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Periodic Lp estimates by R-boundedness:
Applications to the Navier–Stokes equations

Thomas Eiter, Mads Kyed, Yoshihiro Shibata

Abstract

General evolution equations in Banach spaces are investigated. Based on an operator-valued
version of de Leeuw’s transference principle, time-periodic Lp estimates of maximal regularity
type are established from R-bounds of the family of solution operators (R-solvers) to the corre-
sponding resolvent problems. With this method, existence of time-periodic solutions to the Navier–
Stokes equations is shown for two configurations: in a periodically moving bounded domain and
in an exterior domain, subject to prescribed time-periodic forcing and boundary data.

1 Introduction

The study of time-periodic solutions to evolution equations is the study of oscillations. In this article
we investigate time-periodic solutions corresponding to time-periodic data, that is, systems of forced
oscillation. A number of different methods, further described below, are traditionally used to carry
out a mathematical investigation of such solutions. In the following we introduce a new technique to
establish a priori estimates of maximal Lp regularity type for linearized equations. Such estimates
are essential in the study of nonlinear problems, which we will demonstrate on some examples. For
notational simplicity, we consider only 2π-periodic problems. By a simple scaling argument, however,
all our results extend to T -periodic problems for any T > 0.

The study of 2π-time-periodic solutions to evolution equations can be carried out in a framework
where the time axis is replaced with a torus T := R/2πZ. Consider for example an abstract evolution
equation

∂tu+ Au = f in T (1.1)

in a Banach spaceX , whereA is a linear operator onX . Since the time domain is a torus, a solution to
(1.1) is intrinsically time-periodic. We refer to estimates of the solution in Lp(T;X) norms as periodic
Lp estimates. Estimates that include all highest-order norms of the solution are said to be of maximal
regularity, which in the case (1.1) above means an estimate of type

‖∂tu‖Lp(T,X) + ‖Au‖Lp(T,X) + ‖u‖Lp(T,X) ≤ C‖f‖Lp(T,X). (1.2)

Such estimates lead to a characterization of ∂t + A as a homeomorphism in an Lp(T, X) setting,
which is critical to the analysis of non-linear problems. In the following, we show how to establish
periodic Lp estimates of maximal regularity type for a large class of abstract evolution equations based
on their R-solvers, that is, solution operators of the associated resolvent problems that satisfy specific
R-bounds. In particular, we include cases where 0 lies in the spectrum of A, which constitutes a
particular challenge and where traditional methods have shortcomings. As we explain below in more
detail, in this case the classical maximal regularity estimate (1.2) is not available and ∂t +A can only
be a realized as a homeomorphism in an adapted framework of function spaces.
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T. Eiter, M. Kyed, Y. Shibata 2

Typically, Lp estimates are established via Fourier multipliers, often via the multiplier theorem of
Mikhlin, which was extended to operator-valued multipliers by WEIS [67]. He showed that Mikhlin’s
theorem remains valid in the operator-valued case if boundedness is replaced with R-boundedness
in the assumptions. On the strength of this result, it is possible to establish maximal regularity in
Lp((0, T ), X) norms for initial-value problems such as

∂tu+ Au = f in (0, T ), u(0) = u0 (1.3)

by establishing R-boundedness on the resolvent family

{λR(λ,A) | λ ∈ Σθ,γ0}, (1.4)

where R(λ,A) = (λI− A)−1 denotes the resolvent operator of A and

Σθ,γ0 :=
{
λ ∈ C | arg(λ) ≤ π − θ, |λ| ≥ λ0

}
(0 ≤ θ <

π

2
)

is a sector, which excludes a ball around the origin if λ0 > 0. Note that for many problems, in particular
in unbounded domains, the inclusion of the origin is not possible since 0 does not belong to the
resolvent set. However, for the derivation of Lp estimates for the initial-value problem (1.3), the origin
can be excluded from the sector unless T =∞ is required. Since the appearance of [67], R-bounds
for resolvent families of the form (1.4) have been established for a substantial number of boundary-
value problems, which lead to Lp maximal regularity estimates for the associated initial-value problem.

In this article, we develop a technique to obtain periodic Lp estimates of maximal regularity type
from these R-bounds. In particular, we focus on problems where the origin belongs to the spectrum
σ(A) of A, so that R-bounds can at best be established in Σθ,γ0 for some γ0 > 0. In the case
that 0 is included in the resolvent set as well as in the R-bounds, that is, the operator family (1.4)
is R-bounded for γ0 = 0, classical maximal Lp regularity can be established, which was shown by
ARENDT and BU [2]. If this is not the case, classical periodic Lp estimates of maximal regularity type
such as (1.2) cannot be established because invertibility of the linear time-periodic problem would
require invertibility of the associated steady-state problem, that is, that 0 belongs to the resolvent set
ρ(A). Therefore, we introduce an alternative functional setting in order to characterize the parabolic
operator ∂t + A as a homeomorphism with respect to data in Lp spaces.

The technique developed in the following is based on the transference principle introduced by DE

LEEUW in [19] for scalar-valued multipliers and generalized to the operator-valued case by HYTÖNEN,
VAN NEERVEN, VERAAR, and WEIS [28]. It states that Lp boundedness of a continuous Fourier multi-
plier on Lp(R) is retained when the multiplier is restricted to Z and thus becomes a multiplier in the
torus T = R/2πZ setting. Despite the transference principle seeing little usage outside the field of
harmonic analysis, we believe it to be an effective tool in the analysis of periodic solutions to partial
differential equations. The promotion of this viewpoint is one of the main purposes of this article since
it provides us with an extremely useful tool to derive periodic Lp estimates from existing R-bounds on
resolvent families. If for example the resolvent family (1.4) is R-bounded in a sector containing the full
imaginary axis iR, that is, for γ0 = 0, then the operator-valued version of the transference principle
combined with the operator-valued version of Mikhlin’s multiplier theorem by WEIS [67] immediately
yields the periodic Lp estimates (1.2). If, however, R-bounds are only available in a sector excluding
the origin, that is, γ0 > 0, a decomposition technique has to be introduced. Expanding (1.1) into a
Fourier series, we introduce the projection of u into a lower frequency part u` :=

∑
|k|≤γ0 uke

ikt

corresponding to the finite number of modes k ∈ Z with |k| ≤ γ0, and a complementary higher
frequency part uh = u − u`. Based on the R-bounds of (1.4), we can combine the transference
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Periodic Lp estimates by R-boundedness 3

principle with Mikhlin’s multiplier theorem to establish periodic Lp estimates for the higher frequency
part. Provided that a (possibly different) framework of Banach spaces can be identified that ensures
periodic maximal Lp regularity for the lower frequency part, we can combine the two parts to estab-
lish periodic maximal Lp regularity for the full problem. Due to the bespoke framework introduced for
the lower frequency part, the resulting type of Lp estimates are not classical in the sense of (1.2).
They are, however, effective in the investigation of time-periodic solutions to corresponding nonlinear
problems, which we demonstrate by specific examples.

Whereas the study of time-periodic solutions to ordinary differential equations goes back to the nine-
teenth century, one of the first investigations of time-periodic partial differential equations is due to
PRODI [47], who examined the (parabolic) 1D heat equation. Although the work of PRODI is predated
by a few other articles [3, 61, 31, 69], it seems that [47] is the first rigorous, by contemporary stan-
dards, investigation into the matter. Around the same time, articles also appeared on time-periodic
solutions to the (hyperbolic) wave equation [48, 21]. In the following years, the foundation was laid
for the methods that have nowadays become standard in the study of time-periodic partial differential
equations. We shall give a brief overview of the main ideas. Consider for this purpose a time-periodic
abstract evolution equation

∂tu+ Au = F (t, u) in R, u(t+ 2π) = u(t) (1.5)

in the classical setting with the whole of R as time axis, but still considered as equation in a Banach
space X for some operator A and for 2π-time-periodic (nonlinear) data F .

By far the most popular method that emerged is based on the identification of solutions to (1.5) as
fixed points of the so-called Poincaré operator1. The basic idea goes back to the pioneering work
of Poincaré [45, 46] on dynamical systems. The Poincaré operator, sometimes also referred to as
translation operator along trajectories, is the mapping Φ : X → X that maps an initial value u0 to the
value u(2π) of the solution u to the associated initial-value problem

∂tu+ Au = F (t, u) in (0,∞), u(0) = u0. (1.6)

In other words, if t 7→ S(t, u0) is the solution operator to (1.5) for the initial value u0, the Poincaré
operator is given by Φ(u0) := S(2π, u0). It is obvious that a fixed pointw0 = Φ(w0) of Φ is the initial
value of a 2π-periodic solution. In this sense a fixed point of the Poincaré operator induces a solution
to (1.5). The main challenge in the application of this method is to construct a setting of Banach spaces
such that the Poincaré operator is well defined and admits a fixed point. In some cases, this can be
carried out directly for the nonlinear problem, but often the method is first employed to obtain suitable
a priori estimates of maximal regularity type for the linearization of (1.5), which are subsequently used
to investigate the nonlinear problem with classical nonlinear functional analysis. In the context of time-
periodic partial differential equations, BROWDER introduced the Poincaré operator approach in [9],
and around the same time KRASNOSEL’SKIĬ [32] and his student KOLESOV [35, 36, 37] advanced the
method. The investigation of time-periodic solutions as fixed points of the Poincaré operator depends
heavily on the framework in which a solution operator to the initial-value problem (1.6) can be realized.
To illustrate this issue, assume that A generates a sufficiently regular semi-group and consider the
linear case F (t, u) = F (t). The solution operator S then takes the form

S(t, u0) := e−tAu0 +

∫ t

0

e−(t−τ)AF (τ) dτ,

1Not to be confused with the Poincaré mapping, which is a related but different notion from the theory of dynamical
systems.
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T. Eiter, M. Kyed, Y. Shibata 4

and a fixed point w0 of the Poincaré operator is therefore given by

w0 = S(2π,w0) ⇐⇒ w0 =
(
I− e−2πA

)−1
∫ 2π

0

e−(2π−τ)AF (τ) dτ

provided 0 ∈ ρ(A), so that 1 ∈ ρ(e−2πA) and I − e−2πA is thereby invertible. In this case, a priori
estimates for the time-periodic solution u(t) := S(t, w0) can be established in the setting of Banach
spaces in which S is realized. If, on the other hand, 0 ∈ σ(A), the representation formula forw0 above
is not valid and it becomes much more difficult to establish a priori estimates for the corresponding
time-periodic solution. For this reason, the Poincaré operator approach is seemingly always carried
out in a setting where 0 ∈ ρ(A). General applications of the method can be found in articles going
back to [1, 51, 62, 66] for example, but also in more recent work such as [40, 4, 13, 34, 44]. More
examples can be found in articles devoted to specific equations; so many that an exhaustive list is
beyond the scope of our exposition here. We shall mention only the work of GEISSERT, HIEBER and
NGUYEN [26] in which the restriction 0 ∈ ρ(A) is circumvented by introducing interpolation spaces.

Provided one is able to establish suitable energy estimates for the problem under consideration, time-
periodic solutions can also be obtained via a Galerkin approximation scheme. The existence of a
time-periodic solution then has to be accomplished in a finite-dimensional setting and is thus reduced
to finding periodic solutions to an ordinary differential equation. In the finite-dimensional setting, the
Poincaré operator is compact, and it is therefore much less critical to establish existence of a fixed
point. The time-periodic incompressible Navier–Stokes problem is a good example of a system that
can be treated with energy methods; see for example [49, 24]. Also the time-periodic wave equation
with suitable damping can be solved in this way [50]. Moreover, time-periodic solutions to the com-
pressible Navier–Stokes equations can be established, as was first shown for the one-dimensional
case by MATSUMURA and NISHIDA [42] and then extended by several authors, cf. [30, 64] and the ref-
erences therein. Since energy estimates typically lead to a priori estimates in Hilbert space settings,
this method is not always suited to establish optimal a priori estimates for linear parabolic problems
though. Nevertheless, it gives a strong tool in the case of hyperbolic or hyperbolic-parabolic mixed
systems.

We also want to mention a very different method, which is due to SEIDMAN [54], who intentionally
avoids using the Poincaré operator and shows existence of weak time-periodic solutions in Lp(T×Ω)
spaces to a nonlinear evolution equation based on the theory of monotone operators.

A different approach is based on a representation formula that arises from the principle that a solution
to the initial-value problem (1.6) (at least in the linear case F (t, u) = F (t)) tends to a periodic orbit as
t → ∞ regardless of the initial value. Equivalently formulated, a solution to the initial-value problem
with time-periodic right-hand side

∂tu+ Au = F (t) in (R,∞), u(R) = u0,

tends to a periodic orbit as R → −∞. Assuming again that A generates a sufficiently regular semi-
group, this principle leads to the formula

u(t) =

∫ t

∞
e−(t−τ)AF (τ) dτ (1.7)

for the time-periodic solution. It is easy to verify that this integral expression indeed leads to a periodic
solution of the same period as F . As with the Poincaré operator approach, the challenge with the
method based on (1.7) is to construct a framework of Banach spaces such that the integral expression
is well defined. Since F is time-periodic and therefore non-decaying, this clearly requires suitable
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Periodic Lp estimates by R-boundedness 5

decay properties of the semi-group, which again leads to 0 6∈ σ(A) as a critical assumption. Under this
assumption, however, the representation (1.7) can be very useful, which was demonstrated already in
the paper [47] by PRODI. A similar idea was used by FIFE [22] and in subsequent papers [63, 5, 43, 23]
as well as a number of articles on specific equations such as the Navier–Stokes equations [38, 68].

The principle described above gives rise to yet another approach. If namely the solution u(t) to the
initial-value problem (1.6) tends to a periodic orbit as t→∞, then the sequence un(t) := u(t+n2π),
n ∈ N, will tend to a periodic solution to (1.5) as n → ∞. This idea was employed in the context
of partial differential equations by FICKEN and FLEISHMAN [21] as early as 1957, and later used to
investigate time-periodic solutions to the Navier–Stokes equations in the incompressible case [55, 41]
and the compressible case [65].

Finally, we mention the perhaps most natural approach to time-periodic partial differential equations,
namely the decomposition of data and solution into a Fourier series with respect to time. In the linear
case, the investigation then reduces to an analysis of the individual Fourier coefficients, each of which
satisfying a resolvent problem, that is, a time-independent problem; see for example [48, 12, 52, 53, 27,
11]. This technique, however, has some limitations since it is difficult to obtain satisfactory estimates
of the Fourier series based only on estimates of the individual coefficients. Typically, the method only
leads to suitable a priori estimates when working in a framework of absolutely convergent Fourier
series, see the recent articles [18, 14, 15] for examples from fluid dynamics, or when Parseval’s identity
can be invoked, which requires a Hilbert space setting, that is, an investigation in L2 ((0, 2π), H) for
some Hilbert space H . Our following analysis based on Fourier multipliers on the torus T offers one
way to overcome these limitations and to establish a priori estimates in a general Lp ((0, 2π), X)
Banach space setting.

In order to illustrate another significant novelty of our approach, we return to the requirement 0 6∈ σ(A)
that is needed in both the Poincaré operator approach and in the method based on the representation
formula (1.7). The root cause of this restriction is the necessity in both techniques that the investigation
of (1.5) is carried out in the framework of function spaces of the corresponding initial-value problem
(1.6). Specifically, in both methods the time-periodic solution is characterized as a special solution to
the initial-value problem, and can therefore only be estimated in the framework in which the initial-
value problem is rendered well posed. However, this framework is not suitable for a priori estimates of
solutions to the corresponding stationary problem Au = F when 0 ∈ σ(A). Since a stationary solu-
tion is trivially also time periodic, it is clear why the restriction 0 6∈ σ(A) is imposed. In our approach,
based solely on Fourier multipliers, both the Poincaré operator and the representation formula (1.7)
are avoided, and we are able to construct a bespoke setting of Banach spaces that enables us to also
treat cases where 0 ∈ σ(A).

The article is divided into a more theoretical first part (Section 3), where an abstract linear time-periodic
problem is investigated, and a second part devoted to applications (Sections 4 and 5). The theoretical
part focuses on an abstract time-periodic boundary-value problem, and we show statements in gen-
eral terms of the periodic maximal Lp regularity. It is based on a combination of the decomposition
technique described above with the existence of suitable R-solvers; see Theorems 3.1 and 3.2. As
examples of the effectiveness of this approach, we subsequently investigate time-periodic solutions to
the the N -dimensional Navier–Stokes equations in a periodically moving bounded domain in Section
4, and to the three-dimensional Navier–Stokes equations in an exterior domain (at rest) in Section
5. Existence of time-periodic solutions to the first problem can be shown in a framework of Sobolev
spaces, and in the final results the described decomposition technique is not visible, which is the case
since 0 is not in the spectrum of the underlying linear operator. However, for the second problem the
situation is different, and the zero-order mode, which is the time mean of the periodic function, has
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to be treated in a separate functional framework. Moreover, in order to handle the nonlinear terms,
we consider spaces of functions with additional pointwise spatial decay, and a large part of Section
5 is concerned with the asymptotic properties of solutions. Since this analysis of the exterior-domain
problem is already quite extensive, the even more involved case of the Navier–Stokes flow inside a
periodically moving exterior domain is postponed to a future work.

2 Notation and preliminaries

2.1 General notation

Let N, Z, R and C denote the set of all natural numbers, integers, and real and complex numbers,
respectively. To denote generic constants, we use the symbolC , andCa,b,··· indicates the dependency
of the constant on the quantities a, b, . . .. Here, the constants C and Ca,b,··· may change from line to
line.

For any domain D ⊂ RN , N ∈ N, we denote Lebesgue spaces, Sobolev spaces, and Besov spaces
onD by Lq(D), Hm

q (D) and Bs
q,p(D), respectively, while ‖·‖Lq(D), ‖·‖Hmq (D), and ‖·‖Bsq,p(D) denote

their norms. For partial derivatives, we write ∂t = ∂/∂t and ∂j = ∂/∂xj . Let∇f = (∂1f, ∂2f, ∂3f)

and∇2f = (∂i∂jf | i, j = 1, 2, 3). Let Ĥ1
q(D) be the homogeneous space defined by

Ĥ1
q(D) = {ϕ ∈ Lq,loc(D) | ∇ϕ ∈ Lq(D)N}.

For a topological vector space V , we let V ′ denote its dual space. In the following, X and Y will
always denote Banach spaces, and L (X, Y ) denotes the space of bounded linear operators fromX
to Y , and we simply write L (X) = L (X,X). Sometimes, we do not distinguish between a space
X and its vector-valued analog XN , and we simply write ‖ · ‖X for the norm of XN . The set of all
X-valued holomorphic functions defined on U ⊂ C is denoted by Hol (U,X). For ε ∈ (0, π) and
λ0 > 0 we define the sectors

Σε = {λ ∈ C \ {0} | | arg λ| ≤ π − ε}, Σε,λ0 = {λ ∈ Σε | |λ| ≥ λ0}.

2.2 Time-periodic framework

The study of partial differential equations in a setting where both the data and the corresponding
solutions are time periodic can conveniently be carried out in a framework where the time axis is
replaced with a torus group. In the following, we consider only the torus

T := R/2πZ,

which provides us with a framework to study 2π-periodic solutions. We endow T with the quotient
topology inherited from R via the quotient mapping

π
Q

: R→ T, π
Q

(t) := [t] = {t+ 2nπ | n ∈ Z}.

Additionally, the quotient mapping induces a differentiable structure on the torus, and we can therefore
investigate equations such as (1.1) as a differential equation on the smooth manifold T. A solution u
in this setting corresponds to a classical time-periodic solution u◦π

Q
in the Euclidean setting and vice

versa. Usually, we tacitly identify functions u on T with their time-periodic analogue u ◦ π
Q

on R .
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The topology on T turns it into a compact group with a (normalized) Haar measure dτ such that

∀u ∈ C(T) :

∫
T
u(τ) dτ =

1

2π

∫ 2π

0

u ◦ π
Q

(t) dt,

where C(T) is the class of all continuous functions on T. Bochner–Lebesgue spaces Lp(T, X) for
p ∈ [1,∞] are then defined in the usual manner.

The differentiable structure gives rise to the space

C∞(T, X) := {u : T→ X | u ◦ π
Q
∈ C∞(R, X)}

of vector-valued smooth functions on T for any Banach space X . The simple structure of T implies
that the set of Schwartz–Bruhat functions S (T, X) (see [10, 16]) coincides with the set of smooth
functions, that is,

S (T, X) = C∞(T, X),

which is endowed with the semi-norm topology induced by the family ρ`(u) := supτ∈T ‖∂`tu(τ)‖X ,
` ∈ N0. We refer to the space

S ′(T, X) = L (S (T), X)

as the space of X-valued tempered distributions on T. One may observe that the notion of classical
distributions on T (also known as periodic distributions) coincides with the notion of tempered distribu-
tions on T. Derivatives of distributions u ∈ S ′(T, X) are defined as distributions ∂`tu ∈ S ′(T, X)
by duality in the usual way.

As a (locally) compact abelian group, the torus T has a Fourier transform FT associated to it. Ob-
viously, this Fourier transform corresponds to the classic expansion of a function on T into a Fourier
series. In this paper, however, it is essential to treat it as Fourier transform in the same framework as
the Fourier transform FR on the real line, which is defined by

FR : S (R, X)→ S (R, X), FR[u](ξ) :=
1

2π

∫
R
u(x) e−iξx dx,

F−1
R : S (R, X)→ S (R, X), F−1

R [v](x) :=

∫
R
v(ξ) eiξx dξ

and extended to mappings FR, F−1
R : S ′(R, X ′) → S ′(R, X ′) by duality. To this end, we recall

that Z, endowed with discrete topology and counting measure, can be viewed as the dual group of T.
The X-valued Schwartz–Bruhat space on Z is given by

S (Z, X) = {ψ : Z→ X | ∀ ` ∈ N0 : sup
k∈Z
|k|`‖ψ(k)‖X <∞}

and is equipped with the locally convex topology induced by the family of semi-norms ρ̂`, ` ∈ N0,
where ρ̂`(ψ) := supk∈Z |k|`‖ψ(k)‖X .

In the setting of vector-valued Schwartz–Bruhat spaces, the Fourier transform FT is the homeomor-
phism given by

FT : S (T, X)→ S (Z, X), FT[u](k) :=

∫
T
u(t)e−ikt dt,

with inverse mapping

F−1
T : S (Z, X)→ S (T, X), F−1

T [w](t) :=
∑
k∈Z

w(k) eikt.
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As above, by a duality argument, FT extends to a homeomorphism on the space of tempered distri-
butions FT : S ′(T, X)→ S ′(Z, X) in the usual way.

A standard verification shows that Lebesgue spaces Lp(T, X) are embedded into S ′(T, X), which
enables us to define vector-valued Sobolev spaces as

Hm
p (T, X) :=

{
u ∈ Lp(T, X) | ∂`tu ∈ Lp(T, X) for ` = 0, . . . ,m

}
,

‖u‖Hmp (T,X) :=
( m∑
`=0

‖∂`tu‖
p
Lp(T,X)

) 1
p

for m ∈ N and p ∈ [1,∞). A standard mollification argument shows that S (T, X) = C∞(T, X)
lies dense in Lp(T, X) and Hm

p (T, X). For θ ∈ (0, 1) we further define the fractional Sobolev space
Hθ
p(T, X) via Fourier transform by

Hθ
p(T, X) :=

{
u ∈ Lp(T, X) | F−1

T
[
|k|θFT[u](k)

]
∈ Lp(T, X)

}
,

‖u‖Hθp(T,X) :=
∥∥F−1

T
[
(1 + |k|)θFT[u](k)

]∥∥
Lp(T,X)

.

2.3 R-boundedness and operator-valued Fourier multipliers

A family of operators T ⊂ L (X, Y ) is called R-bounded in L (X, Y ) if there exists some C > 0
such that for all n ∈ N, {Tj}nj=1 ∈ T n, and {fj}nj=1 ∈ Xn, we have

∥∥ n∑
k=1

rkTkfk
∥∥

L1((0,1),Y )
≤ C

∥∥ n∑
k=1

rkfk
∥∥

L1((0,1),X)
, (2.1)

where rk, k ∈ N, denote the Rademacher functions given by rk : [0, 1] → {−1, 1}, t 7→
sign (sin 2kπt). The smallest constant C such that (2.1) holds is called the R-bound of T and de-
noted by RL (X,Y )T , If S ⊂ L (X, Y ) and U ⊂ L (Y, Z) are further operator families, we have

RL (X,Y ){S + T | S ∈ S, T ∈ T } ≤ RL (X,Y )S + RL (X,Y )T ,
RL (X,Z){UT | U ∈ U , T ∈ T } ≤ RL (Y,Z)U ·RL (X,Y )T ;

(2.2)

see [28, Remark 5.3.14] for example. Due to Kahane’s inequality, one may further replace the spaces
L1((0, 1), X) and L1((0, 1), Y ) in (2.1) with Lp((0, 1), X) and Lp((0, 1), Y ), respectively, for any
p ∈ [1,∞). In what follows, this choice of p makes no difference.

We recall the notion of operator-valued Fourier multipliers on R and T. For M ∈ L∞(R,L (X, Y ))
we define the operator

opR[M ] : S (R, X)→ S ′(R, Y ), opR[M ]f := F−1
R [M FR[f ]].

For m ∈ L∞(Z,L (X, Y )) we define the operator

opT[m] : S (T, X)→ S ′(T, Y ), opT[m]f := F−1
T [mFT[f ]].

If there exists a continuous extension of opT[m] to a bounded operator

opT[m] : Lp(T, X)→ Lp(T, Y ),

we call m an Lp(T)-multiplier. To identify such Lp(T)-multipliers, we shall make use of an operator-
valued transference principle, which relates Lp(T)-multipliers to Lp(R)-multipliers, and combine it
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with an operator-valued multiplier theorem due to WEIS [67]. For its formulation, we need the notion
of R-boundedness of operator families introduced above as well as the notion of UMD spaces. Recall
that a Banach space X is called a UMD space (or a space of class HT ) if the Hilbert transform H
defined by

Hf(t) :=
1

π
lim
ε→0

∫
|x|≥ε

f(t− s)
s

ds, f ∈ S (R, X),

extends to a bounded linear operator L (Lp(R, X)) for p ∈ (1,∞).

Now we can state the multiplier theorem due to WEIS [67, Theorem 3.4], which is an operator-valued
version of the classical Mikhlin theorem.

Theorem 2.1 (WEIS). Let X and Y be UMD-spaces and p ∈ (1,∞). Let M ∈ L∞(R,L (X, Y ))
be differentiable in R \ {0} and such that

RL (X,Y )

{
M(t) | t ∈ R \ {0}

}
≤ r0, RL (X,Y )

{
tM ′(t) | t ∈ R \ {0}

}
≤ r0, (2.3)

for some r0 > 0. Then opR[M ] extends to a bounded operator opR[M ] : Lp(R, X) → Lp(R, Y ),
that is, M is an Lp(R)-multiplier, and

‖opR[M ]‖L (Lp(R,X),Lp(R,Y )) ≤ Cp r0 (2.4)

for some constant Cp > 0 depending only on p but independent of r0.

In order to investigate Lp-boundedness of operators associated with Fourier multipliers on T, we
combine this theorem with the following result that allows an investigation of Lp-boundedness of a
Fourier multiplier m ∈ L∞(Z,L (X, Y )) in the torus setting by extending it to a multiplier M ∈
L∞(R; L (X, Y )) in the Euclidean setting.

Theorem 2.2 (Operator-valued transference principle). LetX , Y be Banach spaces and p ∈ (1,∞).
If

M ∈ L∞(R,L (X, Y )) ∩ C(R,L (X, Y ))

is an Lp(R)-multiplier, that is, opT[M ] ∈ L (Lp(R, X),Lp(R, Y )), then M|Z is an Lp(T)-multiplier,
that is, opT[M|Z] ∈ L (Lp(T, X),Lp(T, Y )), and

‖opT[M|Z]‖L (Lp(T,X),Lp(T,Y )) ≤ ‖opR[M ]‖L (Lp(R,X),Lp(T,Y )). (2.5)

Proof. This is a special version of [28, Prop.5.7.1], which is a generalization of the scalar-valued case
originally due to DE LEEUW [19].

Combining the operator-valued transference principle with the Weis multiplier theorem, we directly
obtain the following result, which we employ when studying Fourier multipliers on the torus T.

Corollary 2.3. Let X and Y be UMD spaces, and let

M ∈ L∞(R,L (X, Y )) ∩ C(R,L (X, Y )) ∩ C1(R \ {0},L (X, Y ))

satisfy (2.3) for some r0 > 0. Then M|Z is an Lp(T)-multiplier, and

‖opT[M|Z]‖L (Lp(T,X),Lp(T,Y )) ≤ Cpr0 (2.6)

for some constant Cp > 0 only depending on p.

Proof. By Theorem 2.1, M is an Lp(R)-multiplier, and Theorem 2.2 implies that M|Z is an Lp(T)-
multiplier. Finally, estimate (2.6) follows from (2.5) and (2.4).
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3 Maximal Lp regularity for periodic evolution equations

We next show how the operator-valued transference principle (Theorem 2.2) can be utilized to estab-
lish periodic Lp estimates of the maximal regularity type for a large class of abstract linear evolution
equations based on their R-solvers, that is, the R-bounded family of solution operators to the asso-
ciated resolvent problem. We consider the abstract time-periodic boundary-value problem{

∂tu+ Au = F in T,
Bu = TG in T.

(3.1)

Here, A is an abstract (differential) operator, B is a boundary (differential) operator and T plays
the role of a trace operator. Using this notion, we avoid the introduction of suitable trace classes,
whose identification strongly relies on the underlying function spaces. We show that the existence of a
unique solution to (3.1) can be derived from suitable properties of the associated generalized resolvent
problem {

iσw + Aw = f,

Bw = Tg,
(3.2)

for σ ∈ R. More precisely, while for small k the existence of a priori bounds in a suitable func-
tional framework is sufficient, for large k we require the existence of R-solvers, that is, a functional
framework such that the solution operator satisfies suitable R-bounds. As we shall also see in the
examples of the subsequent sections, this lack of R-bounds for the whole line often appears in appli-
cations. Moreover, the presented approach allows to use different function spaces for different modes,
which can be a useful and necessary modification; see also Theorem 5.2 below, where the zero-order
mode requires separate treatment.

Theorem 3.1. Let X , Y , Z and W be UMD spaces such that X and W are continuously embedded
into Y . Assume that A ∈ L (X, Y ), B ∈ L (X,Z) and T ∈ L (W,Z). Let γ0 ∈ R, β ∈ [0, 1],
and let

A ∈ C1(R \ (−γ0, γ0),L (Y × Y ×W,X))

be an operator such that for all σ ∈ R \ (−γ0, γ0) and all (f, g) ∈ Y × W , the function w =
A(σ)(f, σβg, g) is the unique solution to the generalized resolvent problem (3.2). Assume the validity
of the R-bounds

RL (Y×Y×W,X)({(σ
d

dσ
)`A(σ) | σ ∈ R \ (−γ0, γ0)}) ≤ r0, (3.3)

RL (Y×Y×W,Y )({(σ
d

dσ
)`(iσA(σ)) | σ ∈ R \ (−γ0, γ0)}) ≤ r0 (3.4)

for ` = 0, 1 and some constant r0 > 0.

Moreover, for k ∈ Z with |k| ≤ k0 := max{k ∈ Z | k ≤ γ0}, let Xk, Yk, Zk andWk be Banach
spaces such that (ikI + A) ∈ L (Xk,Yk), B ∈ L (Xk,Zk) and T ∈ L (Wk,Zk), and such that
for all (f, g) ∈ Yk ×Wk there exists a unique solution w ∈ Xk to (3.2) with σ = k such that

‖w‖Xk ≤ Ck(‖f‖Yk + ‖g‖Wk
) (3.5)

for some constant Ck > 0.

Then for any p ∈ (1,∞) and (F,G) defined by

F (t) =

k0∑
k=−k0

Fke
ikt + Fh(t), G(t) =

k0∑
k=−k0

Gke
ikt +Gh(t), (3.6)
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with (Fk, Gk) ∈ Yk×Wk for k ∈ Z, |k| ≤ k0, and (Fh, Gh) ∈ Lp(T;Y )×(Lp(T,W )∩Hβ
p (T, Y ))

such that (FT[Fh](k),FT[Gh](k)) = 0 for all |k| ≤ k0, there exists a unique element

(u−k0 , . . . , uk0 , uh) ∈ X−k0 × · · · × Xk0 × (Lp(T, X) ∩ H1
p(T, Y )) (3.7)

with FT[uh](k) = 0 for |k| ≤ k0, such that

u(t) :=

k0∑
k=−k0

uke
ikt + uh(t) (3.8)

is the unique solution to the time-periodic problem (3.1), and

‖uk‖Xk ≤ Ck(‖Fk‖Yk + ‖Gk‖Wk
) (3.9)

‖uh‖Lp(T,X)∩H1
p(T,Y ) ≤ C r0(‖Fh‖Lp(T,Y ) + ‖Gh‖Hβp (T,Y )∩Lp(T,W )), (3.10)

for some constant C > 0. In particular,

‖u‖ :=

k0∑
k=−k0

‖uk‖Xk + ‖uh‖Lp(T,X)∩H1
p(T,Y )

≤ C r0(‖Fh‖Lp(T,Y ) + ‖Gh‖Hβp (T,Y )∩Lp(T,W )) +

k0∑
k=−k0

Ck‖(Fk, Gk)‖Yk×Wk
.

(3.11)

Proof. Let ϕ = ϕ(σ) be a C∞(R) function which equals 1 for |σ| ≥ (γ0 + k0 + 1)/2, and equals
0 for |σ| ≤ γ0. We define u as in (3.8), where uk is the unique solution to (3.2) with σ = k and
(f, g) = (Fk, Gk) for |k| ≤ k0, and

uh = F−1
T [ϕ(k)A(k)(FT[F ](k), kβFT[G](k),FT[G](k))].

One readily verifies that u formally satisfies the time-periodic problem (3.1). Moreover, for |k| ≤ k0

we directly conclude uk ∈ Xk and estimate (3.9) since (Fk, Gk) ∈ Yk × Wk. To show that uh
also belongs to the claimed function space, first observe that ϕ(σ)A(σ) = 0 for |σ| ≤ γ0, so that
ϕA ∈ C1(R,L (Y × Y ×W,X)). From (3.3) and (3.4) it follows that

RL (Y×Y×W,X)({(σ
d

dσ
)`(ϕ(σ)A(σ)) | σ ∈ R}) ≤ ‖ϕ‖H1

∞(R)r0,

RL (Y×Y×W,Y )({(σ
d

dσ
)`(iσϕ(σ)A(σ)) | σ ∈ R}) ≤ ‖ϕ‖H1

∞(R)r0.

We can thus apply Corollary 2.3 to conclude that k 7→ ϕ(k)A(k) ∈ L (Y × Y × W,X) and
k 7→ ikϕ(k)A(k) ∈ L (Y × Y ×W,Y ) are Lp(T)-multipliers. We thus deduce uh ∈ Lp(T, X)∩
H1
p(T, Y ), and (3.10) follows from the above R-bounds together with (2.6). In total, we have shown

existence of a solution in the asserted function class.

To prove the uniqueness statement, let u be of the form (3.8) and satisfy the homogeneous equations,
that is, (3.1) with (f, g) = 0. For k ∈ Z with |k| > k0, we set uk = FT[uh](k). Then an application
of the Fourier transform to (3.1) gives {

ikuk + Auk = 0,

Buk = 0.

We have uk ∈ X for |k| > k0 and uk ∈ Xk for |k| ≤ k0, so that uk = 0 follows from the uniqueness
assumption for the respective resolvent problem. We thus conclude u = 0, which completes the
proof.
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The important case of homogeneous boundary conditions can be incorporated in the above setting
in several different manners. Of course, the simplest way is to take boundary data g = 0, but one
may also consider T = 0 as an (abstract) trace operator. Another very common way is to simply
set B = 0 and T = 0, that is, to drop the abstract boundary condition in (3.1), and to incorporate
the boundary condition in the function space X . Then (3.1) reduces to the time-periodic X-valued
ordinary differential equation

∂tu+ Au = F in T, (3.12)

and (3.2) becomes a proper resolvent problem

iσw + Aw = f. (3.13)

In this case, the statement of Theorem 3.1 also simplifies significantly, and it can be formulated using
the notion of closed linear operators.

Theorem 3.2. Let Y be a UMD space, and let A : D(A) → Y be a closed operator with domain
D(A) ⊂ Y and resolvent set ρ(A). Let γ0 ∈ R such that {iσ | σ ∈ R \ (−γ0, γ0)} ⊂ ρ(A), and
assume the validity of the R-bounds

RL (Y )

({
λ(λI− A)−1 | λ = iσ, σ ∈ R \ (−γ0, γ0)

})
≤ r0 (3.14)

for some constant r0 > 0.

Moreover, for k ∈ Z with |k| ≤ k0 := max{k ∈ Z | k ≤ γ0}, let Xk and Yk be Banach spaces
such that (ikI + A) ∈ L (Xk,Yk) is a linear homeomorphism.

Then for any p ∈ (1,∞) and F defined as in (3.6), the function u defined in (3.8) is the unique
solution to the time-periodic problem (3.12), where uk = (ikI + A)−1Fk, and

‖uh‖Lp(T,X)∩H1
p(T,Y ) ≤ C r0‖Fh‖Lp(T,Y ) (3.15)

for some constant C > 0.

Proof. We set X = D(A) ⊂ Y , equipped with the usual graph norm, which is a UMD space since
(iγ0I − A) : X → Y is a homeomorphism. We further set A(σ) = (iσI + A)−1 for |σ| ≥ γ0.
Then A(σ) is a solution operator for the resolvent problem (3.13) for |σ| ≥ γ0, and we have A ∈
C∞(R\ (−γ0, γ0),L (Y,X)) by analyticity of the resolvent mapping. Moreover, due to the identities

iσA(σ) = iσ(iσI + A)−1, σ
d

dσ
(iσA(σ)) = iσ(iσI + A)−1 + σ2(iσI + A)−2,

and the formulas from (2.2), the assumed R-bound (3.14) directly implies (3.4). Since

A(σ) = A(γ0)A(γ0)−1A(σ) =
γ0 − σ
σ
A(γ0) iσ(iσI+A)−1 +I, σ

d

dσ
A(σ) = iσ(iσI+A)−2,

and since A(γ0) is a homeomorphism in L (Y,X), we infer (3.3) from (3.14) in the same way. Now
the statement directly follows from 3.1 with W = Z =Wk = Zk = {0} and B = T = 0.
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4 The Navier–Stokes equations in a bounded periodically mov-
ing domain

Let Ω be a bounded domain in RN , N ≥ 2, whose boundary, Γ, is a compact C2 hypersurface. We
assume that for each t ∈ R there exists an injective map φ(·, t) : Ω → RN such that φ(y, 0) = 0
and φ(y, t+ 2π) = φ(y, t) for t ∈ R and y ∈ Ω; possessing the regularity

φ ∈ C0(T;C3(Ω)N) ∩ C1(T;C1(Ω)N). (4.1)

Again, we identify 2π-periodic on R with functions on T. Let Ωt be a domain in RN given by setting

Ωt = {x = y + φ(y, t) | y ∈ Ω} (t ∈ R), (4.2)

that is, Ωt is the image of the transformation Φt : Ω → RN , Φt(y) = y + φ(y, t), for t ∈ R. Notice
that Ωt is a given bounded periodically moving domain in RN such that Ωt+2π = Ωt. Let Γt be the
boundary of Ωt, which is given by Γt = {x = y + φ(y, t) | y ∈ Γ}. We consider the Navier–Stokes
equations in Ωt:

∂tu + u · ∇u−∆u +∇p = F, divu = 0 in Ωt, u|Γt = h|Γt (4.3)

for t ∈ (0, 2π). Here, u = (u1, . . . , uN)> is an unknown velocity field, M> being the trans-
posed M , p an unknown pressure field, F = (F1, . . . , FN)> a prescribed external force, and h =
(h1, . . . , hN)> a velocity field that prescribes the boundary velocity. Assume that F(t+ 2π) = F(t)
and h(t + 2π) = h(t) for any t ∈ R. Then system (4.3) describes the flow of an incompressible
viscous fluid around a periodically moving body, subject to a time-periodic external force and with pre-
scribed time-periodic boundary conditions. Note that a natural choice for h would be the flow velocity
associated with the transformation Φt, which means that the fluid particles adhere to the boundary.
This choice corresponds to a no-slip condition, which we further discuss in Remark 4.5 below.

We transform (4.3) into a system in Ω by using the change of variables induced by Φt, namely x =
y + φ(y, t). For this purpose, we assume that

‖φ‖L∞(T,H3
∞(Ω)) + ‖∂tφ‖L∞(T,H1

∞(Ω)) < ε0 (4.4)

with some small number ε0 > 0. By this smallness assumption, we may assume the existence of the
inverse transformation: y = x+ψ(x, t). The associated Jacobi matrix ∂(t, y)/∂(t, x) is given by the
formulas:

∂t

∂t
= 1,

∂t

∂xj
= 0,

∂y`
∂t

=
∂ψ`
∂t

,
∂y`
∂xj

= δ`j +
∂ψ`
∂xj

for j, ` = 1, . . . , N . Set a`0(y, t) = (∂ψ`/∂t)(y + φ(y, t), t), and a`j(y, t) = (∂ψ`/∂xj)(y +
φ(y, t), t). Then partial derivatives transform as

∂f

∂t
=
∂g

∂t
+

N∑
`=1

a`0(y, t)
∂g

∂y`
,

∂f

∂xj
=

∂g

∂yj
+

N∑
`=1

a`j(y, t)
∂g

∂y`
(4.5)

for f(x, t) = g(y, t). Set J = det(∂x/∂y) = 1 + J0(y, t), which is the Jacobian of Φt. By the
L∞-bounds in (4.4) we have

sup
t∈R
‖a`j(·, t)‖H2

∞(Ω) + sup
t∈R
‖∂ta`j(·, t)‖L∞(Ω) + sup

t∈R
‖a0j(·, t)‖L∞(Ω)

+ sup
t∈R
‖J0(·, t)‖H2

∞(Ω) + sup
t∈R
‖∂tJ0(·, t)‖L∞(Ω) ≤ Cε0

(4.6)
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with some constant C > 0 for j, ` = 1, . . . , N . For simplicity, we set v(y, t) = (v1, . . . , vN)> =
u(x, t), and q(y, t) = p(x, t). By (4.5) we have

∂tu = ∂tv +
N∑
`=1

a`0
∂v

∂y`
, u · ∇u = v · (I + A)∇v,

∆u = ∆v +
N∑
`=1

(a`j + aj`)
∂2v

∂y`∂yj
+

N∑
j,`,m=1

a`jamj
∂2v

∂y`∂ym

+
N∑

`,m=1

(
∂am`
∂y`

+
N∑
j=1

a`j
∂amj
∂y`

)
∂v

∂ym
,

divu = J−1{div v + div (J0v) +
N∑

j,`=1

∂

∂y`
(a`jJvj)}. ∇p = (I + A)∇q, (4.7)

where A is an (N × N)-matrix whose (j, k)-th component is ajk. Setting w` = v` + J0v` +∑N
j=1 a`jJvj , we have Jdivu = divw with w = (w1, . . . , wN)>. Notice that w = (I + J0I +

A>J)v. In view of (4.6), choosing ε > 0, we see that there exists an (N ×N)-matrix B−1 such that
(I + J0I + A>J)−1 = I + B−1 and

sup
t∈R
‖B−1(·, t)‖H2

∞(Ω) ≤ Cε0, sup
t∈R
‖∂tB−1(·, t)‖L∞(Ω) ≤ Cε0. (4.8)

Summing up, we see that (4.3) is transformed to the following equations:

∂tw −∆w +∇q = G + L (w, q) + N (w), divw = 0 in Ω× T, w|Γ = H|Γ, (4.9)

where G and H are prescribed data and

L (w, q) = −∂t(B−1w)−
N∑
`=1

a`0
∂

∂y`
((I + B−1)w) + ∆(B−1w)

+
N∑
`=1

(a`j + aj`)
∂2

∂y`∂yj
((I + B−1)w) +

N∑
j,`,m=1

a`jamj
∂2

∂y`∂ym
((I + B−1)w)

+
N∑

`,m=1

(
∂am`
∂y`

+
N∑
j=1

a`j
∂amj
∂y`

)
∂

∂ym
((I + B−1)w)− A∇q

N (v) = ((I + B−1)w) · (I + A)∇((I + B−1)w).

(4.10)

Observe that, due to divw = 0 and the boundedness of Ω, for the existence of solutions to (4.9) it is
necessary that the boundary data satisfy ∫

Γ

H · n dσ = 0 (4.11)

for all t ∈ R, where n denotes the unit outer normal vector at Γ. The following theorem is our main
result in this section.

Theorem 4.1. Let 2 < p < ∞ and N < q < ∞. Then, there exists numbers ε, ε0 > 0 such
that if the condition (4.4) is valid, and if the prescribed terms G ∈ Lp(T,Lq(Ω)N) and H ∈
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H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N) satisfy the compatibility condition (4.11) as well as the smallness
condition

‖G‖Lp(T,Lq(Ω)) + ‖H‖H1
p(T,Lq(Ω)) + ‖H‖Lp(T,H2

q(Ω)) ≤ ε2,

then problem (4.9) admits a unique2 solution (w, q) with

w ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N), q ∈ Lp(T, Ĥ1
q(Ω)),

possessing the estimate

‖∂tw‖Lp(T,Lq(Ω)) + ‖w‖Lp(T,H2
q(Ω)) + ‖∇q‖Lp(T,Lq(Ω)) ≤ ε.

To prove Theorem 4.1, we consider the following linearization of equations (4.9):

∂tu−∆u +∇p = F, divu = 0 in Ω× T, u|Γ = H|Γ. (4.12)

For a maximal-regularity theorem for problem (4.12), we consider the associated resolvent problem

λw −∆w +∇p = f , divw = 0 in Ω, w|Γ = h|Γ. (4.13)

At first, we consider the case of homogeneous boundary conditions h = 0, for which we have the
following theorem, which holds for bounded and exterior domains simultaneously.

Theorem 4.2. Let 1 < q <∞ and 0 < ε < π/2. Let Ω be a bounded domain or an exterior domain
in RN (N ≥ 2) with C2 boundary. There exist operator families (S (λ)) ⊂ L (Lq(Ω)N ,H2

q(Ω)N)

and (P(λ)) ⊂ L (Lq(Ω)N , Ĥ1
q(Ω))) such that for every λ ∈ Σε \ {0} and every f ∈ Lq(Ω)N the

pair (w, p) = (S (λ)f ,P(λ)f) is the unique solution to (4.13) with h = 0 and satisfies the estimate

|λ| ‖S (λ)f‖Lq(Ω) + ‖∇2S (λ)f‖Lq(Ω) + ‖∇P(λ)f‖Lq(Ω) ≤ C‖f‖Lq(Ω) (4.14)

with some constant C > 0 depending on Ω, q and ε. Moreover, there exist constants λ0, r0 > 0,
depending on Ω, q and ε, such that

S ∈ Hol (Σε,λ0 ,L (Lq(Ω)N ,H2
q(Ω)N)), P ∈ Hol (Σε,λ0 ,L (Lq(Ω)N , Ĥ1

q(Ω))),

and
RL (Lq(Ω)N ,H2−j

q (Ω)N )({(λ∂λ)
`(λj/2S (λ)) | λ ∈ Σε,λ0}) ≤ r0,

RL (Lq(Ω)N ,Lq(Ω)N )({(λ∂λ)`(∇P(λ)) | λ ∈ Σε,λ0}) ≤ r0

for ` = 0, 1, j = 0, 1, 2. Additionally, if Ω is bounded, there exist S (0) ∈ L (Lq(Ω)N ,H2
q(Ω)N)

and P(0) ∈ L (Lq(Ω)N , Ĥ1
q(Ω)) such that (w, p) = (S (0)f ,P(0)f) is the unique solution to

(4.13) for λ = 0 and satisfies

‖S (0)f‖H2
q(Ω) + ‖∇P(0)f‖Lq(Ω) ≤ C‖f‖Lq(Ω). (4.15)

Proof. Existence of unique solutions to (4.13) satisfying (4.14) with a uniform constant C for λ ∈
Σ \ {0} was shown in [8]. The analyticity of the associated family of solution operators in Σε,λ0 for
some λ0 > 0 together with the asserted R-bounds was established in [57, Theorem 1.6] and [58,
Theorem 9.1.4]. Finally, the statement for λ = 0 follows from Fredholm’s alternative principle since
the embedding H2

q(Ω) ↪→ Lq(Ω) is compact if Ω is bounded, and the solution to (4.13) is unique.

2Note that here and in what follows, the uniqueness statement refers to uniqueness of the velocity field, but the pressure
term is usually merely unique up to a constant.
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As in the results from Section 3, in the case of non-zero boundary values, the R-solvers for the
resolvent problem (4.13) are more involved than in the situation of Theorem 4.2. To state the result,
we introduce the space

Xq = {(F1, F2, F3, F4) | F1, F2 ∈ Lq(Ω)N , F3 ∈ H1
q(Ω)N , F4 ∈ H2

q(Ω)N}.

Then we have the following result.

Theorem 4.3. Let 1 < q <∞ and 0 < ε < π/2. Let Ω be a bounded domain or an exterior domain
in RN (N ≥ 2) with C2 boundary. There exist constants λ0, r0 > 0 and operator families

S ∈ Hol (Σε,λ0 ,L (Xq(Ω),H2
q(Ω)N)), P ∈ Hol (Σε,λ0 ,L (Xq(Ω), Ĥ1

q(Ω)))

such that for any f ∈ Lq(Ω)N and h ∈ H2
q(Ω)N , satisfying

∫
Γ
h · n dσ = 0 if Ω is bounded, the

pair (w, p) defined by w = S(λ)(f , λh, λ1/2h,h) and p = P(λ)(f , λh, λ1/2h,h) is the unique
solution to (4.13), and

RL (Xq(Ω),H2−j
q (Ω)N )({(λ

d

dλ
)`(λj/2S(λ)) | λ ∈ Σε,λ0}) ≤ r0,

RL (Xq(Ω),Lq(Ω)N )({(λ
d

dλ
)`(∇P(λ)) | λ ∈ Σε,λ0}) ≤ r0

for ` = 0, 1, j = 0, 1, 2.

Proof. See [57, Theorem 1.6].

Now we can prove the following theorem on the time-periodic linear problem (4.12).

Theorem 4.4. Let 1 < p, q < ∞, and let Ω ⊂ RN be a bounded domain with C2 boundary. Then,
for any F ∈ Lp(T,Lq(Ω)N) and H ∈ H1

p(T,Lq(Ω)N) ∩ Lp(T,H2
q(Ω)N) satisfying (4.11), problem

(4.12) admits a unique solution (u, p) with

u ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N), p ∈ Lp(T, Ĥ1
q(Ω))

possessing the estimate

‖∂tu‖Lp(T,Lq(Ω)) + ‖u‖Lp(T,H2
q(Ω)) + ‖∇p‖Lp(T,Lq(Ω))

≤ C
(
‖F‖Lp(T,Lq(Ω)) + ‖∂tH‖Lp(T,Lq(Ω)) + ‖H‖Lp(T,H2

q(Ω))

)
.

(4.16)

Proof. We first consider the case H = 0, for which proceed analogously to the proof of Theorem 3.1.
Let ϕ = ϕ(σ) be a C∞(R) function that equals 1 for |σ| ≥ λ0 + 1/2 and 0 for |σ| ≤ λ0 + 1/4. Set

uh = F−1
T [S (ik)ϕ(k)FT[F](k)], ph = F−1

T [P(ik)ϕ(k)FT[F](k)].

Then uh and ph satisfy the equations

∂tuh − µ∆uh +∇ph = Fh, divuh = 0 in Ω× T, uh|Γ = 0,

where we have set Fh = F−1
T [ϕ(k)FT[F](k)]. Moreover, arguing as for the proof of Theorem 3.1,

we can use the R-bounds from Theorem 4.2 and invoke Corollary 2.3 to deduce

‖∂tuh‖Lp(T,Lq(Ω)) + ‖uh‖Lp(T,H2
q(Ω)) + ‖∇ph‖Lp(T,Lq(Ω)) ≤ C‖Fh‖Lp(T,Lq(Ω)) ≤ C‖F‖Lp(T,Lq(Ω)).

(4.17)
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Now, in view of Theorem 4.2, we set

u(t) = uh(t) +
∑
|k|≤λ0

eiktS (ik)FT[f ](k), p(t) = ph(t) +
∑
|k|≤λ0

eiktP(ik)FT[f ](k). (4.18)

Then, u and p satisfy (4.12) with H = 0, and from (4.14), (4.15) and (4.17) we conclude the estimate

‖∂tu‖Lp(T,Lq(Ω)) + ‖u‖Lp(T,H2
q(Ω)) + ‖∇p‖Lp(T,Lq(Ω)) ≤ C‖F‖Lp(T,Lq(Ω)). (4.19)

Thus, we have shown existence for H = 0.

Now consider arbitrary H ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N) satisfying (4.11). Fix λ1 > λ0 with
λ0 from Theorem 4.3. We use the R-bounded solution operators S andP from Theorem 4.3 to define

u1 = F−1
T [S(ik + λ1)

(
0, (ik + λ1)H̃k, (ik + λ1)1/2H̃k, H̃k

)
],

p1 = F−1
T [P(ik + λ1)

(
0, (ik + λ1)H̃k, (ik + λ1)1/2H̃k, H̃k

)
],

where H̃k = F [H](k). Then (u1, p1) is a solution to the auxiliary problem

∂tu1 + λ1u1 − µ∆u1 +∇p1 = 0, divu1 = 0 in Ω× T, u1|Γ = H,

and by the multiplier theorem from Corollary 2.3, we have

u1 ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N), p1 ∈ Lp(T, Ĥ1
q(Ω))

and the estimate

‖∂tu1‖Lp(T,Lq(Ω)) +‖u1‖Lp(T,H2
q(Ω)) +‖∇p1‖Lp(T,Lq(Ω)) ≤ C(‖∂tH‖Lp(T,Lq(Ω)) +‖H‖Lp(T,H2

q(Ω))).

Here, we have used the interpolation inequality

‖H‖
H

1/2
p (T,H1

q(Ω))
≤ C(‖∂tH‖Lp(T,Lq(Ω)) + ‖H‖Lp(T,H2

q(Ω))).

as well as the trivial estimate

‖F−1
T [(ik + λ1)H̃k]‖Lp(T,Lq(Ω)) ≤ ‖F−1

T [ikH̃k]‖Lp(T,Lq(Ω)) + λ1‖F−1
T [H̃k]‖Lp(T,Lq(Ω))

= ‖∂tH‖Lp(T,Lq(Ω)) + λ1‖H‖Lp(T,Lq(Ω)).

Now consider the problem

∂tu2 − µ∆u2 +∇p2 = F + λ1u1, divu2 = 0 in Ω× T, u2|Γ = 0.

As shown in the first part of the proof, there exists a solution (u2, q2) in the claimed function class and
satisfying (4.19) with F replaced with F + λ1u1. Then (u, q) = (u1 + u2, q1 + q2) is a solution to
(4.12), belongs to the correct function class, and satisfies estimate (4.16).

For the uniqueness statement, let (u, p) be in the considered function class and satisfy (4.12) with
F = 0 and H = 0. Then, for each k ∈ Z, setting ũk = F [u](k) and p̃k = FT[p](k), we see that
ũk ∈ H2

q(Ω)3 and p̃k ∈ Ĥ1
q(Ω) satisfy the homogeneous equations

ikũk − µ∆ũk +∇p̃k = 0, div ũk = 0 in Ω, ũk|Γ = 0.

Thus, the uniqueness statement from Theorem 4.2 yields that ũk = ∇p̃k = 0, which shows that
u = ∇p = 0. This completes the proof of Theorem 5.5.
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Proof of Theorem 4.1. We conclude the proof using the contraction mapping principle in the underly-
ing space Iε defined by

Iε = {(u, p) |u ∈ H1
p(T,Lq(Ω)) ∩ Lp(T,H2

q(Ω)N), p ∈ Lp(T, Ĥ1
q(Ω)),

E(u, p) := ‖∂tu‖Lp(T,Lq(Ω)) + ‖u‖Lp(T,H2
q(Ω)) + ‖∇p‖Lp(T,Lq(Ω)) ≤ ε}.

Given (u, p) ∈ Iε, let v and q satisfy

∂tv −∆v +∇q = G + L (u, p) + N (u), div v = 0 in Ω× T, v|Γ = H|Γ. (4.20)

The existence of (v, q) follows from Theorem 4.4 if we can show that the forcing term in (4.20) belongs
to Lp(T,Lq(Ω)N). Firstly, by (4.4), (4.6) and (4.8) we have

‖L (u, p)‖Lp(T,Lq(Ω)) ≤ CεE(u, p). (4.21)

In a similar way, noting that N < q <∞, by Sobolev’s imbedding theorem we have

‖N (u(·, t))‖Lq(Ω) ≤ C‖u(·, t)‖Lq(Ω)‖u(·, t)‖H2
q(Ω). (4.22)

By real interpolation theorem, we know that

H1
p(T,Lq(Ω)) ∩ Lp(T,H2

q(Ω)) ↪→ C0(T, B2(1−1/p)
q,p (Ω)),

sup
t∈T
‖f(·, t)‖

B
2(1−1/p)
q,p (Ω)

≤ C(‖f‖H1
p(T,Lq(Ω)) + ‖f‖Lp(T,H2

q(Ω)))
(4.23)

since we have p > 2, and we obtain

‖f‖L∞(T,Lq(Ω)) ≤ C‖f‖
L∞(T,B2(1−1/p)

q,p (Ω))
≤ C(‖f‖H1

p(T,Lq(Ω)) + ‖f‖Lp(T,H2
q(Ω))). (4.24)

Therefore,
‖N (u)‖Lp(T,Lq(Ω)) ≤ CE(u, p)2. (4.25)

Combining estimates (4.21) and (4.25) with the smallness assumption on G and H, choosing ε0 ≤
Cε and applying Theorem 4.4 gives the unique existence of a solution (v, q) of (4.20) with

v ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N), q ∈ Lp(T, Ĥ1
q(Ω)),

possessing the estimate

E(v, q) ≤ C(ε2 + εE(u, p) + E(u, p)2). (4.26)

Since we assume that E(u, p) ≤ ε, by (4.26) we have E(v, q) ≤ 3Cε2. Therefore, choosing ε > 0
so small that 3Cε ≤ 1, we have E(v, q) ≤ ε, so that (v, q) ∈ Iε. Thus, the map Ξ acting on
(u, p) ∈ Iε by setting Ξ(u, p) = (v, q) is a map from Iε into Iε.
We next prove that Ξ is a contraction map. Let (ui, pi) (i = 1.2) be any two elements of Iε and set
(vi, qi) = Ξ(ui, pi). Since

N (u1)−N (u2) = ((I + B−1)(u1 − u2)) · (I + A)∇((I + B−1)u1)

+ ((I + B−1)u2) · (I + A)∇((I + B−1)(u1 − u2)),

by Sobolev’s inequality and the assumption N < q <∞, we have

‖N (u1)−N (u2)‖Lq(Ω)) ≤ C(‖u1 − u2‖Lq(Ω)‖u1‖H2
q(Ω) + ‖u2‖Lq(Ω)‖u1 − u2‖H2

q(Ω)).
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Thus, from (4.24) we deduce

‖N (u1)−N (u2)‖Lp(T,Lq(Ω)) ≤ C(‖(u1,u2)‖H1
p(T,Lq(Ω)) + ‖(u1,u2)‖Lp(T,H2

q(Ω)))

× (‖u1 − u2‖H1
p(T,Lq(Ω)) + ‖u1 − u2‖Lp(T,H2

q(Ω)))

≤ CεE(u1 − u2, p1 − p2). (4.27)

Since L is a linear operation, by (4.21), we have

‖L (u1 − u2, p1 − p2)‖Lp(T,Lq(Ω)) ≤ CεE(u1 − u2, p1 − p2). (4.28)

Moreover, v = v1 − v2 and q = q1 − q2 satisfy the equations

∂tv−∆v+∇q = L (u1−u2, p1−p2)+(N (u1)−N (u2)), div v = 0 in Ω× T, v|Γ = 0.

Applying Theorem 4.4 and using (4.27) and (4.28) now gives that

E(v1 − v2, q1 − q2) ≤ CεE(u1 − u2, p1 − p2).

Choosing ε > 0 smaller if necessary, we may assume that Cε < 1, and so Ξ is a contraction map on
Iε, which yields the unique existence of (u, p) ∈ Iε such that (u, p) = Ξ(u, p). Obviously, (u, p) is
the required solution of (4.9). This completes the proof of Theorem 4.1.

Remark 4.5. In the case of no-slip boundary conditions, the fluid particles at the boundary are at-
tached to the body, so that the fluid velocity coincides with the velocity of boundary particles. Then,
the boundary data h in (4.3) are given by

h(x, t) = ∂tΦt(y) = ∂tφ(t, y),

where x = Φt(y) = y + φ(y, t), and in the formulation (4.9) on a time-independent domain, this
corresponds to boundary data

H = (I + J0I + A>J)∂tφ.

Therefore, the assumptions on H in Theorem 4.1 are additional regularity and smallness assumptions
on φ in this case. Moreover, the compatibility condition (4.11) is satisfied if and only if Φt preserves
the volume of Ω.

5 On periodic Navier–Stokes flow around a body at rest

5.1 Problem and main results

Let Ω be an exterior domain in R3, that is, a domain that is the complement of a compact set. We
assume that its boundary Γ is a C2 hypersurface. Let b > 0 be a suffciently large number such that
Ωc ⊂ Bb, where Ωc = R3 \ Ω and Bb = {x ∈ RN | |x| < b}. We further set Sb = {x ∈ RN |
|x| = b}. We consider the Navier–Stokes equations in Ω:

∂tu + u · ∇u− µ∆u +∇p = F, divu = 0 in Ω, u|Γ = h|Γ. (5.1)

Here, ∂j = ∂/∂xj , x = (x1, x2, x3) ∈ R3, u = (u1, u2, u3)> is an unknown velocity field, p an
unknown pressure field, F = (F1, . . . , FN)> a prescribed external force, and h = (h1, . . . , hN)>

are prescribed boundary data. Assume that F(t+ 2π) = F(t) and h(t+ 2π) = h(t) for any t ∈ R.
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Then (5.1) describes the fluid flow around a body, subject to time-periodic external forcing F and with
boundary data h.

Given any time-periodic function f = f(x, t), with period 2π, we write

fS(x) =

∫
T
f(x, t) dt =

1

2π

∫ 2π

0

f(x, t) dt, f⊥(x, t) = f(x, t)− fS(x), (5.2)

and fS and f⊥ are called the stationary part of f and the oscillatory part of f , respectively. By means
of this decomposition, we divide the data and the solution into two parts, which have different asymp-
totic properties as |x| → ∞. To quantify this spatial decay, we set

< fS >`= sup
x∈Ω
|fS(x)|(1 + |x|)`, < f⊥ >p,`= sup

x∈Ω
‖f⊥(x, ·)‖Lp(T)(1 + |x|)`

for ` ∈ R and p ∈ (1,∞). We shall prove the following theorem.

Theorem 5.1. Let 2 < p < ∞ and 3 < q < ∞. Assume that F = FS + F⊥ with FS = divGS

and F⊥ = divG⊥. Then there exists a small constant ε > 0 depending on p and q such that if F
and h ∈ H1

p(T,Lq(Ω)3) ∩ Lp(T,H2
q(Ω)3) satisfy the smallness condition

< FS >3 + < GS >2 + < F⊥ >p,2 + < G⊥ >p,1 +‖h‖H1
p(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω)) < ε2,
(5.3)

then problem (5.1) admits a unique solution (u, p) such that u = uS + u⊥ and p = pS + p⊥ with

uS ∈ H2
q(Ω)3, u⊥ ∈ H1

p(T,Lq(Ω)) ∩ Lp(T,H2
q(Ω)), pS ∈ H1

q(Ω), p⊥ ∈ Lp(T, Ĥ1
q(Ω))

satisfying the estimate

< uS >1 + < ∇uS >2 +‖uS‖H2
q(Ω) + ‖pS‖H1

q(Ω)

+ < u⊥ >p,1 + < ∇u⊥ >p,2 +‖u⊥‖Lp(T,H2
q(Ω)) + ‖∂tu⊥‖Lp(T,Lq(Ω)) + ‖∇p⊥‖Lp(T,Lq(Ω)) ≤ ε.

Our proof of Theorem 5.1 is based on the study of the associated linearized system, the time-periodic
Stokes problem

∂tv − µ∆v +∇p = f , div v = 0 in Ω× T, v|Γ = h. (5.4)

We shall derive the following theorem, which ensures existence of a unique solution to (5.4) in a
framework of spatially weighted spaces. For shorter notation, we set Lq,3b(Ω) = {f ∈ Lq(Ω) |
supp f ⊂ B3b}.

Theorem 5.2. Let 1 < p < ∞, 3 < q < ∞ and ` ∈ (0, 3]. For all f = fS + f⊥ ∈ Lp(T,Lq(Ω)3)
such that fS = divGS + gS and f⊥ = divG⊥ + g⊥ with g = gS + g⊥ ∈ Lp(T,Lq,3b(Ω)3) and

< GS >2 + < divGS >3 + < G⊥ >p,` + < divG⊥ >p,`+1<∞,

problem (5.4) admits a unique solution (v, p) with

v ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p ∈ Lp(T, Ĥ1
q(Ω)),

possessing the estimate

‖vS‖H2
q(Ω)+ < vS >1 + < ∇vS >2 +‖pS‖H1

q(Ω)+ < pS >2

+ ‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω))+ < v⊥ >p,` + < ∇v⊥ >p,`+1 +‖∇p⊥‖Lp(T,Lq(Ω))

≤ C(< divGS >3 + < GS >2 + < divG⊥ >p,1+` + < G⊥ >p,`

+ ‖g‖Lp(T,Lq(Ω)) + ‖h‖H1
p(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω))).

(5.5)
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For the proof of this theorem, we split (5.4) into two separate problems by means of the decomposition
(5.2). In the following subsections these problems are analyzed independently of each other in the
case of vanishing boundary data. In Subsection 5.4 we return to the original linear and nonlinear
problems (5.4) and (5.1) and complete the proofs of Theorems 5.1 and 5.2.

5.2 Stationary solutions to the Stokes problem

Here we examine time-independent solutions to (5.4) with vanishing boundary data h = 0, that is,
solutions (u, p) to the stationary problem

−µ∆u +∇p = divF + g, divu = 0 in Ω, u|Γ = 0. (5.6)

We shall derive the following theorem.

Theorem 5.3. Let 3 < q < ∞. If F satisfies the condition < divF >3 + < F >2< ∞ and
g ∈ Lq,3b(Ω)3, then problem (5.6) admits a unique solution (u, p) ∈ H2

q(Ω)3 × H1
q(Ω) possessing

the estimate:

‖u‖H2
q(Ω)+ < u >1 + < ∇u >2 +‖p‖H1

q(Ω)+ < p >2≤ C(< divF >3 + < F >2 +‖g‖Lq(Ω))
(5.7)

with some constant C > 0.

For the proof, we first consider the Stokes equations in R3:

−µ∆u +∇p = f , divu = 0 in R3. (5.8)

As is well-known (cf. Galdi [25, pp.239-240]), there exist fundamental solutions U = (Uij(x)) and
q = (q1(x), q2(x), q3(x))> of equations (5.8) with

Uij(x) = − 1

8πµ

( δij
|x|

+
xixj
|x|3

)
, qj(x) =

1

4π

xj
|x|3

. (5.9)

If we set

u(x) = U ∗ f(x) :=

∫
R3

U(y)f(x− y) dy, p(x) = q ∗ f :=

∫
R3

q(y) · f(x− y) dy, (5.10)

then, u and p formally satisfy equations (5.8). We prove the following lemma.

Lemma 5.4. Let 3 < q <∞.
(1) Let F be a function satisfying < divF >3 + < F >2< ∞ and set u = U ∗ (divF) and
p = q ∗ (divF). Then, we have

‖u‖H2
q(R3) + ‖p‖H1

q(R3)+ < u >1 + < ∇u >2 + < p >2 ≤ C(< F >2 + < divF >3)

with some constant C > 0.
(2) Let g ∈ Lq(R3) such that g vanishes for |x| > b with some constant b > 0. Let v = U ∗ g and
q = q ∗ g. Then, we have

‖v‖H2
q(R3) + ‖q‖H1

q(R3)+ < v >1 + < ∇v >2 + < q >2 ≤ C‖g‖Lq(R3)

for some constant C .
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Proof. (1) The theory of singular integrals yields that

‖∇2u‖Lq(R3) + ‖∇p‖Lq(R3) ≤ C‖divF‖Lq(R3) ≤ Cq < divF >3;

‖∇u‖Lq(R3) + ‖p‖Lq(R3) ≤ C‖F‖Lq(R3) ≤ Cq < F >2 .

For notational simplicity, set γ =< divF >3 + < F >2. By the Gaussian divergence theorem, we
write

u(x) =

∫
|y|≤|x|/2

U(y)(divF)(x− y) dy −
∫
|y|=|x|/2

U(y)
y

|y|
· F(x− y) dω

+

∫
|x|/2≤|y|≤2|x|

∇U(y)F(x− y) dy +

∫
|y|≥2|x|

∇U(y)F(x− y) dy.

Noting that |x− y| ≥ |x|/2 for |y| ≤ |x|/2, |x− y| ≤ 3|x| for |x|/2 ≤ |y| ≤ 2|x|, and |x− y| ≥
|y|/2 for |y| ≥ 2|x|, by (5.9) we have

|u(x)| ≤ Cγ
{

(1 + |x|)−3

∫
|y|≤|x|/2

|y|−1 dy + |x|−1(1 + |x|)−2

∫
|y|=|x|/2

dω

+ |x|−2

∫
|z|≤3|x|

|z|−2 dz +

∫
|y|≥2|x|

|y|−4 dy
}
≤ Cγ|x|−1

for x 6= 0. When |x| ≤ 1, noting that |(divF)(x − y)| ≤ γ for |y| ≤ 2 and |(divF)(x − y)| ≤
Cγ|y|−3 for |y| ≥ 2, we have

|u(x)| ≤
∫
|y|≤2

|U(y)(divF)(x− y)| dy +

∫
|y|≥2

|U(y)(divF)(x− y)| dy

≤ Cγ
{∫
|y|≤2

|y|−1 dy +

∫
|y|≥2

|y|−4 dy
}
≤ Cγ.

In total, we thus have < u >1≤ Cγ. In particular, noting that 3 < q <∞, we obtain

‖u‖Lq(R3) ≤ Cq < u >1≤ Cqγ.

Similarly to before, we proceed with the estimate of∇u and write

∇u(x) =

∫
|y|≤|x|/2

∇U(y)(divF)(x− y) dy −
∫
|y|=|x|/2

∇U(y)
y

|y|
· F(x− y) dω

+

∫
|x|/2≤|y|≤2|x|

∇2U(y)F(x− y) dy +

∫
|y|≥2|x|

∇2U(y)F(x− y) dy.

Then, we have

|∇u(x)| ≤ Cγ
{

(1 + |x|)−3

∫
|y|≤|x|/2

|y|−2 dy + |x|−2(1 + |x|)−2

∫
|y|=|x|/2

dω

+ |x|−3

∫
|z|≤3|x|

|z|−2 dz +

∫
|y|≥2|x|

|y|−5 dy
}
≤ Cγ|x|−2

for x 6= 0. When |x| ≤ 1, arguing as above, we have

|∇u(x)| ≤
∫
|y|≤2

|∇U(y)(divF)(x− y)| dy +

∫
|y|≥2

|∇U(y)(divF)(x− y)| dy

≤ Cγ
{∫
|y|≤2

|y|−2 dy +

∫
|y|≥2

|y|−5 dy
}
≤ Cγ.
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Summing up, we have < ∇u >2≤ Cγ.

In the very same way, we can use |q(y)| ≤ C|y|−2 and |∇q(y)| ≤ C|y|−3 for y 6= 0 to deduce
< p >2≤ Cγ. In particular, ‖p‖Lq(R3) ≤ Cq < p >2≤ Cqγ, because 3 < q < ∞. This completes
the proof of the first part of Lemma 5.4.

(2) As before, the theory of singular integral operators yields that

‖∇2v‖Lq(R3) + ‖∇q‖Lq(R3) ≤ C‖g‖Lq(R3). (5.11)

By estimates for weak singular integral operators (cf. [25, II.11]), we further have

‖∇v‖Lq(B2b) + ‖v‖Lq(B2b) + ‖q‖Lq(B2b) ≤ Cb,q‖g‖Lq(R3). (5.12)

Since |U(x)| ≤ C|x|−1, |∇U(x)| ≤ C|x|−2 and |q(x)| ≤ C|x|−2, noting that g(y) = 0 for
|y| > b, for |x| > 2b we have

|v(x)| ≤ C

∫
|y|<b

|g(y)|
|x− y|

dy ≤ Cb|x|−1

∫
|y|<b
|g(y)| dy ≤ Cb|x|−1‖g‖Lq(R3);

|∇v(x)| ≤ C

∫
|y|<b

|g(y)|
|x− y|2

dy ≤ Cb|x|−2

∫
|y|<b
|g(y)| dy ≤ Cb|x|−2‖g‖Lq(R3);

|q(x)| ≤ C

∫
|y|<b

|g(y)|
|x− y|2

dy ≤ Cb|x|−2

∫
|y|<b
|g(y)| dy ≤ Cb|x|−2‖g‖Lq(R3).

(5.13)

In particular, setting (B2b)
c = R3 \B2b, we conclude

‖v‖Lq((B2b)c) + ‖∇v‖Lq((B2b)c) + ‖q‖Lq((B2b)c) ≤ Cb,q‖g‖Lq(R3),

because 3 < q <∞, which, combined with (5.11) and (5.12), yields that

‖v‖H2
q(R3) + ‖q‖H1

q(R3) ≤ Cq,b‖g‖Lq(R3).

By Sobolev’s inequality, we have

sup
|x|≤2b

(1 + |x|)|v(x)|+ sup
|x|≤2b

(1 + |x|)2|∇v(x)|+ sup
|x|≤2b

(1 + |x|)2|q(x)|

≤ C(‖v‖H2
q(R3) + ‖q‖H1

q(R3)) ≤ Cq,b‖g‖Lq(R3),

which, combined with (5.13), yields that

< v >1 + < ∇v >2 + < q >2≤ Cq,b‖g‖Lq(R3).

This completes the proof of the second part of Lemma 5.4.

Proof of Theorem 5.3. To construct a solution operator for problem (5.6), we first consider the case
where f ∈ Lq,3b(Ω)3. Firstly, let f0 be the zero extension of f to the complement of Ω, that is, we
set f0(x) = f(x) for x ∈ Ω and f0(x) = 0 for x 6∈ Ω. Let T0f0 = U ∗ f0 and P0f0 = q ∗ f0.
Secondly, let fb be the restriction of f ∈ Lq,3b(Ω)3 to Ω4b, and let A0 and B0 be the operators acting
on fb ∈ Lq(Ω4b)

3 such thatA0fb ∈ H2
q(Ω4b)

3, B0fb ∈ Ĥ1
q(Ω4b) satisfy the equations

−µ∆A0fb +∇B0fb = fb, divA0f = 0 in Ω4b, A0fb|Γ = A0fb|S4b
= 0, (5.14)
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and possess the estimate

‖A0fb‖H2
q(Ω4b) + ‖B0fb‖Ĥ1

q(Ω4b)
≤ C‖fb‖Lq(Ω4b). (5.15)

Since B0fb is only defined up to a constant, choosing a constant suitably, we may assume that∫
Ω4b

(P0f0 − B0fb) dx = 0. (5.16)

In what follows, let ϕ be a function in C∞(R3) that equals 1 for x ∈ B2b and 0 for x 6∈ B3b, and let B
be the Bogovskiı̆ operator. For f ∈ Lq,3b(Ω)3, let

V0f = (1− ϕ)T0f0 + ϕA0fb + B[(∇ϕ)(T0f0 −A0fb)], W0f = (1− ϕ)P0f0 + ϕB0fb. (5.17)

Inserting these formulas into equations (5.6), we have

−µ∆V0f +∇W0f = f +R1f , divV0f = 0 in Ω, V0f |Γ = 0, (5.18)

where
R1f = 2µ(∇ϕ) · (∇T0f0 −∇A0fb) + µ(∆ϕ)(T0f0 −A0fb)

− µ∆B[(∇ϕ) · (T0f0 −A0fb)]− (∇ϕ)(P0f0 − B0fb).

Employing the same arguments as in [29] and [33], we shall show that the inverse operator (I +
R1)−1 ∈ L (Lq,3b(Ω)3) exists and

‖(I +R1)−1f‖Lq(Ω) ≤ C‖f‖Lq(Ω) (5.19)

for any f ∈ Lq,3b(Ω)3. Postponing proving (5.19), we continue the proof of Theorem 5.3. Setting

U0f := V0(I +R1)−1f

= (1− ϕ)T0((I +R1)−1f)0 + ϕA0((I +R1)−1f)b

+ B[(∇ϕ)(T0((I +R1)−1f)0 −A0((I +R1)−1f))b],

Q0f :=W0(I +R1)−1f = (1− ϕ)P ((I +R1)−1f)0 + ϕB0((I +R1)−1f)b,

we see that (u, p) = (U0f ,Q0f) is a solution to problem (5.6). Moreover, by (5.19), Lemma 5.4 (2)
and (5.15), we have

sup
x∈Ω

(1 + |x|)|U0f(x)| ≤ C‖f‖Lq(Ω), sup
x∈Ω

(1 + |x|)2|∇U0f(x)| ≤ C‖f‖Lq(Ω),

sup
x∈Ω

(1 + |x|)2|Q0f(x)| ≤ C‖f‖Lq(Ω), ‖U0f‖H2
q(Ω) + ‖Q0f‖H1

q(Ω) ≤ C‖f‖Lq(Ω).
(5.20)

We now consider the case where f = divF + g with < divF >3 + < F >2< ∞ and g ∈
Lq,3b(Ω). We write f = div ((1− ϕ)F) + h with h = ϕ divF + (∇ϕ) · F + g. Let

u = (1− ϕ)T0f0 + B[(∇ϕ)T0f0], p = (1− ϕ)P0f0.

Notice that f0 = div ((1− ϕ)F) + h0. We see that u and p satisfy the equations:

−µ∆u +∇p = (1− ϕ)f0 +R2f , divu = 0 in Ω, u|Γ = 0,

where we have set

R2f = 2µ(∇ϕ) · ∇T0f0 + µ(∆ϕ)T0f0 − µ∆B[(∇ϕ) · T0f0]− (∇ϕ)P0f0.
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Moreover, by Lemma 5.4, we have

sup
x∈Ω

(1 + |x|)|u(x)|+ sup
x∈Ω

(1 + |x|)2|∇u(x)|+ sup
x∈Ω

(1 + |x|)2|p(x)|+ ‖u‖H2
q(Ω) + ‖p‖H1

q(Ω)

≤ C(< divF >3 + < F >2 +‖g‖Lq(Ω)).

Notice that
‖R2f‖Lq(Ω) ≤ C(< divF >3 + < F >2 +‖g‖Lq(Ω))

and suppR2f ⊂ B3b. Thus, if we define operators S0 and P0 acting on f by setting

S0f = (1− ϕ)T0f0 + B[(∇ϕ) · T0f0] + U0(ϕf +R2f),

P0f = (1− ϕ)P0f0 +Q0(ϕf +R2f),

then, u = S0f and p = P0f satisfy (5.6), and combining the estimates above gives that

sup
x∈Ω

(1 + |x|)|(S0f)(x)|+ sup
x∈Ω

(1 + |x|)2|(∇S0f)(x)|+ sup
x∈Ω

(1 + |x|)2|(P0f)(x)|

+ ‖S0f‖H2
q(Ω) + ‖P0f‖H1

q(Ω) ≤ C(< divF >3 + < F >2 +‖g‖Lq(Ω)),

which completes the proof of Theorem 5.3.

Proof of existence of (I +R1)−1. In what follows, we shall prove (5.19). In view of (5.16) and since
∇(P0f0 − B0fb) ∈ Lq(Ω4b)

3, we have (P0f0 − B0fb) ∈ H1
q(Ω4b). Thus, R1f ∈ H1

q(Ω)3 and
suppR1f ⊂ D2b,3b, where D2b,3b = {x ∈ R3 | 2b ≤ |x| ≤ 3b}. Thus, by Rellich’s compactness
theorem,R1 is a compact operator on Lq,3b(Ω)3. Let Ker (I+R1) = {f ∈ Lq,3b(Ω)3 | (I+R1)f =
0}. By Fredholm’s alternative principle, if Ker (I+R1) = {0}, then I+R1 is invertible, and therefore
we have (5.19). To verify this, we choose f ∈ Ker(I +R1) arbitrarily, and we shall show that f = 0.
Since (I + R1)f = 0, we have f = −R1f ∈ H1

q(Ω) and supp f ⊂ D2b,3b. Let u = V0f and
p =W0f . Then by (5.18) we see that

−µ∆u +∇p = 0, divu = 0 in Ω, u|Γ = 0. (5.21)

Since 3 < q < ∞ and u ∈ H2
q(Ω)3 and p ∈ Ĥ1

q(Ω), we have u ∈ H2
2,loc(Ω) and p ∈ H1

2,loc(Ω).
Let ψ be a C∞(R3) function which equals 1 for |x| < 1 and 0 for |x| > 2 and set ψR(x) = ψ(x/R)
for R > 4b. From (5.21) it follows that

0 = (−µ∆u +∇p, ψRu) = µ(∇u, ψR∇u) + µ(∇u, (∇ψR)u)− (p, (∇ψR) · u). (5.22)

Using Lemma 5.4 (2), we obtain

|u(x)| ≤ C|x|−1, |∇u(x)| ≤ C|x|−2, |p| ≤ C|x|−2

for |x| > 4b, and so we have

|(∇u, (∇ψR)u)| ≤ C‖∇ψ‖L∞(R3)R
−1

∫
2R≤|x|≤3R

|x|−3 dx = O(R−1)→ 0,

|(p, (∇ψR)u)| ≤ C‖∇ψ‖L∞(R3)R
−1

∫
2R≤|x|≤3R

|x|−3 dx = O(R−1)→ 0

as R → ∞, and so taking R → ∞ in (5.22), we have ‖∇u‖L2(Ω) = 0, which implies that u is a
constant vector. But, u|Γ = 0, and so u = 0. Thus, by the first equation of (5.21), ∇p = 0, which
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shows that p is a constant. But, p(x) = O(|x|−2) as |x| → ∞, and so p = 0. Therefore, by (5.17)
we have

(1− ϕ)T0f0 + ϕA0fb + B[(∇ϕ) · (T0f0 −A0fb)] = 0,

(1− ϕ)P0f0 + ϕB0fb = 0
(5.23)

in Ω4b. Since B[(∇ϕ) · (T0f0 − A0fb)] vanishes for x 6∈ D2b,3b and ϕ(x) = 0 for |x| > 3b and
1− ϕ(x) = 0 for |x| < 2b, we have

A0fb = 0, B0fb = 0 for |x| < 2b, T0f0 = 0, P0f0 = 0 for |x| > 3b. (5.24)

Let

w(x) =

{
(A0fb)(x) for x ∈ Ω4b,

0 for x 6∈ Ω,
q(x) =

{
(B0fb)(x) for x ∈ Ω4b,

0 for x 6∈ Ω,

and then, by (5.15) and (5.24) w ∈ H2
q(B4b)

3 and q ∈ H1
q(B4b), and w and q satisfy equations:

−µ∆w +∇q = f0, divw = 0 in B4b, w|S4b
= 0. (5.25)

On the other hand, by (5.24), we know that T0f0 and P0f0 also satisfy equations (5.25), and so the
uniqueness of solutions yields that w = T0f0 and∇(q− P0f0) = 0 in B4b. Noting that q = B0fb, by
(5.16) we have q = P0f0. In particular, (∇ϕ) · (T0f0 −A0fb) = 0. Thus, from (5.23) we even have

0 = T0f0 − ϕ(T0f0 −A0fb) = T0f0,

0 = P0f0 − ϕ(P0f0 − B0fb) = P0f0,

which gives that f = −µ∆T0f0 +∇P0f0 = 0 in Ω4b. Thus, we have f = 0. This completes the proof
of existence of (I +R1)−1.

5.3 Purely oscillatory solutions to the Stokes problem

In this section we consider the oscillatory part of the linearization (5.4) for h = 0, which is given by

∂tv⊥ − µ∆v⊥ +∇p⊥ = f⊥, div v⊥ = 0 in Ω× T, v⊥|Γ = 0, (5.26)

where the subscript ⊥ indicates that all functions have vanishing time mean. We shall prove the
following theorem.

Theorem 5.5. Let 1 < p, q <∞. Then, for any f⊥ ∈ Lp(T,Lq(Ω)) with
∫
T f⊥(·, s) ds = 0, problem

(5.26) admits a unique solution (v⊥, p⊥) with

v⊥ ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), p⊥ ∈ Lp(T, Ĥ1
q(Ω)),

∫
T
v⊥ ds = 0,

∫
T
p⊥ ds = 0,

possessing the estimate

‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω)) + ‖∇p⊥‖Lp(T,Lq(Ω)) ≤ C‖f⊥‖Lp(T,Lq(Ω)). (5.27)

In order to prove Theorem 5.5, we first consider the corresponding resolvent problem

λw − µ∆w +∇r = f , divw = 0 in Ω, w|Γ = 0, (5.28)

for which we have the results from Theorem 4.2. Observe that, with regard to the time-periodic problem
(5.4), we are mainly interested in the resolvent problem (5.28) with λ = ik for k ∈ Z, and Theorem
4.2 gives a framework where this problem is uniquely solvable, but merely for k ∈ Z \ {0}. This is the
main reason why we only consider the purely oscillatory problem (5.26) in Theorem 5.5. Apart from
this, Theorem 5.5 can be proved in the same way as Theorem 4.4.
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Proof of Theorem 5.5. Let λ0 be as in Theorem 4.2, and let ϕ = ϕ(σ) be a C∞(R) function that
equals 1 for |σ| ≥ λ0 + 1/2 and 0 for |σ| ≤ λ0 + 1/4. Using the operator families S and P from
Theorem 4.2, we set

vh = F−1
T [S (ik)ϕ(k)FT[H⊥](k)], ph = F−1

T [P(ik)ϕ(k)FT[H⊥](k)].

Then vh and ph satisfy the equations

∂tvh − µ∆vh +∇ph = Hh, div vh = 0 in Ω× T, vh|Γ = 0,

where we have set Hh = F−1
T [ϕ(k)FT[H⊥](k)]. Moreover, arguing as in the proof of Theorem 3.1,

we can use the R-bounds from Theorem 4.2 and employ Corollary 2.3 to deduce

‖∂tvh‖Lp(T,Lq(Ω)) + ‖vh‖Lp(T,H2
q(Ω)) + ‖∇ph‖Lp(T,Lq(Ω))

≤ C‖Hh‖Lp(T,Lq(Ω)) ≤ C‖H⊥‖Lp(T,Lq(Ω)).
(5.29)

Now, in view of Theorem 4.2, we set

v⊥(t) = vh(t)+
∑

0<|k|≤λ0

eiktS (ik)FT[H⊥](k), p⊥(t) = ph(t)+
∑

0<|k|≤λ0

eiktP(ik)FT[H⊥](k).

Then, v⊥ and p⊥ satisfy equations (5.26), and from (4.14) and (5.29) we conclude estimate (5.27).
Thus, we have shown the existence part of Theorem 5.5. The uniqueness statement follows exactly
as in the proof of Theorem 4.4 noting that FT[v⊥](0) = 0 and FT[p⊥](0) = 0 by assumption.

Next we examine the pointwise decay of the solution (v⊥, p⊥). More precisely, we show decay prop-
erties of ‖v⊥(x, ·)‖Lp(T) with respect to the x-variable, as stated in the following theorem.

Theorem 5.6. In the situation of Theorem 5.5, let 3 < q < ∞ and ` ∈ (0, 3] such that f⊥ =
divF⊥ + g⊥ with ∫

T
F⊥(x, t) dt = 0, < F⊥ >p,` + < divF⊥ >p,`+1<∞,∫

T
g⊥(x, t) dt = 0, g⊥ ∈ Lp(T,Lq,3b(Ω)).

(5.30)

Then, v⊥ has the following asymptotics:

< v⊥ >p,` + < ∇v⊥ >p,`+1≤ C(< divF⊥ >p,`+1 + < F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω))) (5.31)

with some constant C > 0.

Remark 5.7. Since 3 < q <∞, we have ‖divF⊥‖Lp(T,Lq(Ω)) ≤ Cq < divF⊥ >p,`+1 and so

‖f⊥‖Lp(T,Lq(Ω)) ≤ Cq(< divF⊥ >p,`+1 +‖g⊥‖Lp(T,Lq(Ω))). (5.32)

Therefore, Theorem 5.5 really shows existence for f⊥ as in Theorem 5.6.

To prove (5.31), we use the following theorem due to EITER and KYED [17], which collects properties
of the velocity fundamental solution Γ⊥ to (5.26), which is a tensor field Γ⊥ such that v⊥ := Γ⊥ ∗H⊥
is formally a solution to (5.26) for Ω = R3.
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Theorem 5.8. Let

Γ⊥ = F−1
R3×T

[ 1− δZ
µ|ξ|2 + ik

(
I− ξ ⊗ ξ

|ξ|2
)]
. (5.33)

Then, it holds Γ⊥ ∈ Lq(R3 × T)3×3 for q ∈ (1, 5/3), and ∂jΓ⊥ ∈ Lq(R3 × T) for q ∈ (1, 5/4),
j = 1, 2, 3. Moreover, for any α ∈ N3

0, δ > 0 and r ∈ [1,∞), there exists a constant Cα,δ > 0 such
that

∀|x| ≥ δ : ‖∂αxΓ⊥(x, ·)‖Lr(T) ≤
Cα,δ
|x|3+|α| .

Remark 5.9. This theorem holds for any dimension N ≥ 2 replacing 5/3, 5/4 and 3 + |α| with
(N + 2)/N , (N + 2)/(N + 1) and N + |α|, respectively.

Proof of Theorem 5.6. Since we assume that 3 < q <∞, by Sobolev’s inequality, we have

sup
|x|≤4b

‖v⊥(·, x)‖Lp(T) + sup
|x|≤4b

‖(∇v⊥)(·, x)‖Lp(T) ≤ C‖v⊥‖Lp(T,H2
q(Ω)) ≤ C‖H⊥‖Lp(T,Lq(Ω)).

It thus remains to estimate v⊥ for |x| > 4b. To this end, recall the operator families S and P given
in Theorem 4.2. As seen in the proof of Theorem 5.5, we have v⊥ = F−1

T [S (ik)FT[H⊥](k)]
and p⊥ = F−1

T [P(ik)FT[H⊥](k)]. We shall first give a representation formula of S (ik) for k ∈
Z \ {0} for |x| > 3b, which will be used to investigate the asymptotic behavior of v⊥ for |x| > 3b.
Notice that S (ik) ∈ L (Lq(Ω)3,H2

q(Ω)3) and P(ik) ∈ L (Lq(Ω)3, Ĥ1
q(Ω)) satisfy the estimate

‖S (ik)f‖H2
q(Ω) + ‖∇P(ik)f‖Lq(Ω) ≤ C‖f‖Lq(Ω) (5.34)

for f ∈ Lq(Ω)3, where C depends solely on q and Ω. Moreover, the functions u = FT[v⊥](k) =
S (ik)FT[H⊥](k) and q = FT[p⊥](k) = P(ik)FT[H⊥](k) satisfy the equations

iku− µ∆u +∇q = fk, divu = 0 in Ω, u|Γ = 0, (5.35)

where fk = FT[f⊥](k). Let ϕ be a function in C∞0 (R3) that equals 1 for |x| < 2b and 0 for |x| > 3b.
Let

w = (1− ϕ)S (ik)fk + B[(∇ϕ) ·S (ik)fk], r = (1− ϕ)P(ik)fk. (5.36)

Then w ∈ H2
q(R3)3 and r ∈ Ĥ1

q(R3). Moreover, by (5.35) w and r satisfy the equations

ikw − µ∆w +∇r = (1− ϕ)fk +R3(ik)fk, divw = 0 in R3,

where we have set

R3(λ)f = 2µ(∇ϕ) · ∇S (λ)f + µ(∆ϕ)S (λ)f

− (∇ϕ)P(λ)f + (λ− µ∆)B[(∇ϕ) ·S (λ)f ].
(5.37)

By the uniqueness of solutions to the Stokes resolvent problem in R3, we have w = T (ik)((1 −
ϕ)fk +R3(ik)fk), where

T (λ)f = F−1
R3

[ 1

µ|ξ|2 + λ

(
I− ξ ⊗ ξ

|ξ|2
)
FR3 [f ]

]
. (5.38)

Since 1− ϕ = 1 and B[(∇ϕ) · S(ik)fk] = 0 for |x| > 4b, by (5.36) we thus have

S (ik)fk = T (ik)((1− ϕ)fk) + T (ik)(R3(ik)fk) (|x| > 4b) (5.39)
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for any k ∈ Z \ {0}. Thus, we have

v⊥ = F−1
T [(1− δZ(k))S (ik)FT[H⊥](k)]

= F−1
T [(1− δZ(k))T (ik)FT[(1− ϕ)H⊥](k))]

+ F−1
T [(1− δZ(k))T (ik)(R3(ik)FT[H⊥](k))]

(5.40)

for |x| > 4b. Moreover, from Theorem 4.2 we conclude

RL (Lq(Ω)3,H1
q(R3)3)({(λ∂λ)`R3(λ) | λ ∈ R \ [−λ0, λ0]}) ≤ r0 (` = 0, 1), (5.41)

‖R3(ik)fk‖H1
q(R3) ≤ r0‖fk‖Lq(Ω) (5.42)

for any k ∈ Z \ {0} with some constant r0. In particular, we define R4H⊥ by setting R4H⊥ =
F−1

T [(1− δZ(k))R3(ik)fk]. Then, employing Corollary 2.3 in the same way as in the proof of Theo-
rem 5.5, we see that

suppR4H⊥ ⊂ D2b,3b := {(x, t) ∈ R3 × R | 2b < |x| < 3b},
‖R4H⊥‖Lp(T,Lq(Ω)) ≤ C‖H⊥‖Lp(T,Lq(Ω)).

(5.43)

Recalling that H⊥ = divF⊥+g⊥, we set G = (1−ϕ)F⊥ and h = (∇ϕ)F⊥+(1−ϕ)g⊥+R4H⊥.
In virtue of (5.33), (5.38) and (5.40), we then have

v⊥ = Γ⊥ ∗ (divG) + Γ⊥ ∗ h

=

∫
T

∫
R3

Γ⊥(y, s)(divG)(x− y, t− s) dyds+

∫
T

∫
R3

Γ⊥(y, s)h(x− y, t− s) dyds.

(5.44)
for |x| > 4b. Set v1 = Γ⊥ ∗ (divG) and v2 = Γ⊥ ∗h. By the divergence theorem of Gauß, we write

v1(x, t) = ∇Γ⊥ ∗G(x, t)

=

∫
T

∫
|y|≤1

∇Γ⊥(y, s)G(x− y, t− s) dyds+

∫
T

∫
1≤|y|≤|x|/2

∇Γ⊥(y, s)G(x− y, t− s) dyds

+

∫
T

∫
|x|/2≤|y|≤2|x|

∇Γ⊥(y, s)G(x− y, t− s) dyds

+

∫
T

∫
|y|≥2|x|

∇Γ⊥(y, s)G(x− y, t− s) dyds.

Let r0 and r1 be exponents such that p < r0 < ∞, r1 ∈ (1, 5/4) and 1 + 1/r0 = 1/r1 + 1/p.
Then, we have Young’s inequality

‖f ∗ g‖Lr0 (T) ≤ ‖f‖Lr1 (T)‖g‖Lp(T) (5.45)

for f ∗ g(t) =
∫
T f(s)g(t− s) ds. Setting γ` =< G >p,`, from Theorem 5.8 we thus conclude

‖v1(x, ·)‖Lr0 (T) ≤ γ`‖∇Γ⊥‖Lr1 (B1×T)(1 + |x|)−` + C1γ`

∫
1≤|y|≤|x|/2

|y|−4 dy(1 + |x|)−`

+ C1γ`(|x|/2)−4

∫
|z|≤3|x|

(1 + |z|)−` dz + C1γ`

∫
|y|≥2|x|

|y|−4−` dy.

Noting that p ≤ r0 and γ` ≤ < F⊥ >p,`, we infer

‖v1(x, ·)‖Lp(T) ≤ Cb|x|−min{`,4} < F⊥ >p,` for |x| ≥ 4b.
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Analogously, we write

∇v1(x, t) =

∫
T

∫
|y|≤1

∇Γ⊥(y, s)(divG)(x− y, t− s) dyds

+

∫
T

∫
1≤|y|≤|x|/2

∇Γ⊥(y, s)(divG)(x− y, t− s) dyds

+

∫
T

∫
|x|/2≤|y|≤2|x|

∇Γ⊥(y, s)(divG)(x− y, t− s) dyds

+

∫
T

∫
|y|≥2|x|

∇`Γ⊥(y, s)(divG)(x− y, t− s) dyds.

Setting γ`+1 =< divG >p,`+1, by Theorem 5.8 and (5.45) we have

‖∇v1(x, ·)‖Lr0 (T)

≤ γ`+1‖∇Γ`‖Lr1 (B1×T)(1 + |x|)−`−1 + C1γ`+1

∫
1≤|y|≤|x|/2

|y|−4 dy(1 + |x|)−`−1

+ C1γ`+1(|x|/2)−4

∫
|z|≤3|x|

(1 + |z|)−`−1 dz + C1γ`+1

∫
|y|≥2|x|

|y|−5−` dy.

Since we have

< divG >p,`+1 ≤ < divF⊥ >p,`+1 + < (∇ϕ)F⊥ >p,`+1

≤ < divF >p,`+1 +‖∇ϕ‖L∞(R3)3b < F >p,`

and p ≤ r0, we thus obtain

‖∇v1(x, ·)‖Lp(T) ≤ Cb|x|−min{`+1,4}(< divF⊥ >p,`+1 + < F⊥ >p,`) for |x| ≥ 4b.

Finally, we use that h(y, s) vanishes for |y| ≥ 3b. For m = 0, 1 we thus have

∇mv2(x, t) =

∫
T

∫
|x−y|≤3b

∇mΓ⊥(y, s)h(x− y, t− s) dyds

Since |x| ≥ 4b and |x− y| ≤ 3b implies |y| ≥ |x|/4 ≥ b, by Theorem 5.8 and (5.45), we deduce

‖∇mv2(x, ·)‖Lp(T) ≤
∫
|x−y|≤3b

‖∇mΓ⊥(y, ·)‖Lp(T)‖h(x− y, ·)‖L1(T) dy

≤ Cm|x|−3−m‖h‖L1(B3b×T).

Noting (5.43), we can estimate the last term as

‖h‖L1(B3b×T) ≤ C‖h‖Lp(T,Lq(B3b)) ≤ C
(
< F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω)) + ‖R4H⊥‖Lp(T,Lq(Ω))

)
≤ C

(
< F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω)) + ‖H⊥‖Lp(T,Lq(Ω))

)
,

For |x| ≥ 4b we now conclude

‖∇mv2(x, ·)‖Lp(T) ≤ C|x|−3−m( < F⊥ >p,` +‖g⊥‖Lp(T,Lq(Ω))+ < divF⊥ >p,`+1

)
in virtue of estimate (5.32). Since v = v1 + v2 for |x| ≥ 4b, this completes the proof of Theorem
5.6.
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5.4 Existence of periodic solutions

The linear theory from Theorem 5.2 is now a direct consequence of Theorem 5.3 and Theorem 5.6 if
h = 0. For the case of non-zero boundary data h we proceed similarly to the proof of Theorem 4.4.

Proof of Theorem 5.2. At first consider the case h = 0. Let (vS, pS) = (u, p) be the unique solution
to (5.6) with F = GS and g = gS , which exists due to Theorem 5.3, and let (v⊥, p⊥) be the
unique solution to (5.26), which exists due to Theorem 5.5 and Theorem 5.6. Then v = vS +v⊥ and
p = pS + p⊥ defines a solution (v, p) to (5.4) with h = 0, and (5.5) follows from (5.7), (5.27), (5.31)
and (5.32).

To show existence for arbitrary h ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N), we fix λ1 > λ0 with λ0 from
Theorem 4.3 and define

v1 = F−1
T [S(ik + λ1)

(
0, (ik + λ1)h̃k, (ik + λ1)1/2h̃k, h̃k

)
],

p1 = F−1
T [P(ik + λ1)

(
0, (ik + λ1)h̃k, (ik + λ1)1/2h̃k, h̃k

)
],

where S and P are the R-bounded solution operators from Theorem 4.3, and h̃k = F [h](k). Then
(v1, p1) is a solution to the auxiliary problem

∂tv1 + λ1v1 − µ∆v1 +∇p1 = 0, div v1 = 0 in Ω× T, v1|Γ = h|Γ.

Following the proof of Theorem 4.4 and invoking Corollary 2.3, we further conclude

v1 ∈ H1
p(T,Lq(Ω)N) ∩ Lp(T,H2

q(Ω)N), p1 ∈ Lp(T, Ĥ1
q(Ω))

and the estimate

‖∂tv1‖Lp(T,Lq(Ω)) + ‖v1‖Lp(T,H2
q(Ω)) + ‖∇p1‖Lp(T,Lq(Ω)) ≤ C(‖∂th‖Lp(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω))).

Now let ϕ ∈ C∞0 (Ω) such that ϕ ≡ 1 in B2b and ϕ ≡ 0 in R3 \B3b. Let D2b,3b = {x ∈ RN | 2b <
|x| < 3b} and

H2
q,0,a(D2b,3b) = {f ∈ H2

q(D2b,3b) | ∂αx f |SL = 0 for L = 2b, 3b and |α| ≤ 1,

∫
D2b,3b

f(x) dx = 0}.

According to [59, Lemma 5], we know that (∇ϕ) · v1(t) ∈ H2
q,0,a(D2b,3b) for a.a. t ∈ R, and setting

w1 = ϕv1 − B[(∇ϕ) · v1], we see that

w1 ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3), suppw1 ⊂ B3b ∩ Ω, divw1 = 0, w1|Γ = h,

‖∂tw1‖Lp(T,Lq(Ω)) + ‖w1‖Lp(T,H2
q(Ω)) ≤ C(‖∂th‖Lp(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω))).
(5.46)

Now let (w2, q2) be the unique solution to

∂tw2 −∆w2 +∇q2 = f − ∂tw1 −∆w1, divw2 = 0 in Ω× T, w2|Γ = 0,

which exists due to the first part of the proof. Note that w1 vanishes in R3 \ B3b, so that (v, p) =
(w1 + w2, q2) is a solution to (5.4), and estimate (5.5) follows from the corresponding estimate for
w2 and the properties listed in (5.46).

The uniqueness assertion follows by decomposing a solution (v, p) into a stationary and an oscillatory
part by means of (5.2) and employing the uniqueness statements from Theorem 5.3 and Theorem
5.5.
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Proof of Theorem 5.1. We employ Banach’s contraction mapping principle. Define

Iε = {(v, q) | v = v⊥ + vS, q = q⊥ + qS, v⊥ ∈ H1
p(T,Lq(Ω)3) ∩ Lp(T,H2

q(Ω)3),

vS ∈ H2
q(Ω)3, div v = 0, q⊥ ∈ Lp(T, Ĥ1

q(Ω)), qS ∈ H1
q(Ω), ‖(v, q)‖Iε ≤ ε},

where we set

‖(v, q)‖Iε = ‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω)) + ‖vS‖H2

q(Ω) + ‖∇q⊥‖Lp(T,Lq(Ω))

+ ‖qS‖H1
q(Ω)+ < v⊥ >p,1 + < ∇v⊥ >p,2 + < vS >1 + < ∇vS >2 .

For (v, q) ∈ Iε, let (u, p) be the solution of the linear system of equations

∂tu− µ∆u +∇p = F +N (v), divu = 0 in Ω× T, u|Γ = h|Γ, (5.47)

whereN (v) = v · ∇v. Theorem 5.2 yields that

‖(u, p)‖Iε ≤ C(< GS >3 + < HS >2 + < N (v)S >3 + < Ñ (v)S >2

+ < G⊥ >p,2 + < H⊥ >p,1 + < N (v)⊥ >p,2

+ < Ñ (v)⊥ >p,1 +‖h‖H1
p(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω)))

(5.48)

provided that the right-hand side of (5.48) is finite. Here, we write Ñ (v) = v⊗v, so that div Ñ (v) =
N (v) since div v = 0. We further have

N (v)S = vS · ∇vS +

∫
T
v⊥ · ∇v⊥ dt

Ñ (v)S = vS ⊗ vS +

∫
T
v⊥ ⊗ v⊥ dt;

N (v)⊥ = vS · ∇v⊥ + v⊥ · ∇vS + v⊥ · ∇v⊥ −
∫
T
v⊥ · ∇v⊥ dt

Ñ (v)⊥ = vS ⊗ v⊥ + v⊥ ⊗ vS + v⊥ ⊗ v⊥ −
∫
T
v⊥ ⊗ v⊥ dt.

(5.49)

Notice that div Ñ (v)S = N (v)S and div Ñ (v)⊥ = N (v)⊥. To estimate these nonlinear terms,
we choose σ > 0 so small that σ + 3/q < 2(1 − 1/p), which is possible since 2/p + 3/q < 2 by
assumption. By Sobolev inequality and real interpolation, we then have

‖v⊥‖L∞(T,L∞(Ω)) ≤ C‖v⊥‖L∞(T,Wσ+3/q
q (Ω))

≤ C‖v⊥‖L∞(T,B2(1−1/p)
q,p (Ω))

≤ C(‖∂tv⊥‖Lp(T,Lq(Ω)) + ‖v⊥‖Lp(T,H2
q(Ω))),

(5.50)

Using Hölder’s inequality with p > 2, we further obtain

< N (v)S >3 ≤ C(< vS >1< ∇vS >2 + < v⊥ >p,1< ∇v⊥ >p,2);

< Ñ (v)S >2 ≤ C(< vS >
2
1 + < v⊥ >

2
p,1);

< N (v)⊥ >p,2 ≤ C(< vS >1< ∇v⊥ >p,2 + < v⊥ >p,1< ∇vS >2

+ ‖v⊥‖L∞(T,L∞(Ω)) < ∇v⊥ >p,2 + < v⊥ >p,1< ∇v⊥ >p,2);

< Ñ (v)⊥ >p,1 ≤ C(< vS >1< v⊥ >p,1 +‖v⊥‖L∞(T,L∞(Ω)) < v⊥ >p,1 + < v⊥ >
2
p,1).

(5.51)

Combining (5.48) with (5.51) and (5.50) yields that

‖(u, p)‖Iε ≤ C(< GS >3+ < HS >2 + < G⊥ >p,2 + < H⊥ >p,1

+ ‖h‖H1
p(T,Lq(Ω)) + ‖h‖Lp(T,H2

q(Ω)) + ‖(v, q)‖2
Iε).
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Recalling the smallness assumption (5.3) and that (v, q) ∈ Iε, we have ‖(u, p)‖Iε ≤ C0ε
2 for some

constant C0. Thus, choosing ε > 0 so small that C0ε ≤ 1, we have ‖(u, p)‖Iε ≤ ε, which implies
that (u, p) ∈ Iε. Therefore, if we define a map Ξ acting on (v, q) ∈ Iε by setting Ξ(v, q) = (u, p),
then Ξ is a map from Iε into itself.

In an analogous way, we see that for any (vi, qi) ∈ Iε (i = 1, 2),

‖Ξ(v1, q1)− Ξ(v2, q2)‖Iε ≤ C1ε‖(v1, q1)− (v2, q2)‖Iε

for some constantC1. Thus, choosing ε > 0 smaller if necessary, we haveC1ε < 1, which shows that
Ξ is a contraction map on Iε. Therefore, there exists a unique (u, p) ∈ Iε such that Ξ(u, p) = (u,p),
which is the required unique solution to (4.9). This completes the proof of Theorem 5.1.
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