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Symmetries in TEM imaging of crystals with strain

Thomas Koprucki, Anieza Maltsi, Alexander Mielke

Abstract

TEM images of strained crystals often exhibit symmetries, the source of which is not always
clear. To understand these symmetries we distinguish between symmetries that occur from the
imaging process itself and symmetries of the inclusion that might affect the image. For the imaging
process we prove mathematically that the intensities are invariant under specific transformations.
A combination of these invariances with specific properties of the strain profile can then explain
symmetries observed in TEM images. We demonstrate our approach to the study of symmetries
in TEM images using selected examples in the field of semiconductor nanostructures such as
quantum wells and quantum dots.

1 Introduction

In transmission-electron microscopy (TEM) it is the main goal to extract information on the specimen
from the generated TEM images. This is particularly used for detecting shapes, sizes, and composition
of defects or inclusions like quantum wells and quantum dots in a larger specimen consisting of a reg-
ular crystalline material. However, there is no direct way to infer the inclusion properties from the TEM
image. Hence, a commonly taken approach is to simulate the TEM imaging process with inclusions
being described by parametrized data. Then, the comparison with experimental pictures can be used
to fit the chosen parameters and deduce the desired data of the experimental inclusions.

A main feature in this process are symmetries for two reasons; first the inclusions may have certain
symmetries and second the TEM images may display symmetries that are related but not identical. The
latter arises from the fact that the experimental setup may have its own intrinsic symmetry properties.
In the present work we want to analyze these symmetries and explain why sometimes TEM images
look more symmetric than the inclusion under investigation, or as the Curie’s principle is stated in
[Cal16] (a3): the effect is more symmetric than its cause.

The interest in TEM image symmetries dates back to the 1960’-70’s, cf. [HoW61, ISWS74], with the
work focused mainly on the Reciprocity Theorem. It states that the amplitude at a point B of a wave
originating from a source at point A and scattered by a potential V' is equal to the scattered amplitude
at point A originating from the same source at B. Many papers have been written for alternative proofs
of this theorem, cf. [BF*64, [PoT68| [Moo72, [QiG89], as well as applications of it in the interpretation of
TEM images, e.g. in connection with imaging of dislocations, cf. [FT*72, HWM62, Kat8Q].

While some of our results can also be deduced from the reciprocity theorem, like midplane reflec-
tion, there are more symmetries in the imaging process which can be proven mathematically by
assuming the column approximation and focusing on the Darwin—-Howie-Whelan (DHW) equations
[Dar14, [HoW61]. Combining the symmetry properties of the imaging process with symmetry proper-
ties of the inclusion explains extra symmetries observed in TEM images of strained crystals.

The Darwin—Howie—Whelan (DHW) equations, which are often simply called Howie—Whelan equations
(cf. [Jam90,, Sec. 2.3.2] or [Kir20, Sec. 6.3]), describe the propagation of electron beams through crys-
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Maltsi et al. 2

tals and can be applied to semiconductor nanostructures, see [De 03| IPH* 18, IMN* 19l IMN*20]. While
these equations are typically formulated for infinitely many beams in the dual lattice A*, for all prac-
tical purposes it is sufficient to use only a few important beams, because at high energy and for thin
specimens only very few beams are excited by scattering of the incoming beam. A mathematical anal-
ysis of the corresponding beam selection is given in [KMM21], but this theoretical work is restricted to
perfect crystals without inclusions. Here we stay with finitely many beams, i.e. with so-called m-beam
models with wave vectors g € A’ , but generalize the analysis to crystals with inclusions. The main
assumption is however that the crystallographic lattice stays approximately intact and can be modeled
as a strained crystal where the positions of the lattice points undergo a displacement u(r). Then, the
DHW equation for strained crystals reads

d : d i .
Tval(2) = im (25 + (8- Tu(e,,2) )eelz) + D Upngn(z) forg € Al (1)

1
Pe heAs,

Here 1) denotes the wave function of the beam associated with g € A, where g = 0 denotes the
incoming beam. The vertical coordinate z € [0, z.] gives the depth inside the specimen (z = 0 entry
plane and z = z, exit plane), whereas the horizontal coordinates (i, ) are fixed and correspond to
the image pixel, see Figure 2.2

After a minor transformation the above system will take the vectorial form

¢ = %¢:1(V+E+F(z))¢ and ¢(0) = /poeo € C™, (1.2)

where ¢ = (¢g)ger:, € C™ contains the relevant wave functions. The Hermitian matrix V' cor-
responds to the electrostatic interaction potential, the diagonal matrix X = diag(sg) contains the
so-called excitation errors, and F'(z) = diag(g - %u(x, y,2)) € R¥? contains the projections of
the strains to the individual wave vectors g € A, . We will call £ the strain profile.

Image symmetries are now easily understood if changing the image pixel (z, y) to another pixel (z, )
having the same strains throughout the whole thickness, i.e. u(z, y, z) = u(z, y, z) forall z € [0, 2],
which implies F'(z) = F(z). Such a situation is related to a symmetry of the inclusion generating a
symmetric strain field. As we will see, additional symmetries may occur in (1.2) in three distinct cases:

1 if F'(2) is replaced by —F', a so-called sign change;
2 if F'is reflected at the midplane z = 2. /2, i.e. F'(z) is replaced by F'(z.—z2);

3 if X is replaced by —X..

The latter symmetry is relevant when a series of images are done while varying the excitation error sg
along the series.

These symmetries are observed experimentally (cf. [MN*19]) but occur for the ODE system only
under additional conditions. Typically the symmetries are exact only for the case of the two-beam
model with A = {0, g’'}. Nevertheless, the symmetries are approximately true in m-beam models
if the intensities of the two strong beams (bright field and dark field intensities) are much higher than
those of the weak beams.

The structure of our paper is as follows: In Section [2 we provide the background of TEM imaging, its
numerical simulation via the DHW equations, and the modeling of the influence of the strain. In Section
[3we discuss all issues concerning symmetries in TEM imaging by considering well-chosen examples.
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Symmetries in TEM imaging of crystals with strain 3

In particular, we highlight the relevance of the symmetries for the detection of shapes of inclusions.
The mathematical rigorous treatment of the symmetries for the m-beam model is given in Section
where the notion of weak and strong symmetries is introduced to provide a coherent structure of the
symmetry properties, which also reveals why the two-beam case is different from the m-beam case
with m > 2.

2 TEM image formation and DHW equation

In transmission electron microscopy electron beams are transmitted through the specimen to create
an image. A parallel electron beam illuminates the specimen. As specimen crystalline materials with
a thickness of few hundred nanometers are considered. Due to the periodic structure of the crystal
the electron beams are diffracted in discrete directions. The diffracted beams leaving the exit plane of
the specimen are focused again by the objective. Then, with the objective aperture, the set of beams
forming the image can be reduced. This way specific beams can be chosen to create the image. If
the image that is created includes the undiffracted beam it is called bright field image, otherwise it is
a dark field image. The ray path within the microscope for the creation of a dark field TEM image is
illustrated in Figure[2.1] (a).

A crystal is a periodic structure created by the repetition of the unit cell across the directions of the
direct lattice A C R3. The reciprocal lattice A* is the dual lattice of A defined as A* := {g €
R3 | g-r € Zforallr € A } The discrete directions that the beams are diffracted are given by
Bragg’s law [Brai3] (also known as Laue conditions): For an incoming beam with wavevector kg a
diffracted beam k’ may occur if the condition k/ = ko + g is satisfied, where g € A*. For elastic
scattering the energy of the waves is conserved, meaning that the two vectors have the same length.
This implies that the wave vectors kg and k’ have to lie on the surface of a sphere, known as the Ewald
sphere [Ewa21] and defined as Sg,, := { g € R? | |ko|?> — [ko+g|*> = 0 }. When a reciprocal lattice
point g falls on the Ewald sphere the Bragg condition is satisfied and a diffracted beam in the direction
ko + g occurs, see Figure (b). However diffraction can occur even if the condition is not exactly
satisfied. The deviation from Bragg'’s condition is expressed through the excitation error sg defined as

_ 8 (2kotg) _ |ko|* — |ko+gf’ 2.1)
& 2|ko+g|cosa 2(ko+g) v '

where « is the angle between the vector kg + g and the foil normal v. The excitation errors are
parameters that can easily be controlled by the experimental conditions, like the tilting of the sample.
For two-beam approximation we choose in addition to the incoming beam g = 0 one single reciprocal
lattice vector g’ # 0 satisfying the so called strong beam conditions, i.e. lies exactly on the Ewald
sphere sy = 0. In this situation the two beams g = 0 and g = g’ both are strongly excited because
of sg = 0. Different choices can give rise to different image contrasts, as seen in Figures (c) and

(d).

2.1 Multi-beam approach and DHW equations

The electron propagation is described by the relativistic Schrédinger equation, which is a 3D problem.
However, for computational reasons, the 3D problem is often reduced to a 2D family of 1D problems

using the so-called column approximation. TEM uses fast electrons with acceleration voltages in the
range 200-400 keV. This means that the angle between the diffracted and undiffracted beam is very
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Figure 2.1: Image formation in TEM: (a) ray paths in TEM for dark field imaging, where the objective
aperture allows only selected diffracted beams (red) to pass to the detector. The incoming beam with
wave vector kg enters the specimen, is partially transmitted, and generates beams with nearby wave
vectors kg + g. The red beam fulfills strong beam conditions on the Ewald sphere (b). Experimental
TEM images of quantum dots for different choices of g (c) and (d). The whole figure is adapted from
[MN*20, Fig. 1 and Fig. 2] used under CC-BY.

small. For thin specimen (thickness in the range 100-200 nm) we can apply the column approximation,
which states that an incoming beam will not leave a column centered at the entrance point. The
width of the column defines the spatial resolution and is typically in range of size of a unit cell, e.g.
~ 0.5 — Inm. It also assumes that electrons are not scattered in neighboring columns and the
propagation can be computed independently, by solving the equations for each column in turn.

We divide a rectangular specimen into squares of edge length [. defining the columns (i, j),7 =
1,...N,,j =1,...N, centered around the positions (z;,y;) € R?, see Figure To obtain the
simulated TEM image, for every pixel (, j) the intensity has to be calculated by solving the dynami-
cal diffraction equations for that column. We decomposed the spatial variable r = (z,y, ) into the
transversal part (z, y) orthogonal to the thickness variable z € [0, 2*] , see Figure The propaga-
tion of the electron beam along the column is obtained by solving the Darwin-Howie-Whelan equations
numerically, like in pyTEM software [Nie19], which in the case of a perfect crystal are:

d

S gle) = im (2ol + - 3 Ugwtn(2)), v(0) = oy, lorg€AT (@2)

where pg = (ko+g) - v,

where sg are the excitation errors given in (2.1) and Uy are the Fourier coefficients of the periodic
electrostatic lattice potential of the crystal. As the dual lattice A* contains infinitely many points,
is an initial value problem for an infinite system of first order ordinary differential equations describing
the propagation of the electron beam through the specimen from the entry plane z = 0 to the exit
plane z = z,.

However, in experiments the setup is done in such a way that the incoming beam, which will always
be given by g = 0 € Aj,, is diffracted in a few directions ko+g for g lying in a small subset A}, of A,
where m is used to indicate the number of elements in A;,. Replacing A* in (2.2) by A}, we arrive
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Figure 2.2: Column approximation: An incoming beam is assumed not to leave a column centered
at the entering point. For this column the intensity corresponding to the (7, j) pixel is obtained by
propagating the beam along a line scan (blue line) in z-direction at position (z;, yj) to the exit plane.

at an m-beam model, which is an ODE for the vector (lpg)ge,\;«n € C™. Of special importance will be
the
two-beam model with A5 = {0,g'}.

which is widely used. From now on we will denote by g’ the diffracted beam in the two beam ap-
proximation and by g.,, the beam chosen by the objective aperture. For a bright field image we have

gap = 0 and for a dark field image under two beam approximation we have g, = g

The problem of finding good subsets A’ , which is the so-called beam selection problem, is discussed
from a mathematical point of view in [KMM21]. There it is argued that the infinite dimensional problem
for g € A* is even ill-posed, and it is shown that under typical assumptions the intensities |1g(2)|?
decay exponentially like e~l&l. With this and further energetic considerations based on the Ewald
sphere it was possible to derive rigorous error estimates to justify typical beam selection schemes, like
the two-beam approximation or the systematic-row approximation.

2.2 Influence of defects and strain

TEM imaging is widely used for the study of defects in crystalline materials, see [PH*18, WuS19,
ScS93! IZhD20). Defects are perturbations of the crystal symmetry, in the sense that the atoms are
displaced from their original position in the perfect crystal. If an atom was at position r, its new position
will be ' = r + u(r), where u(r) is the displacement field, see Figure [2.3 a). As an elementary
example for strained crystals we consider a spherical particle with radius o and lattice parameter a,,
inside a matrix with lattice parameter a,,,, as is done in [De 03] Ch.8, p.479]. The displacement field is
given by

(min{\r!, ro})3 .

rf?

u(r) = C(9)

(2.3)

where C'(9) is a constant that depends on the elastic properties of the isotropic matrix and d the matrix
misfit given by § = (a, — a@y,)/am. In this case the displacement inside the particle is proportional
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Figure 2.3: Crystal lattice with spherical inclusion: a) deformation of the lattice b) variation of the
projection of the displacement u on the g vector along the line scan in z-direction (red) in the crystal.

tor = (z,y, 2), whereas outside it decays as 1/|r 2 see Figure The displacement field u is
only valid for small isotropic inclusions where the particle diameter is significantly smaller than one
extinction distance. An example of such a case can be a spherical InAs quantum dot inside a GaAs
matrix, see [MN*20!, [Nie21].

For small deformations the displacement will modify the Fourier coefficients of the potential in the
DHW equations (2.2) by a phase factor

Ug SN Uge—2i7rg~u(r).

Using this and letting 1)y = goge_ig'“(r) in (2.2) we get the DHW equations for a strained crystal
[De 03, Ch.8]:

d d im

— = im(2s, + —(g - - _ 2.4

e S e S C R LS CIC R
and pg(0) = dog forg € A, (2.5)

To simulate a TEM image with defects the column approximation and the DHW equation as described
above can still be used, but now for each horizontal position (x;, y;), where (i, j) denotes the image
pixel, u(r) in is evaluated as u(z; z;, y;). If this is constant, then the defect will not be visible.
Another important fact for the imaging of defects is that the projection of the displacement to the
reciprocal lattice vector g is what really matters, see Figure b). If g - u(r) is constant, then again
the defect is not visible. This means that by choosing different vectors g, we get different information
about the defect.

Figureillustrates this for a pyramidal quantum dot. Choosing g., = (040) will create a TEM image
corresponding to the u, component of the displacement, as seen in Figure b) and c¢). Changing
to g., = (004) will give a TEM image corresponding to the u, component of the displacement, see
Figure [2.4]d) and e). This sensitivity of TEM images to different components of the displacement field
is important for the interpretation of images and can be used for the reconstruction or classification of
the observed object. In [MN*20] this was used to compare quantum dots of four different geometries.
It was observed that the projection to the vector g, = (004) would give better contrast, allowing one
to distinguish between pyramidal or lense shaped dots, while in the g,, = (040) direction all images
would show a very similar coffee-bean contrast making it difficult to distinguish among the geometries.
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9=(040) | u(z;x0,0) = U (2%, 7)) g=(004)I

Figure 2.4: Simulation of TEM images for pyramidal QD: a) QD geometry indicating the crystallo-
graphic directions b) u, component and d) u,, component of displacement field along a cross-section
in the center of the structure. c) and e) corresponding TEM images for strong beam conditions as
indicated by the direction of the chosen vectors g. The images in the figure are adapted from [MN*20,
Fig. 5] used under CC-BY.

3 Symmetries in TEM images

In this section we study observed symmetries in TEM images of strained crystals and discuss their
interpretation. To this purpose we introduce selected examples demonstrating different kinds of sym-
metries, e.g. images that are pixelwise symmetric, like ¢) and e) in Figure [2:4] This kind of symmetry
occurs when there is a sign change in the displacement component, see Section [3.1] or when the
inclusion is shifted from the center, see Section In Section [3.3] symmetries of a series of TEM
images for varying excitation errors sg and varying positions are discussed. These examples show
the importance to distinguish different kind of symmetries that can occur and to examine which ones
are connected to specific properties of the displacement or strain profile and which are independent
of it.

To understand the origin of these symmetries, we performed an analysis on the symmetry properties
of solutions of the DHW equations. The main results are explained in Section (3.4}, while the formal
proofs are given in Section 4] This analysis revealed three important symmetry principles, stated in
Section By combining these principles with specific properties of the strain profiles we can
explain all the observed symmetries introduced in Sections[3.1}3.3] The capability of our approach to
explain symmetries in TEM images beyond these examples is demonstrated in Section[3.6] where the
developed theory is applied to a more complex problem featuring general displacement profiles.

3.1 Symmetry with respect to the sign of the displacement

In Figure c) and e) we see two simulated TEM images for different choices of the vectors gay,.
Each image is pixelwise symmetric, in the sense that for two different pixels (¢, o) and (z1,y;) we
have the same intensities: Ig, (20, Y0) = |@gu, (255 Z0, Y0)|* = |Cgup (263 1, 41)[* = Iga, (21, 41)-
For image [2.4] e) this in not surprising since the profile of the vertical component of the displace-
ment along the column related to pixel (g, yo) is the same as the one for pixel (x1,%;), namely
wy (25 To, Yo) = uy(2; 21, 71) for z € [0, z,], due to the symmetry of the pyramid. However, the pix-
elwise symmetry in image [2.4]c) is interesting: the profiles of the horizontal displacement component,
which are responsible for the image contrast, have opposite values u,.(2; zo, yo) = —u(2; 21, Y1)
This indicates that there might be some symmetry in TEM images with respect to the sign of the
displacement.
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Figure 3.1: TEM imaging of inclined quantum well: a) illustration of a specimen for an inclined quantum
well showing the z-direction and two line scans (purple dotted lines). b) The displacement (red) and
strain (black) profiles projected to the reciprocal vector g5, ¢) Intensity values for different positions
and different excitation errors s, for a beam propagating in z direction. Adapted from Fig.5]
used under CC-BY. d) Strain profile for the different positions corresponding to a shift of the strain
across the z direction.

In (2.4) we see that it is the product of the strain dilzu with the reciprocal lattice vector g that enters

the equations. This term will from now on be expressed as Fy(z) = < (g - u(z;z;,y;)) and the
influence of the strain to a m-beam system will be represented by the matrix-valued function F'(z) =
diag (Fg)gEA* . So we want to know if the transformation F'(z) ~» —F(z) gives the same intensity.

If it does, then the question that arises is whether it is for a specific shape of the strain profile F'(z) or
it is independent of it and applies to general strain profiles.

3.2 Symmetry with respect to the center of the sample

Our next example is inspired by images provided in [MN*19], where TEM imaging of an inclined
strained semiconductor quantum well, like the one in Figure [3]a), has been studied. A quantum well
is a planar heterostructure consisting of a thin film, forming the quantum well, sandwiched between
barrier material layers forming the matrix. Due to the lattice mismatch between the materials the lattice
of the quantum well is deformed. For pseudomorphically grown quantum wells with perfect interfaces
it can be assumed that the displacement grows linearly within the quantum well region and has a
constant value outside, resulting in a strain profile similar to an indicator function, see Figure 3] b).

The intensity values of the dark field for such a structure are shown in Figure[3.1]c), for different values
of the excitation error and for different positions. Due to the incline angle between the planar interface
and the imaging direction the different positions correspond to different depths of the quantum well as
measured from the surface of the specimen, see[3.7]a). An interesting first observation here is that the
intensity seems to be symmetric with respect to a shift in the position from the center of the sample
and for every excitation error sg, . A natural question that occurs is whether this shifting symmetry is a
general property of TEM imaging. The answer is negative and this can be seen in Figurec) which
shows the dark field intensities for a spherical quantum dot (Figure 3.2]a) again for different excitation
errors and different positions. Shifting the quantum dot from the center for an excitation error sg, | #0
does not give the same intensity. However, if we choose sg, . = 0 then we observe again a symmetry
with respect to shifting.
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Figure 3.2: TEM imaging of spherical quantum dot: a) illustration of the specimen in (z, y) projection
showing the direction of the chosen beam g,,. b) Propagating the beam across z for a chosen (20, Yo)
gives the intensity at the corresponding pixel. The displacement (red) and strain (black) profiles pro-
jected to the reciprocal vector g,,,. ¢) Intensity values for different positions and different excitation
errors g, - Adapted from [Nie21, Fig. 5.13] used under CC-BY. d) Strain profile for the different posi-
tions corresponding to a shift of the strain across the z direction.

To analyze these observations we take a closer look into the shape of the strain in each case. For the
quantum well in Figure [3:1] the strain profile is an even function (Figure [3:1] b)) while for the quantum
dot in Figure[3.2it is an odd function (Figure[3:2]b)). The latter is due to the symmetry of the sphere, cf.
displacement field for spherical inclusion (2.3). Shifting the inclusion would correspond to shifting the
strain in both cases as seen in Figures [3.1]d) and[3.2]d), respectively. The questions to be answered
here are i) what is special in the case sg,, = 0 that makes shifting a symmetry, i) how does shifting
an even or odd strain profile affect the intensities and iii) what happens for a general strain profile?

3.3 Symmetry with respect to the sign of s;

In the previous examples we considered pixelwise symmetry for one specific image. This was ex-
pressed as g, (o, Yo) = Ig,, (21, y1)- In this section we talk about pixelwise symmetry between
images. This means that if I, , corresponds to the intensity of an image and Tgap to the intensity of
another image then the two images are pixelwise symmetric if I, (7, ;) = fgap (xi,y;) for every
pixel (i, 7).

In Figure we have TEM images, adapted from [Nie21], of a spherical quantum dot at different
positions and for different excitation errors. The observations we made for shifting at the previous
section apply here as well. Shifting the quantum dot for an excitation error s, = 0 creates images
that are pixelwise symmetric with each other (red boxes) while for sg, = () they are not symmetric («
and (3 blue boxes). Shifting for an Sgap # 0 however seems to create mirrored images, in the sense
that the image « is a mirrored version of image [ with respect to the symmetry axis of the sphere.

Interestingly though we see that if we shift the quantum dot from the center and additionally change
the sign of the excitation error sg, . then the two images are pixelwise symmetric (green boxes or blue
£ and -y boxes). Again the question that arises here is whether these observations are connected to a
specific property of the strain profile or is there a symmetry connected to shifting and sign change of
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Figure 3.3: Series of TEM images for a spherical quantum dot: a) schematics of the position of quan-
tum dot in the sample. b) simulated TEM images for different depths of the quantum dot and for dif-
ferent excitation errors sg, . For sg, . = 0 the TEM images show a pixelwise symmetry with respect
to the center (red boxes). For sg, = 0 the TEM images are symmetric with respect to the center if
in addition the sign of the excitation error is changed (green boxes). The images are mirrored to each
other with respect to the center for the same excitation error ( o and /3 blue boxes) or with respect to
the sign of the excitation error for a fixed position (av and 7y blue boxes). Adapted from [Nie21], Fig.5.12]
used under CC-BY.

Sgap that occurs for general profiles?

3.4 Symmetries explained via DHW equations

To understand the symmetries in TEM images we described above, we studied the properties of the
beam propagation through the specimen using the DHW equations. It turned out, that the intensity at
the exit plane is invariant under specific transformations of the strain field. In the following we give an
introduction to our approach and an overview of the different types of symmetries formally defined and
proved in mathematically rigorous terms in Section [4] We conclude the section with an explanation of
the observed symmetries using the theory we developed.

3.4.1 Transformation to Hermitian form
To begin with, it is essential to use the self-adjoint structure that is somehow hidden in the DHW

equations. This can either be done as in [KMM21], where C™ is equipped with the scalar product
(a,b) = 3 cns Pglghe, or by the simple transformation

bg = \/Pg pgforg € A7,

which will be used in this paper. This has the advantage that C™ is equipped with the standard
(complex) Euclidean scalar product, but the intensities take the form Iy (z;, ;) = |pg(24; 24, y;)|* =

|¢g(z*; L, Z/j)’Q/pg-
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Symmetries in TEM imaging of crystals with strain 11

In terms of ¢ = (¢g)g6A* € C™, the system (2.4) is rewritten in matrix form as follows:

b= C0=1(A+F()0 and 6(0)= eo " 3.13)

Subsequently, we will omit the normalizing factor /po in the initial condition ¢(0), because it is not
relevant in TEM imaging, where gray-scale pictures are created using relative intensities only. The
system matrix A = V' + 3 and the influence F'(z) of the strain are given via

v (e
PgPh’/ ghehs,’

where V' describes the interaction of the beams via the scattering potential and 3 is related to the
excitation conditions. As the Fourier coefficients of the scattering potential satisfy U_, = Uy, we see
that V' € C™*™ is indeed a Hermitian matrix, while ¥ and F'(z) are real-valued diagonal matrices.

. ) d
¥ = diag(27msg)gens,, F(z) = diag (&(g : u(z)))geA;kn, (3.1b)

What is important in TEM imaging is the intensity of the strongly excited beams at the exit plane z = z,
and not all components of ¢. Our theory is developed in such a way that it focuses on the amplitude
of the undiffracted beam, |¢o(2« )|, which corresponds to a bright-field image. The point is that this
generates a potential reflection symmetry z ~~ z, — z, because the initial condition ¢(0) = e, and
the exit measurement ¢g(z.) = ¢(z.) - o use the same vector ey.

Intensities of solutions for different choices of the pair (A, F'(z)) are compared to see which replace-
ments of (A, F) by (A, F(z)) lead to the same (measurement) results. Such transformations are
then called symmetries. Changes in F'(z) correspond to transformations in the strain, while changes
in the matrix A can correspond to transformations in the excitation errors (given by ) or the potential
(given by U).

3.4.2 Strong and weak symmetries

Two kind of symmetries are defined in Section 4.1} strong and weak symmetries. For strong sym-
metry the |nten3|ty of the beam along the whole column [0, z,] is invariant under the transformation
(A, F) — (A, F), that means the corresponding solutions ¢ and ¢ satisfy |¢o(z)| = |¢o(z)| for all
z € [0, z,]. For weak symmetry this invariance holds for the intensity of the beam at the exit plane
only, namely |¢o(z.)| = |do(2)|. In TEM imaging this distinction is not visible since we only see
the intensity at the exit plane. For the mathematical analysis however this distinction is highly rele-
vant because of the different underlying mechanisms. Of course, any composition of weak and strong
symmetries provides a weak symmetry again.

We illustrate strong and weak symmetries by numerical simulations of the DHW equations using four
beams and a displacement field as given by , see Figure [3.4] In this example we also observe
a dark field symmetry, namely |¢g, (2)| = |¢gap( z)| (strong symmetry) or |pg, ()| = ]qbgap(z*)\
(weak symmetry) with g,, = (1,0). In Table we see the intensities for all four beams at the
exit plane. While Figure [3.4] suggests an exact symmetry, Table [3.1] reveals that the symmetry is only
approximate with an error up to 1%. The reason is that the four-beam model does not enjoy the
symmetries, however the solutions stay close to the solutions of the two-beam model, see Table
which has the desired symmetries. This simple example demonstrates the importance of the two-beam
approximation in the study of symmetries for both bright field and dark field.
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(a) System (A, F(z)) (b) System (A, —F(z))
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(c) System (A, F(z4 — 2)) (d) System (A, —F(z« — 2))

Figure 3.4: Strong and weak symmetry in four-beam approximation: (a) Intensities for system
(A, F(z)) used as reference (b) Intensities for system (A, F'(z)) = (A, —F(z)). The solution ¢
has a strong symmetry compared to the solution ¢ of (a). (c) Intensities for system (A, Fﬁz)) =
(A, F(z. — 2)). The solution ¢ has a weak symmetry compared to the solution ¢ of (a). (d) Inten-
sities for system (A, F(z)) = (A, —F(z, — z)) showing a strong symmetry to case (c) and weak
symmetry to (a) and (b).

g | (AF() | (A -F() | (AFE-2) ][ (A -F - 2)

(— 1, O) 0.00012040357 | 0.00330035539 | 0.00004461419 0.00230899563
(0, 0) 0.15359073146 | 0.15209371434 | 0.15359073146 0.15209371434
(1, O) 0.84539398729 | 0.84447759832 | 0.84447759832 0.84539398729
(2, 0) 0.00089487769 | 0.00012833195 | 0.00188705604 0.00020330274

Table 3.1: Comparison of intensities at the exit plane for the four-beam model in Figure For both
bright field (g = (0,0)) and dark field (g = (1,0)) we observe an approximate symmetry with an

error of about 1%.

g | (AF() | (A-F() [(AF(—2) (A -Fz—2)
(0, 0) 0.15309988945 | 0.15309988945 | 0.15309988945 0.15309988945
(1, 0) 0.84690011055 | 0.84690011055 | 0.84690011055 0.84690011055

Table 3.2: Comparison of intensities at the exit plane for the systems in Figureand under two-beam
approximation. Both bright and dark field show a perfect symmetry in this case (up to some numerical
error).
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Symmetries in TEM imaging of crystals with strain 13

3.4.3 Three important symmetry facts

Here we give an overview of the necessary results from Section[4]that help us explain the symmetries
in TEM imaging observed at the beginning of the section. The results are stated as facts and put into
physics words, while the formal version of them and the proofs can be found in the next section.

The first fact concerns the change in the sign of the strain, which corresponds to changing the sign of
F(z), and is proved in Corollary [4.3]

Fact 3.1 In the two-beam approximation A5 = {0, g’} and under strong beam conditions, i.e. so =
sg = 0, changing the sign of the strain (F'(z) ~» —F(z)) is a strong symmetry.

The next fact concerns reflections at the midplane of the specimen given by the transformation F'(z) ~~
F(z,—z) and is proved in Corollary [4.5| part (W3).

Fact 3.2 In the two-beam approximation A5 = {0, g’} a midplane reflection of the strain (F'(z) ~
F(z.—2)) is a weak symmetry.

Here it is important to notice that Fact[3.2]does not require strong beam conditions, so it can be applied
for excitation errors s # 0. This result is equivalent to the Type Il symmetry in [PoT68] or to [HoW6T]
who showed this symmetry for bright field images. In the general m-beam case the midplane reflection
symmetry holds under the assumption that all relevant Uy are real, see part (W2) of CoroIIary

In the next fact we combine the first two facts with an additional sign change of the excitation error s/,
proved in Corollary [4.6]

Fact 3.3 In the two-beam approximation A5 = {0, g'} combining the sign change of the strain with a
midplane reflection (F'(z) ~» —F(z. — z)) and changing the sign of the excitation error sg1 ~» —Sg
is a weak symmetry.

The Type | symmetry in [PoT68] is a special case of this results for sg = (. All results are derived
for a general strain profile. The strain profiles in the examples we discussed before have an additional
symmetry, namely they are even or odd functions which are shifted relative to the center of the spec-
imen, see Figures [3.1d) and [3.2d). In the next subsection we will show how the above observations
interact with the parity of the strain profile z — F(2).

3.4.4 Explanation of observed symmetries

With the symmetries that we have in hand now we are able to answer all the questions that occurred
from the observations we made before. We start with the symmetry with respect to the sign of the strain
(F(z) ~ —F(z)), that was discussed in Section[3.1]using the example of the pyramidal quantum dot
in Figure We can now say that this is a direct application of Factto every pair of pixels (7, j)
and (7', j') such that F'(z; z;, x;) = —F(%; s, yy) and F(2) being a general strain profile.

For the symmetry with respect to the center of the sample discussed in Section a combination of
the Facts and [3.2 with the parity of the strain profile can explain the observations. We take each
case separately. For the inclined quantum well the strain has an even profile, as in Figure[3.5/a). From
Fact|3.2)we know that we can apply midplane reflection (F'(z) ~ F'(z, — z)) and get the same pixel
intensity. For an even profile midplane reflection and shifting coincide, see Figure 3.5 a). This is the

DOI 10.20347/WIAS.PREPRINT.2938 Berlin 2022



Maltsi et al. 14

F(2) F(z: — 2)

Figure 3.5: Plot of a shifted even function F'(z) (black) and the midplane reflection of it F'(z, — z) (red)
illustrating that the midplane reflection corresponds to shifting /'(z) a). Plot of a shifted odd function
F(z) (black) and the midplane reflection of it (red) illustrating that shifting (black dotted) needs an
additional sign change to correspond to midplane reflection b).

reason why the image shows a pixelwise symmetry with respect to shifting. In the case of the spherical
quantum dot the strain has an odd profile, as in Figure b). Applying midplane reflection we don'’t
get the same result as shifting, see Figure [3.5]b). We would need to apply the sign change as well, as
stated in Fact[3.1] This however can not be done unless we have strong beam conditions (meaning
Sgap = U). This is the reason why, for s, . = 0, we observe a symmetry with respect to shifting while
for sg.p 7 0 we don't.

The observations concerning the sign change of the s, made in Section e.g. see green and red
boxes in Figure [3.3] can be explained from Fact[3.3} it says that a midplane reflection combined with
a sign change in the strain (F'(z) ~» —F(z,—z) ) is a symmetry if we also change the sign of the
excitation error (X ~» —2XJ). In this case strong beam condition (sg,, = 0) is not a requirement. This
means that we can apply midplane reflection plus sign change of the strain, which for the odd strain
profile in Figure[3.3]would correspond to shifting the strain profile with respect to the center, and then
change the sign of the excitation error. This explains the symmetric images in Figure indicated by
the green and red boxes. The images in Figure [3.3]indicated by the blue boxes can also be explained
now but we will do this in the next section, since they are not pixelwise symmetric as the previous
examples but they have a mirror like symmetry.

3.5 Mirrored TEM images induced by strain

Here we will focus on explaining the images in Figure [3.3]that are indicated by the blue boxes. First
we start with the TEM images « and 3, see also Figure This means we have two images of a
spherical quantum dot using the same excitation error, here sg,, = 12l%m, but placed in different
positions, symmetrical to the center of the sample, see Figure[3.6]a) and b).

To analyze the images pixelwise we make two line scans in the z direction, A and B. The corresponding
pixels for each image are indicated in Figurea)(image «) and b) (image [3), using the same notation
A and B. We can see in Figure [3.6) a) that the pixel intensities corresponding to the line scans A and
B in image « are not the same. So the image itself does not have pixelwise symmetry. Comparing the
pixels between the images « and 3 though shows that the pixel in the image « that corresponds to
the line scan A (or B) is the same as the pixel in the image 3 that corresponds to the line scan B (or
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a) £®) F@

Figure 3.6: Mirrored images: a) Spherical quantum dot positioned at z = %z* and the corresponding
TEM image (o). Solving the equations across the line scans A and B gives the corresponding pixels in
a, denoted also by A and B. b) Spherical quantum dot positioned at z = gz* and the corresponding
TEM image (), showing again the pixels A and B that correspond to the same line scans. ¢) Strain
profiles across the line scans A and B. The solid black and red profiles correspond to the TEM image
«, while the dotted black and red profiles to TEM image (5. The TEM images are adapted from [Nie21]
Fig.5.12] used under CC-BY, cf. Figure

A).

To understand these properties using the theory we developed we study the strain profile for each line
scan, shown in Figure[3.6|c). First we focus on why the image itself is not pixelwise symmetric. For the
quantum dot in image « the strain profile across the two line scans is shown in Figure c) by the
solid black and red lines. We see that the difference between these two profiles is the sign. Changing
the sign of the strain though is a symmetry only under strong beam conditions (Fact [3.1) but in this
case we have sg, = (. The same exact argument applies to image /3.

Next, we compare the two images with each other. The strain profile for the spherical quantum dot
in image [ is given in Figure c) by the dotted black and red lines. The reason that the pixel
corresponding to the line scan A in image « is equal to the one that corresponds to line scan B in
image [ is Fact since the strain profile for the first case (solid black line in Figure c)) is a
midplane reflection of the strain profile in the second case (dotted red line in Figure [3.6]c)). This is due
to the fact that for an odd function shifting the strain (black dotted line) plus sign change correspond to
midplane reflection, see also Figure 3.5p).

Additionally, from Fact we know that image [ is symmetric to the image -y in Figure Combining
all the above we can see why also the images corresponding to the same position but with opposite ex-
citation errors are mirrored images of each other, see Figure [3.3] This mirror-like symmetry is induced
by the parity of the strain profile.

3.6 Symmetries for general profiles

The examples discussed until now were for a strain profile with odd or even parity. However, this parity
is not the essential cause for the symmetries observed between two pixels. What is important is the
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Figure 3.7: Pyramidal quantum dot with a rhomboidal base : a) 3D geometry showing the z direction
and two line scans A and B. b) Simulated TEM image for g,p, = (004) showing a pixelwise symmetry.
c) Displacement component responsible for the image contrast at the cut (white dotted lines) in a)
and the line scans A and B. d) Displacement profiles across the line scans A (black solid) and B (red
solid). We see that the displacement profile is not even nor odd and that the displacement in B is the
midplane reflection of the displacement in A (black dashed).

symmetry between the strain profiles with respect to sign change and midplane reflection. To make
this clear we consider the case of a general strain profile without a specific parity. For this purpose
we examine TEM images of a pyramidal quantum dot with a rhomboid as a base instead of a square.
We assume that the quantum dot is placed at the center of the sample. To create these TEM images
we used the computational method described in [MN*20] and the tool chain employed therein. First a
3D mesh is generated to represent the geometry of the quantum dot using TetGen [Si15], see Figure
Ha). Then the generated mesh enters the FEM based solver WIAS-pdelib [FS*19], in order to find
the displacement u, see Figure [3.7]c). Finally the relevant displacement component enters the DHW
solver PyTEM [Nie19] in order to simulate the corresponding TEM image, see Figure [3.7]b). For this
set up two TEM images are computed, corresponding to different vectors g, using strong beam
excitation conditions.

For an excitation corresponding to g.p, = (004) the TEM image is shown in ). The (projected)
component of the displacement, which is responsible for the image contrast in this case, is shown
in c). This was taken in a cross-section parallel to the base of the pyramid, as indicated by the
white dotted lines in a). Next we analyze the displacement profile along the two line scans A and
B evolving in z-direction, as indicated in Figures [3.7]a) and c) by the black and red dotted lines. The
displacement profiles across these line scans are shown in[3.7]d), where we can see that they are not
even or odd. However, we observe a pixelwise symmetry in the TEM image. The displacement w4 (2)
across line A is a midplane reflection of the displacement u(z) across line B: u4(z. — z) = ug(z).
This means that the strain across A differs with the strain across B by a sign plus midplane reflection,
Lup(z) = —Lua(z — 2). Then the symmetry we observe in the TEM image follows from Fact
and due to the strong beam condition (sg,, = 0).

For an excitation corresponding to gap = (040) the TEM image is shown in b). Under this excita-
tion the imaging is sensitive to a different component of the displacement field as in the case before.
The corresponding displacement field in the cross-section is shown in c). We can see that the
displacement obeys the sign change symmetry with respect to the center of the structure, as also
observed for the pyramidal quantum dot with square base, see Figure [2.4] As in the example before,
we plot the displacement profile across lines A and B as shown in d). Here again we see that
it is not even or odd. However, midplane reflection and sign change of the displacement profile in A

equals the displacement in B: up(z) = —u4(2z. — z). This gives for the corresponding strain that
Lup(z) = Lua(z. — z). Then Factexplains the pixelwise symmetry we observe. These two

DOI 10.20347/WIAS.PREPRINT.2938 Berlin 2022



Symmetries in TEM imaging of crystals with strain 17

a)

Q
=

| | ! |
®© & & N o N & o o

b) o=

displacement [arb. unit]

depth [nm]
Figure 3.8: Pyramidal quantum dot with different lateral aspect ratio: a) 3D geometry showing the
z direction and the two line scans A and B. b) Simulated TEM image for ga, = (040) showing a
pixelwise symmetry. ¢) Displacement component responsible for the image contrast at the cut (white
dotted lines) in a) and the line scans A and B. d) Displacement profiles across the line scans A
(black solid) and B (red solid). We see that the displacement profile is not even nor odd and that the
displacement in B is the midplane reflection (black dotted) plus sign change of the strain in A.

examples demonstrate that the results from Section are indeed valid for a general displacement
profile.

4 Mathematical treatment of the symmetries

We now provide the mathematics underlying the symmetry considerations for the solutions of the
DHW equations. For this we use the general m-beam model in the Hermitian form derived in (3.1). To
study the symmetries, we consider the system matrix A = V' + ¥ and the strain function F' as data
specified to lie in the following spaces
VeCnsr, Yeb,: =Ry, FeC0,z];Dy)

The typical measurements for generating TEM images does not involve all components of ¢(z,) €
C™ at the exit plane, but only the intensity of beam g,,, € A, selected by the objective aperture, see
Figure ), namely Lop (%, Y;) = |0g., (245 i, y;)|>. As mentioned above a special mathematical
role plays the so-called bright field which is given by the choice g,, = 0. The reason for this is the
double appearance of the vector eg, namely (i) in the initial condition ¢(0) = eq and (ii) in the exit
measurement ¢g, (2:) = Po(2:) = d(24) - €o.

The double appearance of eq can even be used for symmetries in the dark field where g,,, # 0 under
the assumption that we have a two-beam model, i.e. A5 = {0, g’} and g,, = g'. In this case we can
exploit the Hermitian structure of which provides the simple conservation of the Euclidean norm,
namely |¢(z)| = |¢(0)| = 1 forall z € |0, z,]. This property was first derived in [KMM21, Sec. 3.1],
where it was related to a wave-flux conservation in the Schrédinger equation. In this case we have
| (2)]* =1 — |¢o(2)|? forall z € [0, z.]. Thus, if |¢o(z.)| is preserved by a symmetry, then so is
|0 (2]

In light of the above discussions, we are interested in the question whether
e (sign change) flipping the function F’ into —F' or

e (midplane reflection) flipping £'( - ) into F'(z,—-)
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lead to the same value of | (z.)| or not.

To analyze these two symmetries and their joint effect for both, m-beam models and the two-beam
model, we consider more general classes of transformations involving also changes of A = V' + X
and not only of the strain related part F'. This will uncover the proper mathematical structure of the
symmetries and show why the case m = 2 is special. For this we define two types of symmetries.

Definition 4.1 (Strong and weak symmetries) We say that replacing the pair (A, F) € CP X xCY([0, z,); D)

herm

by the pair (A F ) is a strong symmetry if the corresponding solutions ¢ and ¢ of (B:1a) satisfy
|po(2)]| = |¢o( )| forall z € [0, z].

We call the replacement a weak symmetry if we have |po(z.)| = ]ggo(z*) |.

Throughout we will denote by U 4, r(z) € C™*™ the evolution operator solving
U=i(A+F(2))U, U(©0)=1I.

As A + F(z) is Hermitian for all z, the evolution operators U 4 = are unitary, i.e.

Uarr(z) ™' = (Uasr(2)) = UA+F(Z)T- (4.1)

, 1/2 . :
In particular, this implies that the Euclidean norm [¢] = (Y ca. [¢g]?) /% is preserved for solutions

¢(z) of (31). Of course, we have a general transformation rule for arbitrary unitary matrices Q €
Cm™m™ (i.e. Q*Q = I), namely

Ugtryg-(2) = QUar(2)Q". (4.2)

The first result concerns the set of all strong symmetries.

Proposition 4.2 (Strong symmetries) Any of the following transformations and any composition of
them are strong symmetries:

(S1) simultaneous linear phase factor: (A, F) = (A+61, F)
(S2) complex conjugation: (A, F) = (—A, —F)

(S3) constant phase factors: (A, F) = (QuAQ3, F) with Qy = diag(1,eV2, ... e"m),
where 6,1); € R.

Proof. In all three cases the result follows easily by writing down the corresponding evolution operators.
(S1) Usryasr(2) = €U 4, p(2) giving do(2) = ¥ (2).

(S2) By complex conjugation of we easily obtainU_ 4 ,.(z) = m. As the initial condition
$(0) = eg is real, we conclude ¢(z) = ¢(z) and hence ¢o(z) = do(2).

(S3) For this case we use the transformation rule with Q = ), and observe that Q¢F(2)QZ =
F(z) because F is diagonal. Hence we have ¢g(2) = ¢o(2). "
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As a first nontrivial result we now reduce to the case m = 2 with the additional restriction Agg =
Ag/g . Indeed, the condition

U U
Ago = Agrgr,  Which means AU 259 = 0

Po Pg'

+ 28g/,

is typically satisfied (in high enough accuracy) in the case of the strong two-beam conditions, because
one usually chooses Sgr = Sg = 0 and one has pg = ko - v = pg- This holds automatically if
g’ - v = 0 or it is approximately true in the case of high energy electrons, i.e. |ko| > |g’|.

2x2
Herm

Corollary 4.3 (Sign change using m = 2 and Agg = Agg) Inthecase A =V +X € C with
Ao = Agrg, the transformation (A, F') = (A, —F) is a strong symmetry, i.e. |pg(2)| = |pg(z)| for
z €0,z andg € A5 = {0,¢g'}.

Proof. The result follows by combining the three strong symmetries (S1)—(S3). We write
b .
A_<% a> with a € Rand b = |ble”’.

Applying first (S2) we find a strong symmetry with (A, F1) = (—A, —F). Next we apply (S1) with
0 = 2a such that (Ay, ) = (2al — A, —F) is again a strong symmetry. Finally we apply (S3) with
1y = T — 2[3 and observe that 2 = —e~12# which gives

diag(1, —e'?) (2a1—A) diag(1, —e 20) = A

Hence, (A3, F3) = (A, —F) is a strong symmetry giving |do(2)| = |do(2)] forall z € [0, z,].
Finally, the assumption m = 2 and the unitarity give, forn = ¢ or gg the relation

2 m=2

o ()" =" In(2)|* = Ing:(2)

= Jeof* — g/ (=)

Hence, we obtain |$g/(z)] = |¢g (2)| from the corresponding result for g = 0. "
To study the midplane reflection we introduce the
flip operator R(z) = z,—=z

acting on C°([0, z,]; D,,) via (FoR)(z) = F(R(z)) = F(z.—2z). The following identity will be
crucial for the understanding of the flip symmetry as a weak symmetry. Of course, one cannot expect
that flipping gives rise to a strong symmetry. To see this we consider a nontrivial strain profile F'
with F'(z) = 0 for z € [2./2, 2.], i.e. the perturbation acts only in the upper half of the specimen.
The flipped case F = FoR then corresponds to a perturbation acting only in the lower half of the
specimen. In such a case one cannot expect that the bright-field intensities |¢o(2)|? and |¢o(2)|* are
the same inside the specimen. However, because of the double occurrence of the vector e there is
some chance that the intensities match for z = z, only.

Lemma 4.4 (Reversal of direction) Forall A € C]'X" and F € C°([0, z.]; C["X") we have the
identity

U_a-por(2:) = [Uarp(z.)] (4.3)
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Proof. We set U(z) = U 4, (2.—2), which obviously satisfies U(z,) = I and

U(z) = —[[.JA+F(Z*—2) = —1(A+F(2.—2))Uspp(z—2) = i(—A—(FOR)(z))I[NJ(z).

Ihus, f[j satisfies the same ODE as U_ 4_ o g, but the initial conditions are different. This observation,
U(z,) = I, and the unitarity relation (1) imply

—1 *
U_a-ror(2) = Uayp(ze—2) [Uarp(z:)] = Uasr(zi—2) [Uarr(z)]
Restricting to the case z = z, gives the desired assertion. ]

Of course, all compositions of a strong symmetry with a weak symmetry again provides a weak sym-
metry. Hence, combining the above lemma with Proposition[4.2]gives the following result that relies on
the double occurrence of eg in the definition of weak symmetries.

Corollary 4.5 (Flipping with 1 as weak symmetry) Forall A € C[X" and F' € C°([0, z.]; D,,)
the following transformations are weak symmetries:

W1) (A F) = (=A,—FoR)
(W2) (A, F) = (4, FoR)
(W3) (A, F) = (A, FoR) in the case m = 2.

Proof. We use that weak symmetry is defined in terms of

¢0(Z*) = <¢(Z*),€0> = <U1’4"+ﬁ(2’*)€0,60>’
where eg occurs as initial condition as well as test vector at z = z,.

For (W1) we exploit the relation (4.3) from the previous lemma, which gives

50(2*) = <[U7A7F0PL(Z*)€0,€0> = <UA+F(Z*)*€0,€0> = <€0aUA+F(Z*)*€O> = ¢o(2.).

This immediately implies |d§0(z*)| = |po(2.)| as desired. For (W2) we simply apply the complex
conjugation (S2) and use that F' is real-valued.

For (W3) we start from (W2) and use m = 2 to replace A by A using (S3) as for Corollary ]

From symmetry (W2) follows that under the assumption that all relevant Fourier coefficients of the
scattering potential Uy are real the midplane reflection symmetry is also valid for the general m-
beam model and not only for the two-beam approximation. This property may be satisfied for specifc
crystal structures. One example are centrosymmetric materials, such as Al, Cu, and Au obeying a
face-centered cubic lattice, see [De 03, Ch. 6.5].

Our last result concerns a symmetry in the two-beam model when one changes the sign of the excita-
tion error sg. This is relevant in experimental observations, where s,/ can easily be varied, cf. [Nie21].

In particular, we refer to the Figures and

Corollary 4.6 (Excitation-error symmetry for m = 2) Consider A3 = {0,g'}, F € C°([0, 2,]; D),
and A=V + % € C¥2 with Voo = Vi . Then, the transformation (A, F) = (V—X, —FoR) is
a weak symmetry.
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Proof. The result follows by combining Corollary[4.3|and part (W3) of Corollary[4.5] More precisely, we
first observe Uayr = Uy (nyr). Applying CoroIIarywith (A, F) replaced by (V, X+ F) yields
that (4, F1) = (V, —(X+F)) is a strong symmetry. Combining this with part (W3) of Corollary [4.5]
shows that (Ay, ) = (V, —(X+F)oR) is a weak symmetry.

To conclude we observe that Yo R = ] because Y. is constant. Moving —2 into A=V _— Y, we see
that (A, F) = (V—3, —FoR) is indeed a weak symmetry. "

5 Conclusion

The symmetry properties of the TEM imaging process were analyzed via the DHW equations. This
analysis showed that the imaging process is invariant under special transformations. The most im-
portant symmetries are the sign change of the strain field and the midplane reflection as well as a
symmetry related to the sign change of the excitation error. The latter can be of particular importance
in experiments, since modern transmission electron microscopes can easily create series of images
by changing the excitation error. Combining these results with specific properties of the strain profile of
the inclusion explains extra symmetries observed in TEM images. The distinction between symmetries
of the imaging process and symmetries of the strain field can be used to extract information for the
inclusion, e.g. shape or size. The approach can also be applied to the imaging of dislocations, since
the TEM images are sensitive to the strain field they induce.
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