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Dynamical Gibbs variational principles for irreversible interacting

particle systems with applications to attractor properties
Benedikt Jahnel, Jonas Képpl

Abstract

We consider irreversible translation-invariant interacting particle systems on the d-dimensio-
nal cubic lattice with finite local state space, which admit at least one Gibbs measure as a time-
stationary measure. Under some mild degeneracy conditions on the rates and the specification we
prove, that zero relative entropy loss of a translation-invariant measure implies, that the measure
is Gibbs w.r.t. the same specification as the time-stationary Gibbs measure. As an application,
we obtain the attractor property for irreversible interacting particle systems, which says that any
weak limit point of any trajectory of translation-invariant measures is a Gibbs measure w.r.t. the
same specification as the time-stationary measure. This extends previously known results to fairly
general irreversible interacting particle systems.

1 Introduction and finite state space analogy

1.1 Introduction

Interacting particle systems are countable systems of locally interacting Markov processes and are
often used as toy models for stochastic phenomena with an underlying spatial structure. The original
motivation for studying such systems came from statistical mechanics. The idea was to describe and
analyze stochastic models for the time evolution of systems whose equilibrium states are the classical
Gibbs measures. In particular, one hoped to obtain a better understanding of the phenomenon of
phase transitions.

Even though the definition of an interacting particle system often looks very simple and the major tech-
nical issues of existence and uniqueness have long been settled, it is in general surprisingly difficult to
say anything non-trivial about their behavior. In most cases, explicit calculations are not feasible and
one has to be content with qualitative statements and estimates. Some of the main challenges deal
with the long-time behavior of the systems. The first step of proving any limit theorem is to describe
the possible limit points of the time-evolved distribution 14 as ¢ tends to infinity. As a next step, one can
then try to determine the basin of attraction.

In the case of irreducible finite-state Markov processes, this question has long been answered, but for
interacting particle systems this question is much trickier and in many situations a part of the difficulty
is due to non-uniqueness of time-stationary distributions. In this regime, the analysis is very delicate
and various techniques have been developed to study limit theorems or attractor properties. One
particular technique that will play a major role in this manuscript is due to Holley [Hol71] and involves
using the relative entropy functional with respect to some specification v as a Lyapunov function for
the measure-valued differential equation that describes the time evolution of the system in the space
of measures.
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B. Jahnel, J. Képpl 2

This idea was later extended to more general but still reversible systems by Higuchi and Shiga [HS75].
A couple of years later Kiinsch [Kii84] managed a first step towards a treatment of non-reversible
systems, but only in the simple case of single-site updates and binary local state space. Moreover,
Kinsch only treated the case where the specification is given through a potential. Recently, Jahnel
and Kiulske [JK19, JK16] managed to extend the previous results to very general systems but came
just short of verifying the attractor property for general non-reversible systems. It is therefore the main
purpose of this manuscript to go beyond the existing literature and establish a dynamical Gibbs varia-
tional principle, plus the corresponding attractor property, for general non-reversible interacting particle
systems. Conceptually our proof strategy is mainly inspired by the strategy in [Ki84] but extends the
results for non-reversible systems to the more general setting in [JK19].

Let us note that the relative entropy and its rate of change are very common tools for studying systems
of interacting particles, and they connect probability, analysis, and geometry intricately. One particu-
larly fruitful application of relative entropy techniques is in the context of Log-Sobolev inequalities
for Markov processes. These inequalities can be used to obtain bounds on the (exponential) speed
of convergence to equilibrium. However, these methods are limited to the situation where the time-
stationary measure is unique, whereas our method goes beyond this case and is also applicable in
the non-uniqueness regime. A pedagogical introduction to Log-Sobolev inequalities in the easier set-
ting of Markov chains on finite state spaces can be found in [DSC96], while a very general approach
can be found in [BGL14) Chapter 5].

Another sub-area where relative entropy methods have successfully been applied is the derivation of
hydrodynamic equations from microscopic models of interacting particle systems. In this context, the
method is used to study the infinite particle limit, with additional rescaling of space and time, and not
for long-time asymptotics. An introduction to this method can for example be found in the monograph
[KL99].

A quite recent application of relative entropy in a very similar setting as ours are the works [CMRU20]
and [CR21] on Gaussian concentration and uniqueness criteria for Gibbs measures. One of the main
ideas in these recent publications is to use that certain concentration properties — that are satisfied by
high-temperature Gibbs measures — imply that the relative entropy density with respect to p is positive
definite.

It is also noteworthy that Holley’s method is not limited to interacting particle systems on the d-
dimensional cubic lattice Z?, but has recently also been used to study systems on more general,
even non-amenable, graphs, see [Shr20].

One can also use a similar approach, involving the decay of relative entropy, to prove the central limit
theorem. This was first observed by Linnik in [Lin59] for i.i.d. R-valued random variables whose law is
absolutely continuous with respect to Lebesgue measure. Since then, the results have been extended
to more general situations. In particular, in [ABBNO04] it was shown that the entropy is always increasing
along sequences of the form (n=4/2 """ | X;),cn where (X;);cy are i.i.d. square-integrable random
variables, not necessarily absolutely continuous with respect to the Lebesgue measure. This mono-
tonicity shows that the convergence in the central limit theorem is also driven by an analogue to the
second law of thermodynamics.

The rest of our paper is organized as follows. In Section [1.2] we motivate our method of proof by
considering the simple example of a continuous-time Markov chain on a finite state space. In Section[2]
we introduce the basic setting of infinite-volume Gibbs measures and interacting particle systems,
before we then formulate and discuss our results. The proofs of these can then be found in Section
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Dynamical Gibbs variational principles 3

1.2 Relative entropy loss in finite state spaces

We now want to consider dynamical aspects of the second law of thermodynamics and will encounter
a dynamic counterpart to the classical Gibbs variational principle as stated for example in [FV17,
Theorem 6.82]. We will not enter a physical discussion of thermodynamics, but refer the interested
reader to the excellent references [LL87, [Kar07]. To explain the general ideas in a simple setting, we
will restrict ourselves to the case of Markovian dynamics on a finite state space F.

For two probability measures p, v on E with p(z) > 0 for all x € E we define the relative entropy of
v with respect to i by

bivli) = 3 viotos (4.

e ()

where we use the convention that 0log 0 = 0. Let £ = (L), yer be an irreducible generator for
a continuous time Markov process on FE. In this situation, it is well known that there exists a unique
measure u, which is time-stationary with respect to the Markov semigroup (etg)tzo. Moreover, we
have p(x) > 0 for all z € E. Note that we do not assume that ( is reversible with respect to .£. For
an initial distribution v € M (E) we denote the distribution at time ¢ > 0 by v, i.e.,

v (B) = /Eet"?lg(w) v(dw), B CEFE. (1)

We will recall that the relative entropy can be used as a Lyapunov function, i.e., for all initial distributions
v € My(FE), the map t — h(v|u) is non-increasing and only vanishes for v = p. For this, we
analyze the relative entropy loss, which is defined by

d
gz (vlp) = E|t:0 h(ve|p). @)

By a simple calculation one sees that for v € M (E) the relative entropy loss can be written as

gl =Y [Z () Eynto (451 ) = 3 wle) Ly o (Mgg)] ®

zeE Ly#zx y#x

Equipped with this representation of g« (|1) we see that it is non-positive. Indeed, consider the
function

u—ulog(u) —1, ifu>0,

d:R— R, @(u):—{_l 0 <0

and note that ® is strictly concave on [0, 00) and only takes non-positive values. Without loss of
generality, we can assume that v(x) > 0 for all z € E. Otherwise, we would have gy (v|n) =
—oo < 0. Since p is time-stationary with respect to the Markov process generated by .Z, we know
thatforallz € FE,

Z :u(y>Lyz - Z M(ZE)Lzy = M<x>Lmz (4)
Yy#T y#T
This implies that

@)W g, =3 20)
D3 v = 30

z€FE y#x /L(:C

ZU(y)Lyw = Z v(x) Loy = Z v(x) Zwa (5)

y#x z€eE z€eE y#x
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B. Jahnel, J. Képpl 4

and we can use (5) to write

L0l =Y [Zw >Lyxlog( e

zelR

) E vt (353)]

y#x y#T
Y Sene (1)

zeFE y#x /L(

Since ® is non-positive, this implies that the relative entropy loss is also non-positive, and therefore
the relative entropy is non-increasing along trajectories. This is already a nice and intuitive result in
itself, but we can deduce even more information from the representation

S0 =33 )L i o (u(w) V(y;)_ )

o v(x) u(y

Because 1 is time-stationary, it is clear that g & (u|p) = 0. But p is also uniquely characterized as the
maximizer of the relative entropy loss functional g (-|) : M1 (E) — My (E). Indeed, assume that
v € M;(E) is such that g (p|v) = 0. Then, we necessarily have v(z) > 0 for all z € E, and by
definition of ¢ and the irreducibility of .Z, the assumption that g« (v|x) = 0 implies that

for all x # y. But this is equivalent to 1+ = . All in all, we have seen that

1 go(v|p) < Oforallv € My(F)and

2 gy(v|p) =0ifandonly if v = p.

When put together, these two properties imply that the functional
h(-|i) s My(E) = R, v h(v]p),
is a strict Lyapunov function for the unique fixed point p of the measure valued ODE
oy = 1.2 (7)

Therefore, the fixed point 1 is asymptotically stable and its basin of attraction is all of M (E'). But this
is just another way of saying that (1;):>( converges to x as ¢ tends to infinity for all initial distributions
IS Ml(E)

This result is usually known as the ergodic theorem for finite-state Markov processes. The proof given
above shows that the convergence to the unique time-stationary measure also fits precisely into the
physical picture of convergence to equilibrium.

The rest of this paper is devoted to extending the results in this section to the setting of infinite-volume
interacting particle systems. The philosophy of using the relative entropy as a Lyapunov functional will
remain the same, but the proof itself becomes more technical.
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Dynamical Gibbs variational principles 5

2 Setting and results

2.1 Gibbs measures and interacting particle systems
2.1.1 Gibbs measures

Let ¢ € N and consider 2 := {1,... ,q}Zd. Equipped with the usual product topology and the
corresponding Borel sigma-algebra F this will serve as our configuration space. For A C Z? let Fp
be the sub-sigma-algebra of F that is generated by the open sets in 2, = {1,... ,q}A. In the
following we will often denote for a given configuration w € €2 by w, its projection to the volume
A C Z% and write wawa for the finite-volume configuration in A U A composed of w, and wa with
disjoint A, A € Z“. Denote the set of translation-invariant probability measures on €2 by Mi™(Q).
Then, for u, v € M () and a finite volume A € Z define the relative entropy via

Y wrea, Y(wa)log %, if v < p,

00, else,

ha(v|p) = {

where we use the suggestive notation v(wyx) = v({n : na = wa}). Further, define the relative en-
tropy density via

. 1
h(v|p) = lim sup ——hy, (v]1),

where A,, :== [-2" +1,2" — 1]d is a sequence of hypercubes centered at the origin.

We will be interested in situations where p is a Gibbs measure for a translation-invariant non-null
quasilocal specification on ).

Definition 1. A specification v = (5 )aeza is a family of probability kernels 7y, from ¢ to M1 ()
that additionally satisfies the following properties.

1 Each 7, is proper, i.e., it A C A°, then
Ya(nana|nae) = ya(malnac) Loy (ae).-
2 The probability kernels are consistent in the sense that if A C A € Z¢, then
(aal)nac) = ya(nalnae).

An infinite-volume probability measure 1 on §2 is called a Gibbs measure for ~ if 1 satisfies the so-
called DLR equations, namely for all A € Z* and A We have

w(ya(nal-)) = u(na)- (8)

We will denote the set of all Gibbs measures for a specification -y by ¢4(7).

For the existence and further properties of Gibbs measures one needs to impose some conditions on
the specification ~y. One sufficient condition for the existence of a Gibbs measure for a specification y
is quasilocality.

Definition 2. A specification 7y is called

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022



B. Jahnel, J. Képpl 6

1 translation invariant, it for all A € Z% and i € Z® we have

7A+i(77A+i|77(A+i)c),
where A + 7 denotes the lattice translate of A by 1.

2 non-null, if for some 6 > 0

inf ) >4
inf Yo(n0|m0e) >

3 quasilocal, if for all A € Z¢

=0.

lim su ¢) — c
Jm, sup, |72 (malnaaéac) = va(alnac)

We will sometimes consider the probability kernels v, as functions 2 — [0, 1], w — ya(wa|wae). If
v is a quasilocal specification, then each such map is then uniformly continuous. For example, speci-
fications defined via a translation-invariant uniformly absolutely summable potentials ® = (®g)peza
are translation-invariant, non-null and quasilocal. Moreover, one can even show that, for Gibbs mea-
sures for such Gibbsian specifications, the relative entropy density exists as a limit and not just as
limes superior. For more details on Gibbs measures and specifications see [Geo11], [FV17, Chapter
6] and [Bov06l Chapter 4].

The DLR-formalism, which we used above, describes Gibbs measures through a collection of local
conditions (8). For translation-invariant Gibbs measures there is also an alternative point of view that
provides a global description of Gibbs measures as the minimizers of a certain functional on the set
M (Q). This is the content of the well-known Gibbs variational principle.

Theorem 3. Let ® be an absolutely convergent and translation-invariant potential and pn € 4" (®) :=
G (®) N M (Q). Define the relative entropy density by
1
h(v|®) := limsup ——hy,, (v|p).
| Al

n—oo

Then,

1 Forallv € M (Q), h(v|®) exists as a limit and does not depend on 11, only on P,
2 h(v|®) > 0forallv € M™(Q) and

3 h(v|®) =0 ifand only ifv € G (P).

This static global description is the starting point for our investigation. We aim for finding a dynamical
counterpart to the Gibbs variational principle, describing Gibbs measures as extremal points of another
functional on Mﬁ””(Q) which describes the rate at which the relative entropy density changes when
the system is subject to Markovian dynamics.

Remark 4. The Gibbs variational principle also provides an approach to define Gibbs measures for
general measurable dynamical systems (X, B, T’) that are additionally equipped with a potential ¢ :
X — R. This is one possible starting point for the so-called thermodynamic formalism for dynamical
systems. A non-trivial application of this thermodynamic formalism is the Bowen formula, which can
be used to calculate the Hausdorff dimension of attractors by constructing solutions to the analogue
of the Gibbs variational problem in this situation. An excellent reference is the monograph [Kel98];
other good resources are Ruelle’s book [Rue04] and the lecture notes [Bow75]. An elementary proof
of Bowen’s formula in the simple situation of cookie-cutter maps can be found in [Fal97].

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022



Dynamical Gibbs variational principles 7

2.1.2 Interacting particle systems

We will consider time-continuous, translation-invariant Markov dynamics on 2, namely interacting
particle systems characterized by time-homogeneous generators . with domain dom(.¢’) and its
associated Markovian semigroup (Pt)tzo. For interacting particle systems we adopt the notation and
exposition of the standard reference [Lig85, Chapter 1]. In our setting the generator . is given via a
collection of transition rates ca (17, £a), in finite volumes A @ Z?, which are continuous in the starting
configuration 17 € (). These rates can be interpreted as the infinitesimal rate at which the particles
inside A switch from the configuration 7 to &, given that the rest of the system is currently in state
nac. The full dynamics of the interacting particle system is then given as the superposition of these
local dynamics, i.e.,

ZLfm) =Y ealn.&a)lf(Eanac) — fF()].

AEZ &

Two classical conditions due to Liggett that ensure the well-definedness are the following.

(L1) The total rate at which the particle at a particular site changes its spin is uniformly bounded,

i.e.,
sup » Y leal-€a)ly < 00

$€Zd Ax fA

(L2) and the total influence of a single coordinate on all other coordinates is uniformly bounded, i.e.,

sup Y D D 6, (caltiéa)) < o0,

d
VELT Ay wty €a

where

0o(f) = sup [f(n) = f(&)]

1,8t Npe=Ege
is the oscillation of a function f : {2 — R at the site x.

Under these conditions one can then show that the operator .#, defined as above, is the generator of
a well-defined Markov process and that a core of . is given by

D(Q) == {f eCc): S 6 < oo}.

Note, that by considering the directional discrete derivatives V. : C'(2) — C(£2) which are defined
by

Vif(n) = f") = f(n), feC(),ie{l,....q},2€Z"
with

i {nx, if v # z,

Ny . .
1, ifr =z,

then condition (L2) is equivalent to

sup ZZZ i HV;cA(-,SA)HOO < 00.

d .
YEL aty Ay Ea i=1

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022



B. Jahnel, J. Képpl 8

2.2 Results

Let us introduce some further conditions on the specification 7 = (ya)aeze andthe rates (ca(-,§a)) aczd erenn
that will turn to be crucial for our results.

Conditions for the specification.

(S1) v is quasilocal.

(S2) ~ is non-null.

(S3) ~y satisfies
Y YN [Trathl. <.
yezs Ay: ca>0 z#y i=1

(S4) ~ is translation-invariant.
Conditions for the rates.

(R1) Forevery A € Z% and éx € Q4 the function
Q77 — CA(nva) S [07 OO)
is continuous.

(R2) There are at most finitely many A € Z¢ such that 0 € A and

ca =sup|lca(-,€a)ll, >0
én

Denote by R € N the maximal size of a subset A € Z? with ca > 0.
(R3) The total influence of all other particles on a single particle is uniformly bounded, i.e.,
SHPZZZZHV eal )l <
2#y Ay €a =1
(R4) The rates are translation invariant, i.e.,
Vo € ZIVA € Z4Vn € Q1 care(Tan, ) = ca(n, ),
where 7, : {2 — (1 is the lattice translation by = acting on configurations.

(R5) The minimal transition rate is strictly positive, i.e.,

inf CA(nva) >0

A@Zd,fA 15 CA (W,SA)>O

For the last part of the dynamical Gibbs variational principle we will also need to assume irreducibility.
(R6) The rates are irreducible, i.e., for every n € Q, A & Z* and En € QA there exists a finite

sequence n© ... n™ C Q suchthat n® = 5, ™ = Exnac and the transition rate from
n® to n(+1) is positive forall i € 0,...,n — 1.

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022



Dynamical Gibbs variational principles 9

2.2.1 The (approximating) relative entropy loss

Recall that (P;);>¢ denotes the Markov semigroup corresponding to the Markov generator .. We
write v, := v P, for the time-evolved measure v € Ml(Q) For n € N, the relative entropy loss in
A,, is defined by

d
9o (V) = —l=oha, (Ve|p).
dt
We define the relative entropy loss density as

(V) = limsup [A, |~ g% ().

n—0o0

In Proposition [5|we show that g« (1/|1) < 0, which justifies the name of g« (v|u). As it turns out, it
will be more convenient to only consider the effect that spin flips inside the smaller cube

Ap=[-2"+n+1,2" —n—1)¢

have on the relative entropy. In Lemrrjawe will see that the contributions coming from spin flips at
sites  in the boundary region A,, \ A,, are negligible in the density limit. This and the representation
of g’ (v|p) in Lemma motivate the definition of the approximating relative entropy loss in A,, as

" (v]p) - Z Z Z/ (dw)ea(w,€a) [1ny, (Eawae) — 1, (w)] log (V<77A”)> .

Ak (na,,)

The approximating relative entropy loss density is then defined as

(V) = limsup [A,| 7" G5 (v|u).

n—0o0

Ouir first result relates the relative entropy loss density to the approximating relative entropy loss den-
sity and also shows that both quantities are non-positive.

Proposition 5. Suppose that the rates of an interacting particle system with generator £ satisfy
(R1) — (R5). Moreover, assume that there exists a measure i which is translation-invariant and
time-stationary for the process generated by £, such that . € 4(v), where the specification y =
(7A)Aeza satisfies (S1) — (S4). Then, for allv € M;(2), we have

9z Wlp) < gz (vip) <0.

In particular, we have for allt > 0,
h(velp) = h(v]u) <0

The proof of Proposition |5| will be carried out in several steps and can be found after the proof of
Lemmal[23

2.2.2 The dynamical Gibbs variational principle and the attractor property
We are now ready to state our main result, generalizing the earlier works [JK19], [Ki84], [HS75], and

[Haol71], to the setting of non-reversible interacting particle systems with finite local state spaces and
updates in arbitrary finite regions.

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022
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Theorem 6 (Dynamical Gibbs variational principle). Suppose that the rates (ca (-, {a)) aczd encan OF
an interacting particle system satisfy (R1) — (R6). Moreover, assume that there exists a measure [
which is translation-invariant and time-stationary for the process generated by £ such that i € 4 (),
where the specification y = (yr) ez« Satisfies (S1) — (S4). Then, the following variational principle
for the approximating entropy loss density holds on the set of translation-invariant probability measures

1 Forallv € MTY(Q)) the approximating entropy loss §r,(v|1) exists as a limitin R U {—oc}.
2 The function v +— §.o(v|1) is upper-semicontinuous on MT(2).
3 Forallv € M{(2) we have g« (v|n) < 0.

4 Forallv € M7(Q) with o (v|pn) = 0 we have v € ().

The proof of Theorem [6| will be carried out in several steps and can be found in Section [3.4] after the
proof of Lemma [28]

Remark 7. Due to the irreducibility assumption (R6) on the rates, Theorem |§]does not apply to the
exclusion process, the voter model or the contact process. While there is no hope to extend it to the
voter model or the contact process, the exclusion process can be covered since it is irreducible when
restricted to the subspaces

eEN, tw, =1
Qp::{weﬁzlim i€ :w = 1))

n=300 A

:p}, p € [0,1].

By being a bit more careful in the proof of Lemma [28| one can then indeed extend our result to i, v as
long as p(2,) = 1 = v(,) for some p € [0, 1].
Remark 8. One particular class of models to which our theory can be applied to are stochastic Ising

models, if the specification - is defined via a translation-invariant potential & = (P ) gz that satis-
fies

> IBllI®sll, < co.

BeZzZ4

and the rates are of the general form

exp (—B > B: BrAZo @B(gAnAc)> . ifA={z},r€Z and &, = —n,.

0, otherwise,

CA(”: gA) = {

or even more general, with updates in larger regions with bounded diameter. Then, the rates satisfy
(R1) — (R6) and the specification satisfies (S1) — (S4) as one can see by using similar arguments
as in the proof of [FV17, Lemma 6.28].

In the proof of Theorem [6] we will see that on the set of non-null and translation-invariant measures
we also have the same variational principle with the relative entropy loss density instead of the ap-
proximating relative entropy loss density.

Corollary 9. Suppose that the rates (ca(+,&n)) Aezd gnen, Of an interacting particle system satisfy
(R1) — (R6). Moreover, assume that there exists a measure i which is translation-invariant and
time-stationary for the process generated by £, such that 1 € 9 (v), where the specification -y
satisfies (S1) — (S4). Then, the following variational principle for the relative entropy loss density
holds on the set of non-null translation-invariant probability measures M“""™"(()).

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022



Dynamical Gibbs variational principles 11

1 Forallv € M™"™(Q)) the approximating entropy loss g (v|p) exists as a limit in R U

{—o0}.
2 The function v — g (v|u) is upper-semicontinuous on M ™((2).
3 Forallv € M{*"™(Q) we have g.»(v|p) < 0.

4 Forallv € MM romnil( Q) with g (v|p) = 0 we have v € G (7).

We started out with the big goal of investigating the set of possible limit points of (2 );> for translation-
invariant initial measures 1y and non-reversible interacting particle systems. With the dynamical Gibbs
variational principle at hand, it is now easy to show that all possible limit points are themselves
translation-invariant Gibbs measures with respect to the same specification.

Theorem 10 (Attractor property for irreversible interacting particle systems). Assume that the rates
(ca(-,€a))aczienca, satisfy conditions (R1)—(R6). Moreover, assume that there exists a translation-
invariant time-stationary measure [, which is a Gibbs measure with respect to a specification v that
satisfies (S1) — (S4). Then, the w-limit set of the family of translation-invariant probability measures
M (Q) is 9(v), ie., for any translation-invariant starting measure v € M (Q) where the se-
quence (v, )nen converges weakly to v* ast,, 1 oo, we have that v* € 9 (7).

The proof of Theorem [10]can be found at the end of Section [3.5

2.2.3 An alternative characterization of time-stationary measures

In the proof of Theorem[6]we will encounter an auxiliary process with rates given by

Ya(€alnac)

ea(n,éa) = CA(§A77A<r,7]A)m7

which can be interpreted as the time-reversal of the original process w.r.t. to the stationary measure p
with local conditional distributions given by . In the reversible case, the rates of the time-reversed pro-
cess agree with the original rates, which is known as the detailed balance equation. In the irreversible
case, this does not hold, but we will see that time-stationarity implies that the weaker condition

3N Valeal€a) —é(€a)) () =0, ©)

AEZe &

holds for all A € Z¢ and n € (), see Proposition where V , is the generalized differential operator
defined by

Vaf(m) ==Y [f(Eanae) — F(n)].

én

It is well known, that the detailed balance equations are equivalent to the reversibility of the measure,
and it is natural to ask whether equation (9) is equivalent to the time-stationarity of a measure p with
local conditional distributions given by . We show that this is true under an additional assumption on
the mixing coefficients of the measure 1. For a measure v and a subvolume A € Z¢ we define the
mixing coefficients

oy (A, n) ==sup{|[V(ANB) —v(A)w(B)|: A€ Fy,B€ Fac}, neN,
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where A, := [—n,n]%. Roughly speaking, this measures how much the spins inside the finite vol-
ume A are correlated with the spins outside the box A,,. We additionally need to assume that the
convergence of the sums in (9) is uniform in z € 7. For this we introduce the quantity

B(n) = sup max( Z ZHVZCA(WSA)HOW Z HViéA(-,fA)HOO>, n € N.

I
2CLiE{L ) ANAL=0 €a ANAL=0

Theorem 11 (A mixing criterion for time-stationarity). Assume that the rates (ca(-,&A))aczd excan
satisfy conditions (R1)—(R4) and the specification -y satisfies the conditions (S1)—(S4), Moreover,
assume that we have

B(0) < oo and [(n) — 0asn — oo,

and that for all A @ 7 andn € Q) we have

33 Va(eala) = & €a)) () = 0.

AEZe &En

If the mixing coefficients of i € 4 () satisfy

VA € Z¢: Zau(/\,n)nd_l < 00,

neN

then p Is time-stationary for the interacting particle system associated to the rates
(CA('qu))A@Zd,gAeQA-

The proof of this result can be found after the proof of Proposition[18]at the end of Section

Let us note that the mixing condition is hard to verify in practice, especially in non-uniqueness regimes.
An example of a situation where the mixing condition can be verified is Dobrushin’s uniqueness regime,
see [Geo11, Chapter 8] and the discussion in [Ki84]. We can imagine that the mixing condition can
also be verified in the regime of Gaussian concentration [CMRUZ20, [CR21].

3 Proofs

3.1 Proof strategy

The proof of Theorem [6] proceeds in several steps. We start by deriving an explicit formula for the
finite-volume relative entropy loss in terms of the generator and the time-stationary measure p. We will
then show that the relative entropy density is non-increasing along trajectories by rewriting it similarly
as in (). However, this is not as straightforward as in the finite-volume case and we need to find
appropriate replacements for our finite-volume arguments. For motivational purposes, let us briefly
go back to finite state spaces. Consider an interacting particle system with irreducible transition rates
(ca(+,€a))Aacheaca, in afinite volume A € Z<. In Section we used that a probability measure
(i is time-stationary w.r.t. the dynamics if and only if it satisfies (4). In the situation we consider here,
this equation takes the form

Vin € Qa > Y p(ma)ea(mas€a) = YD nléanma)ea(éanaa;ma),

ACA &a ACA &a
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Dynamical Gibbs variational principles 13

which we can rewrite as

Vna € Q- Z Z (CA Nas€a) — (QW\A) (§A77A\A,T)A)> = 0. (10)

ACA & ( )

In a way to be made precise, the terms

(€anaa)
(1)
are the rates of the fime-reversed version of the interacting particle system we consider. However, for
general interacting particle systems, in infinite volumes the equation does not make sense and
we can not hope to use it naively in our quest to derive an analogue of (6) for irreversible interacting

particle systems in infinite volumes. As it turns out, in finite volumes it already suffices to know that

Vin € uVz € AViE{l,...,q}: DD Vifeal-€a) = éal-6a)) (na) =0. (1)

ACA &a

ca(n,éa) == ca(anmasna)

The idea of using (T1) to extend the works of Holley, and Higuchi and Shiga to non-reversible systems
was first used in [Ki84]. Section [3.2|is devoted to extending this work to our much more general set-
ting. Whereas Kinsch only con3|dered interacting particle systems on a binary local state space with
single-site updates, we allow general finite local state spaces and updates in arbitrary finite regions.
For this reason, we cannot rely on any spin-flip symmetry arguments and need to find appropriate
replacements for the corresponding steps. We will therefore first establish an infinite-volume analogue
of and then use it to prove Proposition[5]in Section

To establish the remaining parts of Theorem|[g] i.e., that the approximating relative entropy loss exists
as a limit and that this limit defines an upper-semicontinuous functional on the space of translation-
invariant probability measures, is then our next main task. We again have to eliminate dangerous terms
and use a subadditivity argument to get the claimed convergence and semicontinuity. Equipped with
these intermediate results, we are then ready to show the last step in the dynamical Gibbs variational
principle, namely that translation-invariant measures v with g (v|u) = 0 are also Gibbs measures
compatible with . By putting all of our previous results together, we are then ready to prove the
attractor property for non-reversible interacting particle systems in infinite volumes.

3.2 The time-reversal rates and the oscillation equations

We start with an elementary integral identity on which we will rely heavily for the rest of this subsection.

Lemma 12 (Switching Lemma). Let v = (ya)aeze be a specification, i € 4(v) and
(ca(-,€a))aczienca, the rates of an interacting particle system. Additionally, assume that v is
strictly positive, i.e., that we have

Ya(Ma|nac) >0

forall A € Z¢ and 1 € ). Then, for all bounded and measurable f,g : 2 — R and A € Z¢ we
have

> / (w, a) f(w)g(Eawae)p(dw) = / (w, €a)f (§awac)g(w)p(dw),  (12)

IINS YN IINSUN
where

Ya(éalnac)

. 13
Ya(nalnac) 19

ea(n,€a) == caléanac, na)
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For simplicity, in the following, we will sometimes denote integration w.r.t. i by E[]

Proof. As a first step, note that, for fixed A € Z% and £x € A, the maps
Quw — g(éAwAc) c ]R, Quw — f(ﬁAwAc) c R,

are Fac-measurable. Therefore, we can use that v is a version of the local conditional distribution of
1+ and the definition of the rates ¢ to obtain the p-almost sure identity

Elea(8a)f()g(8a-ae)[Facl (W) = g(€awae)E [ca(- €a) f ()| Fac] (w)

= g(€awac) Y va(Calwac)ealCawae, €a) f(Cawae)
¢a

= g(€awac) Y va(balwac)éalbawae, ) f(Cawae)-

¢a

If we now sum this over £ € (A, exchange the order of summation and apply the same arguments
as above in reverse — with f taking the role of g and vice versa — we get

D Elea(€a)f()g(éaae)lFacl (1) = D EealCa)f(Caac)g()|Facl ().
éa ¢a

By integrating both sides with respect to 11 and applying the law of total expectation, we obtain
S [ ealwa)f@lgleawnutdo) = ¥ [ eate Ca)f(Cawarlgleln(d)
INEAL ¢a U8

which completes the proof. O

We will often have to estimate terms where the specification appears in the denominator. The main
tool for obtaining bounds will be the following lemma.

Lemma 13. Let A C A € Z? and p be a probability measure that is non-null with parameter
d(p) > 0, then for alln, £ € §) we have

1
‘log (P(fAUA\A))' _ ‘log (P(fA\UA\A))‘ <1A|log ( ) . (14)
p(a) p(nalnaa) 3(p)
In particular, for p € 4 (~y) with non-null specification , the same estimate holds.

This estimate already appears in [JK19], but for the sake of being self-contained we also give the short
proof here.

Proof. The first identity is clear by definition of conditional probabilities, so we only have to show the
inequality. For this, fix an enumeration i1, . . . , i), of the elements of A and introduce the notation

[ZJ,Zk] = {ij,ij+1, e ,’ik}, 1 S ] S ]{I

With this at hand, we can use the chain rule for conditional probabilities to write

k—1
p(éalnma) =TT o0r 1,0 mna)- (15)

Jj=1
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Dynamical Gibbs variational principles 15

Now we show that each factor is bounded from below by J. Indeed, via an elementary calculation, we
see that

fﬂ(dW)P(U[zﬂ,i ]”A\A’WAcu[i i }>
p(nlj‘n[l]_'.l,lk]nA\A) == otk 1,85-1

a fP(dW)P(ﬁ[ij+1,ik}77A\AIwAcu[il,ij,l])
f p(dw)p(pi ;i 1M\ AlWACULy 5 )

PNy 41 i NANAlWACU g ) p(n[ijﬂ’ikm/\\A’wACU[il’ij—l])

fP(dw)ﬂ(n[im,ik]m\a|wAcu[i1,ij,1])
_ S 0(dw) p(0i 1041 TN AW AU 5 —1)) P (i1 i) TANA [ WACUfi1 5 1))
fP(dw)/)(n[uﬂ,ikm/\\aIwAcu[il,ij,l])

> 0.

In conjunction with the representation (15), this implies the desired upper bound. If p € ¥(~) for a
non-null specification -y, then we can carry out exactly the same calculations as before, except that we
need to use the DLR equations to write

p(nij |77[ij+1,ik]nA\Aw/\CU[ihljfﬂ) = i, (nij |n[ij+17ik]nA\AwACU[ilvijfl})'

This finishes the proof. O

As a first step, we now verify that the regularity of the original rates and the specification also implies
some regularity for the time-reversal rates. This technical calculation will not only be needed to ensure
that the infinite sums occurring in Proposition [18| are well-defined, but we will also use it to show that
the relative entropy is non-increasing in the proof of Theoremg]

Lemma 14. Assume that the rates (ca (-, {a)) aczd enc, Of an interacting particle system satisfy the
conditions (R1) — (R4) and that there exists a measure j. which is time-stationary for the process
generated by £ and such that i € 4(v), where the specification v = (Ya)aeza Satisfies the
conditions (S1) — (S4). Then, the time-reversal rates (Ca(-,§a))aczienca, have the following
properties.

1 The total rate of change of a single site is uniformly bounded over all sites, i.e.,

sup » Y [léa (- €a)llo < oo

d
TEZ Ax fA

2 The total influence of all other sites on a fixed site is uniformly bounded over all sites, i.e.,

p Y3 Vsl o) < o

d .
YELT Ay 2y Ea i=1

3 Forall z € Z% it holds that

SN S IVieala)]l., < oo

A€Z? En =1

4 The time-reversal rates (Ca(-,&a)) aczd gncq, a@re also translation invariant.
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Before we give the proof, note that the translation invariance of the rates and the specification implies
that (R3) and (S3) are respectively equivalent to

V2 e Z%: Z ZZ [Viea(-,éa)||,, < o0

AE€Z &n =1

and

\CRWAR Z ZHVZVA o < 00,

Aezd i=1

as one can easily verify by elementary calculations.

Proof. Adi.: Forfixed A @ Z%, éx € Qa and 1) € Q2 we have by Lemmaand assumption (R2)

Ta8alnac) | _ 1 4 1 p
=== < = lea(ma) |l < w7 llealma)llo
Ya(nalnae)| = 6

lca(n,€a)| = [ca(éanac, na) 3

By assumptions (R1), (R2), and (R4) we have

sup > Jleal )

zezd Az Eaze

and this implies

SupZZHcA 60| <Supzz Blleal,na)ll,, < oo

2€L Ay én Az na

Adii.: Forfixed z € Zandi € {1,...,q} we have

~

ea(™,6a) = éaln,&a)| = ) 2o lbalia)

va(€alnac
CA(SAUAC, LN - CA(fN?Ac, UA)M

SINGINS) Ya(nalnac)

Ya(éalnxe)  yaléalna)
a3 Inxe)  vamalnae)

< |CA SMAC,% )‘

Ya(éalnac)

+
Ya(nalnac)

|ea(éanie, na') — ca(éanae, na)l -

To estimate this further, we will have to make a case distinction over whether the site z is contained in
A or not. If z is contained in A, then we can naively use Lemmaand assumption (R2) to obtain
the rough estimate

~ Z,0 ~ 1
}CA<T] ’ 7§A) - CA(nng)} < 456R ASU_? ||CA('7€A)HOO

In the case where z is not contained in A, we can be a bit more precise. Via the elementary algebraic
rule

ac — bd = %[(a—b)(c—l—d) + (a+b)(c = d)],
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and Lemma [13]plus assumption (R2) one obtains

oy aléalnis)  valéalnac) Ya(éalnac) oy
|ca(éanie na)| 8% lca(éanxe, na) — ca(éanae, na)|
va(malnze)  va(nalnac) Ya(malnae)
1 2,0 1 2,0 2,0
=3 lca(éanixe, na)| ‘ = Iva(€alnse) — val€alnac)| [va(malnie) + va(malnae)
Ya(nalnae)ya(malnac)

Ya(éalnac)
Ya(nalnae)

1 )
1 |Fiesoms).-

!CA(fAT]Zia na) — ca(éanac, na)|

o0

< LR Vst

Now assumptions (R1) — (R4) and (S1) are sufficient to conclude that

ap Y SIS [Vieatatal | < .

d .
YELT Ay 2ty Ea i=1

Ad iii.: This follows from the same estimates as in ii. and assumptions (R3) and (S3) by the
equivalence that we stated before the proof.
Ad iv.: This is clear by definition of the time-reversal rates (¢a (-, €a)) Aczd eaeq, - O

Remark 15. The regularity statement in Lemma [T4]in particular implies that the process with rates
¢a(n,€a) is well-defined. By using the switching Lemma([12]one can then easily show that this pro-
cess, with semigroup (F;):>0, is dual to the original process in the sense that for all f,g € C(Q) it
holds that

/Q(P(t)f(n))g(n)u(dn)ZAf(n)(ﬁ(t)g(n))u(dn), t>0.

Duality of Markov processes plays a big role in contemporary probability theory. In that context, the
duality we have here is known as duality with respect to a measure, see [JK14, Definition 1.3.] and
the remarks thereafter. Studying the dual process can often yield useful information about the original
process that is hard to obtain in other ways. However, at this point, we won'’t dive too deep into the
analysis of the time-reversed interacting particle system and mainly use the time-reversal rates for
notational simplicity. Investigating what can be done by following the duality approach further could be
a path for future research.

Equipped with these estimates, we are now almost ready to show the main result of this section. We
just need two more technical helpers to make our life a little easier. The first one is concerned with the
density of Gibbs measures under certain transformations.

Lemma 16. For A € Z% and (a, éa € Qa we define a map
GéA 0= [fA] = {w € Q: wa = £A}, n+— €A77AC-

Then, for i € 9(y) we have that 11 — a.s.

d(po Ge,) Ya(Calnac)
M e — E i el el Q.
du () = Liga)(n) = Ya(€alnac)’ e (16)
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Proof. Let A € Z% be suchthat A C A and let x5 € Q4. Then, we have

(,UOGgA)([gAXA\A ZM [Caxmal) Z/1<A Lo (@)p(dw)
_Z/ [Lea iy ol Fae](w)p(dw) (17)
= %LE[1<A|JEAC](W>1XA\A (w)p(dw).

Now, since w is a Gibbs measure with respect to the specification v we know that p-a.s

E[1¢, [ Facl(w) = yalCalwae),

and the right-hand-side is Fac-measurable. Therefore, we can write each summand of as

| EGIFsL s @n() = [ (Calon )Ly o)l

) Q
a /Q zigi;iij7A(CA’WAC)XA\A(w)u(dw)
N /Q ziggi:zij7A<§A|WAC)XA\A(w)u(dw)
_ Ya(Cal-ac) w W) = M . y
_/QE {’YA(&A\ AC)]{A]-XA\A FAC:|< Y (dw) /&]7A(§A|WAC)1£AXA\A( Vu(dw).

Summing up over (A now gives us the claimed density. O

The second technical result, reminiscent of Lebesgue’s differentiation theorem, will not only be used
in this section but also in other parts of the manuscript.

Lemma 17 (Differentiation lemma). Let 1 be a probability measure on ) such that we have j1(ny) > 0
forall A € Z% andn € €. Then, for any continuous functions f : Q2 — R we have that for all ) €

hm—ij/im@V@mwaszy

Atz (1A

Moreover, if f is uniformly continuous, then the claimed convergence is also uniform inn € ().

Proof. First note that for fixed A € Z? we have the trivial inequalities

—oo < inf f(£) < f(n) < sup f(£) < oo (18)

Ela=ma E€n=mn

The continuity of f implies that

lim inf f(&) = f(n), lim sup f(§) = f(n).

ATZE EEa=nA MZE g0 =np
Combining this with and the squeeze theorem (for nets) from real analysis yields

hm—ij/im@v&mwazfmy

Atz (1A

This concludes the proof. O
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Proposition 18. Assume that the rates (ca(-,{a))aczigpcn, Of an interacting particle system
satisfy the conditions (R1) — (R4) and that there exists a time-stationary measure (i such that
p € 9(v), where the specification vy = (Ya)aeza Satisfies the conditions (S1) — (S4). Then, for all
A € Z4 and alln) € € it holds that

33 Valeal€a) — el €a)) () =0, (19)
AEZE En

where as before

Ya(€alnac)

ca(n,éa) == CA(&AUAcﬂ?A)WA(nAmN).

Moreover, we even have

V2eZ'Wi=1,...,qWeQ: Y Y Vi(ea-&a) —é(€a) () =0. (20

AEZ? €&a
Proof. For fixed A € Z? define functions ha : 2 — R for each A @ Z? by
= Valea(¢a) —éal-¢a))m), ne.
N

We have to show that ) _ , _,a ha = 0. To do this, we will first show that

/(Z ha(n ) (dn) =0

Aezd

and then use Lemma [17]to conclude that the integrand vanishes everywhere (and not just pi-almost
everywhere). We start out by calculating fﬂ hahe dy for an arbitrary © & Z<. To do this, we will split
the summation in two parts, namely

/QhA(TZ)he( p(dn) = ZZ/ ha(n) (co(Canac, €o) — Co(Canac, o)) u(dn)

i o

—ZZ/M (co(1:€o) = Co(1; €o)) pldn) =: T+ 11.

¢ Co

Using we can write the summands in IT as
Z/ ha(n)(Ce(n, o) — ce(n, o)) u(dn) = Z/ co(n: &) (ha(Sene:) — ha(n)) uldn).
o V9 o V9

For I we first apply Lemma[i6]to obtain

ZZ/ ha(w)(ce(Cawae; §o) — Co(Cawne, Lo))p(dw)

o (A

- Z Z Z/ w)(co(Cawae; o) — Ca(Cawac, &o))p(dw)

to Ca ma YAl

_ZZZ/ nAwAc>(C@(w,f@) —é@(w,&a)) ('UOGEAl) (dw)

o CaA MA
_ZZZ/ UAWA">%( o(w,&o) — to(w, &o))u(dw).
o (A MA

DOI 10.20347/WIAS.PREPRINT.2935 Berlin 2022



B. Jahnel, J. Képpl 20

To this we can now apply ([12) to write

Yy / ha(nawae) “(”A"”AC)(C@@ £o) — o(w, o)) pu(dw)

o (A A (§A|wAC)

N Z Z Z / C@ v 59 1CA( )hA (UAWAC> FYA((g\AdiA:))

o Can MA
Ya(nal€eranawae)
Y(Caléoranawae)

— 1, (Sowor ) hia(§oramawae) p(dw).

So, if we define a function ga : {2 — R by

ZZ]'CA hA T]ACL) L)M’ w€Q7

- Ya(Calwae)

then combining the above calculations with the assumption that p is time-stationary with respect to
the Markovian dynamics generated by .Z, implies that for all A € Z¢ we have

/ (Z ho(n ) pldw) = /Qg(fm —ga)(n)p(dn) = 0. 21)

(Sl
At this point, note that our assumptions on the rates and the specification ensure that

ha,ga € D(Q) C dom(.i”),

so applying the generator .Z to the function (ha — ga) is a well-defined operation. By summing

over all A € Z“ we obtain
/(Zh@ ) dw) = 0. (22)

Oezd

This only tells us that the desired equality (T9) holds for p-a.e. n € €, which is not enough, as we
will see later. However, the situation is not as dire as it may seem at first. Since we assumed that p is
non-null, we can use Lemmato conclude that holds for every n € ). Indeed, fix a sequence
(A,,)nen of finite subvolumes such that A,, 1 Z2. By non-nullness of 1 and we have for all ) € 2

andn € N
] 2
M(n/\n) / ’7An (Z h@ > ) =0.

(CleA
Now note that our assumptions imply that the integrand in is a continuous function. By letting n
go to infinity and applying Lemmawe see that for all w € () we have

> he(w) =

To see that we also have (20), it suffices to note that for fixed z € Z¢and i € {1, ..., ¢} we can write

Z ZVA ca(€a) —¢(-,6a)) (1 Z ZVA cal-€a) — é(+.€a)) ()

AEZ4 & AEZe &a
=D > ) Vileal-€a) =& €a)) (n)
A€Zd a (A
= q‘Al Z Z V,Zz (CA('vfﬁ) - é(afA» (77)
AEZ? €
This concludes the proof O
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Proof of Theorem[11l For n € N we define the function

Z Z (ca(m,éa) —ca(n,€a)),

ANAR#D Ea

where A, := [—n,n]? Then, by Lemma/[12] we have

/Q ©n(n)p(dn) = 0. (23)

For Fy-measurable f : {2 — R we can again use Lemmato get

/Q,Zf( pldn) = |3 D ealn €a)lf(€anac) — F(n)] = —/Qf(n)%(n)u(dn),

QAOA #0 éa

for all n € N sufficiently large such that A C A,,. Because of we can interpret the right-hand
side as the (negative) covariance between f and (,, under the probability measure p. It remains to
show that this covariance vanishes as n tends to infinity. If ©,, was ]—"A%-measurable, then we could
directly use the standard covariance estimate [Dur19, Lemma 8.3.6] to conclude this. But in general
this is not the case, and we need to proceed a bit more carefully. First, observe that we can telescope
y, in the following elementary way

Pn ( + Z 9071 7’m77 <Pn(7“m+177))7
m=0

where 1 € (2 is the configuration that is equal to 1 at every site and the }"Aﬁ%l-measurable map
Tm 2 — € is defined by

L, i |z] <m,
(rmn)e = {

ny if |z >m.

Note that this construction also gives us

0= / palm(dn) =Y / (nlro) — Dulram)ildn) + ou(1),

and therefore

/f puldn) - (2/ (n(rmmn) — a(rmen))uldn) + @n(1 )) = 0.

This reduces our problem to estimating the covariance of f and (@, (7m') — @n(Tm+1-)). Observe
that (05 (rm*) — @n(Tmi17)) is Fac  -measurable, so we can apply the classical estimate [Dur19,
Lemma 8.3.6] to see that

/Q f (n)%(n)u(dn)‘ = ) ( )+ ) (@nlrmn) son(rmﬂn))) p(dn)

<4 f oo lon(rm) = @a(rmer) oo (A, m = 1).
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where we set v, (A, —1) := 1. To estimate the summands of the series on the right-hand side, we
first note that

[on(rm:) = @n(rmr1) |l < Z Z HVZSOn
|z|]=m i=1

This sum has q - O(mdfl) terms, because we only sum over the boundary sites of a d-dimensional
hypercube. For fixed z € Z? and i € {1,...,q} we can estimate the corresponding summand by
using to obtain

IVieallo =1 Y. D Vileal-éa) —éa(-éa))

ANAR#D éa .
< D D (IVieat&a)ll, + [[Viealga)ll.) < B,
ANAR=0 &a
In conjunction with the previous estimates, this gives us
/ﬂff(n) = / f(n)son(n)u(dn)’
<4 fll Zau (Am—1) Y Zuwn
|2| oo =m =1
< 40| fll Z au(A,m —1)m?=1B(n).
m=0

By assumption, the term on the right-hand side vanishes as n tends to infinity. Since this estimate
holds for all local functions f, we can use dominated convergence to see that for all g € D(€2) it

holds that
/ ZLg(n)u(dn) = 0.

But D(£2) is a core for .Z, so this implies that y is time-stationary with respect to the Markovian
dynamics generated by .Z. O

Let us note, that the condition on the mixing coefficients is hard to verify in practice and seems to be
too strong, since we will see in the proof that we do not need to estimate the covariance of general
pairs of functions with respect to y, but only for covariances of the form

/Q M) en(n)p(dn).

3.3 Proof of Proposition 5|

We start out by deriving an explicit expression for the relative entropy loss in A,, in terms of the rates
and the measures p, v

Lemma 19. Forn € Nandv € M;(f2) we have

Lol =30 5 5 [ vldetententa) [l (Gawn) — 1y )] o (422 ).

MNAn, ANA, #@ ﬁA
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Proof. This can be seen by a direct calculation using the definition of the generator. We have

) = S, s () )

TNIAn

Y Y X [ dreaonga) [t (Eawse) — 1y, )] tog (A2 )

Mn ANAR#AD Ea

This completes the proof. O

To control the logarithmic terms in g', (v|x) we will again make use of Lemma [13] As already an-
nounced earlier, we will now take care of the terms corresponding to spin flips that happen outside
A,,. To do this properly, we will need the following simple combinatorial estimate.

Lemma 20. Let A, A € Z¢ be such that A N A # (). Then, we have

{zeZ': (A+z)nA#0} <|AlA].
Proof. Let (0, \) € A x A. Then, there exists a unique * = z(d, \) € Z? such that

d+x =AM\
This clearly defines a surjective map
AXAGAN) = (6N e{zeZ’ (A+x)NA#£0},

therefore we must have

{zeZ': (A+z)nA#£0} <|AlA],

as desired. 0

This helps us in the following way. By assumption (R2), there are only finitely many different types of
transitions, i.e., there are only finitely many distinct A € Z? with 0 € A and ca > 0. Let n be large
enough such that all such basic shapes A are fully contained in A,,. Then, the sum over all translations
(A +x), 2 € Z% of these basic shapes, such that (A +2) N A, # B but (A +z) € A, has of the

order ‘An \ An‘ terms. In order to show that the boundary contributions are negligible in the density
limit, it thus suffices to bound the terms uniformly. For this, we will again make use of Lemma([i3]

Lemma 21. Assume that the rates satisfy conditions (R1), (R2) and (R4). Moreover, assume that
L is time-stationary for the dynamics with ;i € (), such that the specification -y satisfies (S2) and
(S4). Forallv € Mi™(Q) andn € N large enough, such that for all A € Z¢ with cx > 0 and
0 € A we have A € A, it holds that

> Z/ (dw)ea(w, €a) [1n,, (Eawae) — 1y, (w)] log (W) <C

MAn ANAR£0:AZA, €A (1a,,)

for some constant C' > ( that does not depend onn or v. In particular, it holds that

9% (W) < gy wlp) + o(|Anl). (24)

If v is additionally non-null, then holds with equality.
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Proof. First assume that there is 75, € €, such that v(n,,) = 0 and v(ana,Ma,\a) > O for
some . Then, the corresponding summand is equal to —oo and the upper bound is trivial. If 1y, is
suchthat v(na,,) = 0and v(§ana, a,\a) = O for all {4, then all the terms corresponding to 1, are
equal to 0 and we can therefore just omit them from the summation. All in all, we can assume without
loss of generality that v(1,,,) > 0 for all 5, € §2,,,. In this case, we can rearrange the sum we want
to bound, without having to worry about adding and subtracting infinite terms, to obtain

> X Z/ (dw)ea(w,€a) Ly, (Eawae) — 1y, (w)] log (V(m\n)>

MAn ANAL#£D:AZA, €a 1(na,,)

Y Y Y Y et o, @

MAn ANAR#D:AZ Ay, CA\AR PANAR FTIANAR

e () - ()
- Z Z Z Z /QV(dW)CA(W: Yana,Caa, )1y, (w) log (VWAQA"”A"\A))

v
Mn ANAR#D:AZ Ay CA\AR PANAL FTANAR <77A”)

+Z Z Z Z /Qy(dw)cA(w7¢AﬁAnCA\An) ma,, (@ )10g< 1, ) )

Mn ANARZD:AZ Ay CA\AR PANAL FTIANAR MW}AQA" nA"\A)
=1+1L

We can now bound these two terms separately, starting with I1. Here we can apply Lemma [13|and
use the translation invariance of the rates to get

11 < sup flea(-Es)ll g 1og( )
A0:EA

where 6(11) is the constant in the non-nullness estimate for 1, and

Ap=[-2"+n+L+1,2"—n—L—-1]% with L:= max diam(A)+ 1.
AO:ca>0

= o([An));

If v is also non-null, then we can estimate I in exactly the same way. For general v/, we first use the
trivial estimate

log < log™ := max {0, log(-)}

and then

1
xlog™ (—> <el, Vx>0,
x

to get the upper bound

| < sup HCA Z Z Z Z V(77An)10g+ <V(¢AﬂAnnAn\A)>

14
A0:La Mn ANARZ0:AZ A, CA\AR PANARFTANAR (1)

“w ety Y Y Y v

Mn ANARZ0:AZ A, CA\AR PANARFTANAR IDAOA"UA”\A)
v(na,)
< sup [lea(éa)lle™ (1An])-
AO:EA
This completes the proof. O
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Motivated by Lemma we now define the approximating relative entropy loss in A\,, by

Z Z Z/ (dw)ea(w, €a) [1n,, (Eawae) — 1, (w)] log (VWA")) .

MAn ACA,, éa N(WAn)

This is the rate at which the relative entropy in A,, changes due to spin flips inside the smaller region
A, CA,.

We now proceed by rewriting the approximating entropy loss in a way that makes it obvious, that it is
non-negative — up to some negligible terms that vanish when taking the density limit. Conceptually this
representation is analogous to (6) for finite state spaces, but for infinite systems we have to overcome
some additional technical difficulties. Some of these are already present in Holley’s seminal work
[Hol71], but the non-reversibility forces us to work substantially harder. Since we cannot apply the
detailed-balance equations, we will have to rely on to show that certain error terms are of boundary
order.

Before we start the proof, we first define

u —ulog(u) — 1, ifu > 0,
Fo(u) ::{ g(u)

-1, otherwise,
and
Vinn,)  m(Eanans)
Fo (u(gA(ZﬁniA)“ W) ) viSamaa). TriSamna) >0,
F(v,n,m,6a) == —o0, if v(Eana,\a) = 0and v(na,) > 0,

0, it v(€anana) = v(ma,) = 0.

Note that Fy(+) is non-positive, concave, and only vanishes at u = 1. For a configuration w € €y,
(or w € () let r,,w denote the configuration defined by

Wy, ify € Ay,
(raw), =13 .’ 4 . (25)
1, otherwise.

This will serve as an infinite-volume extension of the finite-volume configuration w (or a finite-volume
approximation of the infinite-volume configuration w, depending on the point of view). To see that
certain error terms are of boundary order, we will make use of the following lemma multiple times.

Lemma 22. Assume that the specification ~y satisfies conditions (S1) — (S2). Let A € Z¢ and fix
En € Q. Then, the following convergence holds uniform inn € )

1(na,,) R Ya(nalnac)
péanana)  valéalnac)

asn — oQ.

Proof. As a first step, note that we can write
pna,) — _ p(naliana)
péanana)  léalnana)

We first show that both the denominator and the numerator converge uniformly in 7). For this, observe
that the DLR equations imply

m /Q Ya(na, lwae) p(dw) =

p(nalnana) =

/Q Ly o (@)1 (nafwac Ju(d).

p(nana)
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By Lemma[17]and the uniform continuity of ya with respect to the boundary condition this implies the
uniform convergence

w(malnana) = va(nalnae) asn — oo.
Exactly the same argument implies the uniform convergence of the denominator
p(éalnana) = va(éalnac) asn — oo.
Now we can again use the simple algebraic rule
ad — be %[(a _ W) (e+d) — (a+b)(c—d)]
in conjunction with the non-nullness of v, and hence p, to obtain the inequality

pa,)  vanalnae)
wéanana)  valalnac)

1
< 8 ([n(malnana) = va(mama)] + |nEalmna) = 7a(€alni)])

By our previous considerations, the right-hand side of converges to zero uniformly in n as n
tends to infinity. The uniformity in A € Z? and £a such that ca > 0 is now a consequence of the
assumption that there are only finitely many types of transitions. O

Lemma 23. Assume that the rates satisfy conditions (R1) — (R5) and that 1 is time-stationary for
the dynamics with 1. € (), and the specification -y satisfies (S1) — (S3). Then for alln € N and
v € My(Q2) we have

IUIDES Z Z Z 7/n>77Am§A)C(An)<77An>§A)(IU(¢n)+O(|An|), (27)

Man ACA, EAFTA p(Eana,na)

where we use the truncated rates

A (na,, €a) ;:{ s J Lo, (Wea(w, Ea)v(dw),  ifv(na,) >0,

(28)
ea(rnnan. €a), otherwise.

Proof. If there is 1y, € Qa, such that v(ns,) = 0 and v(Eana,na) > 0 for some A C A, and
& # 1A, then equality holds in the sense that —oo = —o0. If i) is such that v(n,,) = 0 and
V(fN?An\A) = 0 for all A, &, then all of the corresponding terms are equal to 0 on both sides with
the convention 0 log 0 = 0. Therefore, we can assume without loss of generality that v/(7,, ) > 0 for
allm € Q,,,. This allows us to express §' (v|i) as

S S [ teama st - [ 1 @este, o) o (122

MAn ACA, §Ea7NA M(nAn)

=2 2 / i, (W)ea (w, Ea) v (dw) {log< V(&amn, \A)) ~log (V(m))}

T ACA, EAFNA (€anana) 1(na,,)

- Z Z Z O (na,, Ea)v(na, ) log (V(fMAn\A) M(UA,J) 20

Tam ACA, EAFNA 1(Eanana) v(na,)

_Z Z Z F I/ n nAn,fA)CA (UAH,SA) ( )

NMAn ACA,, §a7NA (fN?A \A)

+Z Z Z [/ w)ea(w, Ea)v(dw) — w(na,)  v(€anana) /lmn(w)%(w’&)y(dﬂ

Tam ACA, EAZNA n(éanana)  v(na,)
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It remains to show that the second term on the right-hand side of is negligible when taking the
density limit. We do this by first decomposing the error term into three parts and estimating them all
separately. More precisely, we write

S 5 | [t st galan) - EPESAS [y ey aputag)

NMAn ACA, EaFNA “(gAnAn\A)V(UAn)
=1+ IT 4 III,

where

Z Z Z / m,, (W) (ca(w,€a) — ea(rnw, €a)) v(dw),

MAn ACA, Ea7Na

Z Z Z v(€ana, \A /1%” (w) (éA(mw,éA) INCEIN )%) v(dw),

NAn ACAp EAFNA v () (Eana \A

II1: Z Z Z 7’]An CA Tn77 gA Z Z Z SAnA \A CA(TnT/AmgA)

NMAn ACA,, §AFNA n€QA, ACA, EaFNA

Here, we used that the function 7, : 2 — € is constant on the cylinder sets {w : wy, = Ma, }
for na, € Q4a,. We now estimate these three terms separately. The term I is of the order o(|A,|),
because the integrands are of the order o(1) by uniform continuity of the rates. Similarly, the term I1
is of the order o(|A,,|) because of Lemmal[22)and the definition of the rates of the time-reversal. Note
that the convergence in Lemma[22]is uniform over all summands by assumptions (R2) and (R4).
The term 111 would be zero in the reversible case and needs some extra attention. First note that we
can rewrite it as

=Y v(n,) Y, > (calrann,.éa) —éa(ram,.€a)) =1 D v(1a,)¢n(mn,):

MAn ACA,, §a7NA NAn EQA,

Now for fixed A C An we have by definiton of the time-reversal rates ¢

Z Z YAn (77An|rn77A%) (ca(rana,,éa) — ea(rnna,,€a))

NAn EAFNA
=3 > (g lramagJea(ram, €a) = va, (€ananalrnéana,ac)ea(Earanac, 1a)) = 0.
RINZUIN
(30)

So by summing over A C A,, we see that

> A (anlraiag Jen(ma,) = 0.

T]ATL
Since Ya,, (A, [Tnnas ) > 0 for all 7, by non-nullness of -y, we can conclude that

inf p,(w) <0 < sup p,(w). (31)

This allows us to estimate the supremum norm of ¢, by its oscillations. This yields

lonllo < D levzson = D10 D Vileal€a) —éaléa)) (32)

z€A, =1 2€An =1 ||ACA,, éa o

Y Y S Y ([Fiealaa)l + [Vial-En))

z€A, Ag_An i=1 &a
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where we used that, by Proposition[18] it holds that for all ) € 2

S STV (ealba) — éal € = 3 STV (eal6a) — éal E0)) (),

ACA, éa A¢ZR, éa

By translation invariance of the rates we have
[Vica(€n)|l = IVoca—z(6a—2)|,  and  |[Vica(éa)|,, = |Voca—-(éa—2)|]
oo o0

So by a change of variable, = = A — z, we get a sum over all A € Z? with A € By, :=
[—m + 1,m — 1]% when

2€ Ny = [-2"+n+m+1,2" —n—m— 1] (33)
and for z ¢ A,,.m we can just estimate the sum by the sum over all A & Z°. This gives us

I < nlloe < Al D0 DD (IVheal- &)l + IVheat-, €]l

AEZY: AZBp—_1 =1 &a

+ |An \ An,m| Z ZZ (HVECA('»EA)HOO + “V66A('a§A)|{OO) . (34)

A€z i=1 &a
If we fix m and take the density limit, then we obtain
q
0 < limsup —— |A 1) < S S D (IVieal €a)|l, + [ Vieal-€a)]) . @5)
nee A€Z4: A¢By_1 i=1 €a

because |A,, \ Ay | = o(|A,]). Since this holds for all m € N and the right-hand side converges
to 0 as m tends to infinity by our assumptions and Lemma we can finally conclude that 11T =
o(|An])- O

Combining the estimate of the boundary contributions and the rewriting of the bulk contribution allows
us to prove our first main result.

Proof of Theorem[8 By Lemma [21|we know that for all v € M;(Q)
92 (vlp) = limsup [Ay| ™ g% (v]p) < liminf [A] ™ g4 (v|u) < limsup [Aa| ™ G5 (v]n) = G2 (v]n).

n—o0 n—oo

Now Lemma|[23]tells us that for all v € M () it holds that
gz (vlp) <0

By the fundamental theorem of calculus this also implies that

. I
(o li) = b = limsup o A () = B, (v]) = limsap 2 / g (vl ds < 0.

n—oo n—o0

This concludes the proof. O
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3.4 Proof of Theorem

The main work will be to establish the upper-semicontinuity of the (approximating) relative entropy
loss. We will do this in two steps. We first define a tentative approximation of the approximating relative
entropy loss which satisfies a monotonicity property that allows us to conclude upper-semicontinuity
of the limit. As a second step, we then establish that the approximation error vanishes in the density
limit.

To be precise, for n € Nand v € M;(2) we define

sa@l) = > 3 > fw Ann ea)er T Eanac, na),
n€QA, ACA,, Ea7NA

where we use the monotone truncation
eA(1,6a) := inf ca(mwas €a), Ba(r) == {y € Z': lv —y[ <n}.

For the finitely many distinct basic shapes A1, ..., Ay with 0 € A; the centers of the balls around
which we truncate are chosen to be x(4;) = 0. For translations A = A; + z, z € 7%, of these basic
shapes we take z(A) = z. In the following, we will often just write « instead of x(A) whenever it is
clear from the context. Moreover, we also approximate the function F' from the previous section by

F(, Ansna,, Eanana)

F, (m f1,,. (w)%u(dw)) v(éanma), ifv(anaa) >0
=4 —o0, if v(Eanaa) = 0and v(na, ) > 0,
0, if v(§anaa) = v(na,) = 0.

We show the existence of the density limit of (s,,(+|14))neny on M (£2) in two steps. First we show
that it satisfies a growth property that is reminiscent of subadditivity and afterwards we combine this
with a multiplicative volume correction to show the convergence via a monotonicity argument.

Lemma 24. Assume that the rates satisfy conditions (R2) and (R4) and that ;. € ¢ (y) is translation
invariant, where the specification -y satisfies condition (S4). Letm € N be such that for all A € 7.4
withO € A andca > 0 we have A C B,,_1(0). Then, foralln > m and allv € M (), it holds
that

sn(v|p) < 2%,_1(v|p). (36)

Proof. The main argument in the proof is to upper bound s,,(v|i) by s,,—1(v|u) using Jensen’s in-
equality and the concavity of £}. To make this precise, consider 2¢ disjoined and congruent subcubes
I, of A, with total side-length 2" — 1 as well as 24 disjoined and congruent subcubes Fn & of A
with total side-length 2™ — n — 1. Let the subcubes be centered such that Fn,k C I, for each k.
Note that U,inlfn,k - ]\n. Now we can estimate

saWl) =D N D WA €a)es T (Eanaena)

NMAn ACA, §AFNA

< ZZ Z Z Fw, Ay, Ea)exm 1 B (fN?Ac na),

k=1 nan, ACA,: z(A)eT, , oA
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where the inequality is due to the fact that the subcubes do not cover all of /~Xn and f is non-positive.
Now for each k = 1,...,2% we can split the summation over 714, iNto two summations, one over
MA,\L,, , @nd one over wr, . This gives us

Z S YN fwoner, ., €)eR A (Ea(wn) ac, (wi)a)

k=1 nAn\Fn k an k ACAVL' m(A)an k EaFna

o Z Z Z Z et €A77AC nA Z f(ya n, nAmgA)a (37)

k=111, 1 ACAn: 2(A)ED,, , $a7NA NAR\D,, 1

where we were able to pull the rates out of the summation, because for n sufficiently large we have
ACT,if z(A) € fmk by the assumption that there are only finitely many distinct basic shapes A
on which we can perform updates and by construction of the subcubes we also have B,,_1(z(A)) C
Iy, for z(A) € fn,k. Since Fy is a concave function, we can use the definition of f and Jensen’s
inequality to get

Z fv.n,nu,, €a)

AR\, §,

=v(éanr, na) D V(Eamana) Fo( ( ! >/1m\n(w)wu(dw)>

. V(fAUrn,k\A) v(Eana\a Ya(éalwae)
A’ﬂ\F'n,k

<l ) | Y ;) [t 222 Dalaleac)

v(€anr, \a Enlwae)

MAR\T,, 1

(
= (e, o) (o [, )2 ).

v(amr, \a) (€alwae

Plugging this back into and using the translation invariance of the rates and v, implies that

sn(V|p) < Z > > S S anae, na)v(B(Top, Eanr, 0a))

k=111, . ACA,: z(A)eD, , Ea7na

1 yamalwss) o
“fo (V(ﬁmrn,k\A) /1%"”“( )VA(fA\WAc) (@ ))

Note, that for the last inequality we also used that truncating the rates over a smaller volume is non-
increasing and that the function f is non-positive by definition. This allowed us to drop some terms
from the summation without any harm. O

< 2%, 1(v|p).

With this growth property it is now easy to conclude the convergence of (|Ay| ™" s, (/] 11) )nen and the
upper-semicontinuity of the limit.

Lemma 25. Assume that the rates satisfy conditions (R2) and (R4) and that ;. € 9 (y) is translation-
invariant, where the specification ~y satisfies condition (S4). Then, the following limit exists for all
v € M (Q) and defines an upper-semicontinuous function on M :

s(v|p) == hm m sn(v|p). (38)
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Proof. The previous estimate on the growth of s,,(/|x) looks very similar to classical subadditivity
of (S, (v|))nen, which would be sufficient to conclude existence and upper-semicontinuity of the
limit via a d-dimensional generalisation of Fekete’s Lemma, see [Geo11, Lemma 15.11]. However, we
cannot apply this result directly, but have to account for the volume growth of A,, via a multiplicative
correction that goes to 1 as n tends to infinity. More precisely, for n € N we define the volume
correction

O 2k+2 2)d

H 2k+2 _ 1

k:n

Then by the Lemma[24] we have

Therefore, the limit

exists by monotonicity and is upper-semicontinous as the limit of a non-increasing sequence of upper-
semicontinuous functions. Since (7,, converges to 1 as n tends to infinity, this implies that the following
limit also exists and is equal to the above:
1 .G
lim ——s,(v|p) = lim —=s,(v|u),

n—oo | A, ] nl

as desired. 0O

As a second step we now show that the approximation error we make vanishes in the density limit. This
shows in particular that the approximating relative entropy loss functional is upper-semicontinuous on
M (€2). More precisely, because of Lemma[23|we need to show that s, (v/|2) is really an approxi-
mation to

S0l =33 3 F un,mn,mc%)(n,sm(‘“%=g,@<um>+o<|An|>.

NAn ACA, EAFNA K 5A77An\A)
(39)

To show that the approximation error we make by replacing S,, with s,, is of boundary order, and
therefore negligible when taking the density limit, we will also reuse Lemma[22]

Lemma 26. Assume that the rates (ca (-, &) aczd enca, Satisfy the conditions (R1), (R2), (R4),
and (R5). Moreover, assume that ;i € 9 () is time-stationary and translation-invariant, where the
specification +y satisfies conditions (S1), (S2), and (S4). Then, the density limit of (S, (V|it))nen
exists and is equal to s(v|p), i.e.,

G (V) = lim m Sulvlir) = s(v|p). (40)

If the rates additionally satisfy condition (R3) and the specification also satisfies (S3), then the
density limit of (S, (v| 1) )nen agrees with the density limit of (§.¢ (V| 11) )nen- In particular, the approx-
imating entropy loss per site .o (-|p) is then an upper-semicontinuous functional on M"(£2).
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Proof. Letn € N. If there was an 7 € Q,, such that v({ana,\a) = 0 and v(7,,) > 0, then we
have S,,(v|i) = sm(v|w) in the sense of —oo = —oo for all m > n. If there was an ) € Qy,
such that v(§ama,\a) = 0 and v(na,,) = 0, then the corresponding summands would not contribute
to either summation. Therefore, we can assume without loss of generality that (7,,) > 0 for all
n € Qy,,. In this case, both s,,(v|x) and S, (v|p) are finite, and we can write

SuWlp) = sawlp) = > > |F

n 1(na,.)
V n, nAn7§A)C(A)(n7§A) (
MAn ACA, 67N

w(€anana)

- f(Va n, 77An7 gA)

(A, €8)0(10,) ]
S 1, (w) 222080 (d)

(n)
—Z Z Z f(w,n,ma,,€a) [éinl(z)(fAnAcﬂ?A) __Ca (M, Sa)v i) ] = I+ 1L

ya(éalwac)
Man ACA, Ea#na J L, (@) 2205225 v (dw)

We will now proceed by estimating these two terms separately. We start with I and use the definitions

of the functions F" and f to obtain
pln,) 1 / ya(€alwar) )'
log ( 1, (w)—————v(dw)]].
p(€anana) v(na,) m >fm(nA|wAc) (dw)

<> > > vim, )el) (1, €a)
(41)

Nan ACA, Ea70A
The terms inside the logarithm converge to 1 uniformly in 77 by Lemma where we again use that the
convergence is moreover uniform for all summands by assumptions (%) and (R4). In combination
with the combinatorial estimate from Lemma|[20]this implies that |I| = o(|A,|).

To deal with I1, we first note that by Lemma[17|we have

. / 1 () valéalwae) o\ 7A(§A|77Ac)7

n—o0 V(14 ) M A (alwae) Ya(nalnac)
and the convergence holds uniform in 7 € € by quasilocality of the specification . Now we would like
to conclude that IT = s,,(v|u)o(1), which would yield IT = o(|A,,|) by convergence of (s, (V|1t))nen-
But for this, we have to make sure that we are actually allowed to divide by éi”‘l(‘r) (€anac,na). As
we will see in Lemma after the end of this proof, there exists N € N, uniform in A and £A and
n € €2, such that for each fixed n € () we either have

53” 1@ )(ﬁATMC na) =0

(42)

forallm € Nor

e (Eanae,na) > 0

for all n > N. In the former case, the terms corresponding to such 1 do not enter the summation
forany n € N and in the latter case we are allowed to perform the division for sufficiently large n.
Therefore, we can assume without loss of generality that éﬁ"”(@ (€amac,na) > 0 for all Ea and 7.
This allows us to conclude

=" 3" 3" frnmm, a)éea " (€anac, 1a)

NMAn ACA, §AFNA

| e T
e (Eanae, na) flnAn (W)Wy(dw)
= sn(v[p) o(1) = o(|An]),
as desired. -
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At the end of the previous proof, we used the following rather technical lemma to make sure that we
are not performing a division by zero.

Lemma 27. Assume that the rates (ca(-,€a))acza e, Satisfy the conditions (R1), (R2), (R4),
and (R5). Then, there exists N € N such that for all ) € €2 we have the following dichotomy for the
truncated rates:

VA € Z9Ves + Either cR¥ T gy €0) >0 or VneN: A @), ) =0

Moreover, if the rates (ca (-, {a)) aczi ¢, Satisfy the above conditions and the specification +y satisfies
(S1), (S2), and (S4), then the rates of the time-reversal (¢a(-,&a))aczig, also satisfy (R1),
(R2), (R4), and (R5).

Proof. By translation invariance of the rates, we only have to worry about those A € Z% with 0 € A
and ca > 0. Let & 1= infacza e 1 en(men)>0 Ca(n,€a) > 0 be the minimal transition rate. Since
the local state space is finite, the continuity of the rates implies that they are also quasilocal. Since
we also assumed that there are only finitely many types of transitions, there exists N € N, uniform in
A € 74, such that if two configurations agree on By_;(x(A)), then we have

lea(wr, §a) — ealwa, €a)| < g

In particular, this implies that if n € {w: ca(w,&a) > 0}, then

CiN_l(x(A))(nAN’ §A) > 07

andifn ¢ {w: ca(w,€a) > 0}, then
Vn € N : ci”fl(gC(A))(nAn,fA) = 0.

To see that the rates ¢ of the time-reversal also satisfy the conditions we just combine the correspond-
ing assumptions on the rates ¢ and on the specification . O

As a final ingredient for the proof of Theorem [6] we need to show that, if a measure has vanishing
approximating entropy loss with respect to p, then it is itself a Gibbs measure with respect to the
specification . Note that we use the irreducibility assumption (R6) for the first time here.

Lemma 28. Assume that the rates satisfy conditions (R1) — (R6) and that u € ¥(v) is time-
stationary for the dynamics, where the specification -y satisfies conditions (S1) — (S4). Let v €
M) If gy (vn) =0, thenv € G (7).

The proof is very similar to the middle part of the proof of [JK19, Theorem 2.12], but treats a more
general situation, since we do not need to use any reversibility assumption. This is because we already

eliminated all the dangerous terms in the proof of Lemma[23|by using Proposition

Proof. Since the convergence is monotone, the assumption that g« (v | ) = 0 implies that we must
already have

sn(v|p) =0
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for all n € N. By definition of s,,(+), f and Fy, this implies that all the terms of the sum have to vanish.

Hence, foralln € N, ny, € Q4 ,and j = 1,...,q, such that ¢Bn1(@) Eanac,ma) > 0 we either
A, n A

have

1 Ya(alwac) _
V(gAnAn\A) /177An (W)’YA(UA’WAC)V(dw) - 17 (43)

or
v(na,) = v(€anana) = 0.
But if there was 1, € 25, such that (7, ) = 0, then by irreducibility we would necessarily have

Vi € Q5 \a, VA CAYEA T v(€ana\a¥i,\a,) = 0.

for all large enough m such that A,, C /~\m. Since this holds for all boundary conditions ¢, all A C A,
and &, we can deduce that

which cannot be true. Therefore, we must have

Vn e N: Vny, € Qa, 0 v(n,) >0,

and in particular holds if éi’“l(x) (éamac,na) > 0. In this case, we can use martingale conver-
gence and the differentiation lemma to see that by irreducibility

v(nalnae) _ lim v(ma,)  yaléalnac)

v—aaneQVAEZ Ve = .
1 A v(€alnae)  n=oov(€anana)  va(nalnac)

Via the irreducibility assumption and the fact, that if two strictly positive probability vectors a =
(a1,as,...,a,) and b = (b, ..., b,) satisfy a;/a; = b;/b; for all i, 7 = 1,...,n, then we neces-
sarily have a = b, we get

VA € Z9VEn : ya(€alnac) = v(€alnae) for v-almostalln € Q,

which implies that v € ¢(). O

Now we have all the ingredients for proving the dynamical Gibbs variational principle for non-reversible
interacting particle systems.

Proof of Theorem[8 Ad i. and ii.: The existence of the limit and its upper-semicontinuity follow from
Lemma 26

Ad iii.: That the approximating relative entropy loss is non-positive was shown in Proposition

Ad iv.: This is exactly what we showed in Lemma[28] O
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3.5 Proof of Theorem

We begin with the following technical result.

Proposition 29. Assume that the rates (ca(+,€a))aczi e ca, Satisfy conditions (R1) — (R5).
Moreover, assume that there exists a translation-invariant time-stationary measure (1 € G(vy) where
the specification y satisfies (S1) — (S3). Then, forv € Mi"™(Q) andt > 0 we have

W) — h(vl) < / Gio (valpe)ds.

Moreover, if v & 9(v), then there exists a weakly open set G, C M (Q) containing v, and
d,& > 0 such that we have

Vpe G,V0<s<e: h(ps|pn)— h(plp) < —ds.

Proof. Forn € N we have seen in Lemma[21]that

t
b, (i) = ha, (1) < [ (s + ¢ o).
0

By taking the density limit and using the monotone convergence theorem we obtain

Bl = hlvl) < [ gy

To prove the second part of the proposition we just use the above formula and the upper-semicontinuity
of g (-|n). -

Now we are ready to state and prove the attractor property for non-reversible interacting particle sys-
tems.

Proof of Theorem[10. For arbitrary v and n € N we have by non-nullness of y that
VAEZ': —M|A| < ha(vjp) < MIA|, (44)

for some M > 0 that does not depend on v, only on yi. Indeed, we can decompose

ha(vlp) = v(na)log (v(na)) — > v(na)log (1(ma)) -

A

The first sum is bounded from below by 0 and from above by |A|logg. The second sum can be
bounded in absolute value, because by Lemma([{3]it holds that

1
[log pu(1a)| < |A]log .
By taking the density limit in (44) we see that

—M < h(v|ju) < M.
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Now let * be some weak limit point. If v* & ¢(), then by the Proposition [29]and weak convergence
there exists an open neighborhood G of v* such that v, € G foralln > N(G) and

Vpe GY0 <s<e: hlpsp)— hiplp) < —ds.

This implies that for all m € N

m—1

—M < h(v*|p) < (g, 1) — (v ) + h(v|p) < =0 Z min{e, tnir1 — tnvin} + M.
k=0

Since t,, increases to infinity, we necessarily have that the sum on the right-hand side diverges to
infinity as n tends to infinity. But this leads to a contradiction, since M is finite. Therefore, we must
have v* € ¢ (7). O
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