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Untangling dissipative and Hamiltonian effects in bulk and
boundary driven systems
D.R. Michiel Renger, Upanshu Sharma

Abstract

Using the theory of large deviations, macroscopic fluctuation theory provides a framework to
understand the behaviour of non-equilibrium dynamics and steady states in diffusive systems. We
extend this framework to a minimal model of non-equilibrium non-diffusive system, specifically an
open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary
forces that drive the system towards the steady state, and non-dissipative bulk and boundary
forces that drives the system in orbits around the steady state. Using the fact that these forces
are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into
dissipative and non-dissipative terms. We establish that the purely non-dissipative force turns
the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical
examples.

1 Introduction

It is well known that if a microscopic stochastic particle system is in detailed balance, then large
fluctuations around the macroscopic dynamics (large-deviations theory) induce a gradient flow of the
free energy. This principle was first discovered by Onsager and Machlup in their groundbreaking pa-
per [OM53] for a simple process with vanishing white noise, and their result may be identified with the
more rigorous and general Freidlin-Wentzell theory [FW12]. However, as Onsager and Machlup stated
in 1953:

The proof of the reciprocal relations [...] was based on the hypothesis of microscopic
reversibility, which we retain here. This excludes rotating systems (Coriolis forces) and
systems with external magnetic fields. The assumption of Gaussian random variables is
also restrictive: Our system must consist of many “sufficiently” independent particles, and
equilibrium must be stable at least for times of the order of laboratory measuring times.

Regarding the Gaussian noise, extensions to different noise have been known for a long time, see
for example [BDSG+04]. What these models have in common is that, although on a microscopic
level the noise is non-Gaussian, macroscopically these systems are diffusive, which corresponds to
quadratic large deviations, i.e. the rate functional is of the form 1

2

∫ T
0
‖ρ̇(t)− 1

2
gradV(ρ(t))‖2

ρ(t) dt for
some ρ-dependent norm, gradient corresponding to that norm, and free energy or quasipotential V . A
simple expanding-the-squares then yields the form predicted by Onsager and Machlup. Different, for
example, Poissonian noise may lead to non-quadratic large deviations, but as discovered in [MPR14],
the Onsager-Machlup principle still holds for systems in detailed balanced if one allows for nonlinear
macroscopic response relation between the forces involved and the velocity.
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D.R.M. Renger, U. Sharma 2

Regarding the ‘rotating systems’ mentioned by Onsager and Machlup, these generally correspond
to a breaking of detailed balance at the microscopic scale, and a combination of dissipative and non-
dissipative effects at the macroscopic scale. Although both effects are strongly intertwined, the field
of macroscopic fluctuation theory (MFT) [BDSG+02, BDSG+04, BDSG+15] allows an orthogonal de-
composition into dissipative and non-dissipative fluxes, albeit, for diffusive systems. For non-diffusive
systems the large deviations are not quadratic and such decomposition becomes more subtle, but
some progress has been made recently using a generalised orthogonality [KJZ18, RZ21].

In recent work [PRS21] it was discovered that for various non-quadratic large deviations, the re-
sulting purely non-dissipative fluxes correspond to a Hamiltonian system with periodic orbit solutions.
This precisely delineates the role of dissipative fluxes which drive the system to its steady state from
non-dissipative fluxes which drive the system out of detailed balance precisely through a Hamiltonian
flow. However all systems studied in that work are driven out of detailed balance by bulk effects. In
the current work our aim is to precisely understand how bulk and boundary effects can jointly drive a
system out of detailed balance, and we achieve this by studying a linear network with open bound-
aries. This minimal model is sufficiently rich to understand the role of bulk and boundary individually
and provide guidelines to more complex nonlinear systems.

We avoid the terminology (non)equilibrium and (ir)reversibility and talk about (non)detailed balance
instead.

2 Model

Throughout, X is a finite directed graph, with weights Qxy on edges (x, y) ∈ X × X , x 6= y. In
addition, each node x ∈ X is equipped with weights λinx, λoutx modelling the in- and outflow of that
node, see Figure 1 for an example (see Section 7 for numerical results for this example). We only
assume (a) Qxy = 0 ⇐⇒ Qyx = 0, (b) λinx = 0 ⇐⇒ λoutx = 0 and (c) that the graph with
nonzero weights Qxy > 0 is irreducible.

B

CA

Q
B
CQA

B

Q
C
B

QAC

Q
B
A

QCA

λoutC

λinC

λoutB = 0 λinB = 0

λinA

λoutA

Figure 1: An example of a linear network with open boundaries.

Defining Qxx := −
∑

y∈X ,y 6=xQxy as usual, the macroscopic evolution of mass ρ(t) ∈ RX on
the graph is

ρ̇(t) =
(
Q− diag(λout)

)T
ρ(t) + λin. (2.1)

In order to investigate non-dissipative effects we study net fluxes j(t) in addition to the mass
density ρ(t). To this aim we equip the graph X with an (arbitrary) ordering, which defines the positive
edges E := {(x, y) : x, y ∈ X , x < y} ∪ {(inx) : x ∈ X}. The macroscopic flux formulation
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Untangling dissipative and Hamiltonian effects 3

of (2.1) is

jxy(t) = j0
xy(ρ(t)), jinx(t) = j0

inx(ρ(t)), ρ̇x(t) = − divx j(t), (2.2)

where the traffic on the positive edges is j0
xy(ρ) := ρxQxy − ρyQyx and j0

inx(ρ) := λinx − ρxλoutx,
and the discrete divergence operator on fluxes j ∈ RE is defined as

divx j :=
∑

y∈X :y>x

jxy −
∑

y∈X :y<x

jyx − jinx. (2.3)

This particular definition of the discrete divergence accounts for the net fluxes and arises from the
following natural underlying (stochastic) microscopic particle system.

The large parameter n will be used to control the order of the total number of particles in the
system, although this number is generally not conserved over time. At each node x, new particles
are randomly created with rate nλinx and independently of all other particles, each particle either
randomly jumps to node y with rate Qxy, or is randomly destroyed with rate λoutx. We are interested
in the random particle density nρ(n)

x (t) which counts the number of particles at node x and time t, the
cumulative net flux nW (n)

xy (t), which counts the number of jumps x → y minus the jumps y → x in
time interval (0, t], and the net flux nW (n)

inx, counting the number of particles created minus the number
of particles destroyed at that node x in time interval (0, t].

By Kurtz’ Theorem [Kur70], the Markov process (ρ(n)(t),W (n)(t)) converges as n → ∞ to the
solution (ρ(t), w(t)) of (2.2), where we identify the derivative ẇ(t) of the cumulative net flux with the
net flux j(t). We stress that for finite n, the continuity equation ρ̇ = − div j holds almost surely, but
random fluctuations occur in the fluxes.

On an exponential scale, these fluctuations satisfy a large-deviation principle [SW95, Ren18,
PR19]1

Prob
(
(ρ(n),W (n)) ≈ (ρ, w)

) n→∞∼ exp
(
−n
∫ T

0
L
(
ρ(t), ẇ(t)

)
dt
)
, (2.4)

where we implicitly set the exponent to −∞ if the continuity equation ρ̇(t) ≡ − div j(t) is violated,
and

L(ρ, j) :=
∑∑
x,y∈X
x<y

inf
j+xy≥0

[
s(j+

xy | ρxQxy) + s(j+
xy − jxy | ρyQyx)

]
+
∑
x∈X

inf
j+inx≥0

[
s(j+

inx | λinx) + s(j+
inx − jinx | ρxλoutx)

]
,

(2.5)

using the usual (non-negative and convex) relative entropy function s(a | b) := a log a
b
− a+ b. The

infima in the definition of L contracts the large-deviation principle of the one-way fluxes to the large-
deviation principle of the net fluxes [DZ09, Thm. 4.2.1]. It is easily checked that L is non-negative and
satisfies L(ρ, j0) = 0, i.e. j0 is the zero-cost flux.

It will often be convenient to work with the convex (bi-)dual of L(ρ, ·), defined for forces ζ ∈ RE

acting on net fluxes

H(ρ, ζ) := sup
j∈RE

ζ · j − L(ρ, j) =
∑∑
x,y∈X
x<y

[
ρxQxy

(
eζxy − 1

)
+ ρyQyx

(
e−ζxy − 1

)]
+
∑
x∈X

[
λinx

(
eζinx − 1

)
+ ρxλoutx

(
e−ζinx − 1

)]
.

As j0(ρ) from (2.2) is the zero-cost flux, we can write j0(ρ) = ∇ζ H(ρ, 0).

1We ignore possible contributions from random initial fluctuations since they they play no role in our paper whatsoever.
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D.R.M. Renger, U. Sharma 4

3 Invariant measure, quasipotential and time reversal

The macroscopic equation (2.1) has a unique, coordinate-wise positive steady state π ∈ RX (see
Appendix A.1). Moreover, for fixed n, the random process ρ(n)(t) has the unique invariant measure
Π(n) ∈ P(RX ) of product-Poisson form

Π(n)(ρ) :=

{∏
x∈X

(nπx)nρxe−nπx

(nρx)!
ρ ∈ ( 1

n
N0)X ,

0, otherwise,
(3.1)

see Appendix A.1. By Stirling’s formula one obtains that the invariant measure satisfies a large devia-
tion principle Π(n)(ρ) ∼ e−nV(ρ) with quasipotential

V(ρ) :=
∑
x∈X

s(ρx|πx), (3.2)

which can also be interpreted as (kBT )−1× the Helmholtz free energy if πx = e−Ex/kBT for some
energy function Ex, Boltzmann constant kB and temperature T . Let the discrete gradient ∇ be the
adjoint of − div from (2.3), i.e. ∇xy ξ := ξy − ξx, ∇inx ξ := ξx. With this notation the quasipo-
tential (3.2) is related to the dynamic large deviations through the Hamilton-Jacobi-Bellman equa-
tion H(ρ,∇∇V(ρ)) = 0; this can be calculated explicitly but also follows abstractly from the
large-deviation principle for the invariant measure, see for example [BDSG+02, Eq. (2.7)] or [PRS21,
Thm. 3.6].

Without further assumptions, the quasipotentialV is indeed a Lyapunov functional along the macro-
scopic dynamics (2.1), which can be calculated explicitly

− 1

2

d

dt
V
(
ρ(t)

)
=
∑∑
x,y∈X
x6=y

s
(
ρxQxy |

√
ρxρy

πx
πy
Qxy

)
+
∑
x∈X

[
s
(
λinx |

√
ρx
πx
λinx

)
+ s
(
ρxλoutx |

√
ρxπxλoutx

)]
︸ ︷︷ ︸

=Lasym(ρ,j0(ρ))≥0

+
1

2

∑∑
x,y∈X
x 6=y

(√
ρxQxy −

√
ρyQxy

πx
πy

)2

+
1

2

∑
x∈X

[(√
λinx −

√
ρx
πx
λinx

)2
+
(√

ρxλoutx −
√
πxλoutx

)2
]

︸ ︷︷ ︸
=Ψ∗

Fasym (ρ,F sym(ρ))≥0

.

(3.3)
In Section 5 we introduce Lasym(ρ, j0(ρ)) and see that it forms the cost of the macroscopic dynam-
ics (2.2) if the underlying particle system is modified to a “purely non-dissipative” system; in the same
section we introduce what we call the “modified Fisher information” Ψ∗F asym(ρ, F sym(ρ)).

Before discussing the general setting, let us first discuss the detailed balance (equilibrium) case.
The Markov process ρ(n)(t) is in microscopic detailed balance with respect to Π(n) if the random path
t 7→ (ρ(n)(t),W (n)(t)) starting from ρ(n)(0) ∼ Π(n), W (n)(0) = 0 has the same probability as the
time-reversed path t 7→ (ρ(n)(T − t),W (n)(T ) −W (n)(T − t)) [Ren18, Sec. 4.1]. For our simple
setting, this notion of microscopic detailed balance is equivalent to what may be called macroscopic
detailed balance 2:

πxQxy = πyQyx and λinx = πxλoutx. (3.4)

2For more involved systems, for instance, chemical reaction networks, microscopic and macroscopic detailed balance
need not be the same [ACK10].
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Untangling dissipative and Hamiltonian effects 5

It is easily calculated that on the large-deviation scale, (micro and macroscopic) detailed balance
is equivalent to L(ρ, j) = L(ρ,−j) + 〈∇∇V(ρ), j〉, which is in turn equivalent to H(ρ, ζ) =
H(ρ,∇∇V(ρ)− ζ) by convex duality.

By contrast, if detailed balance does not hold, then, starting from ρ(n)(0), ρ(n)(T ) ∼ Π(n)(T ),

W (n)(0) = 0, we obtain after time reversal that←−ρ (n)(t) := ρ(n)(T − t), and
←−
W (n)(t) := W (n)(T )−

W (n)(T − t) are the normalised particle density and cumulative net flux of a different particle sys-
tem, where at each node x, new particles are created with rate nπxλoutx, each particle indepen-
dently jumps to node y with rate Qyxπy/πx and is destroyed with rate λinx/πx, see again [Ren18,

Sec. 4.1]. Analogous to (2.4), (←−ρ (n)(t),
←−
W (n)(t)) satisfies a large-deviation principle with rate func-

tional
∫ T

0

←−
L
(
ρ(t), ẇ(t)

)
dt, which is related to the original rate functional through the relation

←−
L (ρ, j) =

L(ρ,−j) + 〈∇∇V(ρ), j〉, and by convex duality
←−
H(ρ, ζ) = H(ρ,∇∇V(ρ) − ζ), see for exam-

ple [BDSG+02, Sec. 2.7],[Ren18, Sec. 4.2].

4 Force-dissipation decomposition and connections to Onsager-
Machlup relation

Our aim is now to decompose the large-deviation cost function (2.5) as a power balance

L(ρ, j) = Ψ(ρ, j) + Ψ∗
(
ρ, F (ρ)

)
− F (ρ) · j, (4.1)

for some force field F (ρ) ∈ RE and convex dual (in the second argument) non-negative dissipation
potentials Ψ,Ψ∗. By convex duality, their non-negativity implies that Ψ(ρ, 0) ≡ 0 ≡ Ψ∗(ρ, 0), re-
flecting the physical principle: there is no dissipation in the absence of fluxes and forces. Recall that
L = 0 for the macroscopic flow (2.2), which turns (4.1) into a power balance. This is equivalent to the
nonlinear response relation j0(ρ) = ∇ζ Ψ∗

(
ρ, F (ρ)

)
between forces and fluxes.

The decomposition (4.1) exists uniquely [MPR14], where the force and dual dissipation potential
are explicitly given by

Fxy(ρ) := −∇jxy L(ρ, 0) =
1

2
log

ρxQxy

ρyQyx
and Finx(ρ) := −∇jinx L(ρ, 0) =

1

2
log

λinx
ρxλoutx

,

(4.2)

Ψ∗(ρ, ζ) := H
(
ρ, ζ − F (ρ)

)
−H

(
ρ,−F (ρ)

)
= 2

∑
x,y∈X
x<y

√
ρxQxyρyQyx

(
cosh(ζxy)− 1

)
+ 2

∑
x∈X

√
λinxρxλoutx

(
cosh(ζinx)− 1

)
.

(4.3)

The middle term

Ψ∗(ρ, F (ρ)) =
1

2

∑∑
x 6=y

(
√
ρxQxy −

√
ρyQyx)

2 +
∑
x

(
√
λinx −

√
ρxλoutx)

2 (4.4)

is often called the Fisher information; it quantifies the energy needed to shut down all fluxes under
force F , and also controls the long-time behaviour of the ergodic average T−1

∫ T
0
ρ(t) dt [NR21].

If detailed balance holds, the force is related to the quasipotential through F (ρ) = −1
2
∇∇V(ρ),

which reflects the classical principle that systems in (macroscopic) detailed balance are completely
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D.R.M. Renger, U. Sharma 6

driven by the free energy. This can be checked explicitly, but is also known to hold more gener-
ally [MPR14], since in that case the decomposition (4.1) can be interpreted as a generalised Onsager-
Machlup relation. In particular, under detailed balance, the work done by the force along a trajectory
equals the free-energy loss as

F
(
ρ(t)

)
· j(t) = −1

2
∇∇V

(
ρ(t)

)
· j(t) =

1

2
∇V(ρ(t)) · div j(t)

= −1

2
∇V(ρ(t)) · ρ̇(t) = −1

2

d

dt
V(ρ(t)). (4.5)

More generally without detailed balance, the cost function
←−
L(ρ, j) of the time-reversed dynamics

admits a similar decomposition as in (4.1), with the same dissipation potential (4.3) and driving force
←−
Fxy(ρ) =

1

2
log

ρxQyxπy/πx
ρyQxyπx/πy

and
←−
F inx(ρ) =

1

2
log

πxλoutx
ρxλinx/πx

. This allows to naturally define sym-

metric and antisymmetric forces with respect to time-reversal [BDSG+15, RZ21, PRS21], which leads
to the symmetric force F sym(ρ) = −1

2
∇∇V(ρ) that coincides with the case of detailed balance (4.5)

and a constant antisymmetric force

F asym
xy :=

1

2
[Fxy(ρ)−

←−
Fxy(ρ)] =

1

2
log

πxQxy

πyQyx
, F asym

inx :=
1

2
[Finx(ρ)−

←−
F inx(ρ)] =

1

2
log

λinx
πxλoutx

.

(4.6)

The antisymmetric force F asym = 0 precisely if macroscopic detailed balance (3.4) holds. So F asym
xy

and F asym
inx are exactly the bulk and boundary forces that drive the system out of detailed balance.

While it may seem surprising that F asym is independent of ρ, it should be noted that this happens for
various other systems as well [PRS21, Sec. 5].

5 Dissipative–non-dissipative decomposition of the cost

We now use the notion of generalised orthogonality [KJZ18, RZ21, PRS21] to further decompose the
dual dissipation Ψ∗ in (4.1) into purely dissipative and non-dissipative terms. As a generalisation of
quadratic expansions, one writes

Ψ∗
(
ρ, F (ρ)

)
= Ψ∗

(
ρ, F sym(ρ) + F asym

)
= Ψ∗

(
ρ, F asym

)
+ θρ

(
F sym(ρ), F asym

)︸ ︷︷ ︸
=0

+Ψ∗F asym

(
ρ, F sym(ρ)

)
= Ψ∗

(
ρ, F sym(ρ)

)
+ θρ

(
F sym(ρ), F asym

)︸ ︷︷ ︸
=0

+Ψ∗F sym

(
ρ, F asym

)
,

see Appendix A.3 for the construction and explicit definitions of the objects in this calculation. These
expansions are not quite the same as in the quadratic case – one of the potentials needs to be
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Untangling dissipative and Hamiltonian effects 7

modified. This yields the modified Fisher informations, cf. (4.4),

Ψ∗F asym

(
ρ, F sym(ρ)

)
=

1

2

∑∑
x,y∈X
x 6=y

(√
ρxQxy −

√
ρy
πx
πy
Qxy

)2

+
1

2

∑
x∈X

(√
λinx −

√
ρx
πx
λinx

)2
+

1

2

∑
x∈X

(√
ρxλoutx −

√
πxλoutx

)2
,

Ψ∗F sym(ρ, F asym) =
1

2

∑∑
x,y∈X
x 6=y

(√
ρxQxy −

√
ρx
πy
πx
Qyx

)2

+
1

2

∑
x∈X

(√
λinx −

√
πxλoutx

)2
+

1

2

∑
x∈X

(√
ρx
λinx
πx
−
√
ρxλoutx

)2
.

The fact that the generalised cross term θ
(
F sym, F asym

)
vanishes reflects an orthogonality of the

symmetric and antisymmetric forces in a generalised sense [RZ21, Prop. 4.2], [PRS21, Prop. 2.24].
This orthogonality also means that the quasipotential V and steady state π are unaltered by turn-
ing F asym on or off (see again Appendix A.3), which is also observed in the numerical examples in
Section 7.

Applying this expansion of dissipation potentials to (4.1) leads to two distinct and physically relevant
decompositions

L(ρ, j) = Ψ(ρ, j) + Ψ∗(ρ, F asym)− F asym · j︸ ︷︷ ︸
=:Lasym(ρ,j)

+Ψ∗F asym

(
F sym(ρ)

)
− F sym(ρ) · j, (5.1a)

= Ψ(ρ, j) + Ψ∗
(
ρ, F sym(ρ)

)
− F sym · j︸ ︷︷ ︸

=:Lsym(ρ,j)

+Ψ∗F sym(F asym)− F asym · j. (5.1b)

The two “modified cost functions” Lsym,Lasym are non-negative by convex duality, and are in
fact themselves large-deviation cost functions of particle system with modified jump rates, see Ap-
pendix A.2. Since F sym = −1

2
∇∇V , the symmetric cost Lsym encodes the (non-quadratic)

Onsager-Machlup dissipative (gradient-flow) part of the dynamics, even without assuming detailed
balance. By analogy, Lasym encodes a non-dissipative dynamics that is in some sense the time-
antisymmetric counterpart of a gradient flow; this will be explored in Section 6. Both expressions (5.1)
decompose the cost function L into terms corresponding to the dissipative and non-dissipative dy-
namics, but because Ψ∗ is non-quadratic, there are two distinct ways to do so3.

Of particular interest are the decompositions (5.1) along the zero-cost traffic j0(ρ). The work done
by the symmetric force is F sym · j0 = −1

2
d
dt
∇∇V , so that we retrieve the free-energy loss (3.3)

from (5.1a), with the explicit expression forLasym(ρ, j0) given by the s(·|·) terms in (3.3). Analogously,
inserting j0 into (5.1b), we find an explicit expression for the work done by the antisymmetric force

∫ T

0

F asym · j0
(
ρ(t)

)
dt = −

∫ T

0

[
Lsym

(
ρ(t), j0(t)

)
+ Ψ∗F asym

(
ρ(t), F sym(ρ(t))

)]
dt ≤ 0 (5.2)

3(5.1a) is related to “FIR inequalities” that have been used to study singular limits and prove errors estimates [DLPS17,
DLP+18, PR21]; the cost Lasym quantifies the gap in the inequality.
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D.R.M. Renger, U. Sharma 8

with

Lsym
(
ρ, j0(ρ)

)
=
∑∑
x,y∈X
x 6=y

s
(
ρxQxy | ρx

√
πx
πy
QxyQyx

)
+
∑
x∈X

[
s
(
λinx |

√
πxλinxλoutx

)
+ s
(
ρxλoutx | ρx

√
λinxλoutx

πx

)]
.

(5.3)

While, a priori, both Lsym(ρ, j) and Lasym(ρ, j) appear as a minimisation over one-way fluxes as
in (2.5) (see Appendix A.2), for j = j0(ρ), the minimising one-way flux is exactly j+

xy = ρxQxy,
j+

inx = λinx which considerably simplifies the expressions.

6 Dissipative and non-dissipative zero-cost dynamics

Recall from Section (4) that L = 0 for the full macroscopic dynamics and so ρ̇ =
− div∇ζ Ψ∗(ρ, F sym(ρ) + F asym). Similarly Lsym = 0 yields the nonlinear gradient flow ρ̇ =
− div∇ζ Ψ∗(ρ,−1

2
∇∇V(ρ)) driven by the free energy V . How can the zero-cost dynamics ofLasym

be given a physical interpretation? The ODE describing this dynamics is

ρ̇x(t) = − divx∇ζ Ψ∗(ρ, F asym)

=
∑∑
x,y∈X
x 6=y

√
ρx(t)ρy(t)

(
Qyx

√
πy
πx
−Qxy

√
πx
πy

)
+
√
ρx

(
λinx

1√
πx
− λoutx

√
πx

)
. (6.1)

Our novel and maybe surprising result is that this equation in fact has a Hamiltonian structure ρ̇ =
J(ρ)∇U(ρ) with energy and Poisson structure given by

U(ρ) =
∑
x∈X

(
√
πx −

√
ρx)

2, (6.2)

Jxy(ρ) =2
∑
z∈X

√
ρxρyρz

[√
πxπz
πy

Qzy −
√

πxπy
πz

Qyz −
√

πyπz
πx

Qzx +

√
πxπy
πz

Qxz

]
+ 2
√
ρxρy

[√
πx
πy
λiny −

√
πxπyλouty −

√
πy
πx
λinx +

√
πxπyλoutx

]
, x, y ∈ X , x 6= y.

(6.3)

We include a brief derivation in Appendix A.4 and in Appendix A.5 verify that the corresponding Pois-
son bracket [F 1,F 2]ρ := ∇F 1(ρ) · J(ρ)∇F 2(ρ) satisfies the Jacobi identity (requisite for a
Hamiltonian system). The energy (6.2) is known as the Hellinger distance [Hel09], mostly used in
statistics [Ber77] and recently also to describe certain reaction dynamics as gradient flows [LMS18].

The Hamiltonian structure (U ,J) for the ODE (6.1) is generally not unique. In contrast to the gradi-
ent flow forLsym, it is not clear to us whether U and J are somehow related to the variational structure
provided by Lasym. A natural question is then whether – in the spirit of metriplectic systems [Mor86]
or GENERIC [Ö05] – there could be a Hamiltonian structure for (6.1) so that the energy U is also con-
served along the full dynamics L = 0. The answer to this question is negative, because by (3.3) the
full dynamics simultaneously dissipates free energy until the unique steady state is reached. Another
fundamental difference with GENERIC is that here the full dynamics is retrieved by adding the forces
F = F sym + F asym, whereas in GENERIC one retrieves the full dynamics by adding velocities or
fluxes.
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7 Insights from a simple system

Consider the simple example of Figure 1 with X = {A,B,C} and define the positive edges as
E = {(A,B), (A,C), (B,C)} ∪ {inA, inC} (with no in/out-flow at B). In what follows we use
j0, jsym,0, jasym,0 for the zero-cost flux for L,Lsym,Lasym respectively.

πB = 1
3

πC = 1
3

πA = 1
3

1
31

3

1
3

πB = 1
3

πC = 1
3

πA = 1
3

00

0

πB = 1
3

πC = 1
3

πA = 1
3

1
31

3

1
3

Figure 2: Case A: Pure bulk effects. Top row: Plots of the zero-cost trajectories ρ(t) associated to j0,
j0,sym, j0,asym, starting from three different initial conditions (black dots) with the steady states de-
picted by the pink dots. Bottom row: The steady states π (in pink) and steady-state fluxes (magnitude
indicated by values and direction by arrows) corresponding to j0, j0,sym, j0,asym respectively.

Case A: Pure bulk effects. We assume that the forward transition rates QAB = QBC = QCA =
2 and backward transition ratesQAB = QBC = QCA = 1 and λinx = λoutx = 0 for x = A,B. This
corresponds to a closed system being driven out of detailed balance purely by the bulk force, which is
encoded in the different forward and backward transition rates (no detailed balance). Since there is no
in and outflow, the total mass of the system is preserved at all times (and equal to the mass at t = 0)
with the steady state π = (1

3
, 1

3
, 1

3
). The zero-cost trajectories and corresponding steady states are

plotted in Figure 2.

There are three interesting observations about the trajectories. First, in line with preceding discus-
sions, both the full and symmetric zero-cost trajectories (top row, left & middle) converge to the steady
state π whereas the antisymmetric zero-cost trajectory (top row, right) orbits around the steady state.
Second, that all the trajectories are confined to a plane which corresponds to the conservation of total
mass (

∑
x ρx(t) = 1). Third, the symmetric zero-cost trajectories are straight lines since the purely

dissipative dynamics is a gradient flow of a linear system (since there is no in/out flow).

From the steady states we see that, as expected, the symmetric zero-cost dynamics has an equi-
librium/detailed balanced steady state (bottom row, middle), and the full system (bottom row, left) has
a non-equilibrium steady state. Surprisingly, the (static) steady state π of the antisymmetric dynamics
(bottom row, right) leaves the steady state and even the corresponding flux of the full system un-
changed. This is in line with the observation that the forces orthogonal to the symmetric force are pre-
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cisely the ones that leave the quasipotential unchanged (see discussion at the end of Appendix A.3).

πB = 10
9

πC = 8
9

πA = 11
9

12
912

9

5
9

7
9

7
9

πB = 10
9

πC = 8
9

πA = 11
9

00

0

00

πB = 10
9

πC = 8
9

πA = 11
9

12
912

9

5
9

7
9

7
9

Figure 3: Case B: bulk and boundary effects. Top row: Plots of the zero-cost trajectories ρ(t) asso-
ciated to j0, j0,sym, j0,asym, starting from three initial conditions (black dotes) with the steady states
denotes by the pink dots. The initial conditions are the same as in Figure 2. Bottom row: The steady
states π (in pink) and steady-state fluxes (magnitude indicated by values and direction by arrows)
corresponding to to j0, j0,sym, j0,asym respectively.

Case B: Bulk and boundary effects. As in Case A we assume that QAB = QBC = QCA = 2
and QAB = QBC = QCA = 1. For the boundary we assume that λinA = λoutC = 2 and
λoutA = λinC = 1. This case corresponds to the system being driven out of detailed balance by
both bulk and boundary effects. Regardless of initial condition, the steady state π = (11

9
, 10

9
, 8

9
) is

unique and positive but no longer a probability density, see Appendix A.1. The zero-cost trajectories
and corresponding steady states are plotted in Figure 3.

As in the previous case, both the full and symmetric zero-cost trajectories (top row, left & middle)
converge to the steady state π while the antisymmetric zero-cost trajectory orbits around the static
steady state (top row, right), however, with the crucial difference that the trajectories are no longer
confined to a plane since the mass is not conserved due to in/out flow at the nodes. We point out that
the trajectories of the full and symmetric system are different even though they appear to be the quite
close from the figures (compare in particular the orange trajectory in the top row of Figure 3).

A natural next step is to study the behaviour of the system under varying combinations of symmetric
and antisymmetric bulk and boundary forces. Consider for example the system of case B, where
the force is replaced by F̃xy := F sym

xy and F̃inx := F asym
inx , i.e. purely symmetric bulk force and

antisymmetric boundary force. This altered system will also have an altered steady state π̃, and as a
consequence, the decomposition into symmetric and antisymmetric forces will be different, that is, in
general F̃ sym 6= F sym, F̃ asym 6= F asym. In fact, it is impossible to construct a system where the bulk
is in detailed balance (Fxy = F sym

xy ) but the boundaries are not (Finx 6= F sym
inx ). Indeed, the steady

state corresponding to such system would have some nodes with non-trivial in and outflow, but since
the bulk has zero net fluxes, mass cannot be transported from the inflow to the outflow nodes. By
contrast, take the system of case A with the family of uniform steady states π = (a, a, a), a > 0. If
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one now adds boundary forces such that λinx/λoutx = πx = a for some a > 0, then the steady state
of the altered system is still π = (a, a, a). One can thus construct a system where the bulk is not in
detailed balance (Fxy 6= F sym

xy ) but the boundaries are (Finx = F sym
inx ).

8 Discussion

As pioneered by Onsager and Machlup, microscopic fluctuations on the large-deviation scale provide
a free energy balance for the macroscopic dynamics. By taking fluxes into account, macroscopic fluc-
tuation theory extends this principle to non-equilibrium systems to obtain explicit balances (4.1), (3.3)
and (5.2) in terms of the work done by the full, symmetric and antisymmetric forces F, F sym, F asym

respectively.

With the aim of understanding the role of bulk and boundary effects in non-equilibrium non-diffusive
systems, we study an open linear system on a graph. The derivation of the three energy balances
poses a number of challenges. First, we derive the explicit quasipotential (3.2) (free energy) as the
large-deviation rate of the microscopic invariant measure. Second, since the microscopic fluctuations
are Poissonian rather than white noise, the large-deviation cost L cost is non-quadratic and therefore
requires a generalised notion of orthogonality of forces. Whereas the modified system Lsym = 0
is purely driven by the dissipation of free energy, the third challenge is to understand the system
Lasym = 0. As observed for closed linear systems in [PRS21], it turns out that with open boundaries,
this dynamics is indeed a Hamiltonian system – even satisfying the Jacobi identity. Our work thus
allows to distinguish between dissipative (symmetric) and non-dissipative (antisymmetric/Hamiltonian)
boundary and bulk mechanisms. We expect that these ideas will apply to more general nonlinear
networks, for instance open networks with zero-range interactions (and related agent-based models
in social sciences) and chemical-reaction networks attached to reservoirs.

A few intriguing questions emerge from our analysis in regards to the role of antisymmetric forces.
It turns out the antisymmetric forces are the exactly the ones that leave the quasipotential and steady
state invariant, see Appendix (A.3). This leads to the natural question if one can optimise these forces
in a systematic manner to speed up convergence to equilibrium; this is a important challenge in sam-
pling of free-energy in computational statistical mechanics. Finally, it may be intuitively clear that the
antisymmetric flow, as the opposite of a dissipative dynamics, should be non-dissipative, the appear-
ance of a full Hamiltonian system with the Hellinger distance as conserved energy seems rather sur-
prising and it is not well understood how and why this structure emerges.

A Appendix

A.1 Invariant measure and steady state

Product-Poisson form of Π(n). We show that the invariant measure Π(n) for the (underlying) ran-
dom process ρ(n)(t) (described in Section 2) indeed has the explicit expression (3.1), i.e. it satisfies
the backward equation ∑

ρ∈( 1
n

N0)X

Π(n)(ρ)(Q(n)f)(ρ) = 0, (A.1)
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for all bounded functions f on 1
n
NX0 whereQ(n) is the generator for ρ(n)(t). Using the product structure

of Π(n) we have

Π(n)(ρ+ 1
n
1x) = Π(n)(ρ) nπx

nρx+1
, Π(n)(ρ− 1

n
1x) = Π(n)(ρ) ρx

πx
,

Π(n)(ρ+ 1
n
1x − 1

n
1y) = Π(n)(ρ)( nπx

nρx+1
)( ρy
πy

). (A.2)

Using this expression, and pulling out the function f , (A.1) is equivalent to the following expression for
any ρ∑∑
x,y∈X
x<y

[
n(ρx + 1

n
)QxyΠ

(n)(ρ+ 1
n
1x − 1

n
1y)− nρxQxyΠ

(n)(ρ)
]

+
∑
x

[
nλinxΠ

(n)(ρ− 1
n
1x)− nλinxΠ

(n)(ρ)
]

+
∑
x∈X

[
n(ρx + 1

n
)λoutxΠ

(n)(ρ+ 1
n
1x)− nρxλoutxΠ

(n)(ρ)
]

(A.2)
= nΠ(n)(ρ)

∑
x∈X

ρx
πx

[∑
y∈X
y 6=x

(πyQyx − πxQxy) + λinx − πxλoutx

︸ ︷︷ ︸
=0

]
+ nΠ(n)(ρ)

∑
x

(πxλoutx − λinx)︸ ︷︷ ︸
=0

,

where both sums are 0 since π is the steady state of (2.1).

Properties of macroscopic steady state. If the graph is closed, i.e. λin, λout = 0, then (2.1) is
the Chapman-Kolmogorov equation for an irreducible Markov chain. Hence there is a coordinate-wise
positive steady state, which is unique if the total mass

∑
x∈X πx matches that of the initial condition

ρ(0) [Nor98, Thm. 3.5.2].

We now show that there exists a unique coordinate-wise positive steady state irregardless of the
initial condition even when the graph is not closed, but satisfies the assumptions made in Section 2.

Since the graph is not closed and irreducible there exists at least one x such that λinx, λoutx >
0. This implies that the matrix (Q − diag(λout)) is diagonally dominant with at least one strongly
diagonally dominant row |Qxx − λoutx| >

∑
y 6=x|Qxy|. Furthermore, the matrix is irreducible since

the graph is assumed to be irreducible. These properties imply that (Q − diag(λout)) is invertible
[HJ90, Cor. 6.2.27] and so there exists a unique solution π of

(Q− diag(λout))
Tπ = −λin. (A.3)

To study the sign of π, we decompose the graph X into X+ := {πx ≥ 0} and X− := {πx < 0}.
If X+ = ∅ then summing the stability equation (A.3) over all of X = X− leads to the contradiction

0 =
∑
x∈X−

(πxλoutx − λinx) < 0.

Similarly, if X−,X+ 6= ∅, then summing the stability equation (A.3) over X− gives the contradiction

0 =
∑
x∈X−

∑
y∈X+

(πxQxy − πyQyx) +
∑
x∈X−

(πxλoutx − λinx) < 0
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since by irreducibility there is at least one pair x ∈ X−, y ∈ X+ for which Qxy > 0, and all other
terms are non-positive. We have thus shown that X = X+.

Finally, to show that π is coordinate-wise positive, i.e. πx > 0 for every x, assume by contradiction
that there exists an x ∈ X for which πx = 0. Since that node does not have any outflow, the stability
equation in x reads

0 =
∑
y 6=x

(πxQxy − πyQyx) + πxλoutx − λinx = −
∑
y 6=x

πyQyx − λinx,

and so λinx = 0 and πy = 0 whenever Qyx > 0. By irreducibility and recursion, this would lead to
the contradiction λin = 0.

A.2 Expressions for modified cost functions

Equations (5.3), (3.3) give expressions for the symmetric and antisymmetric cost evaluated at j0. The
general expressions for these costs are

Lsym(ρ, j) =
∑∑
x,y∈X
x<y

inf
j+xy≥0

[
s
(
j+
xy | ρx

√
QxyQyx

πy
πx

)
+ s
(
j+
xy − jxy | ρy

√
QxyQyx

πx
πy

)]

+
∑
x∈X

inf
j+inx≥0

[
s
(
j+

inx |
√
λinxπxλoutx

)
+ s
(
j+

inx − jinx | ρx
√

λinxλoutx
πx

)]
,

Lasym(ρ, j) =
∑∑
x,y∈X
x<y

inf
j+xy≥0

[
s
(
j+
xy |
√
ρxρyQxy

√
πx
πy

)
+ s
(
j+
xy − jxy |

√
ρxρyQyx

√
πy
πx

)]

+
∑
x∈X

inf
j+inx≥0

[
s
(
j+

inx | λinx

√
ρx
πx

)
+ s
(
j+

inx − jinx |
√
ρxπxλoutx

)]
,

with the corresponding Hamiltonians

Hsym(ρ, ζ) =
∑∑
x,y∈X
x<y

[
ρx

√
QxyQyx

πy
πx

(
eζxy − 1

)
+ ρy

√
QxyQyx

πx
πy

(
e−ζxy − 1

)]

+
∑
x∈X

[√
λinxπxλoutx

(
eζinx − 1

)
+ ρx

√
λinxλoutx

πx

(
e−ζinx − 1

)]
,

Hasym(ρ, ζ) =
∑∑
x,y∈X
x<y

[√
ρxρyQxy

√
πx
πy

(
eζxy − 1

)
+
√
ρxρyQyx

√
πy
πx

(
e−ζxy − 1

)]
+
∑
x∈X

[
λinx

√
ρx
πx

(
eζinx − 1

)
+
√
ρxπxλoutx

(
e−ζinx − 1

)]
.

The integral
∫ T

0
Lsym(ρ(t), j(t)) dt is the large-deviation rate functional for the particle density and

flux of a modified system, where particles jump from x to y with jump rate nρx
√
QxyQyxπy/πx,

particles are created at x with rate
√
λinxπxλoutx and destroyed with rate nρx

√
λinxλoutx/πx. Sim-

ilarly,
∫ T

0
Lasym(ρ(t), j(t)) dt corresponds to a system where particles jump from x to y with jump

rate n
√
ρxρyQxy

√
πx/πy, particles are created at x with rate nλinx

√
ρx/πx and destroyed with rate
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n
√
ρxπxλoutx. Observe that the symmetrised system describes independent jumping and destruc-

tion and constant creation as in the original system, whereas the antisymmetrised system introduces
a nonlinear interaction between the particles.

A.3 Generalised orthogonality of forces

We now outline the generalised orthogonality of the symmetric and antisymmetric forces and the
decomposition of the dissipation potentials discussed at the start of Section 5, see [KJZ18, RZ21,
PRS21]. The modified potential and generalised product are defined as

Ψ∗
ζ̃
(ρ, ζ) :=2

∑∑
x,y∈X
x<y

√
ρxQxyρyQyx cosh(ζ̃xy)

(
cosh(ζxy)− 1

)
+ 2

∑
x∈X

√
λinxρxλoutx cosh(ζ̃inx)

(
cosh(ζinx)− 1

)
,

θρ(ζ, ζ̃) :=2
∑∑
x,y∈X
x<y

√
ρxQxyρyQyx sinh(ζ̃xy) sinh(ζxy)

+ 2
∑
x∈X

√
λinxρxλoutx sinh(ζ̃inx) sinh(ζinx).

Using the addition rule cosh(ζ + ζ) = cosh(ζ) cosh(ζ) + sinh(ζ) sinh(ζ), one finds that dual
dissipation potential (4.3) can be expanded as Ψ∗(ρ, ζ + ζ̃) = Ψ∗(ρ, ζ̃) + θρ(ζ, ζ̃) + Ψ∗

ζ̃
(ρ, ζ).

Of particular interest is the case where ζ = F sym(ρ), ζ̃ = F asym. Using the explicit expression
for the forces (4.6) and the definition of sinh in terms of exponential function we find

θρ
(
F sym(ρ), F asym

)
= 4

∑
x,y∈X
x<y

√
ρxQxyρyQyx sinh(F sym

xy ) sinh(F asym
xy )

+ 4
∑
x∈X

√
λinxρxλoutx sinh(F sym

inx ) sinh(F asym
inx )

=
∑
x∈X

ρx
πx

[∑
y∈X ,
y 6=x

(πxQxy − πyQyx) + πxλoutx − λinx

]
︸ ︷︷ ︸

=0

+
∑
x∈X

(λinx − πxλoutx)︸ ︷︷ ︸
=0

= 0.

This orthogonality is also related to the quasipotential as follows. First, consider a system with free
energy V and force F = F sym + F asym, F sym = −1

2
∇∇V . Then V is also the quasipotential for

the modified system where the nondissipative force F asym is replaced by zero, i.e.

Hsym
(
ρ,∇∇V(ρ)

)
= θρ

(
− F sym(ρ), 0

)
= 0.

Second, consider a system in detailed balance with quasipotential V and F = F sym = −1
2
∇∇V . If

one would add an additional force ζ , the modified Hamilton-Jacobi equation reads

Hsym,ζ
(
ρ,∇∇V(ρ)

)
:= Ψ∗

(
ρ,∇∇V(ρ) + F sym + ζ

)
−Ψ∗

(
ρ, F sym + ζ

)
= Ψ∗

(
ρ,−F sym + ζ

)
−Ψ∗

(
ρ, F sym + ζ

)
= −2θρ(F

sym, ζ).
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Thus, the forces ζ orthogonal to F sym are precisely those forces that leave the quasipotential invariant
when added to a symmetric force.

A.4 Derivation of Hamiltonian structure

B

CA

�

Q
B
CQA

B

Q
C
B

QAC

Q
B
A

QCAλ
outA

λ
inA

λ o
ut
C

λ i
nC

Figure 4: The graph from Figure 1 with an additional ghost node

We expand the graph with an additional ghost node X̃ := X ∪ {�}, where mass flowing in and
out of the system is now extracted from respectively collected in � instead, see Figure 4. This results
in a dynamics that conserves the total mass M :=

∑
x∈X∪� ρx(0) (although ρ�(t) may become

negative), and the rates of flowing out of a node x is either linear ρxQxy, ρxλoutx or constant λinx.
The expanded system has the same, coordinate-wise positive steady state π on X as the original
system, but with an additional coordinate π�. By mass conservation, this coordinate satisfies π� =
M −

∑
x∈X πx, so if we initially place enough mass in the ghost node (which does not change the

dynamics), then M will be sufficiently large so that π� > 0.

We are then in the same setting as zero-range processes [PRS21, Prop. 5.3]. By results therein,
the augmented antisymmetric zero-cost dynamics is a Hamiltonian flow and can be written as (abbre-
viating ρX := (ρx)x∈X defined in (6.1))[

ρ̇X (t)
ρ̇�(t)

]
= J̃(ρ)∇Ũ(ρ) :=

[
J(ρ) JX�(ρ)

−JX�(ρ) J��(ρ)

] [
∇ρX Ũ(ρ)

∇ρ� Ũ(ρ)

]
, (A.4)

where Ũ(ρ, ρ�) = U(ρ) and U ,J are given by (6.2),(6.3) and JX�,J�� are irrelevant by the fol-
lowing argument. Mass conservation implies that Λ : (ρX , ρ�) 7→ ρX is a bijection with Jacobian
JΛ = [I | 0]. Applying the variable transformation Λ to (A.4) yields ρ̇X (t) = JΛJ̃(ρ)JT

Λ ∇ρX U(ρ) =
J(ρ)∇ρX U(ρ) as claimed.

A.5 Jacobi identity

We verify that the bracket [F 1,F 2]ρ = ∇F 1(ρ) · J(ρ)∇F 2(ρ) defined by the Pois-
son structure (6.3) indeed satisfies the Jacobi identity [[F 1,F 2],F 3]ρ + [[F 2,F 3],F 1]ρ +
[[F 3,F 1],F 2]ρ = 0 for all sufficiently smooth functions F i and all ρ ∈ RX . Omitting ρ-
dependencies to shorten notation, this identity is equivalent to the following tensor relation [PRS21,
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Lem A.1], for all ρ ∈ RX and x, y, z ∈ X ,

Ry
xz +Rz

yx +Rx
zy ≡ 0, Rz

xy :=
∑
a6=z

Jaz ∂a Jxy . (A.5)

We first calculate the derivative for x 6= y (clearly Jxx ≡ 0),

∂a Jxy =



√
ρxρy
ρa

Ba
xy, a 6= x, y∑

z 6=x

√
ρyρz
ρx

Bz
xy + 2

√
ρyB

x
xy +

√
ρy
ρx
B�xy, a = x,∑

z 6=y

√
ρxρz
ρy

Bz
xy + 2

√
ρxB

y
xy +

√
ρx
ρy
B�xy, a = y,

Bz
xy :=

√
πxπz
πy

Qzy −
√

πxπy
πz

Qyz −
√

πyπz
πx

Qzx +

√
πxπy
πz

Qxz,

B�xy :=

√
πx
πy
λiny −

√
πxπyλouty −

√
πy
πx
λinx +

√
πxπyλoutx.

The tensor then decomposes into terms of different ordersRz
xy = R2 z

xy + R3 z
xy + R4 z

xy of
√
ρ, where

R2 z
xy := 2

[√
ρxρzB

�
xyB

�
yz +
√
ρyρzB

�
xyB

�
xz

]
,

R3 z
xy := 2

∑
a

[√
ρxρyρzB

a
xyB

�
az +
√
ρaρyρz(B

a
xyB

�
xz +B�xyB

a
xz) +

√
ρaρxρz(B

a
xyB

�
yz +B�xyB

a
yz)
]
,

R4 z
xy := 2

∑∑
a,b

[√
ρbρxρyρzB

a
xyB

b
az +
√
ρaρbρyρzB

a
xyB

b
xz +

√
ρaρbρxρzB

a
xyB

b
yz

]
.

Since (A.5) needs to hold for all ρ ∈ RX , we may check it for each order separately. Using the skew-
symmetry of (B�xy)xy, for the second-order terms we have

R2 y
xz + R2 z

yx + R2 x
zy

= 2
√
ρxρyB

�
zy

[
B�xz +B�zx

]
+ 2
√
ρxρzB

�
yx

[
B�yz +B�zy

]
+ 2
√
ρyρzB

�
xz

[
B�xy +B�yx

]
≡ 0

Using the skew-symmetry of (Bz
xy)xy and (B�xy)xy, for the third order terms we find

R3 y
xz + R3 z

yx + R3 x
zy = 2

∑
a

[√
ρxρyρz

(
Ba
xzB

�
ay +Ba

yxB
�
az +Ba

zyB
�
ax

)
+
√
ρaρxρy

(
Ba
xzB

�
zy +Ba

zxB
�
zy +Ba

zyB
�
xz +Ba

zyB
�
zx

)
+
√
ρaρxρz

(
Ba
yxB

�
yz +Ba

yxB
�
zy +Ba

yzB
�
yx +Ba

zyB
�
yx

)
+
√
ρaρyρz

(
Ba
xzB

�
xy +Ba

xzB
�
yx +Ba

xyB
�
xz +Ba

yxB
�
xz

)]
= 2
√
ρxρyρz

∑
a

(
Ba
xzB

�
ay +Ba

yxB
�
az +Ba

zyB
�
ax

)
.

Hence the sum over the constants needs to be zero. After a lengthy calculation we find∑
a

(
Ba
xzB

�
ay +Ba

yxB
�
az +Ba

zyB
�
ax

)
=

1
√
πz

(√
πx
πy
λiny −

√
πxπyλouty −

√
πy
πx
λinx +

√
πxπyλoutx

)∑
a6=z

(
πaQaz − πzQza

)
+

1
√
πx

(√
πy
πz
λinz −

√
πyπzλoutz −

√
πz
πy
λiny +

√
πyπzλouty

)∑
a6=z

(
πaQax − πxQxa

)
+

1
√
πy

(√
πz
πx
λinx −

√
πxπzλoutx −

√
πx
πz
λinz +

√
πxπzλoutz

)∑
a6=z

(
πaQay − πyQya

)
.
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Using the stability equation (A.3), the three sums on the right can be replaced by expressions de-
pending on λin, λout only. This yields twelve paired terms that cancel each other out, so that indeed
R3 y
xz + R3 z

yx + R3 x
zy ≡ 0.

Finally, for the fourth order terms, R4 y
xz + R4 z

yx + R4 x
zy ≡ 0, because this describes the closed

graph setting λin, λout = 0, which satisfies the Jacobi identity [PRS21, App. A].
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