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The geometry of controlled rough paths
Mazyar Ghani Varzaneh, Sebastian Riedel, Alexander Schmeding,

Nikolas Tapia

Abstract. We prove that the spaces of controlled (branched) rough paths of arbitrary
order form a continuous field of Banach spaces. This structure has many similarities to an
(infinite-dimensional) vector bundle and allows to define a topology on the total space, the
collection of all controlled path spaces, which turns out to be Polish in the geometric case.
The construction is intrinsic and based on a new approximation result for controlled rough
paths. This framework turns well-known maps such as the rough integration map and the
Itô-Lyons map into continuous (structure preserving) mappings. Moreover, it is compatible
with previous constructions of interest in the stability theory for rough integration.

1. Introduction and statement of results

One of the key insights in rough path theory is that there is no canonical integration theory
that allows to integrate two arbitrary paths of low regularity against one another1. Lyons’
fundamental observation was that paths have to be augmented with higher order objects
which play the role of iterated integrals in order to build a robust theory of controlled ordinary
differential equations [29], and he called these augmented paths rough paths. Later, Gubinelli
realized that given a reference rough path, there is a canonical notion of an integral that allows
to integrate paths that “look like the reference path” on small time scales, known as controlled
rough paths [18, 19]. These principles were carried over from the world of paths to the world
of distributions (or generalized functions) by Hairer [21] and Gubinelli-Imkeller-Perkowski [20].
In Hairer’s theory of regularity structures, the reference distribution has to be augmented with
products of itself and its derivatives, and multiplying distributions is explained when they are
modelled after the reference distribution.
Although these concepts are nowadays used extensively in the theory of stochastic ordinary and
partial differential equations, the mathematical structure which is formed by rough paths and
their controlled paths is still not very well understood. Since for every reference α -rough path
X, the set of all controlled paths Dα

X constitutes a linear (Banach) space, it is natural to suspect
that they form some sort of “infinite-dimensional vector bundle” [24, p. 123]. However, making
these ideas precise, one encounters several difficulties, starting with the fact that the space of
rough paths does not carry any known (infinite-dimensional) manifold structure. Surprisingly,
it turns out that there is still a non-canonical homeomorphism transforming the collection
of spaces of controlled paths to a trivial infinite-dimensional vector bundle [12, Remark 4.8].
However, this map is highly non-explicit since it uses the Lyons-Victoir extension theorem [28],
and the applicability of this result in practice is unclear. Furthermore, note that the existence of
this homeomorphism does not imply that the spaces of controlled rough paths form a smooth
(Banach) vector bundle.
One motivation for this article is an observation two of us made in [16]. In this work, we
considered the solution map induced by linear stochastic delay differential equations (SDDE)
driven by a Brownian motion, which turns out to be a linear map between spaces of controlled
paths. Since these spaces were random, we faced serious measurability issues when considering,
for example, the operator norm for this map. To overcome these issues, we proved that the
spaces of controlled paths form a measurable field of Banach spaces [16, Definition 3.13]. It

1This fact is visible e.g. in stochastic analysis: there is no exclusive notion of a stochastic integral, both Itô
and Stratonovich integral have their justification.
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turns out that this structure is extremely useful and a perfect infinite-dimensional substitute
for what is called a measurable bundle [1, 1.9.2 Definition]. In fact, we could prove that SDDEs
induce random dynamical systems (RDS) on this measurable field of Banach spaces, and that
important theorems like the multiplicative ergodic theorem hold for these RDSs [17]. Note,
however, that we proved the existence of a measurable field only for Brownian-type rough
paths, i.e. in the regime of an Hölder-index close to 1

2 . One goal of the present article is to
generalize this important result to rough paths of arbitrary regularity.2

In the present paper, we first construct a novel approximation of controlled rough paths by
rough integrals of smooth functions and smooth remainders. We do this for paths which are
controlled by branched rough paths of arbitrary order. It will turn out that once the algebra
underlying the process has been worked out, it is straightforward to construct a dense subset
of controlled rough paths depending continuously on the underlying controlling path. Our
results here are a far reaching generalisation of our earlier results in [16]. Based on this novel
approximation result, we are able to construct a finer structure for the spaces of controlled
rough paths. Indeed we prove that the spaces of controlled rough paths form a so-called
continuous field of Banach spaces (see Definition 4.1). This structure is well-known from the
representation theory of C ∗-algebras (see e.g. [8, 9]). It will turn out that our field of Banach
spaces sits in the middle between the two trivial bundles, namely for α ∈ (1/3, 1/2) we have

Cα × (C∞ × C∞) ⊆ Cα ⋉Dα ⊆ Cα × (C 2α × C α )
where the trivial bundle on the right is the one from [12] and the trivial bundle on the left

forms a “dense” subset of the field of Banach spaces (we will say more about the topology we
use here below).
In more detail, our results subsume the following theorem:

Theorem 1.1. Fix α ∈ (0, 1) and let Cα denote the space of α -branched rough paths. For
X ∈ Cα , denote by Dα

X the associated space of controlled paths. Then the family (Dα
X)X∈Cα

forms a continuous field of Banach spaces (FoBS) over Cα .

Theorem 1.1 has several implications from which we will list a few here:

■ Every continuous field of Banach spaces allows to define an intrinsic topology (that we
call the tube topology) on the total space, i.e., in our case on the product space∏

X∈Cα

Dα
X.

It turns out (Section 4.2) that this topology is compatible with rough integration, there-
fore making the Itô-Lyons map a continuous section of the bundle. This also gives a nice
interpretation of the “metric” that compares two controlled paths that live in different
fibres (see [12, p. 74]): adding the distance of the reference rough paths to it, we can
show that this metric is exactly the one inducing the topology on the total space. This
also implies that the total space is a Polish space when restricting to geometric rough
paths3 (Theorem 4.18).

■ The continuous field of Banach spaces induces a so-called Banach bundle of controlled
paths, cf. Section 4.1. It turns out that well-known mappings in rough paths theory such
as the rough integration map and the Itô-Lyons map are structure-preserving mappings

2We note that extending these results to arbitrary regularity is of interest, for example, for financial appli-
cations in the context of rough volatility models [3, 15, 30] where the typical regularity of the driving noise is
of the order of α = 1

10 .
3See [12, Section 2.4] for a precise definition of geometric rough path.
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The geometry of controlled rough paths 3

on this Banach bundle. We would like to mention here that for proving these statement,
we had to establish sharp bounds for the rough integral (Proposition 2.19) and local
Lipschitz continuity of the Itô-Lyons map (Proposition 4.21) in full generality, i.e. for
rough integrals and rough differential equations driven by branched rough paths of any
order. Although these bounds are widely accepted in the rough paths community, we
could not find them explicitly worked out anywhere in the literature. Having closed this
gap is another contribution of the present work.

■ In [12, Remark 4.9], it is claimed that “the notion of ’controlled rough paths’ (...) does
not come with a natural approximation theory”. As a remedy, one can construct non-
canonical approximations using the Lyons-Victoir extension theorem [12, Exercise 4.8],
but this is not trivial as the reader can easily convince herself. Furthermore, the con-
struction in the cited reference only works in the case 1

3 < α <
1
2 . We will show that

Theorem 1.1 immediately yield canonical approximations for controlled rough paths of
any order (Remark 3.11). In principle, this approximation result should yield, as partic-
ular cases, results concerning convergence and stability properties of random dynamical
systems [16], rough differential equations [12,14], and numerical schemes for stochastic
(partial) differential equations [2, 27], but we do not explore this further and content
ourselves with setting up the general framework underlying these results.

■ Continuous fields of Banach spaces are also measurable fields. The results in this article
allow to study dynamical properties of SDDE as in [16] driven by more general processes
than Brownian motion, e.g. fractional Brownian motion with lower Hurst parameter.

The remainder of the article is organized as follows: in Section 2 we recall the definition of
branched rough paths and set up basic notation and results necessary for the next sections. In
Section 3 we introduce the main construction of the paper, namely how to build a controlled
rough path out of a collection of smooth functions. Next, in Section 3.1 we use this construction
to show how to locally approximate any given controlled path by piecewise-linear controlled
paths in the Banach norm, and then extend this approximation to the full time interval in
Section 3.2. In Section 4.1 we recall the main definition of a continuous field of Banach spaces
and show that the bundle of controlled paths satisfies this definition with the space of branched
rough paths as base space, and use this result to construct the so-called tube topology. We
end by showing several continuity results under this particular topology for well-known objects
associated to rough paths, such as the Itô-Lyons map, in Section 4.2.

2. Branched rough paths

Let us first recall the Hopf algebraic framework for branched and controlled rough paths. In
what follows, we write Î = {1, 2, 3, . . .} for the set of natural numbers and Î0 = Î ∪ {0}. All
linear structures are defined over the field of real numbers, denoted by Ò.

2.1. Let A be a finite, non-empty set, and denote by T the linear span of all rooted trees
decorated with labels from A. We recall that the decorated Connes–Kreimer Hopf algebra H
is the polynomial algebra H = S (T ), which can be identified with the vector space spanned
by all forests of decorated trees; the basis will be denoted by F . We grade H by the number
of nodes, and we denote the degree of h ∈ H by |h |. There is a unique forest of degree zero,
called the empty forest and denoted by 1. We also set, for each n ≥ 0,

Fn B {h ∈ F : |h | = n}, F(n) B {h ∈ F : |h | ≤ n}, F <(n) B F(n) \ Fn
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and we let Hn and H(n) denote the corresponding linear spans of Fn and F(n), respectively.
We finally introduce the set F + B F \ {1} and its linear span

H+ =
⊕
n>0

Hn .

The space H comes with a collection of maps ( [·]a , a ∈ A), where [τ1 · · · τn]a is obtained by
grafting the trees τ1, . . . , τn to a new root labeled by a. Observe that by definition, | [h]a | =
|h | + 1. Moreover, for each tree τ ∈ T with |τ | = n + 1 there is a unique label a ∈ A and a
unique forest h such that [h]a = τ. These maps define uniquely a coproduct ∆ : H → H ⊗H
via the relations ∆1 = 1 ⊗ 1, ∆(h1 · · · hn) = ∆h1 · · ·∆hn , and

∆[h]a = (id ⊗ [·]a)∆h + [h]a ⊗ 1 (2.1)

for all a ∈ A and h, h1, . . . , hn ∈ H . One can immediately check from this definition that ∆ is
coassociative, i.e., the identity (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ holds. Therefore, the triple (H , ·,∆)
defines a bialgebra.
It can be shown that for trees τ ∈ T , the image ∆τ admits a representation in terms of
admissible cuts of τ [7], but we refrain from providing further details since we will not make
use of it in the following. We shall instead use sumless Sweedler’s notation

∆h = h (1) ⊗ h (2), ∆′h = h′ ⊗ h′′

where ∆′h B ∆h − h ⊗ 1− 1 ⊗ h denotes the reduced coproduct. Since product and coproduct
respect the grading we obtain a graded and connected bialgebra of finite-type, i.e. disassembling
degreewise we obtain H =

⊕
n∈Î0

Hn where H0 = Ò1 and dimHn < ∞. Note that any graded
connected bialgebra is automatically a Hopf algebra whose antipode S can be computed
recursively (whence we do not discuss it here, but see [31]).
We introduce the n-fold iterated coproduct ∆(n) : H → H⊗(n+1) inductively by ∆(0) = id, and
∆(n) = (∆(n−1) ⊗ id) ◦∆ for all n ≥ 1. Note that these are indeed well defined by coassociativity
of ∆. An iterated reduced coproduct can be defined in a similar way. In particular, we can write
the image of an element h ∈ H using Sweedler’s notation as

∆(n)h = h (1) ⊗ · · · ⊗ h (n+1), (∆′) (n)h = h (1) ⊗ · · · ⊗ h (n+1) .

Finally, we remark that the n-fold tensor product H⊗n is also graded, with graded components(
H⊗n )

k =
⊕

j1+···+jn=k
Hj1 ⊗ · · · ⊗ Hjn ,

and so, since ∆ is a graded map, we see that if |h | = k then |h1 | + · · · + |hn+1 | = k for all
n ≥ 0.

2.2. Denote by H ∗ the dual space of H , i.e. the space of all linear mappings H → Ò and let
mÒ be the multiplication map of real numbers. We write ⟨φ, h⟩ for the duality pairing between
H ∗ and H given by evaluation. The convolution product

φ ⋆ψ B mÒ ◦ (φ ⊗ ψ) ◦ ∆

turns H ∗ into a unital algebra (the unit being the counit ε of H). Then the character group
(G (H ,Ò),⋆) of H is defined as

G (H ,Ò) B {φ ∈ H ∗ : ⟨φ, ab⟩ = ⟨φ, a⟩⟨φ, b⟩, [a, b ∈ H and ⟨φ, 1H ⟩ = 1}.

Inversion in G (H ,Ò) is induced by precomposition with the antipode, i.e. for a character
ι(ϕ) = ϕ−1 = ϕ ◦ S . The counit ε of H thus becomes the unit of the character group. One
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can show, [5] that the character group carries a natural Lie group structure whose Lie algebra
is given by the Lie algebra of infinitesimal characters (g(H ,Ò), [ ·, · ]);

g(H ,Ò) B {ψ ∈ Hom(H ,Ò) : ⟨ψ, ab⟩ = ⟨ψ, a⟩⟨ε, b⟩ + ⟨ε, a⟩⟨ψ, b⟩, [a, b ∈ H}
with the Lie bracket [ψ, κ ] B ψ ⋆ κ − κ ⋆ψ.

There is an injection H ↪→ H ∗ mapping h ∈ H to the linear functional h′ ↦→ δh,h′ (the
Kronecker delta mapping h to 1). In the sequel we will just identify h ∈ H with this functional.
Using this identification, we write dual elements X ∈ H ∗ as formal forest series, i.e.,

X =
∑
h∈F

X hh

where X h = ⟨X , h⟩ ∈ Ò.

2.3. An important subspace is the space of primitive elements
Prim B {h ∈ H : ∆′h = 0}.

Let h and h′ be forests. We define the natural growth operation h⊤h′ as the sum of all forests
obtained by grafting h to every node of h′, normalized by |h′|. This definition is extended
bilinearly to the natural growth operator ⊤ : H ⊗ H → H . For example

⊤ =
1

2

(
+

)
⊤ =

1

2

(
+

)
=

We observe that this operator is neither associative nor commutative. Given a collection
h1, . . . , hn ∈ H , we set

⊤(h1, . . . , hn) = (· · · ((h1 ⊤ h2) ⊤ h3) · · · ) ⊤ hn .

The following results are due to Foissy:

Lemma 2.4. [11, Lemma 4.3 and Theorem 9.6]

1 If p1, . . . , pn ∈ Prim, then

∆′⊤(p1, . . . , pn) =
n−1∑
j=1

⊤(p1, . . . , p j ) ⊗ ⊤(p j+1, . . . , pn).

2 Let P = {pi : i ≥ 1} be a basis for Prim. Then
P⊤ B {⊤(pi1, . . . , pik ) : i1, . . . , ik ≥ 1, k ≥ 1}

is a basis for H .

As before, for n ∈ Î we define
P(n) B P ∩H(N ), Pn B P ∩Hn , P<(n) B P(n) \ Pn ,

and simialrly for P⊤
(n) and so on.

As a consequence, we have that for every forest h ∈ F , there are coefficients (cρ (h) : ρ ∈ P⊤)
with only finitely many being non zero, such that

h =
∑
ρ∈P⊤

cρ (h)ρ.

DOI 10.20347/WIAS.PREPRINT.2926 Berlin 2022
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In particular, every element (where only finitely many coefficients Z h are non-zero)

Z =
∑
h∈F

Z hh ∈ H

can be rewritten as
Z =

∑
ρ∈P⊤

Z ρρ,

with
Z ρ =

∑
h∈F

cρ (h)Z h .

Denote by {fi1,...,ik } the basis of the graded dual Hgr, dual to P⊤, i.e., such that ⟨fi1,...,ik ,⊤(p j1, . . . , p j l )⟩ =
1 if and only if k = l and i1 = j1, . . . , ik = jk . We will also use the notation ρ∗ B fi1,...,ik when-
ever ρ = ⊤(pi1, . . . , pik ) ∈ P⊤. In particular, we identify the change of basis coefficients as
cρ (h) B ⟨ρ∗, h⟩, and we have the identity∑

h∈F
cρ (h)h = ρ∗.

Therefore, any dual forest series

X =
∑
h∈F

X hh ∈ H ∗

can be be re-expanded in the new basis as

X =
∑
ρ∈P⊤

X ρρ∗

where
X ρ =

∑
h∈F

cρ (h)X h .

2.5. Given a rooted tree τ and a vertex v ∈ V (τ), let τv denote the subtree of τ with v
as root. For v ∈ V (τ), let SG (τ,v ) be the group of permutations of identical branches out
of v , i.e., if {v1, . . . ,vk } are the children of v , then SG (τ,v ) is the group generated by the
permutations that exchange τvi and τvj when they are isomorphic rooted trees. The symmetry
group of τ is the direct product

SG (τ) B
∏

v∈V (τ)
SG (τ,v ),

and the symmetry factor Σ(τ) of τ is defined to be the order of SG (τ) [23]. For a forest
h ∈ H , we let Σ(h) B Σ(Ij (h)) for some j ∈ A. It is not hard to see that in fact this
definition is independent of the choice of j ∈ A.
Letting ζh (h′) = Σ(h)δh,h′ , one can show that {ζh : h ∈ F } is a basis of H ∗ dual to the forest
basis [23, Proposition 4.4], and in particular ζ1 = ε.

2.6. Recall that a (right) pre-Lie algebra is a vector spaceV with a bilinear operator ◁ : V ⊗V →
V such that the associator a◁(x , y , z ) B (x ◁ y ) ◁ z − x ◁ (y ◁ z ) is symmetric in the last two
variables, i.e.,

a◁(x , y , z ) = a◁(x , z , y )
for all x , y , z ∈ V .
There is a left pre-Lie structure on T given by grafting of trees, denoted by↶ : T ⊗ T → T .

DOI 10.20347/WIAS.PREPRINT.2926 Berlin 2022
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Example 2.7.

↶ =

↶ = 2 +

⋄

This is in fact the free pre-Lie algebra on d generators [6].
Grafting can be extended to an operator ↶ : T ⊗ H → T by grafting every forest on the
right to some node of the tree on the left.

Example 2.8.

↶ = ,

↶ = + 2 +

⋄

Let V be a vector space. Let us recall that the symmetric algebra S (V ) carries a coproduct
∆∗ defined by ∆∗v = v ⊗ 1 + 1 ⊗ v for all v ∈ V . We stick to the sumless Sweedler’s notation
for this coproduct as well. A symmetric brace algebra [25] is a vector space V equipped with
a brace V ⊗ S (V ) →V , x ⊗ a ↦→ x {a} such that

x {1} = x
x {y1 · · · yn }{a} = x {y1{a (1)} · · · yn {a (n)}a (n+1)}.

It can be shown that grafting endows T with the structure of a symmetric brace [32].4 In
particular, the identity

(τ ↶ h̄1) ↶ h̄2 = τ ↶ (h̄1 ⋆ h̄2) (2.2)
holds for any τ ∈ T and h̄1, h̄2 ∈ F .
Finally, we extend ↶ to H ⊗ H via

h1h2↶ h̄ = (h1↶ h̄ (1)) (h2↶ h̄ (2)).

Example 2.9. Since is primitive and

∆∗ = ⊗ 1 + 2 ⊗ + 1 ⊗

we have

↶ = 2 ,

↶ = 2 + 2 . ⋄

Furthermore, the ⋆ product admits the following description:

ζh̄ ⋆ ζh = ζ(h↶h̄ (1) )h̄ (2) .

More concretely, we have the formula

ζh̄ ⋆ ζτ1···τn = ζ(τ1↶h̄ (1) )···(τn↶h̄ (n ) )h̄ (n+1) .

4In general, this holds for any pre-Lie algebra, i.e., if (V , ◁) is pre-Lie, then x {a} = x ◁ a is a symmetric
brace for some suitable extension of ◁ to S (V ) on the right.

DOI 10.20347/WIAS.PREPRINT.2926 Berlin 2022
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Example 2.10. We compute all products of forests up to degree 3:
ζ ⋆ ζ = ζ + ζ
ζ ⋆ ζ = ζ + 2ζ + ζ ζ ⋆ ζ = ζ + 2ζ

ζ ⋆ ζ = ζ + ζ ζ ⋆ ζ = ζ + ζ + ζ .

In particular we see that the ⋆ product is not commutative. ⋄

Remark 2.11. When written in terms of the “pure basis” F , there are some non-trivial factors
in front of each term in the ⋆ product. For example

⋆ = 2 + , ⋆ = 3 + + .

This becomes even more apparent in the case of decorated trees, as
i ⋆ j = (1 + δi ,j ) i j + j

i .

The formula in terms of the ζh basis stays, however, the same in both cases.

Lemma 2.12. Let h, h̄ ∈ H and denote by Π : F → T the projection onto trees. The identity
Π
(
h̄ ⋆ [h]a

)
= [h̄ ⋆ h]a

holds.

Proof. Let us start by noticing that [h]a = a ↶ h. Now, from the formula for the product in
terms of grafting we see that

ζh̄⋆[h]a = ζ( [h]a↶h̄ (1) )h̄ (2)
= ζ( ( a↶h)↶h̄ (1))h̄ (2) .

Therefore, by eq. (2.2),
ζΠ(h̄⋆[h]a) = ζ( a↶h)↶h̄

= ζ a↶(h̄⋆h)
= ζ[h̄⋆h]a .

The proof is finished by noting that the map [·]a leaves the symmetry factor invariant. □

2.13. Let n ∈ Î, then we denote by Cn the vector space of continuous scalar functions on
[0, 1]n , vanishing whenever two contiguous arguments coincide. More precisely, Cn consists
of functions f B [0, 1]n → Ò such that ft1···tn = 0 when t i = t i+1 for some index i ∈
{1, . . . , n − 1}. As a convention, we set C0 = Ò.
Given f ∈ Cn , we define δf ∈ Cn+1 by setting

δft1···tn+1 =
n+1∑
k=1

(−1)k ft1···t̂k ···tn+1

where t̂k means that this argument is omitted. For instance, if f ∈ C1 then δfs,t = ft − fs ;
and if f ∈ C2 then δfs,u,t = fs,t − fs,u − fu,t and so on. It is a known fact that if f ∈ C2 is such
that δf = 0 then f = δg for some g ∈ C1.
Given f ∈ C2 and α > 0, we define

∥f ∥α B sup
s,t

|fs,t |
|t − s |α

and we set C α2 B {f ∈ C2 : ∥f ∥α < ∞}.

DOI 10.20347/WIAS.PREPRINT.2926 Berlin 2022



The geometry of controlled rough paths 9

Before we continue let us fix some useful notation (which has the unfortunate sideffect of
identifying the dual and primal Hopf algebra structures).
2.14. Recall that H → H ∗ is an injection defined on h ∈ F by the linear functional δh (and
we suppress the identification in the notation), hence it makes sense to use both the evaluation
Xh
s,t B ⟨Xs,t , h⟩ and Xs,t ⋆ h B Xs,t ⋆ δh .

2.15. For α ∈ (0, 1), an α -Hölder branched rough path is a family of characters (Xs,t : s, t ∈
[0,T ]) over H such that

|⟨Xs,t , h⟩| ≲ |t − s |α |h |

for all h ∈ H , and Xs,u ⋆Xu,t = Xs,t for all s,u, t ∈ [0,T ].
With the help of the notation introduced in the previous paragraph, we remark that Chen’s
identity can be rewritten as

δXh
s,u,t = ⟨Xs,u ⊗ Xu,t ,∆

′h⟩ = Xh′
s,uXh′′

u,t . (2.3)
This identity together with eq. (2.1) implies that for all labels a ∈ A we have

δX[h]a
s,u,t = Xh

s,uX
a
u,t + Xh′

s,uX
[h′′]a
u,t .

In particular, if h ∈ Prim(H), there exists a path Γh ∈ C1 such that Xh
s,t = δΓ

h
s,t . In the case

where h = a for some a ∈ A, we just write X a . We observe that this path is in general not
unique, but there is a canonical choice with Γh0 = 0. We also note that by definition, Γh is
α |h |-Hölder continuous.
We will denote by Cα the set of α -Hölder branched rough paths. We also set N B ⌊α−1⌋ so
that Nα ≤ 1 < (N + 1)α .
We endow the set Cα with the distance

ρα (X, X̃) B max
h∈F +

(N )

∥Xh − X̃h ∥ |h |α

and we define
|||X|||α B ρα (1,X) = max

h∈F +
(N )

∥Xh ∥ |h |α .

2.16. Let X ∈ Cα for α , 1/n for any n ∈ Î.5 A path controlled by X is a path Z : [0,T ] →
H<(N ) such that

|⟨h,Zt ⟩ − ⟨Xs,t ⋆ h,Zs ⟩| ≲ |t − s | (N−|h |)α

for all h ∈ F <(N ). We set R hs,t B ⟨h,Zt ⟩ − ⟨Xs,t ⋆ h,Zs ⟩ and we note that this condition
is equivalent to requiring that R h ∈ C (N−|h |)α

2 for all h ∈ F(N−1). We denote the space of
controlled paths by Dα

X. It is a Banach space when endowed with the norm

|||Z|||α B
∑
h∈F <(N )

(
|⟨h,Z0⟩| + ∥R h ∥ (N−|h |)α

)
.

Given β < α , we let Dα ,β
X B Dα

X
|||·|||β .

If Z ∈ Dα
X and Z̃ ∈ Dα

X̃
, we define

|||Z; Z̃|||α B
∑
h∈F <(N )

(
|⟨h,Z0 − Z̃0⟩| + ∥R h − R̃ h ∥ (N−|h |)α

)
(2.4)

where R̃ hs,t B ⟨h, Z̃t ⟩ − ⟨X̃s,t ⋆ h, Z̃s ⟩.
5This technical restriction on α is standard, cf. [28] and we will require it from now on.
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Unraveling the definition of controlledness in coordinates, we see that the path Z ht B ⟨h,Zt ⟩
has to satisfy for all h ∈ F <(N ) and the product from Paragraph 2.6 the following relation to be
controlled:

δZ hs,t =
∑

h̄∈F +
(N −|h |−1)

⟨h̄ ⋆ h,Zs ⟩Xh̄
s,t + R hs,t (2.5)

This coincides with Gubinelli’s definition in [19].

Example 2.17. Suppose α ∈ ( 15 ,
1
4 ). A path Z ∈ Dα

X satisfies (cf. [19, Example 8.2]),

δZ 1
s,t = Zs Xs,t + Zs Xs,t + Zs Xs,t + Zs Xs,t + Zs Xs,t + Zs Xs,t + R 1

s,t ,

δZs,t =

(
2Zs + Zs

)
Xs,t +

(
3Zs + Zs + Zs

)
Xs,t +

©­«Zs + Zs
ª®¬Xs,t + Rs,t ,

δZs,t =

(
3Zs + Zs

)
Xs,t + Rs,t ,

δZs,t =
©­«Zs + Zs + Zs

ª®¬Xs,t + Rs,t

with Z , Z , Z , Z ∈ C α , R , R ∈ C 2α
2 , R ∈ C 3α

2 and R 1 ∈ C 4α
2 , where we have

used the computations in Example 2.10. ⋄

Thanks to Paragraph 2.3 the controlledness condition can be rewritten in term of the basis
P⊤ relative to a basis P of Prim. Indeed, for any h ∈ F <(N ) the remainder rewrites as

R hs,t = δZ
h
s,t −

∑
ρ∈P⊤,<

(N −|h | )

Z ρ∗⋆hX
ρ
s,t .

2.18. Controlled paths are “good integrands” for rough paths, in the sense that if Z ∈ Dα
X

then for any label a ∈ A, ∫ t

0
Zs dXa

s B lim
|π |→0

∑
[u,v ]∈π

∑
h∈F <(N )

Z hu X[h]a
u,v

exists, and defines what is know as the rough integral of Z against X a . It satisfies the funda-
mental inequality ������

∫ t

s
Zu dXa

u −
∑
h∈F <(N )

Z hs X[h]a
s,t

������ ≤ C |||Z|||α |||X|||α |t − s | (N+1)α (2.6)

Moreover, it defines an element IaX(Z) ∈ H(N ) with components〈
1,IaX(Z)

〉
=

∫ t

0
Zu dXa

u ,
〈
[h]a ,IaX(Z)

〉
= Z ht

and zero otherwise.

Proposition 2.19. The map IaX : Dα
X → Dα

X is bounded, i.e., there is a constant C = C (α)
such that

|||IaX(Z) |||α ≤ C (1 +T α ) (1 + |||X|||α ) |||Z|||α .
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Proof. For all h ∈ F(N−1) set

R
h
s,t B δIaX(Z)s,t −

∑
h̄∈F +

(N −|h |−1)

I
a
X(Z)

h̄⋆h
s Xh̄

s,t .

We first show that for all h ∈ F(N−2) we have

R
[h]a
s,t = R hs,t +

∑
h̄∈FN −|h |−1

Z h̄⋆hs Xh̄
s,t

and zero otherwise. Indeed, recall that for any h ∈ F(N−1), we have that

I
a
X(Z)

[h]a
s = Z hs

We note that by Lemma 2.12, the identity〈
h̄ ⋆ [h]a ,IaX(Z)s

〉
=
〈
[h̄ ⋆ h]a ,IaX(Z)s

〉
= Z h̄⋆hs

holds. Hence
R

[h]a
s,t = δZ hs,t −

∑
h̄∈F +

(N −|h |−2)

Z h̄⋆hs Xh̄
s,t

= R hs,t +
∑

h̄∈FN −|h |−1

Z h̄⋆hs Xh̄
s,t .

Now, given h ∈ F(N−2), the remainder satisfies

∥R[h]a ∥ (N−|h |−1)α ≤ ∥R h ∥ (N−|h |)αT
α + |||X|||α

∑
h̄∈FN −|h |

∥Z h̄⋆h ∥∞.

Moreover, from the fundamental estimate (2.6) we see that

∥R1∥Nα ≤ C |||Z|||α |||X|||αT α + |||X|||α
∑

h∈FN −1

∥Z h ∥∞.

For any h ∈ FN−1 we have that
∥Z h ∥∞ ≤ |Z h0 | +T

α ∥Z h ∥α .

Finally, the norm can be bounded:

|||IaX(Z) |||α =
∑
h∈F <(N )

∥Rh ∥ (N−|h |)α

= ∥R1∥Nα +
∑

h∈F <(N −1)

∥R[h]a ∥ (N−|h |−1)α

≤ C |||Z|||α |||X|||αT α + |||Z|||αT α + |||X|||α
∑
h∈F <(N )

( |Z h0 | + ∥Z h ∥α )

≤ C (1 + |||X|||α ) (1 +T α ) |||Z|||α . □

Proposition 2.20. Let X, X̃ ∈ Cα such that |||X|||α ∨ |||X̃|||α ≤ M and let Z ∈ Dα
X, Z̃ ∈ Dα

X̃
be

such that |||Z|||α ∨ |||Z̃|||α ≤ M . Then there is a constant C = C (α ,M ) such that for all a ∈ A,
the bound

|||IaX(Z);I
a
X̃(Z̃) |||α ≤ C ( |||Z; Z̃|||α + ρα (X, X̃))

holds uniformly.
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Proof. By considering the germ

Ξs,t =
∑
h∈F <(N )

Z hs X[h]a
s,t −

∑
h∈F <(N )

Z̃ hs X̃[h]a
s,t

it is possible to show, using the Sewing Lemma [12, Lemma 4.2], that (using the same notations
as in Proposition 2.19)

∥R1 − R̃1∥Nα ≤ CT α ( |||Z; Z̃|||α + ρα (X, X̃)) +Mρα (X, X̃) +M
∑

h∈FN −1

∥Z h − Z̃ h ∥∞.

Proceeding in a similar way to the proof of Proposition 2.19, we see that

R
[h]a
s,t − R̃[h]a

s,t = R hs,t − R̃ hs,t +
∑

h̄∈FN −|h |−1

Z h̄⋆hs Xh̄
s,t −

∑
h̄∈FN −|h |−1

Z̃ h̄⋆hs X̃h̄
s,t

from where the bound
∥R[h]a − R̃[h]a ∥ (N−|h |−1)α ≤ ∥R h − R̃ h ∥ (N−|h |)αT

α +Mρα (X, X̃) +M
∑

h̄∈FN −|h |−1

∥Z h − Z̃ h ∥∞

follows. Summing over h ∈ F <(N ) yields the desired bound. □

3. Main approximation result

In this section, we generalise a key result obtained in [16]. There it was shown in [16, Theorem
3.10] that for a fixed α -rough path X, if β < α < 1/2 are sufficiently close to 1/2, the set{

(ψ,ψ′)
����ψs,t = ∫ t

s
fr dXr + δgs,t , ψ′

s = fs where f , g ∈ C∞
1

}
,

is dense in D
α ,β
X (where the integral is understood in the Young sense). As a consequence, if

X(ω) is a random rough path of α -regularity (e.g. the lift of a Brownian motion), the spaces
{Dα ,β

X(ω)}ω∈Ω turned out to be a measurable field of Banach spaces [16, Proposition 3.15].
Our aim is to generalise and strengthen these results. We shall see that the field is indeed a
continuous field, we will remove the cumbersome conditions imposed on α , β in loc.cit. and
obtain the result for arbitrary β < α . To this end, we will construct a dense subset of smooth
functions for every order:

Definition 3.1. Fix ε ∈ (0, 1 − Nα) (where we recall that Nα < 1 due to our assumption
that α , 1/n, n ∈ Î) and C 0,1−ε denote the closure of C∞ under the (1 − ε)-Hölder norm.6
We recall that this space is a separable Banach space, and the following inclusions hold: let
PL ⊂ Lip denote the space of piecewise linear functions on [0,T ], then

PL∥·∥1−ε
= C 0,1−ε ⊂ C 1−ε .

Moreover, since 1 − ε > Nα > (N − 1)α > · · · > α we get that
C 0,1−ε ⊂ CNα ⊂ · · · ⊂ C α

and ∥f ∥kα ≤ ∥f ∥1−εT 1−ε−kα for all k ∈ {1, . . . ,N }.
Denote by Ω ⊂ C 0,1−ε a countable dense subset and define for N ∈ Î the sets

SN B
⊕

h∈F(N −1)

C 0,1−ε, S0
N B

⊕
h∈F(N −1)

Ω.

6These spaces are also known as the little Lipschitz spaces, see [33, Chapter 4] and cf. [13, Theorem 5.33]
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We endow SN with the norm
[]f [] B max

h∈F(N −1)
∥f h ∥1−ε .

It will turn out that (rough) integration of elements in SN leads to a dense subset of the
Banach space of controlled paths over a given rough path X. To establish this result, let us
define a map ΓX : SN → Dα

X with the property that for all h ∈ F(N−1), the remainder

R hs,t = δΓX(f )hs,t −
∑

h̄∈F +
(N −|h |−1)

ΓX(f )h̄⋆hs Xh̄
s,t (3.1)

satisfies |R hs,t | ≤ C (1 + |||X|||α )N−1−|h | []f [] |t − s |1−ε . The definition of ΓX(f ) is recursive:

ΓX(f )ht B f ht for every h ∈ FN−1. (3.2)
Clearly,

∥R h ∥1−ε = ∥f ∥1−ε ≤ []f []
and in particular R h ∈ C α2 with ∥R h ∥α ≤ []f []T 1−ε−α .

Given n < N − 1, let h ∈ Fn , and suppose that we have defined ΓX(f )h̄ for all forests h̄ ∈ F
with n < |h̄ | ≤ N − 1, in a way such that |R h̄s,t | ≤ C (1 + |||X|||α )N−1−|h̄ | []f [] |t − s |1−ε .
Recall that every ρ ∈ P⊤ is of the form ρ = ⊤(pi1, . . . , pik ) for some integer k ≥ 1 and
primitive elements pi1, . . . , pik ∈ P. Given ρ ∈ P⊤ we define ρ∗ = fi1,...,ik to be its dual basis
element.

Lemma 3.2. Let h ∈ Fn and p ∈ P be a primitive element with |p | < N − n. Then the rough
integral ∫ t

0
ΓX(f )p

∗⋆h
r dXp

r B lim
|π |→0

∑
[a,b]∈π

∑
ρ∈P⊤,<

(N −n−|p | )

ΓX(f )ρ
∗⋆p∗⋆h
a Xρ⊤p

a,b

exists along any sequence of partitions, and it is independent of any choice. Moreover,�������
∫ t

s
ΓX(f )p

∗⋆h
r dXp

r −
∑

ρ∈P⊤,<
(N −n−|p | )

ΓX(f )ρ
∗⋆p∗⋆h
s Xρ⊤p

s,t

������� ≤ C []f [] (1+|||X|||α )N−2−n |||X|||α |t−s |1−ε+|p |α .

Proof. Let
Ξs,t B

∑
ρ∈P⊤,<

(N −n−k )

ΓX(f )ρ
∗⋆p∗⋆h
s Xρ⊤p

s,t .

Observe that

δΞs,u,t =
∑

ρ∈P⊤,<
(N −n−k )

(
ΓX(f )ρ

∗⋆p∗⋆h
s δXρ⊤p

s,u,t − δΓX(f )ρ
∗⋆p∗⋆h
s,u Xρ⊤p

u,t

)
.

By recalling that
δXρ⊤p

s,u,t = Xρ
s,uX

p
u,t +

∑
(ρ)

Xρ′

s,uX
ρ′′⊤p
u,t ,

a standard computation gives

δΞs,u,t = −
∑

ρ∈P⊤,<
(N −n−|p | )

R
ρ∗⋆p∗⋆h
s,u Xρ⊤p

u,t .
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Therefore
|δΞs,u,t | ≤ C []f [] (1 + |||X|||α )N−2−n |||X|||α

∑
ρ∈P⊤,<

(N −n−|p | )

|u − s |1−ε |t − u | ( |ρ |+|p |)α .

The result then follows from the Sewing Lemma since 1− ε + |p |α > (N + |p |)α > (N +1)α >
1. □

We then set for every h ∈ Fn , 0 < n < N − 1

ΓX(f )ht B
∑
p∈P

|p |<N−|h |

∫ t

0
ΓX(f )p

∗⋆h
r dXp

r + f ht . (3.3)

Lemma 3.3. The map ΓX : SN → Dα
X sending f to ΓX(f ) as in eqs. (3.2) and (3.3) is

well-defined, linear and bounded, with

|||ΓX(f ) |||α ≤ C e
N |||X|||α − 1

|||X|||α
[]f [] (3.4)

for all f ∈ SN .

Proof. The proof is by induction. Linearity clearly holds when |h | = N − 1. Indeed,
ΓX(f + λg )ht = (f + λg )ht = f ht + λg ht = ΓX(f )ht + λΓX(g )ht .

Now pick h ∈ Fn , and suppose that linearity holds for all forests h̄ with |h̄ | > n. Then

ΓX(f + λg )ht =
∑
p∈P

|p |<N−n

∫ t

0
ΓX(f + λg )p

∗⋆h
r dXp

r + (f + λg )ht

=
∑
p∈P

|p |<N−n

∫ t

0

{
ΓX(f )p

∗⋆h
r + λΓX(g )p

∗⋆h
r

}
dXp

r + f ht + λg ht

= ΓX(f )ht + λΓX(g )ht .

From the previous sections, we have that ∥R h ∥α ≤ C []f []T 1−ε−α for all h ∈ FN−1. Take
h ∈ Fn , and note that

R hs,t = δΓX(f )hs,t −
∑

h̄∈P⊤
(N −n−1)

ΓX(f )ρ
∗⋆h
s Xρ

s,t

=
∑

p∈P(N −n−1)

∫ t

s
ΓX(f )p

∗⋆h
u dXp

u −
∑

ρ∈P⊤
(N −n−1)

ΓX(f )ρ
∗⋆h
s Xρ

s,t + δf
h
s,t

=
∑

p∈P(N −n−1)

©­­«
∫ t

s
ΓX(f )p

∗⋆h
u dXp

u −
∑

ρ∈P⊤
(N −n−|p | )

ΓX(f )ρ
∗⋆p∗⋆hXρ⊤p

s,t

ª®®¬ + δf hs,t .
Therefore, by Lemma 3.2 we see that

|R hs,t | ≤ C []f [] (1 + |||X|||α )N−2−|h | |||X|||α
∑

p∈P(N −n−1)

|t − s |1−ε+|p |α + ∥f h ∥1−ε |t − s |1−ε,

so that
∥R h ∥ (N−n)α ≤ CT (1 + |||X|||α )N−1−|h | []f [] . (3.5)
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since 1 − ε − (N − n + k )α > (n − k )α > (N − 1)α > 0 for all k ∈ {0, . . . ,N − n − 1}. In
particular, R h ∈ C (N−|h |)α

2 for all h ∈ F(N−1), i.e., ΓX(f ) ∈ Dα
X, and the required bound holds

after summation over h ∈ F <(N ). □

Theorem 3.4. Let X, X̃ ∈ Cα such that |||X|||α ∨ |||X̃|||α ≤ M and f ∈ SN . Then,
|||ΓX(f ); ΓX̃(f ) |||α ≤ C []f []ρα (X, X̃).

Proof. For h ∈ F(N−1) and p ∈ P, let us define

Q
h,p
s,t B

∫ t

s
ΓX(f )p

∗⋆h
u dXp

u −
∑

ρ∈P⊤,<
(N −|h |− |p | )

ΓX(f )ρ
∗⋆p∗⋆h
s Xρ⊤p

s,t .

Using the Sewing Lemma and proceeding as in the proof of Lemma 3.2 one can inductively
show that

|Q h,p
s,t − Q̃ h,p

s,t | ≤ C []f []ρα (X, X̃) |t − s |1−ε+|p |α .
Then, arguing as in the proof of Lemma 3.3, we see that

|R hs,t − R̃ hs,t | ≤ C
∑

p∈P(N −|h |−1)

|Q h,p
s,t − Q̃ h,p

s,t |,

and the required bound is obtained after summation over h ∈ F <(N ). □

In order the make the presentation more amenable to the reader, the construction of our
approximation will be split in two parts. First we show how to approximate a given controlled
path Z ∈ Dα

X in the |||·|||β norm over a small interval [0,T ], for any β < α . Then, we
extend this approximation to an arbitrary interval by patching together each of the individual
approximations.

3.1. Short-time approximations. Given Z ∈ Dα
X, we start by defining a controlled path of

the form ΓX(f ) : [0,T ] → F(N−1) on a given time interval [0,T ] such that |||Z; ΓX(f ) |||β is
arbitrarily small for small T > 0 and any β < α .
We do this by a backward procedure: The highest order functions are defined as affine functions.
That is, for every h ∈ FN−1, we set

f ht = Z h0 + t

T
(Z hT − Z h0 ), t ∈ [0,T ] . (3.6)

The idea is to define all lower order terms by integration against the rough path.
Assume that we have defined f h for all h ∈ F with n < |h | ≤ N − 1. Given h ∈ Fn we set

f ht = Z h0 + t

T

δZ h0,T −
∑

p∈P(N −|h |−1)

∫ T

0
ΓX(f )p

∗⋆h
u dXp

u

 . (3.7)

where the integral is defined by Lemma 3.2. Note that by construction we have
∥f h ∥1−ε ≤ C ∥R h ∥ (N−|h |)αT

α (N−|h |)+ε−1 (3.8)
for some C > 0.
The controlled path ΓX(f ) so constructed can serve as a first-order approximation to a given
controlled path Z. This is summarized in the next lemma.

Lemma 3.5. Let Z be a controlled path. Define Z̃ B ΓX(f ) with f as in eqs. (3.6) and (3.7)
and R̃ h as in (3.1). Then Z̃ has the following properties:
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(i) Z0 = Z̃0 and ZT = Z̃T .
(ii) R̃ h0,T = R h0,T for every h ∈ F(N−1).
(iii) For every β < α , there is a constant C > 0 such that

∥R h − R̃ h ∥ (N−|h |)β ≤ CT (N−|h |) (α−β ) .

In particular,

|||Z; Z̃|||β ≤ CT
N (α−β ) −T α−β
T α−β − 1

.

Proof. (i) follows by definition. Next,

R̃ h0,T = δZ̃ h0,T −
∑

h̄∈F +
(N −|h |−1)

Z̃ h̄⋆h0 Xh̄
0,T

= δZ h0,T −
∑

h̄∈P+
(N −|h |−1)

Z h̄⋆h0 Xh̄
0,T

= R h0,T

(3.9)

and property (ii) is shown. Finally, in view of (3.8) we obtain an estimate for []f [] in terms of
|||Z|||. Thus property (iii) follows from the estimate (3.5) and the triangle inequality.

□

3.2. From local to global. Having constructed affine controlled paths on a given interval,
we will glue them together now. Fix a dissection π = {0 = t0 < t1 < · · · < tN < tN+1 = T }
of [0,T ] with mesh θ B maxk |tk+1 − tk |. Set Ik := [tk , tk+1]. Assume that we are given
controlled paths

Z̃k : Ik → H

for which Z̃ktk+1 = Z̃k+1tk+1
and with remainders satisfying |R̃ k ;h

s,t | ≤ C |t − s | (tk+1 − tk ) (N−|h |)α−1

for every s, t ∈ [tk , tk+1]. We define Z̃ : [0,T ] → H by

Z̃t B
N∑
k=0

Z̃kt 1Ik (t ) (3.10)

and set
R̃ hs,t := δZ̃ hs,t −

∑
h̄∈F +

(N −|h |−1)

Z̃ h̄⋆hs Xh̄
s,t .

Lemma 3.6. For all h ∈ F(N−1) we have

δR̃ hs,u,t =
∑

h̄∈F +
(N −|h |−1)

R̃ h̄⋆hs,u Xh̄
u,t .

If Z ∈ Dα
X, the same identity holds with R̃ replaced by the remainder R of Z.

Proof. By definition we have that
R̃ hs,t = ⟨h, δZ̃s,t ⟩ − ⟨Xs,t ⊗ h,∆′Z̃s ⟩

Applying δ to both sides of this equation and recalling that if f ∈ C1, g ∈ C2 and Fs,t B
fsgs,t ∈ C2 then

δFs,u,t = fsδgs,u,t − δfs,ugu,t
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we see that
δR̃ hs,u,t = −⟨Xs,u ⊗ Xu,t ⊗ h, (∆′ ⊗ id)∆′Z̃s ⟩ + ⟨Xu,t ⊗ h,∆′δZ̃s,u⟩

Now, we have that for any f ∈ F(N−|h |−1),

⟨f ⊗ h,∆′δZ̃s,u⟩ =
∑
h̄∈F 0

⟨f ⊗ h,∆′h̄⟩R h̄s,u + ⟨Xs,u ⊗ f ⊗ h, (id ⊗ ∆′)∆′Z̃s ⟩

and therefore
δR̃ hs,u,t = −⟨Xs,u ⊗ Xu,t ⊗ h, (∆′ ⊗ id)∆′Z̃s ⟩ + ⟨Xs,u ⊗ Xu,t ⊗ h, (id ⊗ ∆′)∆′Z̃s ⟩ +

∑
h̄∈F 0

⟨Xu,t ⊗ h,∆′h̄⟩R̃ h̄s,u

=
∑
h̄∈F 0

⟨Xu,t ⊗ h,∆′h̄⟩R̃ h̄s,u

where the fist two terms cancel by coassociativity of ∆′.
Finally, we have

δR̃ hs,u,t =
∑

h̄∈F +
(N −|h |−1)

∑
f ∈F +

(N −|h |−1)

⟨f ⊗ h,∆′h̄⟩R̃ h̄s,uXf
u,t

=
∑

f ∈F +
(N −|h |−1)

R̃ f⋆hs,u Xf
s,u □

Proposition 3.7. The path Z̃ defined in (3.10) is an α -controlled path.

Proof. We have to show that ∥R̃ h ∥ (N−|h |)α < ∞ for every h ∈ F(N−1). Fix s < t with s ∈
[tk , tk+1] and t ∈ [t l , t l+1]. Using Lemma 3.6 twice shows that

R̃ hs,t = R̃
k ;h
s,tk+1

+ R̃ htk+1,t l + R̃
l ;h
t l ,t

+
∑

∈̄F +
(N −|h |−1)

R̃ k ;h̄⋆h
s,tk+1

Xh̄
tk+1,t +

∑
h̄∈F +

(N −|h |−1)

R̃ h̄⋆htk+1,t l X
h̄
t l ,t
.

By the triangle inequality, it suffices to show that R̃ hs,t ≤ C |t − s | (N−|h |)α for every s, t ∈ π.
This follows by induction over the length of |t − s | using again Lemma 3.6 for the induction
step. □

Proposition 3.8. Let Z ∈ Dα
X. Fix a dissection πN = {0 = t0 < t1 < · · · < tN < tN+1 = T }

of [0,T ] with mesh θ B maxk |tk+1 − tk |. On every interval Ik = [tk , tk+1], we define
Z̃k : Ik → H as in Lemma 3.5 and Z̃ as in (3.10). Then

|||Z; Z̃|||β → 0 as θ → 0

for every β < α .

Proof. By construction, Z̃ satisfies Z̃tk = Ztk and R̃ htk ,tk+1 = R htk ,tk+1 for all k = 0, . . . ,N .
Moreover, for all h ∈ F +

(N ) the remainders satisfy the bounds

sup
k=0,...,N

sup
s,t∈Ik

|R̃ hs,t |
|t − s | ≤ Cθ

(N−|h |)α−1, sup
k=0,...,N

∥R h − R̃ h ∥ (N−|h |)β ;Ik ≤ Cθ (N−|h |) (α−β ) .

Lemma 3.6 implies that for any pair of contiguous mesh points tk < tk+1 and any t > tk+1 we
have

δR htk ,tk+1,t = δR̃
h
tk ,tk+1,t .

Inductively, this implies that R̃ ht j ,tk = R
h
t j ,tk

for all 0 ≤ j < k ≤ N , and so

δR ht j ,tk ,t = δR̃
h
t j ,tk ,t
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as well. Consider now any two points s < t ∈ [0,T ], and suppose that s ∈ I j , t ∈ Ik for some
0 ≤ j < k ≤ N . Note that

R hs,t − R̃ hs,t = R hs,t j+1 − R̃
h
s,t j+1 + R

h
t j+1,t − R̃

h
t j+1,t + δR

h
s,t j+1,t − δR̃

h
s,t j+1,t

= R hs,t j+1 − R̃
h
s,t j+1 + R

h
tk ,t

− R̃ htk ,t + δR
h
s,t j+1,t − δR̃

h
s,t j+1,t ,

hence, since both |t j+1 − s | ≤ |t − s | and |t − tk | ≤ |t − s |,

|R hs,t − R̃ hs,t | ≤ Cθ (N−|h |) (α−β ) |t j+1 − s | (N−|h |)β + Cθ (N−|h |) (α−β ) |t − tk | (N−|h |)β

+
∑

h̄∈F +
(N −|h |−1)

|R h̄⋆hs,t j+1 − R̃
h̄⋆h
s,t j+1 | |X

h̄
t j+1,t |

≤ 2Cθ (N−|h |) (α−β ) |t − s | (N−|h |)β

+ C
∑

h̄∈F +
(N −|h |−1)

θ (N−|h |−|h̄ |) (α−β ) |tk+1 − s | (N−|h |−|h̄ |)β |t j+1 − t | |h̄ |α

≤ 3Cθ (N−|h |) (α−β ) |t − s | (N−|h |)β .

Therefore, for all h ∈ F(N−1) and β ≤ α ,

∥R h − R̃ h ∥ (N−|h |)β ≤ Cθ (N−|h |) (α−β ) .

Moreover,
|||Z; Z̃|||β =

∑
h∈F +

(N )

∥R h − R̃ h ∥ (N−|h |)β

≤ C
∑
h∈F <(N )

θ (N−|h |) (α−β )

= C
N∑
k=1

θk (α−β ) → 0

as θ → 0. □

Corollary 3.9. For every X ∈ Cα , the linear subspace ΓX(SN ) is dense in D
α ,β
X under |||·|||β

for β < α .

Theorem 3.10. Let N = ⌊1/α⌋. Define the following sets of sections
Γ B {X ↦→ ΓX(f ) : f ∈ SN }, Γ0 B

{
X ↦→ ΓX(f ) : f ∈ S0

N

}
Then the following holds:

(i) Γ is a linear subspace of
∏

X D
α ,β
X

(ii) For every X, {γ (X) : γ ∈ Γ0} is a countable dense subset of Dα ,β
X .

(iii) For every γ ∈ Γ with γ (X) = ΓX(f ), the function X ↦→ |||γ (X) |||α = |||ΓX(f ) |||α is
continuous.

Proof. Part (i) follows from Lemma 3.3 applied fiberwise, and part (ii) follows from Proposi-
tion 3.8 together with the observation that Γ0 is countable as S0

N is.
Finally, we have to check continuity of the mapping X ↦→ |||γ (X) |||α = |||ΓX(f ) |||α . Since we are
working in a metric space, it suffices to pick a sequence Xn → X as α -Hölder rough paths.
Then we apply Theorem 3.4 to obtain

| |||ΓXn (f ) |||α − |||ΓX(f ) |||α | ≤ |||ΓXn (f ); ΓX(f ) |||α ≤ C []f []ρα (Xn ,X).
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Since Xn converges to X in the α -Hölder topology, we see that the map X ↦→ |||γ (X) |||α is
continuous. □

It is important to note that Γ can be completed to yield a structure which is known as a
continuous field of Banach spaces, [8]. We will review the general theory of these structures
in the next section.

Remark 3.11 (Approximation of controlled paths). We will show now that our results imme-
diately yield canonical approximations for controlled rough paths. Let X be an α -rough path
and assume that there are smooth rough paths Xε (i.e. canonical lifts of smooth paths) such
that Xε → X as ε → 0. Note that this is always the case when X is geometric. Let Z ∈ D

α ,β
X .

We aim to construct smooth Zε ∈ D
α ,β
Xε

such that ∥Z; Zε ∥β → 0 as ε → 0. Let δ > 0. From
property (ii) in Theorem 3.10, we can choose f ∈ SN such that

|||Z; ΓX(f ) |||β = |||Z − ΓX(f ) |||β ≤ δ/2.
From Theorem 3.4, we can choose ε > 0 sufficiently small to obtain

|||ΓX(f ); ΓXε (f ) |||β ≤ δ/2.
Since Xε is smooth, ΓXε (f ) is also smooth by construction. Therefore we can set Zε = ΓXε (f )
and conclude with the triangle inequality that |||Z; Zε |||β ≤ δ .

4. Banach bundles of controlled rough paths

In this section we construct Banach bundles of controlled rough paths. We recall first some
general definitions and results on Banach bundles and continuous fields of Banach spaces.

4.1. Continuous fields and Banach bundles. Let us first review two closely related struc-
tures which arose in conjunction with C ∗-algebras and provide a convenient framework for our
investigation of spaces of controlled rough paths. We shall now present these frameworks and
discuss the pertinent examples from the theory of rough paths thereafter.

Definition 4.1. Let T be a topological space. A continuous field Γ of Banach spaces over T
is a family (Et )t∈T of Banach spaces, together with a set Γ̂ ⊆ ∏

t∈T Et (where the elements
of Γ̂ are thought of as functions γ : T → ∏

t Et with γ (t ) ∈ Et , [t ∈ T ), such that:

(i) Γ̂ is a linear subspace of
∏
t∈T Et ,

(ii) for every t ∈ T the set Γ̂(t ) B {γ (t ) | γ ∈ Γ̂} is dense in Et ,
(iii) For every γ ∈ Γ̂, the function T → Ò, t ↦→ ∥γ (t )∥ is continuous,
(iv) Let γ̃ ∈ ∏

t∈T Et . If for every t ∈ T and every ε > 0, there exists an γt ∈ Γ̂ such that
∥γ̃ (x ) − γt (x )∥ ≤ ε on some neighborhood of t in T , then γ̃ ∈ Γ̂.

If moreover Γ̂ contains a countable subset Λ such that Λ(t ) = {γ (t ) | γ ∈ Λ} is a dense
subset in Et for every t ∈ T , then Γ̂ is called a separable continuous field of Banach spaces
over T .

In the previous section we have constructed an example of a family of sections of the spaces
of controlled rough paths which is almost a continuous field of Banach spaces. Indeed our
example satisfies properties (i)-(iii) but not (iv) of Definition 4.1. Let us agree to call such a
collection a continuous pre-field of Banach spaces. The reason the notion of pre-field does not
exist as an independent object of study is that every pre-field can uniquely be completed to a
continuous field. Namely, [8, Proposition 10.2.3] yields
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Proposition 4.2. If T is a topological space and Γ a pre-field of Banach spaces over T .
Then there exists a unique continuous field Γ̂ of Banach spaces over T such that Γ ⊆ Γ̂.
Furthermore, if Γ admits a countable subset Λ such that Λ(t ) = {γ (t ) | γ ∈ Λ} is a dense
subset of the Banach space over t , for all t ∈ T , then Γ̂ is a separable continuous field of
Banach spaces.

Proof. In view of the cited proposition, we only need to establish the separability. This is
however trivial since we have assumed that there is a countable subset Λ of Γ ⊆ Γ̂ which
yields the (countable) dense set Λ(t ) in each fibre for t ∈ T . Thus Γ̂ is separable. □

The concept of a continuous fields is a convenient framework in which one can speak about
continuous sections on a topological space with values in a collection of Banach spaces. The
main point here is that the union of fibres E B ⊔t∈T Et does not need to carry a topology while
the sections are still continuous in an appropriate sense. If one considered E → T as a bundle
in the usual sense, it would be natural to define a topology on E making the elements of a
continuous field continuous. Indeed there exists a canonical way to introduce such a topology
on E from a given continuous field.

Definition 4.3. Let Γ be a continuous (pre-)field of Banach spaces on a topological space
E and denote by (Et )t∈T the family of Banach spaces over T . Define E B

⊔
t∈T Et and let

p : E → T be the canonical projection p (e) = t if e ∈ Et . Then we consider for γ ∈ Γ, U ⊆ T
open and ε > 0 the tube

W (γ,U , ε) = {b ∈ E | p (b) ∈ U , ∥b − γ (p (b))∥ < ε} (4.1)
From now on we endow E with the topology generated by the base

{W (γ,U , ε) | γ ∈ Γ,U ⊆ T open, and ε > 0}.

The point is that the tubes define a base of a Hausdorff topology on E . Before we discuss
this, let us recall following concept.

Definition 4.4. Let E ,T be Hausdorff topological spaces and p : E → T be a continuous
and open surjective map. We call the triple E = (B , p,T ) a Banach bundle over T if each
fibre Et B p−1(t ), t ∈ T is a Banach space and the following conditions hold

(i) the map E → Ò, s ↦→ ∥s ∥ is continuous.
(ii) + : Et × Et → E , (a1, a2) ↦→ a1 + a2 is continuous for all t ∈ T ,
(iii) For each λ ∈ Ò, the map E → E , a ↦→ λa is continuous,
(iv) if t ∈ T and {ai }i ∈I is any net of elements7 in E such that ∥ai ∥ → 0 and p (ai ) → t in

T , then ai → 0t in T .

Note that in the notation we usually suppress the index for the vector space operations and
norms if the fibre is clear from the context. A continuous map σ : T → E such that p ◦σ = idT
is called continuous crossection.

Remark 4.5. A Banach bundle in the above sense is a special type of fibre bundle whose fibres
are Banach spaces. It is more general than a vector bundle whose fibres are Banach spaces
(and which is also often called a Banach bundle in the literature). Note that contrary to vector
bundles, Banach bundles do in general not admit a local trivialisation by a bundle trivialisation.
Consequently, we do not claim that a canonical trivialisation exists for the Banach bundle B .

7While the general definition of a Banach bundle is naturally phrased using nets, we will only encounter
Banach bundles which are metrisable topological spaces. Thus all nets we have to care about are countable,
i.e. sequences.
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Banach bundles are (up to some technicalities) equivalent to continuous fields of Banach
spaces as the next result shows:

Proposition 4.6. Let Γ be a continuous pre-field of Banach spaces over a metric space (T , d ).
Let again (Et )t∈T be the family of Banach fibres and endow E B ⊔t∈T Et with the topology
from Definition 4.3. Then the canonical projection p : E → T turns (E , p,T ) into the unique
Banach bundle such that the following holds:

1 Every element σ ∈ Γ is a continuous cross section of the Banach bundle.
2 The Banach bundle has enough cross sections, i.e. for every b ∈ E there exists a

continuous cross section σb with σb (p (σ)) = b.
3 If the completion Γ̂ is a separable continuous field of Banach spaces, E is a metric space.

Moreover, E is separable if and only if T is separable.

Proof. By definition of a continuous pre-field of Banach spaces the set Γ(t ) = {γ (t ) | t ∈ T }
is a dense linear subspace of Et for each t ∈ T . Moreover, for every γ ∈ Γ, the function
t ↦→ ∥γ (t )∥ is continuous. Hence, the prerequisites of [9, 13.18 Theorem] are verified. Applying
the theorem, we see that the tubes (4.1) form the basis of a Hausdorff topology on E . This
topology turns (E , p,T ) into a Banach bundle such that every element σ of Γ becomes a
continuous cross section of this bundle. Furthermore this topology is unique and satisfies (1)
and has enough cross sections by [9, Remark 13.19], i.e. (2) holds.
We are left to prove (3) and note first that by uniqueness of the Banach bundle topology, we
may replace Γ with its completion Γ̂. Hence without loss of generality we may assume now
that Γ is a separable continuous field of Banach spaces with a countable subset Λ such that
Λ(t ) = {γ (t ) | γ ∈ Λ} is a dense subset of Et for each t ∈ T . To see that E is metrisable
we note first that, as a metric space, T is paracompact. Hence we can apply [26, Proposition
A.1] and deduce that E is a completely regular topological space. In particular, E is a regular
topological space. Further, [10, Corollary 4.4.4] shows that T admits a σ-finite topological
base B, i.e. a topological base which is a countable union of locally finite families of open sets
B =

⋃
n∈Î Bn .

Let us construct a σ-finite topological base for E . For this let Bn = {Ui }i ∈Sn , n ∈ Î for the
locally finite families of open sets Ui comprising B. Consider the family T of tubes defined via

W (γ,Ui , r ), γ ∈ Λ, i ∈ Sn , r ∈ Ñ ∩ (0, 1). (4.2)
By construction T consists of open neighborhoods in E and ifW (γ,Ui , r ) ∩W (γ′,U ′

i , s) , ∅
we must have Ui ∩U ′

i , ∅. As Λ is countable, the set

T =
⋃
n∈Î

⋃
r ∈Ñ∩(0,1)

⋃
γ∈Λ

{W (γ,Ui , r )}i ∈Sn

is again σ-finite. We are left to prove that it is a topological base. Pick W (η,U , r ), for
η ∈ Γ,U ⊆ T open and some r > 0. For any fixed b ∈ W (η,U , r ) we construct a tube of
the form (4.2) contained in W (η,U , r ) which contains b. Pick a rational number 0 < ε <
∥b − η (p (b))∥/2. Exploiting that the image Λ(t ) of Λ is dense in Et for every t ∈ T , we
can pick γb ∈ Γ0 such that ∥b − γb (p (b))∥ < ε. Applying the triangle inequality we see that
γb (p (b)) ∈W (η,U , r ). Moreover, t ↦→ ∥γb (t ) − η (t )∥ is continuous, whence there is a small
neighborhood O of p (b) in U such that W (γb ,O , ε) ⊆ W (η,U , r ). As B is a topological
base of T , we can pick i ∈ Sn for some n ∈ Î such that p (b) ∈ Ui ⊆ O . This implies that
b ∈W (γb ,Ui , ε) ⊆W (η,U , r ). We conclude that T is a σ-finite topological base.
Summing up, E is a regular topological space with a σ-finite topological base, hence the
Nagata-Smirnov metrisation theorem [10, 4.4.7] establishes that E is metrisable. To establish
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the claim on separability, we recall that (E , p,T ) has enough cross sections and T is a metric
space. Metric spaces are second countable if and only if they are separable. Since Λ(t ) is
dense in every Et , [9, Proposition 13.21] shows that the metric space E is second countable
(equivalently separable) if and only if T is so. This establishes (3) and finishes the proof. □

Remark 4.7. Note that most of the statements in Proposition 4.6 are easy corollaries from well
known results on Banach bundles. Hence they are hardly surprising. However, we were unable
to locate the statement on the metrisability of the total space in the literature. (A metrisability
statement for the total space under the more restrictive assumption that T is separable can
be found in [26].)

The uniqueness assertion in Proposition 4.6 shows that a continuous (pre-)field of Banach
spaces uniquely determines a Banach bundle with enough sections. A deep result due to
A. Douady, L. dal Soglio Herault and K.H. Hofmann shows that this can be reversed. Indeed
over paracompact topological spaces, there is a one-to-one correspondence between continuous
fields of Banach spaces and Banach bundles which admit continuous cross sections through
every point (see [9, Appendix C]). However, for later use (see Remark 4.16) it is important
to note that the general construction only allows one to recover the continuous field, not the
pre-field from which the field might have arisen by completion.
We conclude this section with a brief discussion of the construction of the metric on the total
space of the Banach bundle in Proposition 4.6. This is essentially just a recap of the proof of
the Nagata-Smirnov metrisation theorem. However, we need the cocnrete form of the metric
constructed in the next section to study the Banach bundle of controlled rough paths.

4.1.1. The Nagata-Smirnov metric on the Banach bundle. Let (E , p,T ) be a Banach bundle
over a metric space (T , ρ) constructed from a separable continuous Banach bundle Γ with
countable dense subset Λ via Proposition 4.6. To understand convergence in the metric space
(E , dE ) we explicitly construct dE by revisit the Nagata-Smirnov metrisation theorem, [10,
4.4.7]. Its proof shows that the construction hinges on two choices:

1 the σ-finite topological base Ui , i ∈ Sn , n ∈ Î. We note that since (T , ρ) is a metric
space, we can choose every Ui = Bri (t i ) as a metric ball in T with t i ∈ T , and 0 < ri < 1
(cf. [10, Theorem 4.4.3].

2 For every tube in the basis of the topology one picks
W (γ,Bri (t i ), δ), i ∈ Sn , γ ∈ Λ, n ∈ N , δ ∈ Ñ ∩ (0, 1)

a continuous function f(γ,i ,δ) : E → [0, 1] such that W (γ,Bri (t i ), δ) = f −1(γ,i ,δ) (]0,∞[).

Note that also here δ < 1 is enough since the section ins Λ have dense image in every fibre.
In the situation at hand, the following functions are valid choices

f(γ,i ,δ) (b) B
{
(ri − ρ (p (b), t i )) (δ − ∥b − γ (p (b))∥), if b ∈W (γ,Bri (t i ), δ)
0, else

. (4.3)

For later use we remark that both factors in the product in (4.3) are smaller then 1 by choice
of ri and δ . By construction |f(γ,i ,δ) (x ) − f(γ,i ,δ) (y ) | = 0 if (x , y ) < W (γ,Ui , δ) × E ∪ E ×
W (γ,Ui , δ). To ease notation, let us agree on the following definition:

Definition 4.8. For γ ∈ Γ, i ∈ Sn , n ∈ Î such that Ui = Bri (t i ) for some ri > 0 and rational
δ > 0, we define a pseudometric on E

d (γ,i ,δ) (x , y ) = |f(γ,i ,δ) (x ) − f(γ,i ,δ) (y ) |.
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Pick now an enumeration m ↦→ (nm, γm, δm) of the countable set Î × Λ × (Ñ∩]0,∞[) and
recall that the open sets Ui = Bri (t i ) for i ∈ Snm form a locally finite family. Thus we obtain
a well-defined continuous function

dm : E × E → [0,∞[, (x , y ) ↦→
∑
i ∈Snm

d (γm ,i ,δm ) (x , y ).

Cutting off at 1 and summing up, this yields the Nagata-Smirnov metric on E :

dE : E × E → Ò, dE (x , y ) B
∑
m∈Î

2−m min{1, dm (x , y )}.

Note that convergence xn → x in the metric dE implies dm (xn , x ) → 0 for all m ∈ Î. As a
direct consequence of the construction of the dm we thus obtain the following.

Lemma 4.9. Let (xn)n∈Î be a sequence in (E , dE ). Then xn →dE x if and only if
lim
k→∞

d (γm ,i ,δm ) (xk , x ) = 0 for all m ∈ Î, i ∈ Snm .

Finally, we note that if x , y ∈W (γ,Bri (t i ), δ) then an elementary estimate yields
d (γ,i ,δ) (x , y ) ≤ (ri − ρ (p (x ), t i ))︸                ︷︷                ︸

∈(0,1)

(∥x − γ (p (x ))∥ − ∥y − γ (p (y ))∥)

+ (δ − ∥y − γ (p (y ))∥)︸                     ︷︷                     ︸
∈(0,1)

(ρ (p (y ), t i ) − ρ (p (x ), t i )) |

Hence the pseudometric d (γ,i ,δ) (x , y ) is dominated by the sum of the two terms
|∥x − γ (p (x ))∥ − ∥y − γ (p (y ))∥ | (4.4)

|ρ (p (y ), t i ) − ρ (p (x ), t i ) | ≤ ρ (p (y ), p (x )) (4.5)

The expression (4.4) can only be simplified using the reverse triangle inequality (as we did in
(4.5)) if p (x ) = p (y ), i.e. if both points are contained in the same fibre.
For a converging sequence xn →dE x , where x lies in the tube W (γ,Bri (t i ), δ), the above
terms control convergence if enforced for all tubes in the base in which x is contained. By
Lemma 4.9 all terms (4.4) and (4.5) which are not cut off need to converge to 0. Besides
the estimate (4.5), continuity of p with respect to the tube topology yields p (xn) →ρ p (x ) if
xn →dE x .
In the next section, we shall consider the Nagata-Smirnov metric for the Banach bundle of
controlled rough paths. Our preparation here enables us to prove that it is equivalent to a
metric constructed extrinsically on the union of the Banach fibres. This metric has been used
extensively in the literature (see e.g. [12]) to establish stability of rough integration.

4.2. Properties of the Banach bundles of controlled rough paths. We have seen in
Theorem 3.10 that the spaces of controlled rough paths form a continuous pre-field of Banach
spaces over the space of branched rough paths. Moreover, we deduce from the result and
Proposition 4.2 the following:

Corollary 4.10. The continuous pre-field Γ from Theorem 3.10 can be uniquely completed to
a separable continuous field of Banach spaces Γ̂ over the space of branched α -rough paths.

We will now leverage the theory recalled in the last section and consider two Banach bundles
of controlled rough paths. For this let us fix some notation
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Definition 4.11. We denote by Cα the space of branched rough paths for some 0 < α < 1
and recall that it is a metric space with respect to the α -rough path metric ρα . Further, we let
Cα
g be the closed subspace of geometric rough paths endowed with the metric induced by the

space of branched rough paths. For brevity we will also write ρα for the metric on this space.
For any 0 < β < α we define now the bundles

p : E α ,β B
⊔

X∈Cα

D
α ,β
X → Cα (4.6)

p : E α ,βg B
⊔

X∈Cα
g

D
α ,β
X → Cα

g (4.7)

where p is the canonical projection of a controlled rough path onto the controlling rough path.

Combining now Corollary 4.10 with Proposition 4.6 we see that the field of controlled rough
paths induces a unique Banach bundle structure on the bundles (4.6) and (4.7). Moreover, we
obtain the following result.

Proposition 4.12. The total spaces of the Banach bundles (4.6) and (4.7) are separable
metric spaces with the Nagata-Smirnov metric. Moreover, E α ,βg is separable while E α ,β is not.

Having obtained the Banach bundles of controlled rough paths over the branched and geometric
rough paths, let us introduce another metric which has been used in stability analysis of rough
integrals (see e.g. [12])

Definition 4.13. Let E be either E α ,β or E α ,βg . We define a map d ♭α : E × E → Ò with the
help of (2.4). Namely for x , y ∈ E , we set

d ♭α (x , y ) B ρα (p (x ), p (y )) + |||x ; y |||α .

In the following, whenever we derive results on d ♭α which hold for both Banach bundles we
consider we shall denote their total spaces as E .

Note that |||x ; y |||α makes sense for arbitrary elements x , y ∈ E but it only constitutes a norm
for elements belonging to the same fibre of the total space. The trick is that we can still
compute a Hölder distance of the remainders as they take their values in the same Banach
space. From the point of view of the Banach bundle this is however an extrinsic construction
which does not reflect the geometric structure of the bundle (whence we chose to call this
metric the flat metric, as it exploits an extrinsic embedding into a flat space).

Lemma 4.14. The map d ♭α is a metric on the total space E , called the flat metric.

Proof. We only have to prove that d ♭α (x , y ) = 0 implies x = y . To see this, we first note that
d ♭α (x , y ) = 0 implies p (x ) = p (y ). In this case, |||x ; y |||α = |||x − y |||α and since |||·|||α is a norm
on the space of paths controlled by p (x ), the claim follows. □

Proposition 4.15. The flat metric d ♭α and the metric dE are topologically equivalent. In
other words, for a sequence (xn)n∈Î ⊆ E we have d ♭α (xn , x ) → 0 as n → ∞ if and only if
dE (xn , x ) → 0 as n → ∞.

Proof. Assume first that limn→∞ d ♭α (xn , x ) = 0. By definition this implies ρα (p (xn), p (x )) →
0 and the term (4.5) converges to 0. For (4.4) we find with the negative triangle inequality

|∥x − γ (p (x ))∥ − ∥xn − γ (p (xn))∥ | ≤ |d ♭α (x , γ (p (x ))) − d ♭α (xn , γ (p (xn)))∥ | ≤ d ♭α (x , xn).
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Hence convergence in d ♭α implies convergence of (4.4) and (4.5) for all choices of d (γ,i ,δ). Thus
Lemma 4.9 shows that convergence with respect to d ♭α implies convergence in dB .
For the converse, assume that dE (xn , x ) → 0. Since the bundle projection p is a continuous
map, this implies ρα (p (xn), p (x )) → 0 as n → ∞.
Now let ε > 0. For every γ ∈ Γ (note that for the bundle over the geometric rough paths, we
replace Γ by the restrictions of its elements to the subspace of geometric rough paths),

|||x ; xn |||α ≤ |||x − γ (p (x )) |||α + |||γ (p (x )); γ (p (xn)) |||α + |||γ (p (xn) − xn |||α .
We can choose γ ∈ Γ0 such that |||x − γ (p (x )) |||α ≤ ε. Continuity of the rough integral implies
that we can find M1 > 0 such that |||γ (p (x )); γ (p (xn)) |||α ≤ ε for every n ≥ M1. Choose an
open neighborhood Ui = Bri (Xi ) as in the definition of the Nagata-Smirnov metric (where 0 <
ri < 1 and X is a branched rough path for the bundle over the branched rough paths, otherwise
we can pick a geometric rough path) such that p (x ) ∈ Bri /2(Xi ) and p (xn) ∈ Bri (Xi ) for
every n ∈ Î large enough. Since x ∈W (γ,Bri (Xi ), 2ε), we must have xn ∈W (γ,Bri (Xi ), 2ε)
for all n ≥ M2 and some M2. We already know that ρα (p (xn), p (x )) → 0 as n → ∞ which
implies that

(r − ρα (p (xn),X)) → (r − ρα (p (x ),X))
as n → ∞. Since d (γ,i ,δ) (x , xn) → 0 for every rational δ > 0 as n → ∞, this implies that

∥xn − γ (p (xn))∥α → ∥x − γ (p (x ))∥α
as n → ∞. Since ∥x − γ (p (x ))∥α ≤ ε, we can conclude that ∥xn − γ (p (xn))∥α ≤ 2ε for
n ≥ M3. Therefore, we have shown that for n ≥ M := max{M1,M2,M3},

|||x ; xn |||α ≤ 4ε .

Since ε > 0 was arbitrary, this concludes the proof. □

Remark 4.16. In light of the equivalence of the Nagata-Smirnov metric and the flat metric,
it is not hard to see that the Banach bundle structure can also be established using the flat
metric. Hence from the flat metric, we could have constructed the Banach bundle and the
associated continuous field. Now the reader may wonder whether the constructions in [12] (for
level 2-rough paths) would not lead to a direct proof of the articles results so far. While we
can recover the continuous field by the general result, the same is not true for the pre-field
of Banach spaces constructed through the approximation arguments. The point is that by
working with the algebraic structure and the smaller set of sections from the pre-field our
arguments yield estimates and control which can not (without further arguments) be deduced
from the flat metric and the (non-canonical) homeomorphism with a trivial Banach bundle
introduced in [12].

Note that the equivalence of the metrics is quite weak as they only induce the same topology.
There are stronger notions of metric equivalence which ensure that properties established for
one metric also carry over to the other. We will briefly discuss this now.

Remark 4.17. Topologically equivalent metrics do not need to have the same Cauchy-sequences
(whence completeness of one metric is not automatically inherited by a topologically equivalent
metric). For this, uniform equivalence of metrics is sufficient. This means that the identity
map idX : (X , d1) → (X , d2) and idX : (X , d2) → (X , d1) is uniformly continuous (and not
just continuous as in topological equivalence). Unfortunately, without additional properties
on the open cover uniform estimates of one metric against the other seem to be out of
reach. The problem lies in the construction of the functions dm which are defined as sums of
pseudometrics. Locally, every dm is a finite sum of such pseudometrics. However, since the
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number of summands can potentially be unbounded over the whole space (this depends on the
chosen cover of the space of rough paths), this makes a uniform estimate impossible without
further knowledge.

Consequently, we were only able to establish the completeness for the flat metric (completeness
for the Nagata-Smirnov metric runs into a conceptually similar problem as a proof of the
uniform equivalence). Note however, that the proof leverages the topological equivalence with
the Nagata-Smirnov metric.

Theorem 4.18. Let (E , d ♭α ) be the total space of the Banach bundle (4.6) or (4.7), then E
is complete. In particular, the space (E α ,βg , d ♭α ) is a Polish space while (E α ,β , d ♭α ) is a complete
metric space.

Proof. In view of Proposition 4.12, we know that the topological space is separable only for
the bundle (E α ,βg , dE ). Now the Nagata-Smirnov metric and the flat metric are topologically
equivalent by Proposition 4.15, whence the (non-)separability is inherited by the flat metric.
Thus we only have to establish completeness of the space (E , d ♭α ). For this we consider a
Cauchy-sequence (xn)n∈Î with respect to the flat metric. Recall from Definition 4.13 that
being Cauchy in the flat metric implies that the sequence (p (xn))n∈Î of basepoints must be
a Cauchy-sequence with respect to the metric ρα . Now the space of branched (respectively
geometric) rough paths is complete with respect to ρα , whence there exists a rough path X
such that limn→∞ p (xn) = X. Furthermore, Definition 4.13 implies that for every h ∈ F <(N ), the
series (⟨h, xn⟩)n is a Cauchy sequence with respect to the uniform topology. By completeness,
there exist continuous paths xh such that ⟨h, xn⟩ → xh uniformly. Define Z : [0,T ] → H<(N )
by ⟨h,Zt ⟩ = xht . We show that Z is controlled by X. Define

R h;n
s,t := ⟨h, xn (t )⟩ − ⟨p (xn)s,t ⋆ h, xn (s)⟩ and
R hs,t := ⟨h,Zt ⟩ − ⟨Xs,t ⋆ h,Zs ⟩.

Let ε > 0. Since (xn)n is a Cauchy sequence w.r.t. d ♭α , there is an M such that

|R h;n
s,t − R h;m

s,t |
|t − s | (N−|h |)α ≤ ε

for every s , t and every n,m ≥ M . Letting m → ∞, pointwise convergence implies that
∥R h;n − R h ∥ (N−|h |)α ≤ ε

for n ≥ M . This implies that Z is indeed controlled by X and that d ♭α (xn ,Z) → 0 as n → ∞
which proves completeness. □

It is now easy to recast stability results from the theory of rough paths in the language of
Banach bundles (or equivalently continuous fields of Banach spaces).

Proposition 4.19. Let again E be the total space of the Banach bundle (4.6) or (4.7). Then
the integration map

I : E → E , Ù ↦→
∫

ÙdX, where X = p (Ù).

is a morphism of Banach bundles over the identity, i.e. I is continuous, fibrewise linear and
projects via the bundle projection down to the identity.

Proof. Let us note first that due to Paragraph 2.18 the integral of a controlled path is controlled
again, whence the integration map makes sense and respect the fibres of the bundle. Since
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integration is linear in the integrand, we see that I is fibre-wise linear. Now continuity with
respect to the Banach bundle topology is equivalent to continuity with respect to d ♭α and this
follows immediately from Proposition 2.20. □

Having established the integration map as a morphism of Banach bundles, we turn to the other
prominent mapping in the setting, the Itô-Lyons map which assigns to a rough differential
equation its solution as a controlled rough path.
For this let us recall first that the definition depends on the choice of vector fields f1, . . . , fd ∈
C∞(Òn ,Òn). Following [22], given ϕ : Òn → Òn and v1, . . . ,vm ∈ Òn we denote

Dmϕ (y ) : (v1, . . . ,vm) B
n∑

α1,...,αm=1

∂m

∂yα1 · · · ∂yαm
ϕ (y )v α11 · · ·v αmm .

Define the elementary differentials fτ ∈ C∞(Òn ,Òn) for τ ∈ T recursively by f1(y ) = y and
f[τ1···τm ]i B Dmfi : (fτ1, . . . , fτm ).

Lemma 4.20. Let τ, ρ1, . . . , ρn ∈ T , n ≥ 1. Then
D nfτ : (fρ1, . . . , fρn ) = fτ↶ρ1···ρn

Proof. We first show the statement for the case n = 1 by induction on |τ |. The case when
|τ | = 1, i.e., when τ = i follows from the defintion. Indeed,

Dfi (y )fρ (y ) = f[ρ]i (y ) = f i↶ρ (y ).
Now, if |τ | = n + 1 there are τ1, . . . , τm ∈ T with |τ1 | + · · · + |τm | = n and some label
i ∈ {1, . . . , d }, such that τ = [τ1 . . . τm]i = i ↶ τ1 · · · τm . Hence, by the chain rule

Dfτ : fρ = Dm+1fi : (fτ1, . . . , fτm , fρ) +
m∑
k=1

Dmfi : (fτ1, . . . ,Dfτk fρ, . . . , fτm )

= f[τ1···τmρ]i +
m∑
k=1

f[τ1···(τk↶ρ)···τm ]i .

Whence we conclude by noting that, at the level of trees, the identity

[τ1 · · · τmρ]i +
m∑
k=1

[τ1 · · · (τk ↶ ρ) · · · τm]i = i ↶ (τ1 · · · τm ⋆ ρ) = [τ1 · · · τm]i ↶ ρ

holds.
Now, for the case n > 1, we note that by eq. (2.2)

D n+1fτ : (fρ1, . . . , fρn , fρ) = Dfτ↶ρ1···ρn : fρ −
n∑
k=1

D nfτ : (fρ1, . . . ,Dfρk fρ, . . . , fρn )

= f(τ↶ρ1···ρn )↶ρ −
n∑
k=1

fτ↶(ρ1···(ρk↶ρ)···ρn )

= fτ↶ρ1···ρnρ . □

Given a branched rough path X and vector fields f1, . . . , fd : Òn → Òn , we say that Y solves
the Rough Differential Equation (RDE)

dYt =
d∑
i=1

fi (Yt ) dX i
t
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if it has the local expansion

δYs,t =
∑
τ∈T(N )

1

σ (τ) fτ (Ys )X
τ
s,t + rs,t , (4.8)

with r ∈ C (N+1)α
2 , where we recall that N = ⌊α−1⌋ so that Nα ≤ 1 < (N + 1)α , and the path

Yt B
∑

τ∈T(N )∪{1}

1

σ (τ) fτ (Yt )τ

belongs to Dα
X.

It can be shown [19] that if fi ∈ CN+1
b

then foreach ξ ∈ Òn , the RDE has a unique solution
Y B Φ(ξ,X) starting from Y0 = ξ. The map Φ : Òn ×Cα → ⊔

X∈Cα Dα
X, (ξ,X) ↦→ Φ(ξ,X)

is known as the Itô-Lyons map.

Proposition 4.21. The Itô-Lyons map satisfies the bound

|||Φ(ξ,X);Φ(ξ̃, X̃) |||α ≤ C ( |ξ − ξ̃ | + ρα (X, X̃)). (4.9)

Hence, the Itô-Lyons map is a parameter dependent continuous crossection of the Banach
bundle (E α ,β , p,Cα )

Before proving the theorem, we recall the following result from [19,22],

Lemma 4.22. Let X ∈ Cα and Z ∈ Dα
X. If ϕ : Òn → Òn is a function of class CN then the

path ϕ (Z) : [0,T ] → H<(N ) defined by ⟨1,ϕ (Z)t ⟩ B ϕ (Zt ) and

⟨h,ϕ (Z)t ⟩ B
N−1∑
k=1

∑
f1,...,fk ∈F
f1···fk=h

1

k !D
kϕ (Zt ) (Z f1t , . . . , Z

fk
t )

also belongs to Dα
X.

Proof of Proposition 4.21. Note that by definition Φ : Òd × Cα → E α ,β satisfies Φ(·,X) ∈
D
β ,α
X . Hence we only need to establish continuity of Φ. For simplicity we only deal with the

single noise case, i.e., |A| = 1 since the general case differs from this case only in notation.
The proof follows ideas present in [4], in the setting of discrete rough paths. First, note that
the controlled path Y = Φ(ξ,X) solves the fixed-point equation

Yt = Y0 + IX(f (Y))t

in Dα
X. Therefore, by Proposition 2.20 we immediately obtain the bound

|||Φ(ξ,X);Φ(ξ̃, X̃) |||α ≤ C
(
|||f (Y); f (Ỹ) |||α + ρα (X, X̃)

)
.

From Lemma 4.22 we see that for any forest h = τ1 · · · τk ∈ F <(N ) we have

⟨h, f (Y)t ⟩ = D k f (Yt ) (Yτ1, . . . ,Yτk )
= D k f (Yt ) (fτ1 (Yt ), . . . , fτk (Yt ))
= f[τ1···τk ] (Yt )
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Therefore, the remainder term can be expressed as

R hs,t = δf (Y)hs,t −
∑

h̄∈F +
(N −|h |−1)

f (Y)h̄⋆hs Xh̄
s,t

= f[h] (Yt ) − f[h] (Ys ) −
∑

h̄∈F +
(N −|h |−1)

f[h̄⋆h] (Ys )Xh̄
s,t .

Now, we can perform a Taylor expansion on f[h] and see that

f[h] (Yt ) − f[h] (Ys ) =
N−|h |−1∑
k=1

1

k !D
k f[h] (Ys ) (δYs,t )⊗k +T hs,t

where

T hs,t B

∫ 1

0

1

(N − |h |)!D
(N−|h |)f[h] (Ys ) (Ys + θδYs,t )⊗(N−|h |) (1 − θ)N−|h |−1 dθ.

Thus, the remainder may be rewritten as

R hs,t = T
h
s,t +

N−|h |−1∑
k=1

1

k !D
k f[h] (Ys ) (δYs,t )⊗k −

∑
h̄∈F +

(N −|h |−1)

f[h̄⋆h] (Ys )Xh̄
s,t .

Now, fix 1 ≤ k < N − |h |. Replacing eq. (4.8) into D k f[h] (Ys ) (δYs,t )⊗k we obtain

D k f[h] (Ys ) (δYs,t )⊗k = D k f[h] (Ys )
©­«
∑
τ∈T(N )

Y τs Xτ
s,t + rs,t

ª®¬
⊗k

= k !
∑

h̄∈F(N −|h |−1)+

D k f[h]↶h̄ (Ys )Xh̄
s,t + Bhs,t ,

where Bh contains terms of the form D k f[h] : (fρ1, . . . , fρℓ , R
h1
s,t , . . . , R

hm
s,t ).

Proceeding similarly with the remainder corresponding to Ỹ, we obtain that

|R hs,t − R̃ hs,t | ≤ |T hs,t − T̃ hs,t | + |Bhs,t − B̃hs,t |.

A straightforward bound gives

|T hs,t − T̃ hs,t | ≲
(
∥Y − Ỹ ∥αPN−|h | (∥Y ∥α , ∥Ỹ ∥α ) + ∥Y − Ỹ ∥∞∥Ỹ ∥ (N−|h |)

α

)
|t − s | (N−|h |)α

with

Pm (x , y ) B
m∑
j=1

x j ym−j .

The difference Bh − B̃h can be estimated in terms of the difference of remainders R h̄ − R̃ h̄ and
the argument is closed recursively.
Due to the bound (4.9) we see that Φ is continuous as a mapping into (E α ,β , d ♭α ). Now the
flat metric generates the topology of the Banach bundle E α ,β , Proposition 4.15, whence the
continuity of Φ follows. □
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Appendix A. Primitive elements and tree bases

This section presents tables of the primitive elements forests up to level four. We use these
elements to generate a new basis by applying the natural growth operator (cf. Paragraph 2.3).
At the end, we apply our approximation procedure to an example. For calculating the primitive
elements, we use the following operator defined in [11, Theorem 9.6],

π1 : H → Prim,

π1(h) = h −
∑
(h)
h1 ⊤ π1(h2),

where ∆′h =
∑

(h) h
1 ⊗ h2 and π1( ) = . By [11, Theorem 9.6], this operator is surjective.

Accordingly, since this is also explicitly defined, we can quickly generate a basis for the space
of primitive elements. The following vectors constitute a basis for this space up to level five.

Level (1) π1( ) =
Level (2) π1( ) = − 2

Level (3) π1( ) = − 3 + 3

Level (4)
π1( ) = −4 +4 −4 +

4 + 2 − 4 + 2 − 2
π1( ) = + −2 + −

We can now apply to Lemma 2.4 and find a new basis for H . Here are the remaining vectors
we need to add to construct a basis for the space of forests up to level four.

Level (2) ⊤ =

Level (3) ⊤( , , ) = π1( ) ⊤ = − 2 ⊤π1( ) = − −

For the level (4),

⊤
(
, , π1( )

)
= − −

⊤
(
, π1( ),

)
=, − −

⊤
(
π1( ), ,

)
= − 2

⊤
(
π1( ), π1( )

)
= −

− − 2 + 2 + 2
π1( )⊤ = −3 +3

⊤ π1( ) = − −
− + + +

⊤( , , , ) =

We now apply our approximation scheme to the Example 2.17.

Example A.1. Recall from the example that we consider a path Z ∈ Dα
X for α ∈ ( 15 ,

1
4 ). We

can rewrite the controlledness condition of Z with respect to X in terms of the primitive basis
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as shown below:

δZ 1
s,t = Zs Xs,t + Zs X −2

s,t +
(
2Zs + Zs

)
Xs,t + Zs X

−3 +3
s,t

+
(
3Zs + Zs + Zs

)
X

−2
s,t +

(
3Zs + Zs

)
X

− −
s,t

+ ©­«6Zs + 3Zs + 2Zs + Zs
ª®¬Xs,t + R

1
s,t

δZs,t =

(
2Zs + Zs

)
Xs,t +

(
3Zs + Zs + Zs

)
X −2
s,t

+ ©­«6Zs + 3Zs + 2Zs + Zs
ª®¬Xs,t + Rs,t

δZs,t =

(
3Zs + Zs

)
Xs,t + Rs,t ,

δZs,t =
©­«Zs + Zs + Zs

ª®¬Xs,t + Rs,t .

Let us to fix a dissection π = {0 = t0 < t1 < · · · < tN < tN+1 = T } of [0,T ] and set
Ik := [tk , tk+1]. For s ∈ Ik , we define

Z̃s = Ztk +
s − tk
tk+1 − tk

Ztk ,tk+1, Z̃s = Ztk + s − tk
tk+1 − tk

Ztk ,tk+1

Z̃s = Ztk + s − tk
tk+1 − tk

Ztk ,tk+1, Z̃s = Ztk + s − tk
tk+1 − tk

Ztk ,tk+1 .

We then define

Z̃s = Ztk +
∫ s

tk

(3Z̃τ + Z̃τ )dXτ + s − tk
tk+1 − tk

[
Ztk ,tk+1 −

∫ tk+1

tk

(3Z̃τ + Z̃τ )dXτ

]
,

and

Z̃s = Ztk+
∫ s

tk

(Z̃τ + 2Z̃τ + Z̃τ )dXτ + s − tk
tk+1 − tk

[
Ztk ,tk+1 −

∫ tk+1

tk

(Z̃τ + 2Z̃τ + Z̃τ )dXτ

]
.

Finally, set

Z̃s = Ztk +
∫ s

tk

(2Z̃τ + Z̃τ )dXτ +
∫ s

tk

(3Z̃τ + Z̃τ + Z̃τ )dX −2
τ +

s − tk
tk+1 − tk

[
Ztk ,tk+1 −

∫ tk+1

tk

(2Z̃τ + Z̃τ )dXτ −
∫ tk+1

tk

(3Z̃τ + Z̃τ + Z̃τ )dX −2
τ

]
,

and

Z̃ 1
s = Z 1

tk
+
∫ s

tk

Z̃τ dXτ +
∫ s

tk

Z̃τ dX −2
τ +

∫ s

tk

Z̃τ dX
−3 +3

τ +

s − tk
tk+1 − tk

[
Z 1
tk ,tk+1 −

∫ tk+1

tk

Z̃τ dXτ −
∫ tk+1

tk

Z̃τ dX −2
τ −

∫ tk+1

tk

Z̃τ dX
−3 +3

τ

]
.
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