂tϕn|2 + c‖∂tϕn‖2
L2(0,T ;V ∗) ≤

1

2

∫
Qt

|∇∂tϕn|2 + c ,

thanks to the Lipschitz continuity of π, the compactness inequality (2.32), and (4.36).

It remains to estimate the volume integrals involving wn that appear on the right-hand side of (5.12).
The last one is trivially treated via Young’s inequality. The other can be dealt with as follows, using
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integration by parts, (4.32), the Young inequality, and Remark 4.2. Indeed, we have that

−bκ2

λ

∫
Qt

∇wn · ∇∂2
twn

=
bκ2

λ

∫
Qt

|∇∂twn|2 −
bκ2

λ

∫
Ω

∇wn(t) · ∇∂twn(t) +
bκ2

λ

∫
Ω

∇wn(0) · ∇∂twn(0)

≤ c ‖wn‖2
H1(0,T ;V ) +

bκ1

4λ

∫
Ω

|∇∂twn(t)|2 + c ‖wn‖2
L∞(0,T ;V ) + c ‖w0‖V ‖w1‖V

≤ bκ1

4λ

∫
Ω

|∇∂twn(t)|2 + c .

At this point, we can easily conclude. Indeed, if we choose M in order that δ0M |Ω| = C∗ + 1, and
collect (5.12) and all the above estimates, then we obtain

‖ϕn‖H1(0,T ;V ) + ‖µn‖L∞(0,T ;V ) + ‖wn‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ c (5.14)

with a constant c that has the same dependence on the structure and the data as required, since even
M has this property.

Conclusion of the proof. We are then left with checking (5.7). To this end, it suffices to come back
to the nonlinear elliptic problem (4.42) and the corresponding estimates (4.43)–(4.44) and to argue as
we did to prove (4.45)–(4.46), in this case avoiding time integration.

At this point, we can easily conclude. As the discrete solution (ϕn, µn, wn) converges as n → ∞
to the solution (ϕε, µε, wε) to the approximating problem, it is clear that the analogue of (5.6) for
(ϕε, µε, wε) holds true with the same constant, by the semicontinuity of norms. We conclude that
the convergence properties (5.2)–(5.5) can be improved on account of the estimate just mentioned
and (5.7). On the other hand, the previous proof ensures that the limiting quadruplet (ϕ, µ, ξ, w)
is a solution to problem (2.17)–(2.20), and the estimates proved for the approximating solution are
conserved in the limit. Therefore, the proof of Theorem 2.5 is complete.
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