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RKHS regularization of singular local stochastic volatility
McKean–Vlasov models

Christian Bayer, Denis Belomestny, Oleg Butkovsky, John G. M. Schoenmakers

Abstract

Motivated by the challenges related to the calibration of financial models, we consider the
problem of solving numerically a singular McKean-Vlasov equation, which represents a singular
local stochastic volatility model. Whilst such models are quite popular among practitioners, un-
fortunately, its well-posedness has not been fully understood yet and, in general, is possibly not
guaranteed at all. We develop a novel regularization approach based on the reproducing kernel
Hilbert space (RKHS) technique and show that the regularized model is well-posed. Furthermore,
we prove propagation of chaos. We demonstrate numerically that a thus regularized model is able
to perfectly replicate option prices due to typical local volatility models. Our results are also appli-
cable to more general McKean–Vlasov equations.

1 Introduction

The present article is motivated by [GHL12], wherein Guyon and Henry-Labordère proposed a particle
method for the calibration of local stochastic volatility models (e.g. stock price models). Let us recall
that local volatility models

dSt = σ(t, St)StdWt, (1.1)

whereW denotes a one-dimensional Brownian motion under a risk-neutral measure andS the forward
price of a stock, can replicate any sufficiently regular implied volatility surface, provided that we choose
the local volatility according to Dupire’s formula, symbolically, σ ≡ σDup [Dup94]. Unfortunately, it is
well understood that Dupire’s model exhibits unrealistic random price behavior despite perfect fits to
market prices of options. On the other hand, stochastic volatility models

dSt =
√
vtStdWt (1.2)

for a suitably chosen stochastic variance process vt, may lead to realistic (in particular, time-homogeneous)
dynamics, but are typically difficult or impossible to fit to observed implied volatility surfaces. We refer
to [Gat11] for an overview of stochastic and local volatility models.

Local stochastic volatility models can combine the advantages of both local and stochastic volatility
models. Indeed, if the forward price is given by

dSt =
√
vtσ(t, St)StdWt, (1.3)

then it exactly fits the observed market option prices provided that

σDup(t, x)2 = σ(t, x)2E [vt | St = x] . (1.4)
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This is a simple consequence of the celebrated Gyöngy’s Markovian projection theorem [Gyo86, The-
orem 4.6], see also [BS13, Corollary 3.7]. With this choice of σ we have

dSt = σDup(t, St)St

√
vt√

E [vt | St]
dWt, (1.5)

Note that v in (1.5) can be any positive adapted stochastic process. In a sense, (1.5) may be con-
sidered as an inversion of the Markovian projection due to [Gyo86], applied to Dupire’s local volatility
(asset) model, i.e. (1.1) with σ ≡ σDup.

Thus, the stochastic local volatility model of McKean–Vlasov type (1.5) solves the smile calibration
problem. However, equation (1.5) is singular in a sense explained below and very hard to analyze and
to solve. Even the problem of proving existence or uniqueness for (1.5) (under various assumptions
on v) turned out to be notoriously difficult and only a few results are available; we refer to [LSZ20] for
an extensive discussion and literature review.

Let us recall that the theory of standard McKean–Vlasov equations of the form

dZt = H̃ (t, Zt, µt) dt+ F̃ (t, Zt, µt) dWt (1.6)

with µt = Law(Zt), is well understood under appropriate regularity conditions, in particular, Lipschitz
continuity of H̃ and F̃ w.r.t. the standard Euclidean distances in the first two arguments and w.r.t. the
Wasserstein distance in µt, see [Fun84, CD16a, MV16]. Denoting Zt := (Xt, Yt), it is not difficult
to see that the conditional expectation (x, µt) 7→ E [A(Yt) | Xt = x] is, unfortunately, not Lipschitz
continuous in the above sense. Therefore, the standard theory does not apply to (1.5).

There are a number of results available in the literature where the Lipschitz condition on drift and
diffusion is not imposed. Bossy and Jabir [BJ17] considered singular MV systems of the form:

dXt = E[`(Xt)|Yt]dt+ E[γ(Xt)|Yt]dWt, (1.7a)

dYt = b(Xt, Yt)dt+ σ(Yt)dBt, (1.7b)

or, alternatively, the seemingly even less regular equation

dXt = σ(p(t,Xt))dWt, (1.8)

where p(t, ·) denotes the density of Xt. [BJ17] establishes well-posedness of (1.7) and (1.8) under
suitable regularity conditions (in particular, ellipticity) based on energy estimates of the corresponding
non-linear PDEs. Interestingly, these techniques break down when the roles of X and Y are reversed
in (1.7), i.e., when E[γ(Xt)|Yt] is replaced by E[γ(Yt)|Xt] in (1.7a) – and similarly for the drift term.
Hence, the results of [BJ17] do not imply well-posedness of (1.5).

In [LSZ20], the authors studied the following two-dimensional SDE,

dXt = b1(Xt)
h(Yt)

E[h(Yt)|Xt]
dt+ σ1(Xt)

f(Yt)√
E[f 2(Yt)|Xt]

dWt, (1.9a)

dYt = b2(Yt) dt+ σ2(Yt) dBt, (1.9b)

where W and B are two independent one-dimensional Brownian motions. Clearly, this can be seen
as (1.5) with a non-zero drift and with the process v chosen in a special way. The authors proved
strong existence and uniqueness of solutions to (1.9) in the stationary case. In particular, this imposes
strong conditions on b1 and b2, but also requires the initial value (X0, Y0) to be random and have the
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stationary distribution. Existence and uniqueness of (1.9) in the general case (without the stationarity
assumptions) remains open.

Finally, let us mention [JZ20, Theorem 2.2], which established weak existence of the solutions to (1.5)
for the case when v is a jump process taking finitely many values.

Another question apart from well-posedness of these singular McKean–Vlasov equations is how to
solve them numerically (in a certain sense). Let us recall that even for standard SDEs with singu-
lar or irregular drift, where existence/uniqueness is known for quite some time, the convergence of
the corresponding Euler scheme with non-vanishing rate has been established only very recently
[BDG19, JM21]. The situation with the singular McKean–Vlasov equations presented above is much
more complicated and very few results are available in the literature. In particular, the results of [LSZ20]
do not provide a way to construct a numerical algorithm for solving (1.5) even in the stationary case
considered there.

We study the problem of numerically solving singular McKean-Vlasov (MV) equations of a more gen-
eral form than (1.5):

dXt = H (t,Xt, Yt, E[A1(Yt)|Xt]) dt+ F (t,Xt, Yt, E[A2(Yt)|Xt]) dWt, (1.10)

where H,F,A1, A2 are sufficiently regular functions, W is a d-dimensional Brownian motion, and Y
is a given stochastic process, for example, a diffusion process. Note that if one considers the Euler
scheme, then a key issue is how to approximate the conditional expectation E[Ai(Yt)|Xt = x],
i = 1, 2, x ∈ Rd.

One approach to tackle this problem was suggested by Guyon and Henry-Labordère [GHL12] (see
also [AKH02]). They used the “identity”

E[A(Yt) | Xt = x]“=”
EA(Yt)δx(Xt)

Eδx(Xt)
,

where δx is the Dirac delta function concentrated at x. This suggests the following approximation:

E[A(Yt) | Xt = x] ≈
∑N

i=1A(Y i,N
t )kε(X

i,N
t − x)∑N

i=1 kε(X
i,N
t − x)

. (1.11)

Here ε > 0 is a small parameter, kε(·) ≈ δ0(·) is a regularizing kernel, and (X i,N , Y i,N)i=1...N

is a particle system. While this method provides a way of constructing solutions to (1.10), it has an
important disadvantage. One has to take ε > 0 small enough, but then (1.11) completely ignores the
complicated structure of dependence of Y on X outside a tiny region (x−Cε, x+Cε) for a certain
C > 0 (indeed kε(X

i,N
t − x) ≈ 0 outside that region).

As an alternative to [GHL12] we propose in this paper a novel approach based on ridge regression
in the context of reproducing kernel Hilbert spaces (RKHS) which, in particular, does not have this
disadvantage.

Let us recall that an RKHS H is a Hilbert space of real valued functions f : X ⊂ Rd → R, such
that the evaluation mapH 3 f → f(x) is continuous for every x ∈ X . This crucial property implies
that there exists a positive symmetric kernel k : X × X → R such that, for every x ∈ X , kx :=
k(·, x) ∈H and one has that 〈f, kx〉H = f(x), for all f ∈ H. As a main feature, any positive definite
kernel k uniquely determines a RKHS H and the other way around. For a detailed introduction and
further properties of RKHS we refer to the literature, for example [SC08, Chapter 4]. We recall that
the RKHS framework is popular in machine learning, where it is widely used for computing conditional
expectations.
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Consider a pair of random variables (X, Y ) taking values in X × X with finite second moments and
denote ν := Law(X, Y ). Suppose that A : X → R is sufficiently regular andH is large enough so
that we have E [A(Y ) | X = ·] ∈ H. Then, formally,

cνA(·) :=

∫
X×X

k(·, x)A(y)ν(dx, dy) =

∫
X
k(·, x)ν(dx,X )

∫
X
A(y)ν(dy|x)

=

∫
X
k(·, x)E [A(Y )|X = x] ν(dx,X )

=: CνE [A(Y )|X = ·] ,

where

Cνf :=

∫
X
k(·, x)f(x)ν(dx,X ), for f ∈ H.

Unfortunately, in general, the operator Cν is not invertible. As Cν is positive definite, it is, however,
possible to regularize the inversion by replacing Cν by Cν + λIH for some λ > 0. Indeed, it turns out
that

mλ
A(·; ν) := (Cν + λIH)−1cνA, (1.12)

is the solution to the minimization problem

mλ
A(·; ν) := arg min

f∈H

(
E(A(Y )− f(X))2 + λ‖f‖2

H
)
, (1.13)

see Proposition 3.1. On the other hand one also has

E[A(Y )|X = ·] = arg min
f∈L2(Rd,Law(X))

E(A(Y )− f(X))2,

and therefore it is natural to expect that if λ > 0 is small enough and H is large enough, then
mλ
A(·; ν) ≈ E[A(Y )|X = ·], i.e. mλ

A(·; ν) is close to the true conditional expectation.

The main result of the article is that the regularized MV system obtained by replacing the conditional
expectations with their regularized versions (1.12) in (1.10) is well-posed and propagation of chaos
holds for the corresponding particle system, see Theorem 2.1 and Theorem 2.2.

To establish these theorems, we study the joint regularity of mλ
A(x; ν) in the space variable x, and

the measure ν for fixed λ > 0. These type of results are almost absent in the literature on RKHS and
we here fill this gap. In particular, we prove that under suitable conditions, mλ

A(x; ν) is Lipschitz in
both arguments, i.e. w.r.t. the standard Euclidean norm in x and the Wasserstein-1-norm in ν, and,
can be calculated numerically in an efficient way, see Section 2. Additionally, in Section 3 we study the
convergence of mλ

A(·; ν) in (1.12) to the true conditional expectation for fixed ν as λ ↓ 0 .

Let us note that, as a further nice feature of the RKHS approach compared to the δ-like) kernel method
of [GHL12], one may incorporate, at least in principle, possible global prior information concerning
properties of E[A(Y )|X = ·] into the choice of the RKHS generating kernel k (e.g. smoothness,
tail or growth behavior). This degree of freedom is similar to, for example, how one can choose the
basis functions in the usual regression methods for American options. We also note that the Lipschitz
constants for mλ

A(·; ν) with respect to both arguments are expressed in bounds related to A and the
kernel k, only, see Theorem 2.3. In contrast, if we would have dealt with standard ridge regression, i.e.
ridge regression based on a system of basis functions, we would have to control bounds for possibly
infinitely many basis functions, which is considered to be a far more delicate task.
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Thus, the contribution of the current work is fourfold. First, we propose a RKHS-based approach to
regularize (1.10) and prove the well-posedeness of the regularized equation. Second, we show con-
vergence of the approximation (1.13) to the true conditional expectation as λ ↓ 0. Third, we suggest
a particle based approximation of the regularized equation and analyze its convergence. Finally, we
apply our algorithm to the problem of smile calibration in finance and illustrate its performance on sim-
ulated data. In particular, we validate our results by solving numerically a regularized version of (1.5)
(with mλ

A in place of the conditional expectation). We show that our system is indeed an approximate
solution to (1.5) in the sense that we get very close fits of the implied volatility surface — the final goal
of the smile calibration problem.

The rest of the paper is organized as follows. Our main theoretical results are given in Section 2.
Convergence properties of the regularized conditional expectation mλ

A are established in Section 3.
A numerical algorithm for solving (1.10) and an efficient implementable approximation of mλ

A are dis-
cussed in Section 4. Section 5 contains numerical examples. The results of the paper are summarized
in Section 6. Finally, all the proofs are placed in Section 7.

Convention on constants. Throughout the paper C denotes a positive constant whose value may
change from line to line. The dependence of constants on parameters if needed will be indicated, e.g,
C(λ).

Acknowledgements. The authors are grateful to Peter Friz and Mykhaylo Shkolnikov for useful dis-
cussions. CB, OB, and JS are supported by the DFG Research Unit FOR 2402.

2 Main results

We begin by introducing the basic notation. For a ∈ R we denote a+ := max(a, 0). Let (Ω,F ,P)
be a probability space. For d ∈ N, let X ⊂ Rd be an open subset, and P2(X ) be the set of all
probability measures on (X ,B(X )) with finite second moment. If µ, ν ∈ P2(X ), p ∈ [1, 2], then we
denote the Wasserstein-p (Kantorovich) distance between them by

Wp(µ, ν) := inf(E|X − Y |p)1/p,

where the infimum is taken over all random variables X, Y with Law(X) = µ, Law(Y ) = ν.

Let C1(X ,R) be the space of all functions f : X → R such that

‖f‖C1 := sup
x∈X
|f(x)|+ sup

x∈X
i=1,...,d

|∂xif(x)| <∞.

Let k : X × X → R be a symmetric, positive definite kernel, andH be a reproducing kernel Hilbert
space of functions f : X → R associated with the kernel k. That is, for any x ∈ X , f ∈ H one has

f(x) = 〈f, k(x, ·)〉H.

In particular, 〈k(x, ·), k(y, ·)〉H = k(x, y), for any x, y ∈ X . We refer to [SC08, Chapter 4] for further
properties of RKHS.

LetA : X → R be a measurable function such that |A(x)| ≤ C(1+ |x|) for some universal constant
C > 0 and all x ∈ X . For ν ∈ P2(X ×X ), λ ≥ 0 consider the following optimization problem (ridge
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regression)

mλ
A(·; ν) := arg min

f∈H

{∫
X×X
|A(y)− f(x)|2 ν(dx, dy) + λ‖f‖2

H

}
. (2.1)

We fix T > 0, d ∈ N and consider the system

dXt = H(t,Xt, Yt, E[A1(Yt)|Xt])dt+ F (t,Xt, Yt, E[A2(Yt)|Xt])dW
X
t (2.2a)

dYt = b(t, Yt)dt+ σ(t, Yt)dW
Y
t , (2.2b)

where H : [0, T ] × X × X × R → Rd, F : [0, T ] × X × X × R → Rd × Rd, Ai : X → R,
b : [0, T ] × X → Rd, σ : [0, T ] × X → Rd × Rd are measurable functions, WX ,W Y are two
(possibly correlated) d-dimensional Brownian motions on (Ω,F ,P), and t ∈ [0, T ]. It is also implicitly
assumed that the space X × X is invariant for the process (X, Y ) (which is trivially the case when
X = Rd, however for our purposes we will be mostly interested in the case when X = Rd

+).

As explained above, denoting µt := Law(Xt, Yt), we see that the functional (x, µt) 7→
E [Ai(Yt) | Xt = x] is not Lipschitz continuous even if Ai is smooth. Therefore the classical results
on well-posedness of McKean–Vlasov equations are not applicable to (2.2).

The main idea of our approach is to replace the conditional expectation by an approximation which
has “nice” properties (in particular, it is Lipschitz). This would imply strong existence and uniqueness
of the new system. Furthermore, we will demonstrate numerically that the solution to the new system
is still “close” to the solution of (2.2) in a certain sense. Thus, we consider the following system:

dX̂t = H(t, X̂t, Yt,m
λ
A1

(X̂t; µ̂t))dt+ F (t, X̂t, Yt,m
λ
A2

(X̂t; µ̂t))dW
X
t , (2.3a)

dYt = b(t, Yt)dt+ σ(t, Yt)dW
Y
t (2.3b)

µ̂t = Law(X̂t, Yt). (2.3c)

where t ∈ [0, T ]. We would need the following assumption on the kernel k.

Assumption K. The kernel k is twice continuously differentiable in both variables, k(x, x) > 0 for all
x ∈ X , and

D2
k := sup

(x,y)∈X×X
1≤i,j≤d

max
{
|∂xi∂yjk2(x, y)|, |∂xi∂yjk(x, y)|, |∂xik(x, y)|,

|∂yjk(x, y)|, |k(x, y)|
}
<∞

Now we are ready to state our main results. Their proofs are given in Section 7.

Theorem 2.1. Suppose that Assumption K is satisfied for the kernel k, the space X × X is invariant
for the process (X̂, Y ) and

(1) Ai ∈ C1(X ,R), i = 1, 2;

(2) there exists a constant C > 0 such that for any t ∈ [0, T ], x, y, x′, y′ ∈ Rd, z, z′ ∈ R,

|H(t, x, y, z)−H(t, x′, y′, z′)|+ |F (t, x, y, z)− F (t, x′, y′, z′)|
+ |b(t, y)− b(t, y′)|+ |σ(t, y)− σ(t, y′)|

≤ C(|x− x′|+ |y − y′|+ |z − z′|);

DOI 10.20347/WIAS.PREPRINT.2921 Berlin 2022
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(3) for any fixed x, y,∈ Rd, z ∈ R one has∫ T

0

(|H(t, x, y, z)|2 + |F (t, x, y, z)|2 + |b(t, y)|2 + |σ(t, y)|2) dt <∞;

(4) E|X̂0|2 <∞, E|Y0|2 <∞.

Then for any λ > 0 the system (2.3) with the initial condition (X̂0, Y0) has a unique strong solution.

To analyze a numerical scheme solving (2.3), we consider a particle system

dXN,n
t = H

(
t,XN,n

t , Y N,n
t ,mλ

A1
(XN,n

t ;µNt )
)
dt

+ F
(
t,XN,n

t , Y N,n
t ,mλ

A2
(XN,n

t ;µNt )
)
dWX,n

t (2.4a)

dY N,n
t = b(t, Y N,n

t ) dt+ σ(t, Y N,n
t ) dW Y,n

t (2.4b)

µNt =
1

N

N∑
n=1

δ(XN,n
t ,Y N,nt ), (2.4c)

where N ∈ N, n = 1, . . . , N , t ∈ [0, T ], and the pairs of d × d-dimensional Brownian motions
(WX,n,W Y,n), n = 1, . . . , N , are jointly independent and have the same law as (WX ,W Y ). The
following propagation of chaos result holds; it establishes both weak and strong convergence ofXN,n.

Theorem 2.2. Assume that all the conditions of Theorem 2.1 are satisfied. Suppose additionally that
the functions H , F , b, σ are locally bounded and the initial conditions (XN,n

0 , Y N,n
0 ) are jointly inde-

pendent and have the same law as (X̂0, Y0). Moreover, suppose that E|X̂0|q < ∞, E|Y0|q < ∞
for some q > 4. Then there exists a constant C = C(λ, T, E|X̂0|q, E|Y0|q) > 0 such that for any
N ∈ N

E sup
0≤t≤T

|XN,1
t −X t|2 + sup

0≤t≤T
E[W2(µNt , µ̂t)

2] ≤ CN−1/2, (2.5)

where the process X solves (2.3) with WX,n, W Y,n in place of WX , W Y , respectively.

A crucial step which allowed us to obtain these results is the Lipschitz continuity of mλ. The following
holds.

Theorem 2.3. Assume that the kernel k satisfies Assumption K. Let A ∈ C1(X ,R). Then for any
x, y ∈ X , µ, ν ∈ P2(X × X ) on has

|mλ
A(x;µ)−mλ

A(y; ν)| ≤ C1W1(µ, ν) + C2|x− y|,
where

C1 :=

(
Dk

λ2
+

1

λ

)
dD2

k‖A‖C1 and C2 :=

√
d

λ
D2
k‖A‖C1 .

This result is interesting for at least two reasons. First, it shows thatmλ
A is Lipschitz continuous in both

arguments, provided that the kernel k is smooth enough. That is, the Lipschitz continuity property
depends on H only through the smoothness of the kernel k. Second, this result gives an explicit
dependence of the corresponding Lipschitz constant on λ and k.

Remark 2.4. Let us stress that Theorem 2.1 establishes the existence and uniqueness of (2.2) only
for a fixed regularisation parameter λ > 0 and can not be used to study the limiting case λ → 0.
Indeed, it follows from Theorem 2.3, that as λ → 0, the Lipschitz constants of mλ

A blows up. Yet, we
will demonstrate numerically in Section 5, that, actually, as λ → 0 the solution to (2.2) does not blow
up; on the contrary it weakly converges to a limit; this hints that (at least) weak existence of solutions
to (1.10) should hold. Verifying this theoretically remains however an important open problem.

DOI 10.20347/WIAS.PREPRINT.2921 Berlin 2022
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3 Approximation of conditional expectations

In this section we study the approximation mλ
A introduced in (2.1) in more detail. Throughout this

section we fix an open set X ⊂ Rd, a measure ν ∈ P2(X ×X ), and impose the following relatively
weak assumptions on the function A : X → R and the positive kernel k : X × X → R.

Assumption A◦. The function A is sublinear, i.e. there exists a constant C > 0 such that for all
x ∈ X one has |A(x)| ≤ C(1 + |x|).

Assumption K◦. The kernel k(·, ·) is continuous onX ×X and satisfies 0 < k(x, x) ≤ C(1+ |x|2)
for some C > 0.

It is easy to see that Assumption K◦ implies for any x ∈ X

‖k(x, ·)‖2
H = 〈k(x, ·), k(x, ·)〉H = k(x, x) ≤ C(1 + |x|2). (3.1)

Due to Assumption K◦ and [SC08, Lemma 4.33],H is a separable RKHS and one has for any f ∈ H,
x ∈ X ,

|f(x)| = |〈k(x, ·), f〉H| ≤ ‖k(x, ·)‖H‖f‖H ≤ C(1 + |x|)‖f‖H, (3.2)

where we also used (3.1). Hence, every f ∈ H is sublinear and, as a consequence, for any fixed
ν ∈ P2(X × X ), the objective functional in (2.1) is finite.

It is also easy to see that (3.2) and (3.1) imply that for any x, y ∈ X

k(x, y) ≤ C(1 + |x|)‖k(·, y)‖H = C(1 + |x|)(1 + |y|). (3.3)

Therefore, the Bochner integrals

cνA :=

∫
X×X

k(·, x)A(y)ν(dx, dy), and Cνf :=

∫
X×X

k(·, x)f(x)ν(dx, dy). (3.4)

are well defined functions in H for every f ∈ H. Moreover, operator Cν : H → H is symmetric and
positive definite since

〈g, Cνf〉 =

∫
X
〈g, k(·, x)〉 f(x)ν(dx,X ) =

∫
X
g(x)f(x)ν(dx,X ).

Thus, by the Hellinger-Toeplitz theorem, Cν is a bounded self-adjoint linear operator on H. As a
consequence, for any λ ≥ 0, the operator Cν + λIH is a bounded self-adjoint operator on H with
spectrum contained in the interval [λ, ‖Cν‖ + λ]. Hence, if λ > 0, then (Cν + λIH)−1 exists and is
a bounded self-adjoint operator onH with norm

‖(Cν + λIH)−1‖H ≤ λ−1. (3.5)

We are now ready to state the following useful representation for the solution to (2.1).

Proposition 3.1. Under Assumptions A◦,K◦, for any fixed ν ∈ P2(X × X ) and λ > 0, the solution
to (2.1) can be represented as

mλ
A(·; ν) = (Cν + λIH)−1cνA. (3.6)
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This representation may be seen as an infinite sample version of the usual solution representation
for a ridge regression problem based on finite samples. We thus consider it as not essentially new,
but, in order to keep our paper as self contained as possible we present a proof of it in Section 7.
Proposition 3.1 allows us to prove Lipschitz continuity of mλ

A, that is Theorem 2.3.

Let us now proceed with investigating when the function mλ
A = mλ

A(·; ν) is a “good” approximation to
the true conditional expectation

mA = mA(x, ν) := E(X,Y )∼ν [A(Y )|X = x] (3.7)

for small enough λ > 0.

Assume from now on that the measure ν ∈ P2(X × X ) is nondegenerate with respect to the first
variable. That is, for every open set U ⊂ X one has ν(U,X ) > 0. Consider the Hilbert space
Lν2 := L2(X , ν(dx,X )). For f ∈ Lν2 put

T νf :=

∫
X
k(·, x)f(x)ν(dx,X ). (3.8)

Recalling (3.3), it is easy to see that T ν is a linear operator Lν2 → Lν2 . Note that thatH ⊂ Lν2 due to
(3.2); thus, Cν is the restriction of T ν to H. Further, since k(x, y) ≤

√
k(x, x)

√
k(y, y), the kernel

k is Hilbert-Schmidt on L2(X × X , ν(dx,X )ν(dy,X )), i.e.∫
k2(x, y)ν(dx,X )ν(dy,X ) <∞,

due to Assumption K◦. As a consequence of the standard results from functional analysis, one then
has (see for example [Kre89]):

(i) the operator T ν is self-adjoint and compact;

(ii) there exists an orthonormal system (an)n∈N in Lν2 of continuous eigenfunctions corresponding
to nonnegative eigenvalues σn of T ν and σ1 ≥ σ2 ≥ σ3 ≥ . . .;

(iii) If J := {n ∈ N : σn > 0}, one has

T νf =
∑
n∈J

σn 〈f, an〉Lν2 an, f ∈ Lν2

with limn→∞ σn = 0 if J = N.

It is easy to see that a generalization of Mercer’s theorem to unbounded domains [Sun05] implies the
following statement.

Proposition 3.2. Let k be a kernel satisfying Assumption K◦. Then k has a series representation

k(x, y) =
∑
n∈J

σnan(x)an(y), x, y ∈ X (3.9)

with uniform convergence on compact sets. Moreover, (ãn)n∈J with ãn :=
√
σnan is an orthonormal

basis ofH and the scalar product inH takes the form

〈f, g〉H =
∑
n∈J

〈f, an〉Lν2 〈g, an〉Lν2
σn

for f, g ∈ H. (3.10)
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Now we are ready to present the main result of this section next result, which quantifies the conver-
gence properties of mλ

A(·, ν) as λ → 0 for a fixed measure ν. Recall the notation (3.7). Let PH̄
denote the orthogonal projection of Lν2 onto the closureH ofH in Lν2 .

Theorem 3.3. Assume that the kernel k satisfies Assumption K◦ and the function A is bounded
measurable. Then mA ∈ Lν2 and for any λ > 0

∥∥PH̄mA −mλ
A(·; ν)

∥∥2

Lν2
=
∑
n∈J

λ2

(σn + λ)2 〈mA, an〉2Lν2 . (3.11)

In particular,
∥∥PH̄mA −mλ

A(·; ν)
∥∥
Lν2
→ 0 as λ ↓ 0.

If, moreover, PH̄mA ∈ H one has

∥∥PH̄mA −mλ
A(·; ν)

∥∥2

H =
∑
n∈J

λ2

(σn + λ)2 σn
〈mA, an〉2Lν2 , (3.12)

and thus
∥∥PH̄mA −mλ

A(·; ν)
∥∥
H → 0 for λ ↓ 0.

Theorem 3.3 establishes convergence ofmλ
A(·; ν) as λ→ 0 though without a rate. Its proof is placed

in Section 7. Additional assumptions are needed to guarantee a certain convergence rate. This is done
in the following corollary.

Corollary 3.4. Suppose that the conditions of Theorem 3.3 are satisfied, and that moreover for some
θ ∈ (0, 1], ∑

n∈J

σ−θn 〈PH̄mA, an〉2Lν2 <∞. (3.13)

Then

∥∥PH̄mA −mλ
A(·; ν)

∥∥2

Lν2
≤
(

1− θ

2

)2(
λθ

2− θ

)θ∑
n∈J

σ−θn 〈mA, an〉2Lν2 . (3.14)

In particular, if θ = 1, that is PH̄mA ∈ H, we get

∥∥PH̄mA −mλ
A(·; ν)

∥∥
Lν2
≤
√
λ

2
‖PH̄mA‖H . (3.15)

Proof. Inequality (3.14) follows from (3.11), (3.13), and the fact that the maximum of the function
x 7→ λ2xθ/(x+ λ)2, x > 0, is equal to

(1− θ/2)2(λθ/(2− θ))θ.

Inequality (3.15) follows from (3.14) and (3.10).

Remark 3.5. If operator T ν defined in (3.8) is injective, then PH̄ = ILν2 . In this case J = N and
Theorem 3.3 and Corollary 3.4 quantify the convergence to the true conditional expectation.

Thus, in this section we have shown that, under certain conditions, mλ
A(·, ν) may converge at least in

Lν2-sense to the true conditional expectation mA(·, ν) as λ→ 0. This makes the heuristic discussion
around (1.12) and (1.13) in Section 1 more rigorous.
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Remark 3.6. Note that the measure µ̂t in the solution of (2.3) depends on λ, so in fact µ̂t = µ̂λt .
Therefore, even when mλ

A(·, ν) → mA(·, ν) for fixed ν and λ ↓ 0, the question whether mλ
Ai

(·, µ̂λt )
converges in some sense is still not answered. We believe that this question is intimately linked to the
problem of existence of a solution to (2.2). As already explained, this is an unsolved open problem and
therefore considered out of our scope. However, loosely speaking, assuming that the latter system
has indeed a solution (in some sense) with solution measure µt say, it is natural to expect that for a
suitable “rich enough” RKHS, mλ

Ai
(·, µt)→ mAi(·, µt) (the true conditional expectation) as λ ↓ 0.

Thus, as follows from the discussion above, the space H has to be large enough, otherwise there
is no hope of convergence of mλ

Ai
(·, µ̂λt ) to the true conditional expectation. Fortunately, there is a

great flexibility for the choice of the kernel k and thus RKHS H. For instance, starting with a simply
structured infinite dimensional kernel, k∞ (e.g., the Gaussian kernel), in general it may happen that
mλ
Ai
, i = 1, 2, have poor approximation properties in the RKHS H∞ generated by k∞. In such a

case we may add another kernel to it, which incorporates possible prior information of mλ
Ai

such as
shape or growth behavior. For example, suppose one anticipates that mλ

Ai
follows “roughly” some

functions in the linear span of some suitably chosen set of basis functions, say, ψ1, ..., ψK . One then
may consider the RKHSH := H∞ ⊕Hψ generated by the kernel

k(x, y) := k∞(x, y) + kψ(x, y) := k∞(x, y) +
K∑
k=1

ψk(x)ψk(y), (3.16)

where kψ generatesHψ, and, without loss of generality,H∞ ∩Hψ = {0}.
Of course, in this line of reasoning, we think of K being a “very low” number. The simplest extension
one may think of is adding a constant, i.e. K = 1 and ψ1 ≡ c 6= 0. Then, clearly, 1 ∈ H and, for
instance, if X and Y are independent, one then has that E [Y |X = ·] = E [Y ] ∈ H.

As another example, in the context of (1.3) one may think of a given stochastic volatility process vt
such that (1.3) with σ = 1 explains the market prices up to a large extend already. One then may
expect that, in the solution of (1.5), E [vt|St = ·] is roughly proportional to σ2

Dup(t, ·). This suggest to
chose a (time dependent) kernel of the form (3.16) with ψ1(t, ·) := σ2

Dup(t, ·). The advantage of a
suitable kernel extension is best seen in the case where ψ1(t, ·) = σ2

Dup(t, ·)/σ2(t, ·) due to some
oracle. Then mλ

A in the solution of the regularized version of (1.5) is expected to be found “almost” in
the one dimensional spaceHψ.

4 Numerical algorithm

Let us now describe in details our numerical algorithm to construct solutions to (1.10). We begin by
discussing an efficient way of calculating mλ

A.

4.1 Estimation of the conditional expectation

Let us recall that in order to solve the particle system (2.4) we need to compute

mλ
A(·;µNt ) = arg min

f∈H

{ 1

N

N∑
n=1

|A(Y N,n
t )− f(XN,n

t )|2 + λ ‖f‖2
H

}
. (4.1)
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for t belonging to a certain partition of [0, T ] and fixed large N ∈ N; here A = A1 or A = A2.
It follows from the representer theorem for RKHS [SHS01, Theorem 1] that mλ

A has the following
representation:

mλ
A(·; νNt ) =

N∑
i=1

αik(XN,i
t , ·), (4.2)

for some α = (α1, . . . , αN)T ∈ RN . Note that the optimal α can be calculated explicitly by plugging
the representation (4.2) into the above minimization problem in place of f and minimizing over α.
However, computing the optimal α directly takes O(N3) operations, which is prohibitively expensive
keeping in mind that the number of particlesN is going to be very large. Furthermore, even evaluating
(4.2) at XN,n

t , n = 1, . . . , N , for a given α ∈ RN is rather expensive, it requires O(N2) operations,
and thus is impossible to implement.

To develop an implementable algorithm, let us note that many particles XN,i
t — and, as a conse-

quence, the implied basis functions k(XN,i
t , ·) — will be close to each other. Therefore, we can

considerably reduce the computational cost by only using L � N rather than N basis functions
as suggested in (4.2). More precisely, we choose Z1, . . . , ZL among X1,N

t , . . . , XN,N
t – e.g., by

random choice or taking every N
L

th point among the ordered sequence XN,(1)
t , . . . , X

N,(N)
t in case

that X is one-dimensional – and approximate
N∑
i=1

αik(XN,i
t , ·) ≈

L∑
j=1

βjk(Zj, ·), (4.3)

where β = (β1, . . . , βL)T ∈ RL. It is easy to see that∥∥∥ L∑
j=1

βjk(Zj, ·)
∥∥∥
H

=
〈 L∑
j=1

βjk(Zj, ·),
L∑
j=1

βjk(Zj, ·)
〉
H

=
L∑

j,k=1

βjβk〈k(Zj, ·), k(Zk, ·)〉H

=
L∑

j,k=1

βjβkk(Zj, Zk) = β>Rβ,

where R := (k(Zj, Zk))j,k=1,...,L is an L × L matrix. Thus, recalling (4.1), we see that we have to
solve

arg min
β∈RL

[
1

N
(G−Kβ)>(G−Kβ) + λβ>Rβ],

where G := (A(Y N,n
t ))n=1,...,N , K := (k(Zj, XN,n

t ))n=1,...,N,j=1,...,L is an N ×L matrix. Differen-

tiating with respect to β, we get that the optimal value β̂ = β̂((XN
t ), (Y N

t )) satisfies

(K>K +NλR)β̂ = K>G, (4.4)

and we approximate expectation as

mλ
A(x;µNt ) ≈

L∑
j=1

β̂jk(Zj, x) =: m̂λ
A(x;µNt ). (4.5)

Remark 4.1. Let us see how many operations we need to calculate β̂, taking into account that L �
N . We need O(NL) to calculate K , O(L2) to calculate R, O(NL2) to calculate K>K (this is the
bottleneck); O(L3) to invert K>K +NλR and O(NL) to calculate K>G and solve (4.4). Thus, in
total we would need O(NL2) operations.
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4.2 Solving the McKean–Vlasov equation

With the function m̂λ
A in hand, we consider now the Euler scheme for the particle system (2.4). We

fix time interval T , the number of time steps M , and, for simplicity, we consider a uniform time in-
crement δ := T/M . Let ∆WX,n

i and ∆W Y,n
i denote independent copies of WX

(i+1)δ − WX
iδ and

W Y
(i+1)δ −W Y

iδ , respectively, n = 1, . . . , N , i = 1, . . .M . Note that for stochastic volatility models,
the Brownian motions driving the stock price and the variance process are usually correlated. We now
define X̃n

0 = Xn
0 , Ỹ n

0 = Y n
0 , and for i = 0, . . . ,M − 1

X̃n
i+1 = X̃n

i +H
(
iδ, X̃n

i , Ỹ
n
i , m̂

λ
A1

(X̃n
i ; µ̃Ni )

)
δ (4.6a)

+ F
(
iδ, X̃n

i , Ỹ
n
i , m̂

λ
A2

(X̃n
i ; µ̃Ni )

)
∆WX,n

i

Ỹ n
i+1 = Ỹ n

i + b(iδ, Ỹ n
i )δ + σ(iδ, Ỹ n

i )∆W Y,n
i , (4.6b)

where µ̃Ni = 1
N

∑N
n=1 δ(X̃N,n

i ,Ỹ N,ni ). Note that after each iteration we might need to update the values

of (X̃n
i , Ỹ

n
i ) in order to ensure that they lie in X × X (this can be done, e.g., by replacing them by

the closest to them point of X × X ).

We see that at each discretization time step of (4.6) we need to compute the approximations of the
conditional expectations m̂λ

Ar
(X̃n

i ; µ̃Ni ), r = 1, 2. This is done using the algorithm discussed in
Section 4.1, and takes O(NL2) operations, see Remark 4.1. Thus the total number of operations
needed to implement (4.6) is O(MNL2).

5 Numerical examples and applications to local stochastic volatil-
ity models

As a main application of the regularisation approach presented above, we consider the problem of
calibration of stochastic volatility models to market data. Fix T > 0. Let C(t,K) be the price at
time 0 of a European call option on a non-dividend paying stock X with strike K and maturity t,
K > 0, t ∈ [0, T ]. We assume that the market prices (C(t,K))t>0,K>0 are given. To simplify the
calculations, we suppose that the interest rate r = 0.

We study Local Stochastic Volatility (LSV) models. That is, we assume that the stock price X follows
the dynamics

dXt =
√
YtσLV (t,Xt)XtdW

X
t , t ∈ [0, T ], (5.1)

where WX is a Brownian motion and (Yt) is a strictly positive volatility process, both being adapted
to some filtration (Ft)t≥0. As discussed in the introduction, if the function σLV is given by

σ2
LV(t, x) :=

σ2
Dup(t, x)

E [Yt|Xt = x]
, t ∈ [0, T ], x > 0,

where σDup is the Dupire local volatility

σ2
Dup(t, x) :=

2∂tC(t, x)

x2∂xxC(t, x)
, t ∈ [0, T ], x > 0, (5.2)

then the model (5.1) is able to perfectly replicate the given call option prices (for any choice of the
volatility process Y ) [Dup94, Gyo86]. That is, one has the identity

C(t,K) = E(Xt −K)+, t ∈ [0, T ], K > 0. (5.3)
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In particular, the choice Y ≡ 1 recovers the local volatility model. In case where Y is a diffusion
process

dYt = b(t, Yt)dt+ σ(t, Yt)dW
Y
t , (5.4)

where W Y is a Brownian motion possibly correlated with WX , we see that the model (5.1)-(5.4) is a
special case of the general McKean-Vlasov equation (2.2) with X = R+.

To solve (5.1)-(5.4), we implement the algorithm described in Section 4: see (4.6) together with (4.5).
To validate the results, we compare the call option prices obtained by the algorithm (that is
N−1

∑N
n=1(X̃n

M − K)+) with the given prices C(T,K) for various T > 0 and K > 0. If the
algorithm is correct and if µ̃NM ≈ Law(XT , YT ), then, according to (5.3) one must have

C(t,K) ≈ N−1

N∑
n=1

(X̃n
M −K)+ =: C̃(t,K). (5.5)

On the other hand, if the algorithm is not correct and the true law Law(XT , YT ) is very different from
µ̃NM , then (5.5) will not hold.

We verify (5.5) in two different setups. First, we consider the Black–Scholes (BS) dynamics for the
market; that is we assume σDup ≡ const for const = 0.3 and S0 = 1. Second, we consider the
local volatility dynamics for the market, that is we set C(t,K) := E(St −K)+, where St follows the
Heston model

dSt =
√
vtSt dWt, (5.6a)

dvt = κ(θ − vt) dt+ ξ
√
vt dBt, (5.6b)

with the following parameters: κ = 1.5768, θ = 0.0484, ξ = 0.5751, and correlation ρ = −0.7
between the driving Brownian motions W and B, with initial values S0 = 1, v0 = 0.1024, cf. similar
parameter choices in [FO09]. We solved (5.6) with the standard Euler method with 108 trajectories
and 103 time steps. We calculate then σDup from C(t,K) using (5.2).

As our back-bone stochastic volatility model for Y , we choose a Heston-type model but with different
parameters then the data-generating Heston model. That is, we set in (5.4) b(t, x) = λ(µ − x),
σ(t, x) = η

√
x, Y0 = 0.0144, λ = 1, µ = 0.0144, η = 0.5751. We assume that WX and W Y

are uncorrelated. Hence, the backbone model exhibits smaller initial as well as long-term variance,
slower speed of mean-reversion, no correlation, but the same vol-of-vol as compared to the price-
generating model. In particular, as the variance process has different parameters compared to the
price-generating stochastic volatility model, a non-trivial local volatility function is required in order
to match the implied volatility. Hence, even though the generating model is of the same class, the
calibration problem is still non-trivial, and involves a singular MKV SDE.

We took H to be RKHS associated with the Gaussian kernel k with variance 5. We fix the number
of time steps M = 500, λ = 10−5, L = 40. At each time step of the Euler scheme we choose
(Zj)j=1,...,L by the following rule:

Zj is j · 100/(L+ 1) percentile of the sequence {XN,n
t }n∈1,...N . (5.7)

Figure 1 compares the theoretical and the calculated prices (in terms of implied volatilties) in the Black-
Scholes (a) and Heston (b-d) settings for various strikes and maturities. That is, we first calculate
C(t,K) using the Black-Scholes model (“Black-Scholes setting”) or (5.6) (“Heston setting”); then we
calculate σ2

Dup by (5.2); then we calculate X̃n
M , n = 1, . . . , N using the algorithm (4.6) with H ≡ 0,

A2(x) = x, and

F (t, x, y, z) := xσ2
Dup(t, x)

√
y
√
z

;
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then we calculate C̃(t,K) using (5.5); finally we transform the prices C(T,K) and C̃(t,K) to the
implied volatilities. As usual, for K > S0 (out-of-the-money options) the implied volatilities are calcu-
lated from the call option prices C(t,K) and C̃(t,K), and for K < S0 (in-the-money options) the
implied volatilities are calculated from the put option prices P (t,K) and P̃ (t,K) defined similarly.

We plot at Figure 1 implied volatilties for a wide range of strikes and maturities. More precisely, we
consider all strikes K such that P(ST < K) ∈ [0.02, 0.98] — this corresponds to all but very far in–
the–money and out–of–the–money options. Pricing of the options with very far in or out of the money
strikes is discussed later. One can from Figure 1 that already for N = 104 trajectories, identity (5.5)
holds up to a small error for all the considered strikes and maturities. This error further diminishes
as the number of trajectories increases. At N = 106 the true implied volatility curve and the one
calculated from our approximation model become almost indistinguishable.

(a) (b)

(c) (d)

Figure 1: Fit of the smile vs number of trajectories. (a): Black-Scholes setting, T = 1 year. (b): Heston
setting, T = 1 year. (c): Heston setting, T = 4 years. (d): Heston setting, T = 10 years.

Now let us discuss the stability of our model as the regularization parameter λ → 0. We study the
absolute error in the implied volatility of the 1 year ATM call option for various λ ∈ [10−7, 1] in the
Black–Scholes and Heston settings described above. We took N = 106 trajectories and L = 40
Zjs at each step according to (5.7); we performed 100 repetitions at each considered value of λ.
The results are presented at Figure 2. We see that in both settings, initially, the error drops as λ
decreases, then it stabilizes once λ ≤ 10−5. Therefore for all our calculations we took λ = 10−5. It
is clear that the error does not blow up as λ becomes very small; the remaining error is due to other
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factors (numbers of trajectories and time steps being not big enough, etc). This indicates that (at least
in our setting) the solution to the approximating equation (2.2) does converge weakly to the solution of
(1.10) as λ→ 0.

(a) (b)

Figure 2: Mean absolute implied volatility error for different values of λ. (a): Black-Scholes setting. (b):
Heston setting.

Let us see how the error in call option prices in (5.5) (and thus the distance between the laws of the
true and approximated solutions) depends on the number of trajectories N . Recall, that it follows from
Theorem 2.2 that this error should decrease as N−1/4 (note the square in the left–hand side of (2.5).
Figure 3 shows how the absolute error in the implied volatility of 1 year ATM call option decreases
as the number of trajectories increases in (a) Black–Scholes setting and (b) Heston setting. We took
λ = 10−5, L = 40, N ∈ [250, 212 · 250]. We performed 100 repetitions at each value of N . We see
the error decreases as O(N−1/2) in both settings, which is even better than predicted by theory.

(a) (b)

Figure 3: Mean absolute implied volatility error vs number of trajectories. The black line is the approx-
imation: error= CN−1/2 (a): Black-Scholes setting; C = 0.423. (b): Heston setting; C = 0.272.

We also investigate the dependence of error in the implied volatility on the number of basis functions
L in the representation (4.5). Recall that since the number of operations depends on L quadratically
(it equals O(MNL2)), it is extremely expensive to set L to be large. At Figure 4 we plotted the
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dependence of the absolute error in the implied volatility of 1 year ATM call option on L. We used
N = 106 trajectories, λ = 10−5, L ∈ [1 . . . 30] and did 100 repetitions at each value of the
number of basis functions. We see that as the number of basis functions increases, the error first
drops significantly, but then stabilizes at L ≈ 20.

(a) (b)

Figure 4: Mean absolute implied volatility error vs number of basis functions. (a): Black-Scholes setting.
(b): Heston setting.

As discussed above, Fig. 1 shows that our approximating model (2.3) agrees with the original model
(1.10) and is able to callibrate the market correctly for a wide range of maturities T and strikes K
with P(ST < K) ∈ [0.02, 0.98]. Now let us discuss the pricing of very far in-the-money or out-of-the-
money options when P(ST < K) /∈ [0.02, 0.98]. At Fig. 5(a), we zoom out Fig. 1(b) to see the fit
of the smile for all K such that P(ST < K) ∈ [0.0001, 0.9999]. We see that for very in/out-of-the
money strikes with P(ST < K) < 0.005 or P(ST > K) > 0.995, the approximated model does not
converge to the correct price as number of trajectories goes to infinity. This error is due to our way of
choosing Zjs. Recall that we have selected them using (5.7). This means however that there will be
no Zj next to the very far in/out of the money strikes. Indeed, with L = 40 for T = 1 the left-most Zj
corresponds to 2.44th percentile of {XN,n

T }n∈1,...N , which is approximately 0.451. One can see that
this is quite far from 0.15 (the smallest strike considered in Fig. 5) and therefore it is not surprising
that the approximation (4.3) fails. Similarly, the right-most Zj corresponds to 97.56th percentile of
{XN,n

T }n∈1,...N , which is 1.440 and is far from 2, the largest strike considered in Fig. 5.
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(a) (b)

Figure 5: Fit of the smile for very far in/out-of-the-money options. (a): Heston setting, Zjs are chosen
according to (5.7). (b): Heston setting, Zjs are chosen according to (5.7) and (5.8).

A naive solution to this problem would be just to increase L, which is the number of Zjs that has to
be taken in (4.3). Note however, that 0.15 corresponds to 0.01th percentile of {XN,n

T }n∈1,...N , and to
cover it one needs to take L ≈ 104. Recalling that the number of operations of our algorithm depends
quadratically on L, one can see that this new algorithm would require 6 · 104 more time than the
current version with L = 40 and therefore is not feasible.

Therefore we suggest here another approach. We add to Zjs chosen according to (5.7), 2L̃ more

elements: corresponding to L̃ very small and L̃ very large percentiles. More precisely, we took L̃ = 5
and added

Zr which is r · 0.1 and (100− r · 0.1) perecentiles of {XN,n
T }n∈1,...N , r = 1, . . . , 5. (5.8)

Thus, in total we have now 50 different Zj in representation (4.3).

One can see from Fig. 5(b) that this choice have drastically increased the accuracy of the approxima-
tion of the smile for very far in/out-of-the money options, increasing the total time only by 60%. A small
price to pay is that some of the near-the-money options has now a slightly larger error than it was in
the initial way of choosing Zjs according to (5.7), see Table 1.

Strike K 0.15 0.25 0.75 1 1.25 1.75 2
P(ST < K) 0.0001 0.0017 0.1595 0.4574 0.8599 0.9988 0.9999
True IV 0.4832 0.4512 0.3103 0.2465 0.2025 0.1935 0.1995
IV error (A) 0.0786 0.0339 0.0010 0.0012 0.0006 0.0149 0.0268
IV error (B) 0.0233 0.0043 0.0007 0.0012 0.0008 0.0021 0.0067

Table 1: Comparison of two methods of choosing basis functions: only by (5.7) vs by (5.7) and (5.8).
IV error denotes the average absolute error of implied volatilities, where Zjs is chosen by (5.7) (A);
Zjs is chosen by (5.7) and (5.8) (B).

6 Conclusion and outlook

In this paper, we study the problem of calibrating local stochastic volatility models via the particle
approach pioneered in [GHL12]. We suggest a novel RKHS based regularization method and prove
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that this regularization guarantees well-posedness of the underlying McKean-Vlasov SDE and the
propagation of chaos property. Our numerical results suggest that the proposed approach is rather
efficient for the calibration of various local stochastic volatility models and can outperform widely used
local kernel methods. There are still some questions left open here. First, it remains unclear whether
the regularised McKean-Vlasov SDE remains well-posed when the regularisation parameter λ tends
to zero. This limiting case needs a separate study. Another important issue is the choice of RKHS and
the number of basis functions which ideally should be adapted to the problem at hand. This problem
of adaptation is left for future research.

7 Proofs

In this section we present the proofs of the results from Section 2 and Section 3.

Proof of Proposition 3.1. Let I ⊂ N and let e := (ei)i∈I be a total orthonormal system in H (note
that I is finite ifH is finite dimensional). Define the vector γν ∈ `2(I) by

γνi := 〈ei, cνA〉H =

∫
X×X

〈
ei, k(·, x)

〉
HA(y)ν(dx, dy)

=

∫
X×X

ei(x)A(y)ν(dx, dy), i ∈ I. (7.1)

Since the operator Cν is bounded it may be described by the (possibly infinite) symmetric matrix

Bν :=
(
〈ei, Cνej〉H

)
(i,j)∈I×I =

(∫
X
ei(x)ej(x) ν(dx,X )

)
(i,j)∈I×I

, (7.2)

which acts as a bounded positive semi-definite operator on `2(I). Denote

βν = (B + λI)−1γν . (7.3)

For f ∈ H write f =
∑∞

i=1 βiei. Then, recalling (7.1) and (7.2), we derive

arg min
f∈H

{∫
X×X
|A(y)− f(x)|2 ν(dx, dy) + λ‖f‖2

H
}

= arg min
β∈`2(I)

{∫
X×X
|A(y)−

∞∑
i=1

βiei|2 ν(dx, dy) + λ‖β‖2
`2(I)

}
= arg min

β∈`2(I)

{
−2〈β, γν〉`2(I) + 〈β, (B + λI)β〉`2(I)

}
= arg min

β∈`2(I)

{
−2〈β − βν , γν〉`2(I) + 〈β − βν , (B + λI)(β − βν)〉`2(I)

+ 2〈β − βν , (B + λI)βν〉`2(I)

}
= arg min

β∈`2(I)

{
〈β − βν , (B + λI)(β − βν)〉`2(I)

}
= βν ,

where we used the fact thatB+λI is strictly positive definite and the definition (7.3). To complete the
proof it remains to note that

∞∑
i=1

βνi ei = (Cν + λIH)−1cνA,

which shows (3.6).
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Proof of Theorem 2.3. Let us write

|mλ
A(x;µ)−mλ

A(y; ν)| ≤ |mλ
A(x;µ)−mλ

A(x; ν)|+ |mλ
A(x; ν)−mλ

A(y; ν)|
= I1 + I2. (7.4)

Working with respect to the orthonormal basis introduced in the proof of Proposition 3.1, see (7.3), we
derive for the first term in (7.4)

I1 = |〈k(x, ·),mλ
A(·;µ)−mλ

A(·; ν)〉H|
≤ ‖k(x, ·)‖H‖mλ

A(·;µ)−mλ
A(·; ν)‖H

≤
√
k(x, x)‖βµ − βν‖`2(I)

≤ Dk‖βµ − βν‖`2(I) (7.5)

where we used (3.1) and Assumption K.

Denote Qν := Bν + λI and Qµ := Bµ + λI . Recalling that they are bounded `2(I) → `2(I)
operators with bounded inverses, it easy to see that

‖(Qµ)−1 − (Qν)−1‖`2(I) ≤ ‖(Qµ)−1‖`2(I)‖(Qν)−1‖`2(I)‖Qµ −Qν‖`2(I).

Therefore

‖βµ − βν‖`2(I) = ‖(Qµ)−1γµ − (Qν)−1γν‖`2(I)

≤
∥∥((Qµ)−1 − (Qν)−1

)
γµ
∥∥
`2(I)

+
∥∥(Qν)−1(γµ − γν)

∥∥
`2(I)

≤
∥∥(Qµ)−1

∥∥
`2(I)

∥∥(Qν)−1
∥∥
`2(I)

∥∥Qµ −Qν
∥∥
`2(I)

∥∥γµ∥∥
`2(I)

+
∥∥(Qν)−1

∥∥
`2(I)

∥∥γµ − γν∥∥
`2(I)

≤ 1

λ2

∥∥Bµ −Bν
∥∥
`2(I)

∥∥γµ∥∥
`2(I)

+
1

λ

∥∥γµ − γν∥∥
`2(I)

. (7.6)

Now observe that for any i, j ∈ I

(Bµ
ij −Bν

ij)
2 =

(∫
X
ei(x)ej(x)

(
µ(dx,X )− ν(dx,X )

))2

=

∫
X

∫
X
ei(x)ej(x)ei(y)ej(y)

×
(
µ(dx,X )− ν(dx,X )

)(
µ(dy,X )− ν(dy,X )

)
.

Hence, by using the identity∑
i∈I

ei(x)ei(y) =
∑
i∈I

〈
k(x, ·), ei

〉
H

〈
k(y, ·), ei

〉
H =

〈
k(x, ·), k(y, ·)

〉
H = k(x, y), (7.7)

we get∥∥Bµ −Bν
∥∥2

`2(I)
≤
∥∥Bµ −Bν

∥∥2

HS

=

∫
X

(
µ(dx,X )− ν(dx,X )

) ∫
X
k2(x, y)

(
µ(dy,X )− ν(dy,X )

)
. (7.8)
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By the duality principle, for every smooth h : X → R one has∣∣∣ ∫
X
h(x)

(
µ(dx,X )− ν(dx,X )

)∣∣∣ =
∣∣∣ ∫
X×X

h(x)
(
µ(dx, dy)− ν(dx, dy)

)∣∣∣
≤ sup

x∈X

∣∣∂xh(x)
∣∣W1(µ, ν).

So we continue (7.8) in the following way:

‖Bµ −Bν‖2
`2(I) ≤W1(µ, ν) sup

x∈X

∣∣∣ ∫
X
∂xk

2(x, y)
(
µ(dy,X )− ν(dy,X )

)∣∣∣, (7.9)

and for each particular x ∈ X we have similarly

∣∣∣∫
X
∂xk

2(x, y)
(
µ(dy,X )− ν(dy,X )

)∣∣∣ ≤ d∑
i=1

∣∣∣∫
X
∂xik

2(x, y)
(
µ(dy,X )− ν(dy,X )

)∣∣∣
≤

d∑
i=1

sup
y∈X
|∂y∂xik2(x, y)|W1(µ, ν)

≤ d2D2
kW1(µ, ν),

where the last inequality follows from by Assumption K. Combining this with (7.9), we deduce

‖Bµ −Bν‖`2(I) ≤ DkW1(µ, ν)d. (7.10)

By a similar argument, using (7.7), we derive∥∥γµ − γν∥∥2

`2(I)

≤
∑
i∈I

∫
X×X

∫
X×X

ei(x)ei(x
′)A(y)A(y′)(µ− ν)(dx, dy)(µ− ν)(dx′, dy′)

≤
∫
X×X

∫
X×X

k(x, x′)A(y)A(y′)(µ− ν)(dx, dy)(µ− ν)(dx′, dy′)

≤ d2W2
1(µ, ν)‖A‖2

C1D
2
k, (7.11)

where again Assumption K was used. Next note that

‖γµ‖2
`2(I) =

∫
X×X

∫
X×X

k(x, x′)A(y)A(y′)µ(dx, dy)µ(dx′, dy′)

≤
∫
X×X

∫
X×X

∣∣A(y)
∣∣√k(x, x)

∣∣A(y′)
∣∣√k(x′, x′)µ(dx, dy)µ(dx′, dy′)

=
(∫
X×X

∣∣A(y)
∣∣√k(x, x)µ(dx, dy)

)2

≤
∫
X×X

∣∣A(y)
∣∣2µ(dx, dy)

∫
X×X

k(x, x)µ(dx, dy)

≤ D2
k‖A‖2

C1 (7.12)

due to Assumption K. Substituting now (7.10), (7.11), and (7.12) into (7.6) and then into (7.5), we
finally get

I1 ≤ (λ−1Dk + 1)λ−1D2
kW1(µ, ν)d‖A‖C1 (7.13)
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Now let us bound I2 in (7.4). We clearly have

I2 = |〈k(x, ·)− k(y, ·),mλ
A(·; ν)〉| ≤ ‖k(x, ·)− k(y, ·)‖H‖mλ

A(·; ν)‖H (7.14)

Note that

‖k(x, ·)− k(y, ·)‖2
H

= 〈k(x, ·)− k(y, ·), k(x, ·)− k(y, ·)〉H
= k(x, x)− k(x, y)− (k(y, x)− k(y, y))

=
(∫ 1

0

∂2k(x, x+ ξ(y − x)) dξ
)>

(x− y)−
(∫ 1

0

∂2k(y, x+ ξ(y − x)) dξ
)>

(x− y)

= (x− y)>
(∫ 1

0

∫ 1

0

∂1∂2k(x+ η(y − x), x+ ξ(y − x)) dξdη
)>

(x− y),

with ∂1, ∂2 denoting the vector of derivatives of k with respect to the first and second argument,
respectively. Recalling Assumption K, we derive

‖k(x, ·)− k(y, ·)‖2
H ≤ dD2

k |x− y|
2 . (7.15)

Further, using (7.12), we see that

‖mλ
A(·; ν)‖H = ‖βν‖`2(I) ≤ ‖(Bν + λI)−1‖`2(I)‖γν‖`2(I) ≤ λ−1Dk‖A‖C1 .

Combining this with (7.15) and substituting into (7.14), we get

I2 ≤
√
dλ−1D2

k‖A‖C1|x− y|.

This, together with (7.13) and (7.4), finally yields

|mλ
A(x;µ)−mλ

A(y; ν)| ≤ C1W1(µ, ν) + C2|x− y|,

where C1 = (λ−1Dk + 1)λ−1D2
kd‖A‖C1 and C2 =

√
dλ−1D2

k‖A‖C1 . This completes the proof of
the theorem.

Now we are ready to prove the main results of Section 2. They would follow from Theorem 2.3 obtained
above.

Proof of Theorem 2.1. It follows from Theorem 2.3, and the assumptions of the theorem, and the fact
that W1-metric can be bounded from above by the W2-metric, that the drift and diffusion of (2.3)
are Lipschitz and satisfy the conditions of [CD16a, Theorem 4.21]. Hence it has a unique strong
solution.

Proof of Theorem 2.2. We see that Theorem 2.3 and the conditions of the theorem implies that all the
assumptions of [CD16b, Theorem 2.12] hold. This implies (2.5).

Proof of Theorem 3.3. Consider the operator Cν in the orthonormal basis (ãn)n∈J ofH. Put

Dν := (〈ãi, Cν ãj〉H
)

(i,j)∈J×J = (〈ãi, T ν ãj〉H
)

(i,j)∈J×J = (σjδij)(i,j)∈J×J ,
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since ãj is an eigenvector of T ν with eigenvalue σj . Since Cν is diagonal in this basis, we see that for
λ > 0 one has for i ∈ J

(Cν + λIH)−1ãi = (σi + λ)−1ãi. (7.16)

Consider also the function cνA in this basis. We write for i ∈ J similar to (7.1)

ηνi := 〈cνA, ãi〉H =

∫
X×X

ãi(x)A(y)ν(dx, dy), i ∈ I

and we clearly have cνA =
∑

i∈J η
ν
i ãi. Then, using Proposition 3.1 and (7.16) we derive for λ > 0

mλ
A(·; ν) = (Cν + λIH)−1cνA =

∑
i∈J

ηνi (Cν + λIH)−1ãi

=
∑
i∈J

ηνi (σi + λ)−1ãi. (7.17)

Next, since mA ∈ Lν2 , we have

PHmA =
∑
i∈J

〈
E(X,Y )∼ν [A(Y )|X = ·] , ai

〉
Lν2
ai. (7.18)

Further, for i ∈ J we deduce

〈
E(X,Y )∼ν [A(Y )|X = ·], ai

〉
Lν2

=

∫
X
E(X,Y )∼ν [A(Y )|X = x] ai(x)ν(dx,X )

= E(X,Y )∼ν(ai(X)E[A(Y )|X])

= E(X,Y )∼νai(X)A(Y )

= σ
−1/2
i ηνi ,

where we used that ãn =
√
σnan. Substituting this into (7.18) and combining with (7.17), we get

PHmA −mλ
A =

∑
i∈J

(ηνi σ
−1
i − ηνi (σi + λ)−1)ãi =

∑
i∈J

ηνi
λ

σi(σi + λ)
ãi.

Thus ∥∥PHmA −mλ
A

∥∥2

Lν2
=
∑
i∈J

(ηνi )2 λ2

σi(σi + λ)2
=
∑
i∈J

〈mA, ai〉2Lν2
λ2

(σi + λ)2
,

which is (3.11). Similarly, recalling (3.10), we get

∥∥PHmA −mλ
A

∥∥2

H=
∑
i∈J

(ηνi )2 λ2

σ2
i (σi + λ)2

=
∑
i∈J

〈mA, ai〉2Lν2
λ2

σi(σi + λ)2
,

which is finite whenever PHmA ∈ H, that is,
∑

i∈J〈mA, ai〉2Lν2σ
−1
i < ∞. This shows (3.12). It is

easily seen by dominated convergence that the l.h.s. of (3.11) goes to zero, and, in the case PHmA ∈
H the l.h.s. of (3.12) goes to zero as well.
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