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Strong stationarity conditions for the optimal control of a
Cahn-Hilliard–Navier-Stokes system

Michael Hintermüller,Tobias Keil

ABSTRACT. This paper is concerned with the distributed optimal control of a time-discrete Cahn–
Hilliard/Navier–Stokes system with variable densities. It focuses on the double-obstacle potential which
yields an optimal control problem for a variational inequality of fourth order and the Navier–Stokes
equation. The existence of solutions to the primal system and of optimal controls is established. The
Lipschitz continuity of the constraint mapping is derived and used to characterize the directional deriv-
ative of the constraint mapping via a system of variational inequalities and partial differential equations.
Finally, strong stationarity conditions are presented following an approach from Mignot and Puel.

1. INTRODUCTION

The goal of this paper is to derive strong stationarity conditions for an optimal control problem subject
to the semi-discrete (in time) Cahn-Hilliard-Navier-Stokes system.

The Cahn-Hilliard-Navier-Stokes system describes the behavior of immiscible multiphase fluids, where
the Cahn-Hilliard system models the evolution of the interface between the fluid components and the
Navier-Stokes equations capture the hydrodynamics of the system. The first model, which combined
the hydrodynamic effects and the phase seperation process of multiphase flows was given by Hohen-
berg and Halperin in [26]. Their basic model for immiscible, viscous two-phase flows, the so-called
’model H’ is, however, restricted to the case where the two fluids possess nearly identical densities,
i.e., matched densities. Recently, Abels, Garcke and Grün [2] derived the following diffuse interface
model for two-phase flows with non-matched densities:

∂tϕ+ v∇ϕ− div(m(ϕ)∇µ) = 0,(1a)

−∆ϕ+ ∂Ψ0(ϕ)− µ− κϕ 3 0,(1b)

∂t(ρ(ϕ)v) + div(v ⊗ ρ(ϕ)v)− div(2η(ϕ)ε(v)) +∇p
+div(v ⊗ J)− µ∇ϕ = 0,(1c)

divv = 0,(1d)

v|∂Ω = 0,(1e)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0,(1f)

(v, ϕ)|t=0 = (vin, ϕin),(1g)

where Ω × (0,∞) is the space-time cylinder and ∂Ω denotes the boundary of Ω. Moreover, ∂Ψ0

represents the subdifferential of convex analysis. Whenever Ψ0 is nonsmooth at ϕ (i.e., continuous
but not differentiable, then ∂Ψ0 at ϕ is typically set-valued. In the above model, v represents the
velocity of the fluid and p describes the fluid pressure. The symmetric gradient of v is defined by
ε(v) := 1

2
(∇v+∇v>). The density ρ of the mixture of the fluids depends on the order parameter ϕ,

which reflects the mass concentration of the fluid phases. More precisely,

ρ(ϕ) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2
ϕ,(2)

where ϕ ranges in the interval [−1, 1], and 0 < ρ1 ≤ ρ2 are the given densities of the two fluids under
consideration. The relative flux J := −ρ2−ρ1

2
m(ϕ)∇µ, which corresponds to the diffusion of the two

phases, involves the gradient of the chemical potential µ. The viscosity and mobility coefficients of the
system, η andm, depend on the actual concentration of the two fluids at each point in time and space.
The initial states are given by vin and ϕin, and κ > 0 is a positive constant.
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M. Hintermüller, T. Keil 2

Furthermore, Ψ0 represents the convex part of the homogeneous free energy density Ψ associated
with the Ginzburg-Landau energy. It restricts the order parameter ϕ to the physically meaningful in-
terval [−1, 1] and captures the spinodal decomposition of the phases. For this reason, it is typically
non-convex and maintains two local minima near or at −1 and 1. Depending on the underlying ap-
plications, different choices have been investigated for Ψ0 in the literature. However, in this work we
focus on the double-obstacle potential Ψ0 ≡ I[−1,1](ϕ), where I[−1,1] denotes the indicator function of
the interval [−1, 1], which was proven to be the best modeling choice in the case of deep quenches of,
e.g., binary alloys, cf. [36]. A similar observation appears to be true in the case of polymeric membrane
formation under rapid wall hardening. We point out that the presence of a non-smooth homogeneous
free energy density gives rise to a variational inequality in (1b) which complicates the analytical and
numerical treatment of the overall model.

The model (1) is thermodynamically consistent in the sense that it allows for the derivation of local
entropy or free energy inequalities. In addition, phase field models are appreciated for their ability
to overcome both, analytical difficulties associated with topological changes, such as, e.g., droplet
break-ups or the coalescence of interfaces, as well as numerical challenges in capturing the interface
dynamics. This is one of the reasons why the Cahn-Hilliard-Navier-Stokes system is used to model a
variety of situations. These range from the aforementioned solidification process of liquid metal alloys,
cf. [11], the simulation of bubble dynamics, as in Taylor flows [4], or the pinch-offs of liquid-liquid jets
[28], to the formation of polymeric membranes [45] and protein crystallization, see e.g. [29] and refer-
ences within. Furthermore, the model can be easily adapted to include the effects of surfactants such
as colloid particles at fluid-fluid interfaces in gels and emulsions used in food, pharmaceutical, cos-
metic, or petroleum industries [5, 38]. In many of these situations an optimal control context is desirable
in order to influence the system in such a way that a prescribed system behavior is guaranteed.

This motivates the investigation of optimal control problems for the Cahn-Hilliard-Navier-Stokes (CHNS)
system in this paper. Due to the non-smooth homogeneous free energy density, the constraint system
of the optimal control problem is in general degenerate which poses severe problems in the derivation
of stationarity conditions for characterizing solutions. More precisely, classical constraint qualifications
(see, e.g., [46]) fail in the optimal control context, preventing the application of the Karush-Kuhn-Tucker
(KKT) theory in Banach spaces for a primal-dual first-order characterization of an optimal solution. In
fact, it is known [19, 23] that the optimal control problem with nonsmooth Ψ0 falls into the realm of
mathematical programs with equilibrium constraints (MPECs) in function spaces. A problem class,
which is well-known for its constraint degeneracy [31, 37] even in finite dimensions. As a result, sta-
tionarity conditions are no longer unique (in contrast to KKT conditions); compare [19, 20] in function
space and, e.g., [40] in finite dimensions. Rather they depend on the underlying problem structure
and/or on the chosen analytical approach. In the present work we aim at deriving the most selective
notion of stationarity known for this problem class. The so-called strong stationarity is a primal-dual
description.

Although the control-to-state map of the Cahn-Hilliard-Navier-Stokes system is generally not differen-
tiable in the sense of, e.g., Gâteau or Fréchet, this paper proves that a so-called conical derivative, is
available; see, e.g., [33, 41]. Utilizing a proper characterization of this conical derivative a methodol-
ogy for deriving strong stationarity conditions similar to [20, 33, 34] is provided. When it is associated
with the primal notion of B(ouligand)-differentiability it can be exploited to create efficient numerical
methods for detecting an approximate solution. We emphasize that strong stationarity constitutes a
notable improvement over stationarity conditions which have been derived earlier for the optimal con-
trol problem of the semi-discrete Cahn-Hilliard-Navier-Stokes system in [23, 18]. In this latter refer-
ences, employing a Yosida regularization technique with a subsequent passage to the limit results in
the weaker primal-dual notion of C-stationarity. Concerning our strategy for characterizing the conical
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Strong stationarity conditions for the optimal control of a Cahn-Hilliard–Navier-Stokes system 3

derivative we note that a similar idea has been employed for the differentiable sensitivity of an elastic
contact problem including a viscous membrane in [27].

In the literature, the classical case of two-phase flows of liquids with matched densities is well in-
vestigated, see e.g. [26]. Concerning the modeling of fluids with different densities, the literature
presents various approaches ranging from quasi-incompressible models with non-divergence free ve-
locity fields to possibly thermodynamically inconsistent models with solenoidal fluid velocities, see e.g.
[1, 6, 7, 10, 13, 15, 30]. Optimal control problems associated to the Cahn-Hilliard-Navier-Stokes sys-
tem with a non-smooth homogeneous free energy density (double-obstacle potential) have been pre-
viously studied by the authors of this work in [23, 18]. We also refer to the recent articles [12, 25, 42],
with [12, 42] treating the CHNS system in two dimensions. In addition, there are numerous publica-
tions concerning the optimal control of the phase separation process itself, i.e. the sole Cahn-Hilliard
system, see e.g. [8, 9, 17, 22, 43, 44].

The remainder of the paper is organized as follows. In Section 2 the semi-discrete Cahn-Hilliard-
Navier-Stokes system is introduced and assigned to the corresponding optimal control problem. Sec-
tion 3 establishes the existence of feasible points and globally optimal solutions by transferring the
results of [18]. The Lipschitz continuity of the solution operator of the Cahn-Hilliard-Navier-Stokes is
shown in Section 4. Then Section 5 characterizes its directional derivative via a system of variational
inequalities and partial differential equations. In Section 6, we finally present the strong stationarity
system for the optimal control problem.

At the end of this introduction we fix some notation used below. Let Ω ⊂ RN , N = 2, 3, be a bounded,
convex domain with smooth boundary ∂Ω ∈ C2. We define the Sobolev spaces H1

0,σ(Ω;RN) =

{f ∈ H1
0 (Ω;RN) : divf = 0, a.e. on Ω} and H2

∂n
(Ω) = {f ∈ H2(Ω) : ∂nf|∂Ω = 0 a.e. on

∂Ω}, where ’a.e.’ stands for ’almost everywhere’. Here,Hk(Ω) andHk
0 (Ω) denote the usual Sobolev

spaces, see [3]. Furthermore, Cα(Ω) denotes the space of Hölder continuous functions on Ω with
Hölder coefficient 0 < α ≤ 1. By (·, ·) we denote the L2-inner product, ‖·‖ is the induced norm, and
〈·, ·〉 represents the duality pairing between H1(Ω) and H1(Ω)∗. For a Banach space W , we denote
by W ∗ its topological dual. In our notation for norms, we do not distinguish between scalar- or vector-
valued functions. The inner product of vectors is denoted by ’·’ and the vector product is represented
by ’⊗’. We note that in what follows, C , C1 and C2 denote generic non-negative constants which may
take different values at different occasions.

2. PROBLEM FORMULATION

In this section, we present the optimization problem, which constitutes the main subject of this work,
along with some important assumptions and remarks.

In order to formulate the state system, i.e. the discretization of the Cahn-Hilliard-Navier-Stokes system,
we invoke the following assumptions on the given data.

Assumption 2.1. 1 The coefficient functions m, η ∈ C2(R) are bounded such that there exist
constants C1, C2 with minx∈R{m(x), η(x)} ≥ C1 > 0 and

max
x∈R
{m(x), η(x), |m′(x)|, |η′(x)|, |m′′(x)|, |η′′(x)|} ≤ C2.

2 The density ρ depends on the order parameter ϕ via

ρ(ϕ) = max{ρ1 + ρ2

2
+
ρ2 − ρ1

2
(ϕ+ ϕ−1), 0}.

3 The initial data satisfies ϕ−1, ϕ−2 ∈ H2
∂n

(Ω) ∩ K, µ−1 ∈ H2
∂n

(Ω) and v−1 ∈ H2
0,σ(Ω;RN),

where K denotes the constraint set

K :=
{
φ ∈ H1(Ω) : −1 ≤ φ ≤ 1 a.e. in Ω

}
.
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In addition, it holds that −1 < ϕ−1 := 1
|Ω|

∫
Ω
ϕ−1(x)dx < 1, where |Ω| is the Lebesgue

measure of Ω.
4 The tuple (ϕ−1, ϕ−2, µ−1, v−1) satisfies

ϕ−1 − ϕ−2

τ
+ v−1∇ϕ−2 − div(m(ϕ−1)∇µ−1) = 0.(3)

In the sequel, we use the variables ψ1 := −1 and ψ2 := 1 for the lower bound and the upper bound
of the constraint set, repsectively. Note that by Assumption 2.1(iii) we exclude the simplified case
|ϕ−1| = 1, where only one of the two fluids is present. Furthermore, by Assumption 2.1(iv ) the initial
data is consistent in the sense that it solves the Cahn-Hilliard equation (4) introduced below.

With the help of Assumption 2.1 we define the semi-discrete Cahn-Hilliard-Navier-Stokes system,
which characterizes the feasible set of our optimal control problem.

Definition 2.2 (Semi-discrete CHNS-system). Let Ψ0 : H1(Ω) → R be a convex functional with
subdifferential ∂Ψ0 and let τ > 0 be a given time step size. We say that a triple (ϕ, µ, v) ∈ H1(Ω)×
H1(Ω) × H1

0,σ(Ω;RN) solves the semi-discrete CHNS system with respect to a given control u ∈
H1

0,σ(Ω;RN)∗, denoted by (ϕ, µ, v) ∈ SΨ(u), if it holds for all φ ∈ H1(Ω) and ψ ∈ H1
0,σ(Ω;RN)

that 〈
ϕ− ϕ−1

τ
, φ

〉
+ 〈v∇ϕ−1, φ〉+ (m(ϕ−1)∇µ,∇φ) = 0,(4)

(∇ϕ,∇φ) + 〈∂Ψ0(ϕ), φ〉 − 〈µ, φ〉 − 〈κϕ−1, φ〉 3 0,(5) 〈
ρ(ϕ−1)v − ρ(ϕ−2)v−1

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (v ⊗ ρ(ϕ−2)v−1,∇ψ)

+

(
v ⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇ψ

)
+ (2η(ϕ−1)ε(v), ε(ψ))

− 〈µ∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 〈u, ψ〉H−1
0,σ ,H

1
0,σ
.(6)

As discussed above, the free energy density Ψ0 can be chosen differently depending on the applica-
tions. In this work, we primarily focus on the double-obstacle potential introduced below.

Definition 2.3 (Double-obstacle potential). The functional Ψ0 : H1(Ω) → R is given by Ψ0(ϕ) :=∫
Ω
i[ψ1,ψ2](ϕ(x))dx, where i[ψ1,ψ2] : R→ R := R ∪ {+∞} represents the indicator function of the

set [ψ1, ψ2], i.e.,

i[ψ1,ψ2](x) :=

 +∞ if x < ψ1,
0 if ψ1 ≤ x ≤ ψ2,
+∞ if x > ψ2.

In order to employ the existence and stationarity results derived in [18], we additionally introduce the
subsequent approximating double-well type potentials.

Definition 2.4 (Double-well type potentials). Let a mollifier ζ ∈ C1(R) with supp ζ ⊂ [−1, 1],
∫
R ζ =

1 and 0 ≤ ζ ≤ 1 a.e. on R, and a non-decreasing function θ : R+ → R+, with θ(1) = 1, θ(α) > 0

and θ(α)
α
→ 0 as α→ 0, be given. For α > 0 we define the double-well type potentials Ψ0,α via

ζα(s) :=
1

α
ζ
( s
α

)
, ψ(α)(s) :=

∫ s

0

γα ∗ ζθ(α)(t) dt, Ψ0,α(x) :=

∫
Ω

ψ(α)(ϕ(x)) dx,

where γα denotes the Yosida approximation with parameter α > 0 of ∂i[ψ1,ψ2] ⊂ R× R.
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It is easy to check that the above potentials possess the following properties. For more details we refer
the reader to [18], in particular, Assumption 2.2, Assumption 3.1, Definition 7.1 and the corresponding
remarks.

Remark 2.5. The functionals defined in Definition 2.3 and Definition 2.4 are convex, proper and lower-
semicontinuous.

In case of the double-well type potentials, it additionally holds that

1 For every ϕ ∈ K and k ∈ N it holds that Ψ0, 1
k
(ϕ) ≤ 1.

2 For every sequence
{

(x(k), y(k))
}
k∈N ⊂ H1(Ω) × H1(Ω)∗ with y(k) = Ψ0, 1

k

′(x(k)) and

(x(k), y(k))→ (x(∞), y(∞)) strongly in H1(Ω)×H1(Ω)∗, it holds that y(∞) ∈ ∂Ψ0(x(∞)).
3 Ψ0, 1

k
is Fréchet differentiable for everyϕ ∈ H1(Ω), and for everyC ∈ R there exists a constant

C1 ∈ R such that the Fréchet derivative satisfies

Ψ0, 1
k
(ϕ) < C ⇒ ‖ϕ‖+ ‖Ψ0, 1

k

′(ϕ)‖ ≤ C1.(7)

4 The free energy density Ψ 1
k
(ϕ) := Ψ0, 1

k
(ϕ) −

∫
Ω
κ
2
ϕ(x)2dx is bounded from below by a

constant C ∈ R if k > κ is sufficiently large.
In the following, we always assume that this is the case, since we focus on smooth potentials

approximating the double obstacle potential.

Next, we define the corresponding optimal control problem, where we consider a tracking-type objec-
tive functional J : X → R with

X := H1(Ω)×H1(Ω)×H1
0,σ(Ω;RN)× L2(Ω;RN).

Definition 2.6. The optimal control problem is given by

min J (ϕ, µ, v, u) =
1

2
‖ϕ− ϕd‖2 +

a

2
‖u‖2 over (ϕ, µ, v, u) ∈ X

s.t. (ϕ, µ, v) ∈ SΨ(u),
(PΨ)

where ϕd ∈ H1(Ω) denotes the desired state and a > 0 is a positive constant.

Note that the control problem is considered in L2(Ω;RN), which allows for a pointwise interpretation
of the controls u ∈ L2(Ω;RN) in practice. Nevertheless, we point out that the subsequent existence
theory is handled in the more general space H1

0,σ(Ω;RN)∗.

Since the dependencies of the operators, the corresponding solutions, and their regularity on the
interfaces and the previous time steps make this problem very challenging without further restrictive
assumptions or additional constraints, we employ an instantaneous control approach inspired by finite
horizon model predictive control, see e.g., [14, 24], where a formal discussion and definition can be
found.

3. EXISTENCE OF SOLUTIONS AND C-STATIONARITY

A slight modification of the optimal control problem (PΨ) has been already studied by the same authors
in [18]. Therein, the existence of feasible points as well as globally optimal solutions was verified, if the
mean values of the order parameter ϕ and the chemical potential µ are restricted to zero. Moreover,
locally optimal points were characterized via E -almost C-stationarity conditions. In what follows, we
briefly show how these results can be transferred to our current setting.

We start with the existence theorem for double-well type potentials. The first part of the proof is sim-
ilar to the proof of [18, Theorem 3.2]. However, in our setting, it is necessary to employ additional
arguments in order to bound the mean values of ϕ and µ, respectively.
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Theorem 3.1 (Existence of solutions to the CHNS system for smooth potentials). In the system (4)-(6)
let Ψ0, 1

k
denote the potential function defined in Definition 2.4 for k ∈ N and u ∈ H1

0,σ(Ω;RN)∗. Then

the system (4)-(6) has a solution (ϕ, µ, v) which is contained in H2
∂n

(Ω)×H2
∂n

(Ω)×H1
0,σ(Ω;RN).

Moreover, there exists a constant C = C(u,N,Ω, b1, b2, τ, κ) > 0 such that

‖ϕ‖H2 + ‖µ‖H2 + ‖v‖H1 ≤ C(‖ϕ‖+ ‖µ‖+ ‖ϕ−1‖+ ‖v‖H1 ‖ϕ−1‖H2).(8)

If u is contained in L2(Ω;RN), then v ∈ H2
0,σ(Ω;RN).

Proof. In order to keep the notation short, we set ν to be

ν := ρ(ϕ−2)v−1 −
ρ2 − ρ1

2
m(ϕ−2)∇µ−1.(9)

Then we start the proof by defining the spaces

X := H1(Ω)×H1(Ω)×H1
0,σ(Ω;RN),(10)

Y := H1(Ω)∗ ×H1(Ω)∗ ×H1
0,σ(Ω;RN)∗,(11)

and the operators G1 : H1(Ω) → H1(Ω)∗, G2 : H1(Ω) → H1(Ω)∗, G3 : H1
0,σ(Ω;RN) →

H1
0,σ(Ω;RN)∗, G : X → Y, G := (G1,G2,G3)> and F : X → Y,F := (F1, F2,F3)> via

〈G1(µ), φ〉 := (m(ϕ−1)∇µ,∇φ)+ (µ, φ) ,

〈G2(ϕ), φ〉 := (∇ϕ,∇φ)+ (ϕ, φ) +
〈

Ψ0, 1
k

′(ϕ), φ
〉
,

〈G3(v), ψ〉H−1
0,σ ,H

1
0,σ

:= (2η(ϕ−1)ε(v), ε(ψ))− 〈u, ψ〉H−1
0,σ ,H

1
0,σ
,

and

F1(ϕ, µ, v) :=− ϕ− ϕ−1

τ
− v∇ϕ−1 + µ, F2(ϕ, µ, v) := µ+ κϕ−1 + ϕ,

〈F3(ϕ, µ, v), ψ〉H−1
0,σ ,H

1
0,σ

:=

〈
−ρ(ϕ−1)v − ρ(ϕ−2)v−1

τ
+ µ∇ϕ−1, ψ

〉
H−1

0,σ ,H
1
0,σ

+ (v ⊗ ν,∇ψ).

The system (4)-(6) can be rewritten as

0 = G(ϕ, µ, v)−F(ϕ, µ, v) ⊂ Y.(12)

By standard arguments, the mappings G1 and G3 are invertible and the respective inverse mapping
is continuous. Since the operator ’−∆ + id’ is invertible from H1(Ω) to H1(Ω)∗ and the Fréchet
derivative Ψ0, 1

k

′ is maximal monotone (cf. [39, Theorem A]), G2 is invertible. Moreover, the continuity

of G−1
2 follows analogously to [18].

Due to the compact embedding of the space Y := L
3
2 (Ω) × L

3
2 (Ω) × L

3
2 (Ω;RN), into Y , the

inverse of G is a compact operator from Y to X . Furthermore, the continuous operator F : X → Y
maps bounded sets into bounded sets. Hence, the operator F ◦ G−1 : Y → Y is compact.

In what follows, we show the existence of a solution δ∗ to the fixed point equation

δ∗ −F ◦ G−1(δ∗) = 0 ∈ Y ,(13)

which ensures that G−1(δ∗) constitutes a solution to the system (4)-(6).

In order to apply Schaefer’s theorem with respect to the operator F ◦ G−1 we verify that the set
D :=

⋃
0≤ι≤1

{
δ ∈ Y |δ = ιF ◦ G−1(δ)

}
is bounded, cf., e.g., [16]. For this purpose, assume that

δ ∈ Y and ι ∈ [0, 1] satisfy

δ = ιF ◦ G−1(δ),(14)
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Strong stationarity conditions for the optimal control of a Cahn-Hilliard–Navier-Stokes system 7

and define (ϕ, µ, v) := G−1(δ) ∈ X . Thus, (14) can be rewritten as

G(ϕ, µ, v)− ιF(ϕ, µ, v) = 0,(15)

which is equivalent to the following system of equations

〈(1− ι)µ, φ〉+

〈
ι
ϕ− ϕ−1

τ
, φ

〉
+ 〈ιv∇ϕ−1, φ〉+ (m(ϕ−1)∇µ,∇φ) = 0, ∀φ ∈ H1(Ω),

(16)

〈(1− ι)ϕ, φ〉+ (∇ϕ,∇φ) +
〈

Ψ0, 1
k

′(ϕ)), φ
〉
− 〈ιµ, φ〉 − 〈ικϕ−1, φ〉 = 0, ∀φ ∈ H1(Ω),(17)

ι

〈
ρ(ϕ−1)v − ρ(ϕ−2)v−1

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

−ι (v ⊗ ν,∇ψ) + (2η(ϕ−1)ε(v), ε(ψ))

−ι 〈µ∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ
− 〈u, ψ〉H−1

0,σ ,H
1
0,σ

= 0, ∀ψ ∈ H1
0,σ(Ω;RN).(18)

We test this system by µ, ϕ−ϕ−1

τ
and v, respectively, and sum up the resulting equations to derive

0 =ι

∫
Ω

ρ(ϕ−1) |v|2 − ρ(ϕ−2) |v−1|2

2τ
dx+ ι

∫
Ω

ρ(ϕ−2)
|v − v−1|2

2τ
dx

+

∫
Ω

2η(ϕ−1) |ε(v)|2 dx+

∫
Ω

m(ϕ−1) |∇µ|2 dx+
1

τ

∫
Ω

Ψ0, 1
k

′(ϕ)(ϕ− ϕ−1)dx

− ικ
∫

Ω

ϕ−1
ϕ− ϕ−1

τ
dx+

1

τ

∫
Ω

∇ϕ(∇ϕ−∇ϕ−1)dx− 〈u, v〉H−1
0,σ ,H

1
0,σ

+ (1− ι)
∫

Ω

|µ|2dx+ (1− ι)
∫

Ω

ϕ
ϕ− ϕ−1

τ
dx,(19)

where we additionally used (3) in combination with the fact that

(div(v ⊗ ν), v) = ((divν)v + (ν · ∇)v, v)

=

∫
Ω

((divν)
v

2
+ (ν · ∇)v)vdx+

∫
Ω

(divν)
v

2
vdx

=

∫
Ω

div

(
ν
|v|2

2

)
+ (divν)

|v|2

2
dx =

∫
Ω

(divν)
|v|2

2
dx.(20)

We point out that due to the regularity of the involved quantities, the duality pairings of H1, H1
0,σ

and their respective dual spaces equal the inner product of the respective L2-spaces and can be
interpreted as integrals over Ω, cf. [3]. Rearranging these terms leads to∫

Ω

2η(ϕ−1) |ε(v)|2 dx+

∫
Ω

m(ϕ−1) |∇µ|2 dx+
1

τ
Ψ 1

k
(ϕ) +

1

τ

∫
Ω

|∇ϕ|2 dx

−〈u, v〉H−1
0,σ ,H

1
0,σ

+ (1− ι)
∫

Ω

|µ|2dx+ (1− ι)
∫

Ω

|ϕ|2

2
dx

≤ ι

∫
Ω

ρ(ϕ−2) |v−1|2

2τ
dx+

1

τ

∫
Ω

|∇ϕ−1|2 dx+
1

τ
Ψ 1

k
(ϕ−1) + (1− ι)

∫
Ω

|ϕ−1|2

2
dx.(21)

With the help of Remark 2.5(i) the right-hand side of (21) can be bounded by a constant C :=
C(N,Ω, τ, ϕ−1, ϕ−2, v−1) > 0 which is independent of ι. Hence∫

Ω

2η(ϕ−1) |ε(v)|2 dx+

∫
Ω

m(ϕ−1) |∇µ|2 dx+
1

τ
Ψ 1

k
(ϕ) +

1

τ

∫
Ω

|∇ϕ|2 dx

+(1− ι)
∫

Ω

|µ|2dx ≤ C + 〈u, v〉H−1
0,σ ,H

1
0,σ
.(22)
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Since Ψ 1
k

is bounded from below, cf. Remark 2.5(iv ), we can rely on Assumption 2.1(i), the boundary

condition of v, and Korn’s inequality to conclude that ‖v‖H1 is bounded by a constant C1 which
depends only on C and u. Employing Poincaré’s inequality and (7), we further infer ‖ϕ‖H1 ≤ C .

If 0 ≤ ι ≤ 1
2
, then the inequality (22) - in combination with Assumption 2.1(i) - additionally yields

‖µ‖H1 ≤ C . Otherwise, we conclude from (17), that

ι

∫
Ω

µdx = (1− ι)
∫

Ω

ϕdx− ικ
∫

Ω

ϕ−1dx+

∫
Ω

Ψ0, 1
k

′(ϕ)dx(23)

≤ C(‖ϕ‖+ ‖ϕ−1‖+ ‖Ψ0, 1
k

′(ϕ)‖) ≤ C1,(24)

where we used (7) and the fact that
∫

Ω
ϕdx is bounded by the L2-norm of ϕ. In combination with (22)

and Poincaré’s inequality, this ensures ‖µ‖H1 ≤ C .

In summary, we verified the boundedness of (ϕ, µ, v) in X . Next, we derive bounds for F . In fact, we
have

‖F1(ϕ, µ, v)‖L3/2 ≤ C(‖ϕ‖+ ‖ϕ−1‖+ ‖v‖H1 ‖ϕ−1‖H1 + ‖µ‖),
‖F2(ϕ, µ, v)‖L3/2 ≤ C(‖µ‖+ ‖ϕ−1‖+ ‖ϕ‖),
‖F3(ϕ, µ, v)‖L3/2 ≤ C(‖v‖H1 + ‖v‖H1 ‖ν‖H1 + ‖µ‖ ‖ϕ−1‖H1 + ‖v−1‖H1).

Since ϕ−1, v−1 and ν are fixed and δ and ι were chosen arbitrarily, this ensures the boundedness
of D in Y . Hence Schaefer’s theorem is applicable implying that equation (13) admits a fixed point
δ∗ ∈ Y . Then G−1(δ∗) solves the system (4)-(6).

The additional regularity and the boundedness of the solution follow analogously to the proof of [18,
Lemma 3.3]. �

With the help pf Theorem 3.1 we can show the existence of a solution to the state system (4)-(6) for
the double-obstacle potential by considering an approximating sequence of double-well type potentials
and passing to the limit for k →∞.

Theorem 3.2 (Existence of solutions to the CHNS system). In the system (4)-(6) let Ψ0 be the double-
obstacle potential given in Definition 2.3 and u ∈ H1

0,σ(Ω;RN)∗. Then the system (4)-(6) has a
solution (ϕ, µ, v) ∈ H2

∂n
(Ω) × H2

∂n
(Ω) × H1

0,σ(Ω;RN). If u is contained in L2(Ω;RN), then v ∈
H2

0,σ(Ω;RN).

Proof. Let
{

Ψ0, 1
k

}
k∈N

be a sequence of potentials satisfying Definition 2.4. Due to Theorem 3.1,

there exists a bounded sequence {(ϕ(k), µ(k), v(k))}k∈N ⊂ H2
∂n

(Ω)×H2
∂n

(Ω)×H1
0,σ(Ω;RN) such

that (ϕ(k), µ(k), v(k)) solves (4)-(6) with respect to Ψ0, 1
k

for every k ∈ N. Hence there is a weakly

convergent sequence
{

(ϕ(kl), µ(kl), v(kl))
}
l∈N with limit point (ϕ, µ, v) ∈ H2

∂n
(Ω) × H2

∂n
(Ω) ×

H1
0,σ(Ω;RN).

Based on the convergence property (ii) from Remark 2.5, it is shown that the limit point satisfies the
system (4)-(6) with respect to Ψ0. Since the proof follows the exact same line of argumentation as the
proofs of [18, Theorem 4.1] and [18, Theorem 5.1], we omit it at this point and refer the reader to [18].

Moreover, the additional regularity of v is shown analogously to the proof of [18, Lemma 3.3] �

Having guaranteed the existence of feasible points for the optimal control problem (PΨ), it is straight-
forward to verify the existence of global solutions. The details of the proof can be found in [18, Theorem
4.1].

Theorem 3.3 (Existence of global solutions). The optimization problem (PΨ) admits a global solution.
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Strong stationarity conditions for the optimal control of a Cahn-Hilliard–Navier-Stokes system 9

Using the techniques of [18], an E -almost C-stationarity system is obtained for the problem (PΨ). In the
subsequent theorem we only use the respective adjoint system, since a more restrictive stationarity
system for (PΨ) is derived in the course of this paper.

Theorem 3.4 (Adjoint system). In the problem (PΨ) let Ψ0 be the double-obstacle potential given in
Definition 2.3. If û is an optimal control of (PΨ), then û ∈ H1(Ω;RN) and there exists an adjoint
state (p, r, χ) ∈ H1(Ω) × H1(Ω) × H1

0,σ(Ω;RN) and λ ∈ H1(Ω)∗ such that for all φ ∈ H1(Ω)

and ψ ∈ H1
0,σ(Ω;RN) it holds that〈

DϕJ [ẑ] +
r

τ
, φ
〉

+ (∇p,∇φ) + 〈λ, φ〉 = 0,(25)

(m(ϕ−1)∇r,∇φ)− 〈p, φ〉 − 〈χ∇ϕ−1, φ〉 = 0,(26) 〈
ρ(ϕ−1)

τ
χ, ψ

〉
H−1

0,σ ,H
1
0,σ

− 〈∇χν, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈2η(ϕ−1)ε(χ), ε(ψ)〉H−1
0,σ ,H

1
0,σ
− 〈r∇ϕ−1, ψ〉H−1

0,σ ,H
1
0,σ

= 0(27)

〈−χ, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈DuJ [ẑ], ψ〉H−1
0,σ ,H

1
0,σ

= 0,(28)

where ẑ := (ϕ̂, µ̂, v̂, û) := (SΨ(û), û).

Proof. Once more, we can apply the same techniques as in [18] (more precisely, as in the proof of
Theorem 6.4), if we ensure the boundedness of the corresponding mean values.

This is achieved with the help of the following result.

Lemma 3.5. For k ∈ N let Ψ0, 1
k

be given as in Definition 2.4. Let ẑ be given as in the previous

theorem. If (p, r, χ) ∈ H1(Ω)×H1(Ω)×H1
0,σ(Ω;RN) satisfies〈

DϕJ [ẑ] +
r

τ
, φ
〉

+ (∇p,∇φ) +
〈

Ψ0, 1
k

′′(ϕ̂)∗p, φ
〉

= 0,(29)

(m(ϕ−1)∇r,∇φ)− 〈p, φ〉 − 〈χ∇ϕ−1, φ〉 = 0,(30) 〈
ρ(ϕ−1)

τ
χ, ψ

〉
H−1

0,σ ,H
1
0,σ

− 〈∇χν, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈2η(ϕ−1)ε(χ), ε(ψ)〉H−1
0,σ ,H

1
0,σ
− 〈r∇ϕ−1, ψ〉H−1

0,σ ,H
1
0,σ

= 0,(31)

〈−χ, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈DuJ [ẑ], ψ〉H−1
0,σ ,H

1
0,σ

= 0,(32)

then (p, r, χ) ∈ H1(Ω)×H1(Ω)×H1
0,σ(Ω;RN) is bounded by a positive constantC = C(N,Ω, b1, b2, τ, ϕ̂, ϕd).

Proof. Since χ ∈ H1
0,σ(Ω;RN), seting φ ≡ 1 in (30) yields∫

Ω

p(x)dx = 0.(33)

Next, we test the equations (29)-(31) with τp, r and χ, respectively, and sum up to obtain

〈DϕJ [ẑ], p〉+ τ (∇p,∇p) + τ
〈

Ψ0, 1
k

′′(ϕ̂)∗p, p
〉

+ (m(ϕ−1)∇r,∇r)

+

〈
ρ(ϕ−1)

τ
χ, χ

〉
H−1

0,σ ,H
1
0,σ

− 〈∇χν, χ〉H−1
0,σ ,H

1
0,σ

+ 〈2η(ϕ−1)ε(χ), ε(χ)〉H−1
0,σ ,H

1
0,σ

= 0.(34)

Due to the definition of ν in (9), it holds that〈
ρ(ϕ−1)

τ
χ, χ

〉
H−1

0,σ ,H
1
0,σ

− 〈∇χν, χ〉H−1
0,σ ,H

1
0,σ
≥ 0(35)
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Since ψ( 1
k

) is convex, cf. Definition 2.4, we further observe that

τ
〈

Ψ0, 1
k

′′(ϕ̂)∗p, p
〉

= τ

∫
Ω

ψ( 1
k

)′′(ϕ̂)|p|2dx ≥ 0.(36)

By omitting the non-negative terms in (34) and applying Korn’s inequality and Poincaré’s inequality
in combination with the boundary condition for χ and (33), we infer the existence of a constant C =
C(N,Ω, b1, b2, τ) > 0 such that

‖p‖2
H1 + ‖∇r‖2 + ‖χ‖2

H1 ≤ C ‖DϕJ [ẑ]‖ ‖p‖ ,(37)

where we also took Assumption 2.1(i) into account.

It remains to show that the mean value cr := 1
|Ω|

∫
Ω
r(x)dx is bounded.

We set wr := r − cr. Due to Assumption 2.1(iii), there exists a δ > 0 such that |Ωr| := {|ϕ̂(x)| <
1−δ} > 0. By definition, the mean value ofwr is equal to zero and we can apply Poincaré’s inequality
to infer ∫

Ωr

wrdx ≤
∫

Ωr

|wr|dx ≤ ‖wr‖L1 ≤ C‖∇wr‖ = C‖∇r‖.(38)

Moreover, since Ψ0, 1
k

′′(ϕ̂)∗p = ψ( 1
k

)′′(ϕ̂)p is contained in L2(Ω), standard regularity theory yields

that p ∈ H2(Ω), cf. e.g. [32, Theorem 2.3.6]. Thus, equation (29) leads to

r = −τ (ϕ̂− ϕd)−Ψ0, 1
k

′′(ϕ̂)∗p+ τ∆p = −τ (ϕ̂− ϕd) + τ∆p a.e. on Ωr.(39)

Consequently, it holds that

|cr| |Ωr| =
∣∣∣∣∫

Ωr

crdx

∣∣∣∣ =

∣∣∣∣−τ ∫
Ωr

(ϕ̂− ϕd) dx+ τ

∫
Ωr

∆pdx−
∫

Ωr

wrdx

∣∣∣∣(40)

=

∣∣∣∣−τ ∫
Ωr

(ϕ̂− ϕd) dx− τ
∫
∂Ωr

∇p · ~ndx−
∫

Ωr

wrdx

∣∣∣∣(41)

≤ C(‖ϕ‖+ ‖p‖H1 + ‖∇r‖+ C1).(42)

Hence, the mean value of r is bounded with respect to ‖∇r‖, which - in combination with (37) - proves
the assertion. �

As noted above the assertion of Theorem 3.4 is now verified following the same line of argumentation
as in [18, Theorem 6.4]. �

An important consequence of the above theorem is the additional regularity of an optimal solution û
in contrast to the L2-regularity required by the control problem. This allows to exploit a structure result
concerning the directional derivative of the control-to-state map in order to strengthen the stationarity
result in Section 6.

4. LIPSCHITZ CONTINUITY OF THE CONSTRAINT MAPPING

For the purpose of deriving strong stationarity conditions, we take a closer look at the constraint
mapping SΨ. More precisely, it is our intention to characterize its directional derivative DSΨ.

As a first step towards this goal, we verify the Lipschitz continuity of SΨ. We start by reformulating the
system (4)-(6) with the help of the slack variable Λ ∈ ∂Ψ0(ϕ). Since ϕ ∈ H2(Ω), cf. Lemma 3.2,
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Λ is contained in L2(Ω). Moreover, we set µ := µ + κϕ−1 ∈ H1(Ω) such that the system (4)-(6)
transforms into〈

ϕ− ϕ−1

τ
, φ

〉
+ 〈v∇ϕ−1, φ〉+ (m(ϕ−1)∇µ,∇φ)− κ (m(ϕ−1)∇ϕ−1,∇φ) = 0,(43)

(∇ϕ,∇φ)− 〈µ, φ〉+ 〈Λ, φ〉 = 0,(44) 〈
ρ(ϕ−1)v − ρ(ϕ−2)v−1

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (v ⊗ ρ(ϕ−2)v−1,∇ψ)

+

(
v ⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇ψ

)
+ (2η(ϕ−1)ε(v), ε(ψ))

− 〈µ∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈κϕ−1∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 〈u, ψ〉H−1
0,σ ,H

1
0,σ
.(45)

Clearly, any solution of the system (43)-(45) can be transformed into a solution of (4)-(6) by adding/subtracting
κϕ−1 to µ and vice versa. Slightly abusing notation, we subsequently refer to the solution operator of
the system (43)-(45) by SΨ and maintain the same notation.

Theorem 4.1 (Lipschitz continuity of SΨ). The mapping SΨ : H1
0,σ(Ω;RN)∗ → H1(Ω)×H1(Ω)×

H1
0,σ(Ω;RN) is Lipschitz continuous.

Proof. For i = 1, 2 let (ϕi, µi, vi) ∈ SΨ(ui) and Λi ∈ ∂Ψ0(ϕi) be the assoicated slack variable.
We easily verify that〈

ϕ1 − ϕ2

τ
, φ

〉
+ 〈(v1 − v2)∇ϕ−1, φ〉+ (m(ϕ−1)∇(µ1 − µ2),∇φ) = 0,(46)

(∇(ϕ1 − ϕ2),∇φ) + 〈Λ1 − Λ2, φ〉 − 〈µ1 − µ2, φ〉 = 0,(47) 〈
ρ(ϕ−1)(v1 − v2)

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− ((v1 − v2)⊗ ρ(ϕ−2)v−1,∇ψ)

+

(
(v1 − v2)⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇ψ

)
+ (2η(ϕ−1)ε(v1 − v2), ε(ψ))

− 〈(µ1 − µ2)∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 〈u1 − u2, ψ〉H−1
0,σ ,H

1
0,σ
.(48)

Testing with τ(µ1 − µ2), ϕ1 − ϕ2 and τ(v1 − v2), respectively, and summing up, yields∫
Ω

ρ(ϕ−1)|v1 − v2|2dx+ τ

∫
Ω

divν
|v1 − v2|2

2
dx+ 2τ

∫
Ω

η(ϕ−1)|ε(v1 − v2)|2dx

+τ

∫
Ω

m(ϕ−1)|∇(µ1 − µ2)|2dx+

∫
Ω

|∇(ϕ1 − ϕ2)|2dx+ 〈Λ1 − Λ2, ϕ1 − ϕ2〉

= τ 〈u1 − u2, v1 − v2〉H−1
0,σ ,H

1
0,σ
.

Here we also employed the relations (9) and (20). Using Assumption 2.1(iv ) we conclude that∫
Ω

ρ(ϕ−1) + ρ(ϕ−2)

2
|v1 − v2|2dx+ 2τ

∫
Ω

η(ϕ−1)|ε(v1 − v2)|2dx

+τ

∫
Ω

m(ϕ−1)|∇(µ1 − µ2)|2dx+

∫
Ω

|∇(ϕ1 − ϕ2)|2dx+ 〈Λ1 − Λ2, ϕ1 − ϕ2〉

= τ 〈u1 − u2, v1 − v2〉H−1
0,σ ,H

1
0,σ
.
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Due to the monotonicity of ∂Ψ, the non-negativity of the density ρ, and the boundedness of the coef-
ficients m and η this leads to

C1‖∇(v1 − v2)‖2
L2 + C2‖∇(µ1 − µ2)‖2

L2 + ‖∇(ϕ1 − ϕ2)‖2
L2(49)

≤ τ‖u1 − u2‖H−1
0,σ
‖v1 − v2‖H1 ,(50)

where C1, C2 > 0 are positive constants depending on τ , η, and m. Since v1 − v2 ∈ H1
0,σ(Ω;RN),

testing (46) with φ ≡ 1 yields

0 =
1

τ

∫
Ω

ϕ1(x)− ϕ2(x)dx+

∫
Ω

(v1(x)− v2(x))∇ϕ−1(x)dx(51)

=
1

τ

(∫
Ω

ϕ1(x)− ϕ2(x)dx

)
.(52)

In combination with Poincaré’s inequality, Korn’s inequality and (50) this verifies the existence of a
constant C such that

‖v1 − v2‖2
H1 + ‖∇(µ1 − µ2)‖2

L2 + ‖ϕ1 − ϕ2‖2
H1 ≤ C‖u1 − u2‖H−1

0,σ
‖v1 − v2‖H1 .(53)

This already ensures that ‖ϕ1 − ϕ2‖H1 ≤ C‖u1 − u2‖H−1 .

By Sobolev’s imbedding theorem ϕ1, ϕ2 ∈ H2(Ω) are contained in the Hölder space Cα(Ω) for
some α > 0. In the following, we show that there exists a constant C1 such that

‖ϕ1 − ϕ2‖C := max
x∈Ω
{|ϕ1(x)− ϕ2(x)|} ≤ C1‖u1 − u2‖H−1 .(54)

For this purpose, we set

‖ϕ1 − ϕ2‖C =: ϕ1(xmax)− ϕ2(xmax) =: δmax.(55)

Since ϕ1 − ϕ2 is continuous, there exists a neighborhood xmax ∈ Ωxmax ⊂ Ω with positive measure
such that ϕ1(x)− ϕ2(x) > δmax

2
for all x ∈ Ωxmax . Hence, (54) is satisfied, since it holds that

‖ϕ1 − ϕ2‖C
|Ωxmax|

2
=
δmax

2
|Ωxmax| ≤ ‖ϕ1 − ϕ2‖H1 ≤ C‖u1 − u2‖H−1 .(56)

By Assumption 2.1(iii) there exists a δ > 0 and a subset Ωδ ⊂ Ω with positive measure such that
−1+δ < ϕ1(x) < 1−δ a.e. on Ωδ. If ‖u1−u2‖H−1 is sufficiently small, it holds that ‖ϕ1−ϕ2‖C ≤ δ
and therefore −1 < ϕ2(x) < 1 a.e. on Ωδ. Using the characterization of the subdifferential ∂Ψ0 of
the double-obstacle potential, we infer that Λ1 = Λ2 = 0 a.e. on Ωδ.

Hence, by (47), it holds that

µ1 − µ2 = −∆(ϕ1 − ϕ2) + Λ1 − Λ2 = −∆(ϕ1 − ϕ2), a.e. on Ωδ.(57)

In order to estimate the mean value of µ1 − µ2, we further define cµ := 1
|Ω|

∫
Ω
µ1 − µ2dx and

wµ := µ1−µ2−cµ. By definition, the mean value of wµ is equal to zero and we can apply Poincaré’s
inequality to infer∫

Ωδ

wµdx ≤
∫

Ωδ

|wµ|dx ≤ ‖wµ‖L1 ≤ C‖∇wµ‖ = C‖∇(µ1 − µ2)‖.(58)

Using the divergence theorem, we derive the existence of a constant C such that

|cµ| |Ωδ| =
∣∣∣∣∫

Ωδ

cµdx

∣∣∣∣ =

∣∣∣∣∫
Ωδ

−∆(ϕ1 − ϕ2)dx−
∫

Ωδ

wµdx

∣∣∣∣(59)

=

∣∣∣∣∫
∂Ωδ

∇(ϕ1 − ϕ2)~ndx−
∫

Ωδ

wµdx

∣∣∣∣(60)

≤ C(‖ϕ1 − ϕ2‖H1 + ‖∇(µ1 − µ2)‖).(61)
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Then the assertion follows from inequality (53). �

We point out that an immediate consequence of the above theorem is that the solutions to the con-
straint system are uniquely determined by the control u.

5. DIRECTIONAL DERIVATIVE

In order to show the directional differentiability of the constraint mapping SΨ, we reformulate the vari-
ational inequality (44) as a complementarity problem with the help of the slack variables Λ+, Λ− ∈
H1(Ω)∗ with Λ = Λ+ + Λ−. More precisely, (44) is reformulated as follows〈

Λ+ + Λ−, φ
〉

= 〈∇ϕ,∇φ〉 − 〈µ, φ〉 , ∀φ ∈ H1(Ω)(62) 〈
Λ−, ϕ− ψ2

〉
= 0,

〈
Λ+, ϕ− ψ1

〉
= 0,(63) 〈

Λ+, φ2

〉
≥ 0,

〈
Λ−, φ2

〉
≤ 0, ∀φ2 ∈ H1(Ω) : φ2 ≥ 0 a.e. on Ω.(64)

The directional derivative DSΨ is characterized by the following theorem.

Theorem 5.1. The directional derivative of SΨ at u0 ∈ H1
0,σ(Ω;RN)∗ with SΨ(u0) = (ϕ0, µ0, v0)

in direction h ∈ H1
0,σ(Ω;RN)∗ is given by DSΨ[u0](h) = (q, w, ζ), where (q, w, ζ) ∈ H1(Ω) ×

H1(Ω)×H1
0,σ(Ω;RN) is the unique solution to the variational system

q ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥,(65)

〈−∆q − w, φ− q〉 ≥ 0, ∀φ ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥,(66) 〈 q

τ
, φ
〉

+ 〈ζ∇ϕ−1, φ〉+ (m(ϕ−1)∇w,∇φ) = 0,(67) 〈
ρ(ϕ−1)ζ

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (ζ ⊗ ρ(ϕ−2)v−1,∇ψ)

+

(
ζ ⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇ψ

)
+ (2η(ϕ−1)ε(ζ), ε(ψ))

−〈w∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 〈h, ψ〉H−1
0,σ ,H

1
0,σ
.(68)

Here, TK(ϕ0) is the tangent cone of K at ϕ0 and Λ⊥ := {φ ∈ H1(Ω) : 〈φ,Λ〉 = 0}.

Proof. For θ > 0 let uθ := u0 + θh ∈ H1
0,σ(Ω;RN)∗, (ϕθ, µθ, vθ) ∈ SΨ(uθ), and Λθ := Λ+

θ + Λ−θ
be the associated slack variable(s) as introduced above.

By the Lipschitz continuity of SΨ the sets {ϕθ−ϕ0

θ
: 0 < θ ≤ 1}, {µθ−µ0

θ
: 0 < θ ≤ 1}, {vθ−v0

θ
: 0 <

θ ≤ 1}, {Λ+
θ −Λ+

0

θ
: 0 < θ ≤ 1} and {Λ−

θ −Λ−
0

θ
: 0 < θ ≤ 1} are bounded in H1(Ω), H1

0,σ(Ω;RN)

and H−1(Ω), respectively.

As a consequence, we can construct a sequence θk → 0 such that each of the sequences
ϕθk−ϕ0

θk
⇀

q,
µθk−µ0
θk

⇀ w,
vθk−v0
θk

⇀ ζ
Λ+
θk
−Λ+

0

θk
⇀ Ξ+, and

Λ−
θk
−Λ−

0

θk
⇀ Ξ− converges weakly, where q, w, ζ ,

Ξ+ and Ξ− denote the respecive weak limit points. In addition, we define Ξ := Ξ+ + Ξ− and note

that
Λθk−Λ0

θk
⇀ Ξ.
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Clearly, the triple (
ϕθk−ϕ0

θk
,
µθk−µ0
θk

,
vθk−v0
θk

) along with the slack variable
Λθk−Λ0

θk
satisfies the linear

system (43)-(45) for every k ∈ N. By passing to the limit for θk → 0, we verify that

〈∇q,∇φ〉 − 〈w, φ〉 = 〈Ξ, φ〉 ,(69) 〈 q
τ
, φ
〉

+ 〈ζ∇ϕ−1, φ〉+ (m(ϕ−1)∇w,∇φ) = 0,(70) 〈
ρ(ϕ−1)ζ

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (ζ ⊗ ρ(ϕ−2)v−1,∇ψ)

+

(
ζ ⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇ψ

)
+ (2η(ϕ−1)ε(ζ), ε(ψ))

−〈w∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 〈h, ψ〉H−1
0,σ ,H

1
0,σ
,(71)

where we used the same imbedding arguments as in the proof of [18, Theorem 4.1, Theorem 5.1]).

In order to show that the variational inequality (65),(66) is satsified, we split the rest of the proof into
two separate lemmata.

Lemma 5.2. Let q, Ξ+ and Ξ− denote weak limit points of ϕθ−ϕ0

θ
,

Λ+
θ −Λ+

0

θ
, and

Λ−
θ −Λ−

0

θ
, respectively,

for θ → 0. Then q ∈ TK(ϕ0)∩{Λ+
0 }⊥∩{Λ−0 }⊥ and for all φ ∈ TK(ϕ0)∩{Λ+

0 }⊥∩{Λ−0 }⊥ it holds
that 〈

Ξ+ + Ξ−, φ
〉
≥ 0.(72)

Proof. Clearly, q ∈ TK(ϕ0) due to the definition of the tangent cone. Employing (63) further yields〈
Λ−0 , q

〉
= lim

θ→0

〈
Λ−0 ,

ϕθ − ϕ0

θ

〉
= lim

θ→0

〈
Λ−0 ,

ϕθ − ψ2

θ

〉
≥ 0.(73)

Moreover, we observe that

lim
θ→0

〈
Λ−0 − Λ−θ ,

ϕθ − ϕ0

θ

〉
= 0.

Hence, 〈
Λ−0 , q

〉
= lim

θ→0

〈
Λ−0 ,

ϕθ − ϕ0

θ

〉
(74)

= lim
θ→0

(〈
Λ−θ ,

ϕθ − ϕ0

θ

〉
+

〈
Λ−0 − Λ−θ ,

ϕθ − ϕ0

θ

〉)
(75)

= lim
θ→0

〈
Λ−θ ,

ϕθ − ϕ0

θ

〉
= lim

θ→0

〈
Λ−θ ,
−(ϕ0 − ψ2)

θ

〉
≤ 0.(76)

In combination with (73), this leads to 〈
Λ−0 , q

〉
= 0.(77)

Analogously, we derive
〈
Λ+

0 , q
〉

= 0. In summary, q is contained in the cone TK(ϕ0) ∩ {Λ+
0 }⊥ ∩

{Λ−0 }⊥.

In order to show (72), let θ1, θ2 ≥ 0 be arbitrarily chosen. By definition (ϕθi , µθi ,Λ
+
θi
,Λ−θi) solves the

complementarity system (62)-(64) for i = 1, 2 and hence
〈
−Λ−θ2 , (ϕθ1 − ψ2)

〉
≤ 0 and

〈
Λ−θ1 ,−(ϕθ2 − ψ2)

〉
≤

0. This yields〈
Λ−θ1 − Λ−θ2 , ϕθ1 − ϕθ2

〉
=
〈
Λ−θ1 − Λ−θ2 , (ϕθ1 − ψ2)− (ϕθ2 − ψ2)

〉
=
〈
Λ−θ1 ,−(ϕθ2 − ψ2)

〉
+
〈
−Λ−θ2 , (ϕθ1 − ψ2)

〉
≤ 0.
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By taking advantage of the Lipschitz continuity of SΨ we derive

C|θ1 − θ2|2 ≥ | 〈Λθ1 − Λθ2 , ϕθ1 − ϕθ2〉 | ≥ |
〈
Λ−θ1 − Λ−θ2 , ϕθ1 − ϕθ2

〉
|

≥ |
〈
Λ−θ1 ,−(ϕθ2 − ψ2)

〉
|.

Employing this estimate with θ1 := θ and θ2 = 0, we infer〈
Ξ−, ϕ0 − ψ2

〉
= lim

θ→0

〈
Λ−θ − Λ−0

θ
, ϕ0 − ψ2

〉
= lim

θ→0

〈
Λ−θ
θ
, ϕ0 − ψ2

〉
= 0.(78)

Now let φ ∈ H1(Ω) be an arbitrary element of the intersection CK(ϕ0)∩{Λ−0 }⊥, where CK(ϕ0) :=
{φ ∈ H1(Ω) : ∃t>0ϕ0 + tφ ∈ K}. Then there exists a t > 0 such that ϕ0 + tφ − ψ2 ≤ 0 a.e. on
Ω. Equation (63) further implies ϕ0 + tφ− ψ2 ∈ {Λ−0 }⊥. Thus〈

Ξ−, ϕ0 + tφ− ψ2

〉
= lim

θ→0

〈
Λ−θ − Λ−0

θ
, ϕ0 + tφ− ψ2

〉
= lim

θ→0

〈
Λ−θ
θ
, ϕ0 + tφ− ψ2

〉
≥ 0,

where we additionally used (64). In combination with (78), this leads to〈
Ξ−, φ

〉
≥ 0.(79)

Analogously, we verify that every φ ∈ CK(ϕ0) ∩ {Λ+
0 }⊥ satisfies〈

Ξ+, φ
〉
≥ 0.(80)

Due to the polyhedricity of K, cf. e.g. [33], the intersection CK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥ is dense in

TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥. Consequently, we can extend the inequalities (79) and (80) to hold for

every φ ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥, which proves the assertion. �

Lemma 5.3. Let q and Ξ be weak limit points of ϕθ−ϕ0

θ
and Λθ−Λ0

θ
, respectively, for θ → 0. Then it

holds that

〈Ξ, q〉 = 0.(81)

Proof. We define the linear operator D : H1(Ω)×H1
0,σ(Ω;RN)→ H1(Ω)∗ ×H1

0,σ(Ω;RN)∗ by

D(µ, v) :=

(
v∇ϕ−1 − div(m(ϕ−1)∇µ)

ρ(ϕ−1)v
τ

+ div (v ⊗ ν)− div(2η(ϕ−1)ε(v))− µ∇ϕ−1

)
,

where ν is given by (9). The invertibility of D follows by Schaefer’s Theorem and the same ar-
guments as in the proof of Theorem 3.1. For an arbitrary ϕ we set µ := [D−1(−ϕ

τ
, 0)]1 and

v := [D−1(−ϕ
τ
, 0)]2, where [D−1(x)]i denotes the i-th component of the linear operator D−1 at

x. Then it holds for all φ ∈ H1(Ω) and ψ ∈ H1
0,σ(Ω;RN) that

〈v∇ϕ−1, φ〉+ 〈m(ϕ−1)∇µ,∇φ〉 =
〈
−ϕ
τ
, φ
〉
,(82) 〈

ρ(ϕ−1)v

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− 〈(v ⊗ ν) ,∇ψ〉+ 〈2η(ϕ−1)ε(v), ε(ψ)〉

− 〈µ∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 0.(83)

Testing (82),(83) with τµ and τv, respectively, summing up and using assumption (3) leads to

0 ≤
∫

Ω

ρ(ϕ−1) + ρ(ϕ−2)

2
|v|2dx+ 2τ

∫
Ω

η(ϕ−1)|ε(v)|2dx+ τ

∫
Ω

m(ϕ−1)|∇(µ)|2dx

= −〈µ, ϕ〉 = −
〈

[D−1(−ϕ
τ
, 0)]1, ϕ

〉
.(84)
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Next, we define the linear operator A : H1(Ω)→ H1(Ω)∗ by

A(ϕ) := −∆ϕ− [D−1(−ϕ
τ
, 0)]1,(85)

where the Laplace operator is understood in the weak sense. Due to (84), A is coercive in the sense
that

∀ϕ ∈ H1(Ω) 〈A(ϕ), ϕ〉 = ‖∇ϕ‖2
L2 −

〈
[D−1(−ϕ

τ
, 0)]1, ϕ

〉
≥ 0.

Note that the equations (43) and (45) imply

D(µθ, vθ) =

(
−ϕθ−ϕ−1

τ
− κdiv(m(ϕ−1)∇ϕ−1)

ρ(ϕ−2)v−1

τ
+ uθ − κϕ−1∇ϕ−1

)
,(86)

which yields

(µθ, vθ)−D−1(−ϕθ
τ
, 0) = D−1

( ϕ−1

τ
− κdiv(m(ϕ−1)∇ϕ−1)

ρ(ϕ−2)v−1

τ
+ uθ − κϕ−1∇ϕ−1

)
.(87)

Thus, we obtain

A(ϕθ) = Λθ + µθ − [D−1(−ϕθ
τ
, 0)]1(88)

= Λθ +

[
D−1

( ϕ−1

τ
− κdiv(m(ϕ−1)∇ϕ−1)

ρ(ϕ−2)v−1

τ
+ uθ − κϕ−1∇ϕ−1

)]
1

,(89)

where we additionally employed (62). Consequently,

A(
ϕθ − ϕ0

θ
) =

1

θ

(
Λθ − Λ0 +

[
D−1

(
0

uθ − u0

)]
1

)
(90)

=
1

θ
(Λθ − Λ0) +

[
D−1

(
0
h

)]
1

.(91)

To simplify the notation we introduce the linear operator C(h) :=

[
D−1

(
0
h

)]
1

.

Since A is coercive, the following inequality holds true for every y, z ∈ H1(Ω)

1

2
(〈A(z), y〉+ 〈A(y), z〉) ≤ 〈A(z), z〉

1
2 〈A(y), y〉

1
2 .(92)

Setting z :=
ϕθ1−ϕ0

θ1
and y :=

ϕθ2−ϕ0

θ2
for arbitrary θ1, θ2 > 0, we rewrite (92) as follows

1

2

(〈
1

θ1

(Λθ1 − Λ0) + C(h),
ϕθ2 − ϕ0

θ2

〉
+

〈
1

θ2

(Λθ2 − Λ0) + C(h),
ϕθ1 − ϕ0

θ1

〉)
≤
〈

1

θ1

(Λθ1 − Λ0) + C(h),
ϕθ1 − ϕ0

θ1

〉 1
2
〈

1

θ2

(Λθ2 − Λ0) + C(h),
ϕθ2 − ϕ0

θ2

〉 1
2

(93)

≤
〈
C(h),

ϕθ1 − ϕ0

θ1

〉 1
2
〈
C(h),

ϕθ2 − ϕ0

θ2

〉 1
2

,(94)

where the last inequality follows directly from the monotonicity of ∂Ψ0

Now we consider an arbitrary sequence θk1 → 0 such that
ϕ
θk1
−ϕ0

θk1
and

Λ
θk1
−Λ0

θk1
converge weakly to

the weak limit points q1 and Ξ1, respectively. By setting θ1 := θk1 and passing to the limit for θk1 → 0,
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we obtain

1

2

(〈
Ξ1 + C(h),

ϕθ2 − ϕ0

θ2

〉
+

〈
Λθ2 − a0

θ2

+ C(h), q1

〉)
≤ 〈C(h), q1〉

1
2

〈
C(h),

ϕθ2 − ϕ0

θ2

〉 1
2

.(95)

The subsequent limiting process for a sequence θk2 → 0 with the corresponding weak limit points q2

and Ξ2 yields

〈C(h), q1〉
1
2 〈C(h), q2〉

1
2 ≥ 1

2
(〈Ξ1 + C(h), q2〉+ 〈Ξ2 + C(h), q1〉).(96)

Employing Lemma 5.2, we further infer

〈C(h), q1〉
1
2 〈C(h), q2〉

1
2 ≥ 1

2
(〈Ξ1 + C(h), q2〉+ 〈Ξ2 + C(h), q1〉)

≥ 1

2
(〈C(h), q2〉+ 〈C(h), q1〉) ≥ 〈C(h), q1〉

1
2 〈C(h), q2〉

1
2 .

Consequently, the above inequalities hold as equations and it holds that.

〈Ξ2, q1〉 = 0(97)

Since θk1 , θ
k
2 were chosen aribitrarily, this holds for all weak limit points q1, q2 and Ξ1,Ξ2 of the se-

quences ϕθ−ϕ0

θ
and Λθ−Λ0

θ
, respectively. �

Combining Lemma 5.2 and Lemma 5.3, as well as taking (69) into account, we conclude that each
weak limit point q of ϕθ−ϕ0

θ
satisfies the variational inequality

q ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥,

〈−∆q − w, φ− q〉 ≥ 0, ∀φ ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥.

(98)

Since the variational inequality has a unique solution, this concludes the proof of Theorem 5.1. �

The above theorem characterizes the directional derivative of the control-to-state operator as a solu-
tion to a system of a variational inequality coupled to partial differential equations. The constraint set
associated to the variational inequality is represented by a convex cone, which is also known as the
critical cone, see, e.g., [35].

6. STATIONARITY CONDITIONS

In this section, we finally derive strong stationarity conditions for the optimal control problem (PΨ),
which provides a more restrictive stationarity system than the ε-almost C-stationarity system from [18]
depicted in Theorem 3.4.

Theorem 6.1. If z0 := (ϕ0, µ0, v0, u0) is an optimal point of (PΨ), then there exists an adjoint state
(p, r, χ) ∈ H1(Ω) × H1(Ω) × H1

0,σ(Ω;RN) and λ ∈ H1(Ω)∗ such that for all φ ∈ H1(Ω) and
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ψ ∈ H1
0,σ(Ω;RN) it holds that 〈

DϕJ [z0] +
r

τ
, φ
〉

+ (∇p,∇φ) + 〈λ, φ〉 = 0,(99)

(m(ϕ−1)∇r,∇φ)− 〈p, φ〉 − 〈χ∇ϕ−1, φ〉 = 0,(100) 〈
ρ(ϕ−1)

τ
χ, ψ

〉
H−1

0,σ ,H
1
0,σ

− 〈∇χν, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈2η(ϕ−1)ε(χ), ε(ψ)〉H−1
0,σ ,H

1
0,σ
− 〈r∇ϕ−1, ψ〉H−1

0,σ ,H
1
0,σ

= 0,(101)

〈−χ, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈DuJ [ẑ], ψ〉H−1
0,σ ,H

1
0,σ

= 0,(102)

λ ∈
(
TK(ϕ0) ∩ {Λ+

0 }⊥ ∩ {Λ−0 }⊥
)0
,(103)

χ ∈
([
D
((
TK(ϕ0) ∩ {Λ+

0 }⊥ ∩ {Λ−0 }⊥
)0 ×H1

0,σ(Ω;RN)
)]

2

)0

,(104)

where the subscript K0 signifies the polar cone of a cone K .

Proof. The existence of an adjoint state (p, r, χ) ∈ H1(Ω) × H1(Ω) × H1
0,σ(Ω;RN) and λ ∈

H1(Ω)∗ such that (99)-(102) are satisfied follows directly from Theorem 3.4.

Now we reformulate the optimal control problem with the help of the reduced objective functional
J : L2(Ω;RN)→ R

min
u∈L2(Ω;RN )

J (u) := min
u∈L2(Ω;RN )

J (SΨ(u), u),

Due to (ϕ0, µ0, v0, u0) being an optimal point, it holds that

DJ [u0](h) ≥ 0, ∀h ∈ L2(Ω;RN).(105)

Since u0 is contained inH1
0,σ(Ω;RN), due to Theorem 3.4, andL2(Ω;RN) is dense inH1

0,σ(Ω;RN)∗,
this yields

DJ [u0](h) ≥ 0, ∀h ∈ H1
0,σ(Ω;RN)∗,(106)

cf. e.g. [34, Lemma 3.1]. Using the characterization of the directional derivative (q, w, ζ) = DSΨ [u0] (h)
provided by Theorem 5.1, we infer

0 ≤ DJ [u0](h) = 〈DϕJ [z0], DϕSΨ[u0](h)〉+ 〈DuJ [z0], h〉(107)

= 〈DϕJ [z0], q〉+ 〈DuJ [z0], h〉 ,(108)

where (q, w, ζ) denotes the unique solution of the system (65)-(68).

In order to show the inclusion (104) we consider an arbitrary element (w∗, ζ∗) of the subsequent cone

(w∗, ζ∗) ∈
(
TK(ϕ0) ∩ {Λ+

0 }⊥ ∩ {Λ−0 }⊥
)0 ×H1

0,σ(Ω;RN).(109)

and define h∗ ∈ H1
0,σ(Ω;RN)∗ by h∗ := [D(w∗, ζ∗)]2 such that the following equation holds true

〈h∗, ψ〉H−1
0,σ ,H

1
0,σ

:=

〈
ρ(ϕ−1)ζ∗

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (ζ∗ ⊗ ν,∇ψ)

+ (2η(ϕ−1)ε(ζ∗), ε(ψ))− 〈w∗∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ
.(110)
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Consequently, the triple (0, w∗, ζ∗) satisfies the following system

0 ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥,

〈−w∗, φ〉 ≥ 0, ∀φ ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥,

〈ζ∗∇ϕ−1, φ〉+ (m(ϕ−1)∇w∗,∇φ) = 0,〈
ρ(ϕ−1)ζ∗

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (ζ∗ ⊗ ν,∇ψ) + (2η(ϕ−1)ε(ζ∗), ε(ψ))

−〈w∗∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ
− 〈h∗, ψ〉H−1

0,σ ,H
1
0,σ

= 0.

Hence, (0, w∗, ζ∗) = DSΨ [u0] (h∗) due to Theorem 5.1.

With the help of (108) and (102) we infer

0 ≤ 〈DuJ [z0], h∗〉 = 〈χ, h∗〉 ,

which validates the inclusion (104).

To verify inclusion (103) we consider an arbitrary q∗ ∈ TK(ϕ0) ∩ {Λ+
0 }⊥ ∩ {Λ−0 }⊥. As above we

define h∗ ∈ H1
0,σ(Ω;RN)∗ and

(w∗, ζ∗) := D−1

(
−q
∗

τ
, h∗
)
∈ H1(Ω)×H1

0,σ(Ω;RN)(111)

such that the following system is satisfied for all φ ∈ H1(Ω) and ψ ∈ H1
0,σ(Ω;RN)

(∇q∗,∇φ)− 〈w∗, φ〉 = 0,(112) 〈
q∗

τ
, φ

〉
+ 〈ζ∗∇ϕ−1, φ〉+ (m(ϕ−1)∇w∗,∇φ) = 0,(113) 〈

ρ(ϕ−1)ζ∗

τ
, ψ

〉
H−1

0,σ ,H
1
0,σ

− (ζ∗ ⊗ ρ(ϕ−2)v−1,∇ψ)

+

(
ζ∗ ⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇ψ

)
+ (2η(ϕ−1)ε(ζ∗), ε(ψ))

−〈w∗∇ϕ−1, ψ〉H−1
0,σ ,H

1
0,σ

= 〈h, ψ〉H−1
0,σ ,H

1
0,σ
,(114)

and therefore (q∗, w∗, ζ∗) = DSΨ [u0] (h∗). Employing inequality (108) and (114), we derive

0 ≤ (DϕJ [z0], q) + (DuJ [z0], h)

= (DϕJ [z0], q) +

〈
ρ(ϕ−1)ζ∗

τ
,DuJ [z0]

〉
H−1

0,σ ,H
1
0,σ

− (ζ∗ ⊗ ρ(ϕ−2)v−1,∇DuJ [z0])

+

(
ζ∗ ⊗ ρ2 − ρ1

2
m(ϕ−2)∇µ−1,∇DuJ [z0]

)
+ (2η(ϕ−1)ε(ζ∗), ε(DuJ [z0]))

− 〈w∗∇ϕ−1, DuJ [z0]〉H−1
0,σ ,H

1
0,σ

= (DϕJ [z0], q) +

〈
ρ(ϕ−1)ζ∗

τ
, χ

〉
H−1

0,σ ,H
1
0,σ

− (ζ∗ ⊗ ν,∇χ)

+ (2η(ϕ−1)ε(ζ∗), ε(χ))− 〈w∗∇ϕ−1, χ〉H−1
0,σ ,H

1
0,σ
,
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where the last equality follows from (28). Taking advantage of (27) and (113), we infer

0 ≤ (DϕJ [z0], q) + 〈r∇ϕ−1, ζ
∗〉 − 〈w∗∇ϕ−1, χ〉H−1

0,σ ,H
1
0,σ

= (DϕJ [z0], q)−
〈
q∗

τ
, r

〉
− (m(ϕ−1)∇w∗,∇r)− 〈w∗∇ϕ−1, χ〉H−1

0,σ ,H
1
0,σ
.

In combination with (26),(112) and (25), this yields

0 ≤ (DϕJ [z0], q)−
〈
q∗

τ
, r

〉
− 〈p, w∗〉 = (DϕJ [z0], q)−

〈
q∗

τ
, r

〉
− 〈∇p,∇q∗〉

=− 〈λ, q∗〉 .

Consequently, λ is an element of the polar cone
(
TK(ϕ0) ∩ {Λ+

0 }⊥ ∩ {Λ−0 }⊥
)0

, which completes
the proof of inclusion (103). �

In summary, we extended the results from [18] to the case of function spaces with arbitrary mean
value. More importantly, we established strong stationarity conditions for the optimal control prob-
lem (PΨ), which is ruled by a degenerate constraint system with the overall problem falling into the
realm of mathematical programs with equilibrium constraints (MPECs). These conditions replace the
C-stationarity conditions which were the most (and, to the best of our knowledge, only) selective sta-
tionarity system available up to this point. The strong stationarity system is a considerable step towards
the application and development of more advanced numerical methods, such as, e.g., in [21], to detect
an approximate solution of the optimal control problem associated to the Cahn-Hilliard-Navier-Stokes
system.
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trol problems, Sūrikaisekikenkyūsho Kōkyūroku, (2000), pp. 172–180. Mathematical models in functional equations
(Japanese) (Kyoto, 1999).

[44] J. M. YONG AND S. M. ZHENG, Feedback stabilization and optimal control for the Cahn-Hilliard equation, Nonlinear
Anal., 17 (1991), pp. 431–444.

[45] B. ZHOU ET AL., Simulations of polymeric membrane formation in 2D and 3D, PhD thesis, Massachusetts Institute of
Technology, 2006.

[46] J. ZOWE AND S. KURCYUSZ, Regularity and stability for the mathematical programming problem in Banach spaces,
Appl. Math. Optim., 5 (1979), pp. 49–62.

DOI 10.20347/WIAS.PREPRINT.2924 Berlin 2022


	1. Introduction
	2. Problem formulation
	3. Existence of solutions and C-stationarity
	4. Lipschitz continuity of the constraint mapping
	5. Directional derivative
	6. Stationarity conditions
	References

