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Numerical smoothing with hierarchical adaptive sparse grids and quasi-Monte
Carlo methods for efficient option pricing

Christian Bayer, Chiheb Ben Hammouda, Raúl F. Tempone

Abstract

When approximating the expectation of a functional of a stochastic process, the efficiency and perfor-
mance of deterministic quadrature methods, such as sparse grid quadrature and quasi-Monte Carlo (QMC)
methods, may critically depend on the regularity of the integrand. To overcome this issue and reveal the
available regularity, we consider cases in which analytic smoothing cannot be performed, and introduce a
novel numerical smoothing approach by combining a root finding algorithm with one-dimensional integra-
tion with respect to a single well-selected variable. We prove that under appropriate conditions, the resulting
function of the remaining variables is a highly smooth function, potentially affording the improved efficiency
of adaptive sparse grid quadrature (ASGQ) and QMC methods, particularly when combined with hierarchi-
cal transformations (i.e., Brownian bridge and Richardson extrapolation on the weak error). This approach
facilitates the effective treatment of high dimensionality. Our study is motivated by option pricing problems,
and our focus is on dynamics where the discretization of the asset price is necessary. Based on our analy-
sis and numerical experiments, we show the advantages of combining numerical smoothing with the ASGQ
and QMC methods over ASGQ and QMC methods without smoothing and the Monte Carlo approach.

1 Introduction

In many applications in quantitative finance, one is usually interested in efficiently computing the expectation of
a functional, g, of a solution of a stochastic differential equation (SDE), X :

(1.1) E [g(X)] .

Approximating (1.1) is usually challenging because of a combination of two complications:

1 An input space shows high dimensionality because of many reasons including (i) the time discretization
of a SDE that describes the dynamics or (ii) numerous underlying assets.

2 The payoff function, g, exhibits low regularity with respect to (w.r.t.) the input parameters.

The first class of methods for approximating (1.1) relies on Monte Carlo (MC) methods. Although the conver-
gence rate of the standard MC is insensitive to both the input space dimensionality and the regularity of the
observable g, the convergence may be very slow. Moreover, it may not exploit the available regularity structure
that could help achieve better convergence rates. Another class of methods relies on deterministic quadrature
methods (e.g., sparse grid quadrature [25, 12, 5, 10], adaptive sparse grid quadrature (ASGQ) [6, 8], and quasi-
MC (QMC) [22, 7]). In this work, we introduce a numerical smoothing technique for improving the performance
of these approaches, by revealing the available regularity.

The high dimensionality of the input space and existence of discontinuities1 in the integrand considerably de-
grade the performance of deterministic quadrature methods. Some studies [14, 15, 16, 7, 27] have addressed
cases involving integrands with discontinuities; however, the emphasis was on the QMC method. In particular,
[14, 15, 16] focused on the theoretical aspects of employing the QMC method in such a setting. Alternatively, in
the present study, we focus on specific practical problems, where we include the adaptivity paradigm. Moreover,

1We consider discontinuities either in the gradients (kinks) or in the function (jumps).
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the low regularity of the integrand was addressed by performing analytic smoothing using conditional expecta-
tion approaches [7, 27, 6]. An adaptive version of the QMC method combined with geometric random splitting
was employed for pricing multidimensional vanilla options for the Black-Scholes model [11].

In this work, we consider cases in which analytic smoothing cannot be performed. We introduce a novel nu-
merical smoothing technique based on (i) the identification of the discontinuities locations using root finding
algorithms, (ii) employing suitable transformations of the integration domain, and (iii) a preintegration step w.r.t.
the dimension containing the discontinuities. We prove that under appropriate conditions, the resulting function
of the remaining variables is a highly smooth function. This potentially affords improved efficiency of the ASGQ
and QMC methods, particularly when they are combined with hierarchical transformations to treat the high di-
mensionality effectively. Given that ASGQ and QMC methods benefit from anisotropy, the first technique involves
employing a hierarchical path generation method based on the Brownian bridge construction for reducing the
effective dimension. The second technique involves employing the Richardson extrapolation for reducing the
bias (weak error), which subsequently reduces the number of time steps needed at the coarsest level to achieve
a certain error tolerance and consequently decreases the total number of dimensions needed for the integration
problem. Our analysis and numerical experiments show the advantage of our approach, which substantially out-
performs the ASGQ and QMC methods without smoothing and the MC approach, for high-dimensional examples
and for dynamics where discretization is needed such as the Heston model.

In Section 2, we explain the technique of numerical smoothing, the selection of the optimal smoothing direction,
and the different building blocks that constitute our hierarchical quadrature methods. In Section 3.1, we present
the smoothness analysis of the resulting integrand after numerical smoothing. In Section 3.2, an error and work
discussion is presented for the ASGQ method with numerical smoothing. Finally, in Section 4, we report the
results of different numerical experiments conducted using the ASGQ, QMC, and MC methods. These results
verify the considerable computational gains achieved using the ASGQ and QMC methods (both combined with
numerical smoothing) over the MC method and the standard (without smoothing) ASGQ and QMC methods.

2 Problem Setting and Approach Formulation

In this work, we mainly consider two possible structures of the payoff function g:

(2.1) (i) g(x) = max(φ(x), 0); (ii) g(x) = 1(φ(x)≥0),

where the function φ is supposed to be smooth.

We introduce the notation x−j to denote a vector with length d− 1 that represents all the variables other than
xj in x. Abusing notation, we define φ(x) = φ(xj ,x−j), and for ease of presentation, we assume that for fixed
x−j , the function φ(xj ,x−j) either has a simple root or is positive for all xj ∈ R. This is guaranteed by the
monotonicity condition (2.2) and infinite growth condition (2.3), which are assumed for some j ∈ {1, . . . , d}.

∂φ

∂xj
(x) > 0, ∀x ∈ Rd (Monotonicity condition)2(2.2)

lim
xj→+∞

φ(x) = lim
xj→+∞

φ(xj ,x−j) = +∞, ∀x−j ∈ Rd−1 or
∂2φ

∂x2
j

(x) ≥ 0, ∀x ∈ Rd (Growth condition).(2.3)

Note that our approach can be easily extended to the case of finetely many roots without accumulation. We
explain this extension in Remark 2.4.

2.1 Continuous-time formulation and optimal smoothing direction

In this section, we characterize the optimal smoothing direction using the continuous-time formulation. The
purpose of this work is to approximate E [g(XT )] at final time T , where g is a low-regular payoff function and

2Without loss of generality, we show the monotonicity condition for an increasing function. However, the assumption still holds for a
decreasing function, which may be the case when considering a spread option.
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X := (X(1), . . . , X(d)) is described using the following SDE3

(2.4) dX
(i)
t = ai(Xt)dt+

d∑
j=1

bij(Xt)dW
(j)
t .

First, we hierarchically represent W := (W (1), . . . ,W (d))

(2.5) W (j)(t) =
t

T
W (j)(T ) +B(j)(t) =

t√
T
Zj +B(j)(t), 1 ≤ j ≤ d,

where {Zj}dj=1 are independent and identically distributed (i.i.d.) standard Gaussian random variables (rdvs),

and {B(j)}dj=1 are independent Brownian bridges.

We can hierarchically represent Z := (Z1, . . . , Zd) as

Z = P0Z︸︷︷︸
One dimensional projection

+ P⊥Z︸︷︷︸
Projection on the complementary

,

where4 P0Z := (Z,v)v, with ||v|| = 1, and Zv := (Z,v) is a standard Gaussian rdv.

Furthermore, defining w := Z− Zvv yields

(2.6) Zj = Zvvj + (P⊥Z)j = Zvvj + wj , 1 ≤ j ≤ d.

Using (2.5) and (2.6) in (2.4) implies

(2.7) dX
(i)
t =

ai(Xt) +

d∑
j=1

bij(Xt)
Zvvj√
T

 dt+

 d∑
j=1

bij(Xt)
wj√
T

 dt+

d∑
j=1

bij(Xt)dB
(j)
t .

If we define Hv (Zv,w) := g (X(T )), then (2.6) and (2.7) can be used to yield

E [g (X(T ))] = E [E [Hv (Zv,w) | w]]

Var [g (X(T ))] = E [Var [Hv (Zv,w) | w]] + Var [E [Hv (Zv,w) | w]] .(2.8)

Using (2.8), the optimal smoothing direction is characterized as the one that maximizes the smoothing effect at
T . The smoothing effect essentially refers to the variance of the component orthogonal to the discontinuity. This
implies that v solves the following equivalent optimization problem:

(2.9) max
v∈Rd

||v||=1

E [Var [Hv (Zv,w) | w]] ⇐⇒ min
v∈Rd

||v||=1

Var [E [Hv (Zv,w) | w]] .

Solving (2.9) is difficult, and v is dependent on the problem. In this work, we aim to heuristically determine v
by considering the structure of the problem. In the following section, we provide more insights on selecting v
and performing numerical smoothing in the time-stepping setting.

2.2 Motivation and idea of numerical smoothing

Let us consider X to be the solution of the SDE (2.4). To illustrate our numerical smoothing idea, we consider,
for ease of presentation, the discretized d-dimensional geometric Brownian motion (GBM) model given by5

(2.10) dX
(j)
t = σ(j)X

(j)
t dW

(j)
t , 1 ≤ j ≤ d,

where {W (1), . . . ,W (d)} are correlated Brownian motions with correlations ρij , and {σ(j)}dj=1 denote the
volatilities of the different assets.

3We assume that {W (j)}dj=1 are uncorrelated and the correlation terms are included in the diffusion terms bij .
4We use (., .) to denote the scalar product operator.
5For ease of presentation, we set the drift term in (2.10) to zero.
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We denote by (Z
(j)
1 , . . . , Z

(j)
N ) the N standard Gaussian independent rdvs that will be used to construct the

approximate path of the j-th asset X
(j)

, where N represents the number of time steps used in the discretiza-

tion (∆t = T
N ). ψ(j) : (Z

(j)
1 , . . . , Z

(j)
N ) → (B

(j)
1 , . . . , B

(j)
N ) denotes the mapping of the Brownian bridge

construction, and Φ : (∆t,B) →
(
X

(1)
T , . . . , X

(d)
T

)
denotes the mapping of the time-stepping scheme,

where B :=
(
B

(1)
1 , . . . , B

(1)
N , . . . , B

(d)
1 , . . . , B

(d)
N

)
is the noncorrelated Brownian bridge6. Then, the option

price can be expressed as

E [g(X(T ))] ≈ E
[
g
(
X

(1)

T , . . . , X
(d)

T

)]
= E

[
g(X

∆t
(T ))

]
= E

[
g ◦ Φ

(
B

(1)
1 , . . . , B

(1)
N , . . . , B

(d)
1 , . . . , B

(d)
N

)]
= E

[
g ◦ Φ

(
ψ(1)(Z

(1)
1 , . . . , Z

(1)
N ), . . . , ψ(d)(Z

(d)
1 , . . . , Z

(d)
N )
)]

=

∫
Rd×N

G(z
(1)
1 , . . . , z

(1)
N , . . . , z

(d)
1 , . . . , z

(d)
N ))ρd×N (z)dz

(1)
1 . . . dz

(1)
N . . . z

(d)
1 . . . dz

(d)
N ,(2.11)

where G := g ◦ Φ ◦
(
ψ(1), . . . , ψ(d)

)
and ρd×N represents the d×N multivariate Gaussian density.

Moreover, the numerical approximation of X(j)(T ), using the forward Euler scheme, satisfies

(2.12) X
(j)

(T ) = X
(j)
0

N−1∏
n=0

[
1 +

σ(j)

√
T
Z

(j)
1 ∆t+ σ(j)∆B(j)

n

]
︸ ︷︷ ︸

:=f
(j)
n (Z

(j)
1 )

, 1 ≤ j ≤ d.

Remark 2.1. Note that (2.12) holds even for stochastic volatility models, where σ(j) is a nonconstant and
changes at each time step.

2.2.1 Step 1 of numerical smoothing: Root finding for the discontinuity location

In this step, the discontinuity location is determined by solving the corresponding root finding problem in one
dimension after adopting suboptimal linear mapping for the coarsest factors of the Brownian increments Z1 :=

(Z
(1)
1 , . . . , Z

(d)
1 )

(2.13) Y = AZ1,

whereA is a d× d matrix that represents the linear mapping.

To make connection with Section 2.1, the smoothing direction v is expressed using the first row of A. A is
generally selected from a family of rotations. For instance, if we consider an arithmetic basket call option, a

sufficiently good selection of A will be a rotation matrix, with the first row leading to Y1 =
∑d

i=1 Z
(i)
1 up to

rescaling without any constraint for the remaining rows. In practice, we construct A by fixing the first row as7

1√
d
11×d and the remaining rows are obtained using the Gram-Schmidt procedure.

From (2.12) and using (2.13), we obtain

X
(j)

(T ) = X
(j)
0

N−1∏
n=0

f (j)
n

(
(A−1Y)j

)
= X

(j)
0

N−1∏
n=0

F (j)
n (Y1,Y−1), 1 ≤ j ≤ d,

where by definingAinv := A−1, we have

F (j)
n (Y1,Y−1) =

[
1 +

σ(j)∆t√
T

Ainv
j1Y1 +

σ(j)

√
T

(
d∑
i=2

Ainv
jiYi

)
∆t+ σ(j)∆B(j)

n

]
.

6Without loss of generality, the correlated Brownian bridge can be obtained via simple matrix multiplication.
7Note that 11×d denotes the row vector with dimension d, where all its coordinates are one.
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Considering that the irregularity is located at φ(X) = 0 (see (2.1))8 then to determine the discontinuity location

y∗1 , we must find, for fixed y−1, z
(1)
−1, . . . , z

(d)
−1, the roots of P (y∗1):

(2.14) φ(X) = φ

(
X

(1)
0

N−1∏
n=0

F (1)
n (y∗1 ,y−1), . . . , X

(d)
0

N−1∏
n=0

F (d)
n (y∗1 ,y−1)

)
:= P (y∗1) = 0.

We use the Newton iteration method to determine the approximated discontinuity location y∗1.

Remark 2.2. Since the coarsest factors are often the most important ones, we use the Brownian bridge con-
struction. Furthermore, the selection ofA creates a new hierarchy in terms of smoothness.

2.2.2 Step 2 of numerical smoothing: Numerical preintegration

In this stage, we perform the numerical preintegrating step w.r.t. the direction considered for finding the root to
determine y∗1 . In fact, using the Fubini’s theorem and from (2.11), we obtain

E [g(X(T ))] ≈ E
[
g
(
X

(1)

T , . . . , X
(d)

T

)]
:= E

[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
(2.15)

≈ E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
,

where

I
(
y−1, z

(1)
−1, . . . , z

(d)
−1

)
=

∫
R
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1

=

∫ y∗1

−∞
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1 +

∫ +∞

y∗1

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1,(2.16)

and I is the approximation of I obtained using the Newton iteration and a two-sided Laguerre quadrature rule.
It is expressed as

(2.17) I(y−1, z
(1)
−1, . . . , z

(d)
−1) :=

MLag∑
k=0

ηk G
(
ζk (y∗1) ,y−1, z

(1)
−1, . . . , z

(d)
−1

)
,

where y∗1 denotes the approximated discontinuity location andMLag represents the number of Laguerre quadra-
ture points ζk ∈ R with ζ0 = y∗1 and corresponding weights ηk 9.

The numerical smoothing treatment enables us to obtain a highly smooth integrand I (refer to Section 3.1 for
the smoothness analysis).

Remark 2.3 (Extending the numerical smoothing idea to other payoffs and dynamics). Although we consider
the case of the multivariate GBM model to illustrate our numerical smoothing approach, we believe that this
concept is generic and can be extended in a straightforward manner to several types of payoffs functions and
dynamics because of our formulation in Sections 2.2.1 and 2.2.2 (we refer to Section 4 for the different tested
examples).

Remark 2.4 (Extending the numerical smoothing approach to the case of multiple roots). The aforementioned
preintegration step can be generalized to the case in which there are finetely many discontinuities without
accumulation, which occurs either because of the payoff structure or because of the use of the Richardson
extrapolation. If we haveR different multiple roots, e.g., {y∗i }Ri=1 with the following order y∗1 < y∗2 < · · · < y∗R,

8The locations may differ depending on the considered payoff function, for instance, many payoffs in quantitative finance have kinks
located at the strike price.

9Of course, the points ζk must be selected in a systematic manner depending on y∗1 .
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the smoothed integrand in (2.15) is expressed as

I
(
y−1, z

(1)
−1, . . . , z

(d)
−1

)
=

∫
R
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1

=

∫ y∗1

−∞
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1 +

R−1∑
i=1

∫ y∗i+1

y∗i

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1

+

∫ +∞

y∗R

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1,(2.18)

and its approximation I is given by

I(y−1, z
(1)
−1, . . . , z

(d)
−1) :=

MLag,1∑
k=0

ηLag
k G

(
ζLag
k,1 (y∗1) ,y−1, z

(1)
−1, . . . , z

(d)
−1

)

+

R−1∑
i=1

MLeg,i∑
k=0

ηLeg
k G

(
ζLeg
k,i

(
y∗i , y

∗
i+1

)
,y−1, z

(1)
−1, . . . , z

(d)
−1

)
+

MLag,R∑
k=0

ηLag
k G

(
ζLag
k,R (y∗R) ,y−1, z

(1)
−1, . . . , z

(d)
−1

)
,

where {y∗i }Ri=1 are the approximated discontinuities locations,MLag,1 andMLag,R are the number of Laguerre
quadrature points ζLag

.,. ∈ R with corresponding weights ηLag
. , and {MLeg,i}R−1

i=1 are the number of Legendre

quadrature points ζLeg
.,. with corresponding weights ηLeg

.
10. We note that I can be further approximated by I

depending on the decay of G× ρ1 in the semi-infinite domains in (2.18) and depending on how close the roots
are to each other. This enables to deal with a countable number of discontinuities by keeping them towards
infinity and then truncating the domain.

2.3 Hierarchical quadrature methods combined with numerical smoothing

After performing the numerical smoothing step, we end up with an integration problem (2.15) of a highly regular
integrand I in a (dN−1)-dimensional space. The dimension may become very large because of either the use
of (i) numerous time steps N in the discretization scheme or (ii) a large number of assets d. The second stage
of our approach involves approximating (2.15) efficiently. To this end, we use two methods, namely, the ASGQ
method, using the same construction as in [4, 17, 6], and the randomized QMC method based on lattice rules,
as described in [24, 23, 6]. For a clear description of the ASGQ and QMC methods that we employ, we refer to
Section 4 in [6].

To overcome the high-dimensionality issue, we use a similar idea to that introduced in [6] and combine the
ASGQ and QMC methods with two hierarchical transformations. Thus, we first employ a hierarchical path gen-
eration method based on the Brownian bridge construction to reduce the effective dimension and then use the
Richardson extrapolation to reduce the bias. Thus, we considerably reduce the dimension of the integration
problem. More details on the application of these two hierarchical representations are available in [6]

3 Smoothness Analysis and Error Discussion

3.1 Smoothness analysis

To achieve the optimal performance of the ASGQ and QMC methods, the integrand should be highly smooth.
Here, we perform a smoothness analysis of the integrand of interest after employing our numerical smoothing
approach. We first introduce some notations and then state our smoothness theorem.

10Of course, the points ζLag
.,. and ζLeg

.,. must be selected in a systematic manner depending on {y∗i }Ri=1.
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Numerical smoothing with sparse grids 7

For simplicity, we assume that we work on a fixed time interval [0, T ], with T = 1. Using the Haar mother
wavelet

ψ(t) :=


1, 0 ≤ t < 1

2 ,

−1, 1
2 ≤ t < 1,

0, else,

we construct the Haar basis functions of L2 ([0, 1]) by setting

ψ−1(t) := 1[0,1](t); ψn,k(t) := 2n/2ψ (2nt− k) , n ∈ N0, k = 0, . . . , 2n − 1.

Note that the support ofψn,k is [2−nk, 2−n(k+1)]. Moreover, we define a gridDn :=
{
tn` | ` = 0, . . . , 2n+1

}
by tn` := `

2n+1T . The Haar basis functions up to level n are piece-wise constants with points of discontinuity
given by Dn. Next, we define the antiderivatives of the Haar basis functions:

Ψ−1(t) :=

∫ t

0

ψ−1(s)ds; Ψn,k(t) :=

∫ t

0

ψn,k(s)ds.

For an i.i.d. set of standard normal rdvs (coefficients) Z−1, Zn,k, n ∈ N0, k = 0, . . . , 2n − 1, we can define
the standard Brownian motion

Wt := Z−1Ψ−1(t) +

∞∑
n=0

2n−1∑
k=0

Zn,kΨn,k(t),

and the truncated version

WN
t := Z−1Ψ−1(t) +

N∑
n=0

2n−1∑
k=0

Zn,kΨn,k(t).

Note that WN already coincides with W along the grid DN . We define the corresponding increments for any
function or process F as follows:

∆N
` F := F (tN`+1)− F (tN` ).

For simplicity, we consider a one-dimensional SDE for the process X as follows:

(3.1) dXt = b(Xt)dWt, X0 = x ∈ R.

We assume that b and its derivatives of all orders are bounded. Recall that we want to compute, for g : R→ R
which is not necessarily smooth, E [g (XT )]. Furthermore, we define the solution of the Euler scheme along
DN by XN

0 := X0 = x; for convenience, we also define XN
T := XN

2N
.

(3.2) XN
`+1 := XN

` + b
(
XN
`

)
∆N
` W, ` = 0, . . . , 2N − 1.

Clearly, the rdv XN
` is a deterministic function of the rdvs Z−1 and ZN := (Zn,k)n=0,...,N, k=0,...2n−1. Using

this notation, we write

(3.3) XN
` = XN

`

(
Z−1, Z

N
)
,

for the appropriate (now deterministic) map XN
` : R × R2N+1−1 → R. We shall write y := z−1 and zN for

the (deterministic) arguments of the function XN
` .11

We define the deterministic function HN : R2N+1−1 → R, expressed as

(3.4) HN (zN ) := E
[
g
(
XN
T

(
Z−1, z

N
))]

.

Then, HN satisfies Theorem 3.1. We refer to Appendix A for the proof of Theorem 3.1.

11We offer a note of caution regarding convergence as N → ∞: while the sequence of random processes XN
· converges to the

solution of (3.1) (under the usual assumptions on b), this is not true in any sense for the deterministic functions.
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Theorem 3.1. Assume that XN
T , defined by (3.2) and (3.3), satisfies Assumptions A.1 and A.3. Then, for any

p ∈ N and indices n1, . . . , np and k1, . . . , kp (satisfying 0 ≤ kj < 2nj ), the function HN defined in (3.4)
satisfies the following (with constants independent of nj , kj )

∂pHN

∂zn1,k1 · · · ∂znp,kp

(zN ) = O
(

2−
∑p

j=1 nj/2
)
.

In particular, HN is of class C∞.

Remark 3.2 (About the analyticity of HN ). We expect that HN is analytic; however, a formal proof is subtle.
In particular, note that our proof in Appendix A relies on successively applying the technique of dividing by
∂XN

T
∂y and then integrating by parts. This means that the constant in O

(
2−

∑p
j=1 nj/2

)
term will depend on p

and increase in p. In other words, Theorem 3.1 should be interpreted as an assertion of the anisotropy in the
variables zn,k rather than a statement on the behavior of higher derivatives of HN . In fact, our proof shows
that the number of summands increases as p!. Therefore, the statement of the theorem does not already imply
analyticity. Note that this problem is an artifact of our construction, and there is no reason to assume such a
behavior in general. Finally, we expect the analyticity region to shrink as N → ∞, which motivates the use of
the Richardson extrapolation to keep N as small as possible while achieving the desired accuracy.

Remark 3.3. The analysis of the smoothness direction and sufficient conditions for Theorem 3.1 to be valid at
high dimensions is an open problem and is beyond the scope of this study.

3.2 Error and work discussion for ASGQ combined with numerical smoothing

In this section, we discuss and analyze the different errors in our approach when using the ASGQ method
combined with numerical smoothing. The error analysis of the QMC method combined with numerical smoothing
is almost similar, as explained in Remark 3.4.

Let us denote by QASGQ the ASGQ estimator12 used to approximate E [g(X(T ))], then following the notation
given in Section 2.2, we obtain the following error decomposition

E [g(X(T )]−QASGQ = E [g(X(T ))]− E
[
g(X

∆t
(T ))

]
︸ ︷︷ ︸

Error I: bias or weak error

+ E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
− E

[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
︸ ︷︷ ︸

Error II: numerical smoothing error

+ E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
−QASGQ︸ ︷︷ ︸

Error III: ASGQ error

,(3.5)

Because we use schemes based on the forward Euler method to simulate asset dynamics, we achieve

(3.6) Error I = O (∆t) .

Let us denote by TOLNewton the tolerance of the Newton method used to approximate the discontinuity location
by finding the roots of P (y∗1) defined in (2.14). Thus |P (y∗1)| ≤ TOLNewton, and using the Taylor expansion, we

12We refer to Section 4 in [6] for a clear description of the ASGQ estimator used in this work.
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obtain that (y∗1 − y∗1) = O (TOLNewton). Therefore, Error II in (3.5) is expressed as

Error II := E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
− E

[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
≤ sup

y−1,z
(1)
−1,...,z

(d)
−1

∣∣∣I (y−1, z
(1)
−1, . . . , z

(d)
−1

)
− I

(
y−1, z

(1)
−1, . . . , z

(d)
−1

)∣∣∣
= sup

y−1,z
(1)
−1,...,z

(d)
−1

∣∣∣∣∣
∫ y∗1

−∞
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1 +

∫ +∞

y∗1

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1

−

(∫ y∗1

−∞
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1 +

∫ +∞

y∗1

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1

)

+

(∫ y∗1

−∞
G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1 +

∫ +∞

y∗1

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρ1(y1)dy1

)

−
MLag∑
k=0

ηk G
(
ζk (y∗1) ,y−1, z

(1)
−1, . . . , z

(d)
−1

)∣∣∣∣∣∣
= O

(
M−sLag

)
+O

(
|y∗1 − y∗1|

η+1
)

= O
(
M−sLag

)
+O

(
TOLη+1

Newton

)
,

(3.7)

where η ≥ 013 and s > 0 is related to the degree of regularity of the integrand, G, w.r.t. y1.14

The first contribution to the error in (3.7) originates from the one-dimensional preintegration step using the
Laguerre quadrature, as explained in Section 2.2.2. Considering that G is a smooth function in parts of the
integration domain separated by the discontinuity location, we achieve a spectral convergence of the quadrature
[25, 26, 12], which justifies the term M−sLag . The second contribution to error in (3.7) originates from the gap
created by integrating G over domains separated by the approximated discontinuity location y∗1 instead of y∗1 ,
which is the exact location.

Finally, considering MASGQ quadrature points used in the ASGQ method, we achieve

(3.8) Error III = O
(
M−pASGQ

)
.

Note that p := p (N, d) > 0 is related to the degree of regularity of I , as defined in (2.15) and (2.16), in the
(dN − 1)-dimensional space15. Remember that when using sparse grids (not adaptive), then error III will be

O
(
M−pSG (log (MSG))(d−1)(p−1)

)
[25, 26, 12, 5] (where d is the dimension of the integration domain, and for

functions with bounded mixed derivatives up to order p). Moreover it was observed in [13] that the convergence
is even spectral for analytic functions. In our case, our smoothness analysis (Section 3.1) implies that p � 1,
which justifies (3.8), under the assumption that I converges to I for sufficiently largeMLag and small TOLNewton.
On the other hand, the optimal performance for ASGQ can be deteriorated i) if p and s are not large enough, or
ii) due to the adverse effect of the high dimension that may affect the rates badly. Finally, although we work in the
preasymptotic regime (small number of time steps, N ), we should emphasize that the regularity parameter p
may be deteriorated when increasing the dimension of the integration problem by increasing N , which justifies
the use of Richardson extrapolation.

Considering (3.5), (3.6), (3.7) and (3.8), the total error estimate of our approach is

(3.9) Etotal, ASGQ := E [g(X(T )]−QASGQ = O (∆t) +O
(
M−pASGQ

)
+O

(
M−sLag

)
+O

(
TOLη+1

Newton

)
.

13The value of η depends on the payoff: for instance, η = 0 for a digital option and η = 1 for call/put payoffs. In general, the
contribution of the root finding to the numerical smoothing error may have different estimates but for cases where G is a polynomial of
degree η then it holds.

14In this case, the derivatives of G w.r.t. y1 are bounded up to order s.
15In this case, the weighted mixed derivatives of I are bounded up to order p.
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To achieve an optimal performance, we need to optimize the parameters in (3.9) to satisfy a certain error
tolerance, TOL, with the least amount of work. This can be achieved by solving (3.10) min

(MASGQ,MLag,TOLNewton)
WorkASGQ ∝MASGQ ×MLag ×∆t−1

s.t. Etotal,ASGQ = TOL.
(3.10)

Although we do not solve (3.10) in our experiments in Section 4 (we select the parameters heuristically to
achieve a suboptimal performance), we show in Appendix B that, for a given error tolerance TOL, and under
certain conditions of the regularity parameters s and p (p, s� 1), a lower bound on the computational work of
the ASGQ method is of order WorkASGQ = O

(
TOL−1

)
. This is significantly better than the computational work

of orderO
(
TOL−3

)
achieved by the MC method.

Remark 3.4 (About the error of the QMC method combined with numerical smoothing). Let QrQMC denotes the
randomized QMC (rQMC) estimator used to approximate E [g(X(T ))] withMrQMC samples. Then, we achieve
an error decomposition similar to that shown in (3.5), with Error III being the rQMC statistical error in this case
[22], and expressed as

Error III (rQMC error) = O
(
M
− 1

2
−δ

rQMC (logMrQMC)d×N−1

)
,

where 0 ≤ δ ≤ 1
2 is related to the degree of regularity of I , defined in (2.15) and (2.17).

Remark 3.5. Although we do not use the Richardson extrapolation in our previous analysis, note that using this
hierarchical representation improves the complexity rate of the ASGQ method (as observed in our numerical
experiments in Section 4).

4 Numerical Experiments

We conduct experiments using three different examples of payoffs: a single digital option, a single call option,
and a four-dimensional arithmetic basket call option16. These examples are tested under two dynamics for
the asset price: the discretized GBM model (a didactic example) and the Heston model, which is a relevant
application of our approach (discretization is required). Table 4.1 lists the specifications of each example. Further
details of the models and discretization schemes are described in Section 4.1. In Sections 4.2 and 4.3, we
illustrate the advantage of combining numerical smoothing with the ASGQ and rQMC methods over the ASGQ
and rQMC without smoothing. In Section 4.4, we study the effect of the numerical smoothing parameters on the
numerical smoothing error and consequently on the quadrature error of the ASGQ method. Finally, Section 4.5
presents a comparison of the MC and ASGQ methods in terms of errors and computational times. Our ASGQ
implementation was based on https://sites.google.com/view/sparse-grids-kit.

4.1 Experiments setting

Regarding the numerical experiments under the GBM model, the assets dynamics follow (2.10), and are simu-
lated using the forward Euler scheme. Moreover, we test options under the Heston model [18, 9, 20, 2], dynamics
of which is given as follows

dSt = µStdt+
√
vtStdW

S
t = µStdt+ ρ

√
vtStdW

v
t +

√
1− ρ2

√
vtStdWt

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t ,(4.1)

where St denotes the asset price; vt represents the instantaneous variance;
(
WS
t ,W

v
t

)
are the correlated

Wiener processes with correlation ρ; µ represents the asset’s rate of return; θ is the mean variance; κ is the
rate at which vt reverts to θ; and ξ denotes the volatility of the volatility.

16The payoff g is expressed by g(x) = max
(∑d

j=1 cjx
(j) −K, 0

)
, where {cj}dj=1 denote the weights of the basket.
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Example Parameters Reference solution
Single digital option under GBM σ = 0.4, r = 0, T = 1, S0 = K = 100 0.42074
Single digital option under Heston v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, 0.5146

(2.0e−05)

θ = 0.0025, S0 = K = 100
Single call option under GBM σ = 0.4, r = 0, T = 1, S0 = K = 100 15.8519
Single call option under Heston v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, 6.33254

θ = 0.0025, S0 = K = 100
4-dimensional basket call option σ1,2,3,4 = 0.4, ρ = 0.3, r = 0, T = 1, 11.04

(1.0e−03)

under GBM S1,2,3,4
0 = K = 100, c1,2,3,4 = 1/4

Table 4.1: Models and options parameters of the tested examples along with their reference solution. The ref-
erence solution for the call option under the Heston model is computed using Premia software with the method
in [18]. The numbers between parentheses correspond to the statistical error estimates when the reference
solution is estimated using the MC estimator.

Many simulation schemes of (4.1) have been proposed in the literature. In Appendix C, we provide an overview
of the most popular methods in this context. These methods mainly differ in the way in which they simulate the
volatility process to ensure its positivity.

We recall that the ASGQ and rQMC methods are extremely sensitive to the smoothness of the integrand. We
numerically found (Appendix C.4) that the use of a nonsmooth transformation to ensure the positivity of the
volatility process deteriorates the performance of the ASGQ method. To overcome this undesirable feature,
we propose the use of an alternative scheme, namely, the Heston OU-based scheme, in which the volatility
is simulated as the sum of the Ornstein-Uhlenbeck (OU) or Bessel processes (Appendix C.3). In fact, in the
literature [2, 21, 1], the focus was on designing schemes that ensure the positivity of the volatility process and
show a good weak error behavior. In our setting, an optimal scheme is determined based on two criteria: (i) the
behavior of the rates of mixed differences, which is an important feature for ensuring the optimal performance of
the ASGQ method (see Appendix C.4.2 for more details), and (ii) the weak error behavior to apply the Richardson
extrapolation when necessary. A comparison of the different schemes (Appendices C.4.1 and C.4.2) suggests
that the Heston OU-based scheme yields the best results based on our criteria. Therefore, in our numerical
experiments, we use this scheme with the ASGQ and rQMC methods. For the MC method, we use the full
truncation scheme (explained in Appendix C.1).

4.2 Comparison of the ASGQ method with and without numerical smoothing

In this section, we illustrate the advantage of combining numerical smoothing with the ASGQ method over the
ASGQ method without numerical smoothing. Figures 4.1 and 4.2 show comparisons of the relative quadra-
ture error convergence for the different examples under the Heston model listed in Table 4.1, for cases with
and without the Richardson Extrapolation, and for some number of time steps N 17. We can clearly see that
the numerical smoothing significantly improves the quadrature error convergence for all cases; this result is in
agreement with Theorem 3.1. For instance, for the call option under the Heston model (left plot in Figure 4.2),
the ASGQ method without smoothing cannot achieve a relative quadrature error below 10%, even in the case
of more than 103 quadrature points. Alternatively, for the same number of quadrature points, the ASGQ method
with numerical smoothing achieves a relative quadrature error below 1%. The gains are more evident for the
digital option case (Figure 4.1). Further, using the Richardson extrapolation, the ASGQ method with numerical
smoothing yields a smaller quadrature error.

17Note that the dimension of the integration problem is N for the GBM examples and 2N for the Heston examples.
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Figure 4.1: Digital option under the Heston model: Comparison of the relative quadrature error convergence for
the ASGQ method with and without numerical smoothing. (a) Without Richardson extrapolation (N = 8), (b)
with Richardson extrapolation (Nfine level = 8).
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Figure 4.2: Call option under the Heston model: Comparison of the relative quadrature error convergence for
the ASGQ method with and without numerical smoothing. (a) Without Richardson extrapolation (N = 16), (b)
with Richardson extrapolation (Nfine level = 8).

4.3 Comparison of the RQMC method with and without numerical smoothing

In this section, we show the advantage of combining numerical smoothing with the rQMC method over the rQMC
method without smoothing. Figures 4.3 and 4.4 show comparisons of the statistical error convergence for the
examples listed in Table 4.1, and for some number of time steps N . Because regularity was regained using
numerical smoothing, we observe an improvement in the statistical error convergence of the rQMC method,
most noticeably in the case of the digital option based on the GBM and Heston models (left plots in Figures 4.3
and 4.4).

4.4 Study of the numerical smoothing parameters

In this section, we study the effect of the numerical smoothing parameters on the relative numerical smoothing
error for sufficiently large ASGQ points MASGQ = 103. These parameters are (i) the number of Laguerre points
used in the preintegration step, MLag, and (ii) the Newton tolerance used in the root-finding step, TOLNewton.
Figures 4.5 and 4.6 show the results for the digital and call options under the GBM model as listed in Table 4.1,
for the case without Richardson extrapolation and for N = 4. These plots provide a numerical verficiation of
our error estimates in (3.7) for the numerical smoothing error, where a faster convergence of the root finding
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Figure 4.3: Comparison of the 95% statistical error convergence for rQMC with and without numerical smoothing
with N = 8. (a) Digital option under GBM, (b) call option under GBM.
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Figure 4.4: Comparison of the 95% statistical error convergence for rQMC with and without numerical smoothing
with N = 4. (a) Digital option under Heston, (b) call option under Heston.

and quadrature errors can be achieved for the call option compared to the digital option. Moreover, we observe
that the numerical smoothing procedure is very cheap since few Laguerre quadrature points and large values
of Newton tolerance are required to achieve a certain accuracy. Note that similar observations are obtained for
other tested examples.

4.5 ASGQ method with numerical smoothing versus MC method

For a sufficiently fixed small error tolerance in the price estimates, we compare the computational time needed
for the MC method and the ASGQ method with numerical smoothing to meet the desired error tolerance. The
reported errors are relative errors normalized using the reference solutions. Furthermore, we conduct our nu-
merical experiments for two different scenarios: without Richardson extrapolation, and with level-1 Richardson
extrapolation. Note that the actual work (runtime) is obtained using a 3,2 GHz 8-Core Intel Xeon W architecture.

The numerical findings are summarized in Table 4.2. The reported results highlight the computational gains
achieved using the ASGQ method with numerical smoothing compared to the MC method to meet a relative
error below 1%. These results correspond to the best configuration with the Richardson extrapolation for each
method. More details for each case are provided in Figures 4.7, 4.8 and 4.9, which show comparisons of the nu-
merical complexity of each method under the two scenarios of Richardson extrapolation. These figures illustrate
that to achieve a relative error of less than 1%, the optimal configuration is level-1 Richardson extrapolation for
both the MC and ASGQ methods, except for the four-dimensional basket call option under the GBM model.
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Figure 4.5: Digital option under GBM with N = 4: The relative numerical smoothing error for a fixed number
of ASGQ points MASGQ = 103 plotted against (a) different values of NLag with a fixed Newton tolerance
TOLNewton = 10−10, (b) different values of TOLNewton with a fixed number of Laguerre quadrature pointsMLag =
128.
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Figure 4.6: Call option under GBM with N = 4: The relative numerical smoothing error for a fixed number
of ASGQ points MASGQ = 103 plotted against (a) different values of NLag with a fixed Newton tolerance
TOLNewton = 10−10, (b) different values of TOLNewton with a fixed number of Laguerre quadrature pointsMLag =
128.

Example Total relative error CPU time (ASGQ/MC) in %
Single digital option (GBM) 0.4% 0.2%

Single call option (GBM) 0.5% 0.3%

Single digital option (Heston) 0.4% 3.2%

Single call option (Heston) 0.5% 0.4%

4-dimensional basket call option (GBM) 0.8% 7.4%

Table 4.2: Summary of the relative errors and computational gains achieved using ASGQ with numerical smooth-
ing compared to the MC method, to realize a certain error tolerance. The CPU time ratios are computed for the
best configuration with Richardson extrapolation for each method.

Remark 4.1 (About rQMC with numerical smoothing). We also combine numerical smoothing with the rQMC
method, and observe an improvement in the performance compared to the case without smoothing (Section
4.3). Moroever, the rQMC method with numerical smoothing consistently outperforms the MC method to achieve
a relative error below 1%. However, we consistently observe that the ASGQ method outperforms the rQMC
method in all our numerical examples, when both are combined with numerical smoothing. In particular, as an
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Figure 4.7: Computational work comparison for the different methods with the different configurations in terms
of the level of Richardson extrapolation. To achieve a relative error below 1%, ASGQ combined with numerical
smoothing and level-1 Richardson extrapolation significantly outperforms the other methods. (a) Digital option
under GBM, (b) digital option under Heston.
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Figure 4.8: Computational work comparison for the different methods with the different configurations in terms
of the level of Richardson extrapolation. To achieve a relative error below 1%, ASGQ combined with numerical
smoothing and level-1 Richardson extrapolation significantly outperforms the other methods. (a) Call option
under GBM, (b) call option under Heston.
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Figure 4.9: Four-dimensional basket call option under GBM: Computational work comparison for the different
methods. To achieve a relative error below 1%, ASGQ combined with numerical smoothing significantly outper-
forms the MC method.

illustration, Figure 4.10 shows the comparison for the example of the digital option under the GBM model.
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Figure 4.10: Digital option under GBM: Computational work comparison for rQMC and ASGQ, both combined
with numerical smoothing, with the different configurations in terms of the level of Richardson extrapolation. To
achieve a relative error below 1%, ASGQ combined with numerical smoothing and level-1 Richardson extrapo-
lation significantly outperforms the other methods.
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A Details for the Proof of Theorem 3.1 in Section 3.1

Here, we use same notation as in Section 3.1. Moreover, we introduce the following notation: for sequences of
rdvs FN and GN we assume that FN = O(GN ) if there is a rdv C with finite moments of all orders such that
for all N , we have |FN | ≤ C |GN | a.s.
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We consider a mollified version gδ of g and the corresponding function HN
δ (defined by replacing g with gδ

in (3.4)). Tacitly, assuming that we can interchange the integration and differentiation (refer to Lemma A.4 for
justification), we achieve

∂HN
δ (zN )

∂zn,k
= E

[
g′δ
(
XN
T

(
Z−1, z

N
)) ∂XN

T (Z−1, zN )

∂zn,k

]
.

Multiplying and dividing by
∂XN

T (Z−1,zN )
∂y and replacing the expectation by an integral w.r.t. the standard normal

density, we obtain

(A.1)
∂HN

δ (zN )

∂zn,k
=

∫
R

∂gδ
(
XN
T (y, zN )

)
∂y

(
∂XN

T

∂y
(y, zN )

)−1
∂XN

T

∂zn,k
(y, zN )

1√
2π
e−

y2

2 dy.

If integration by parts is possible, we can discard the mollified version and obtain the smoothness of HN

because

∂HN (zN )

∂zn,k
= −

∫
R
g
(
XN
T (y, zN )

) ∂
∂y

[(
∂XN

T

∂y
(y, zN )

)−1
∂XN

T

∂zn,k
(y, zN )

1√
2π
e−

y2

2

]
dy.

However, there are situations in which there may be a potential problem looming in the inverse of the derivative
w.r.t. y18. This observation motivates the introduction of Assumptions A.1 and A.3.

Assumption A.1. There are positive rdvs Cp with finite moments of all orders such that

∀N ∈ N, ∀`1, . . . , `p ∈ {0, . . . , 2N − 1} :

∣∣∣∣∣ ∂pXN
T

∂XN
`1
· · · ∂XN

`p

∣∣∣∣∣ ≤ Cp a.s.

In terms of the aforementioned notation, this means that
∂pXN

T

∂XN
`1
···∂XN

`p

= O(1).

Remark A.2. It is probably difficult to argue that a deterministic constant C may exist in Assumption A.1 .

Assumption A.1 is natural because it is fulfilled if the diffusion coefficient b(.) is smooth; this situation is valid
for many option pricing models. However, now we need to make a much more serious assumption that may
be difficult to verify in practice for some models. In Appendix A.1, we motivate cases with sufficient conditions
where this assumption is valid and discuss its limitations.

Assumption A.3. For any p ∈ N we obtain(
∂XN

T

∂y

(
Z−1, Z

N
))−p

= O(1).

Lemma A.4. We have
∂XN

T

∂zn,k
(Z−1, Z

N ) = 2−n/2+1O(1)

in the sense that theO(1) term does not depend on n or k.

Proof. First, note that Assumption A.1 implies that
∂XN

T

∂∆N
` W

= O(1). Indeed, we have

∂XN
T

∂∆N
` W

=
∂XN

T

∂XN
`+1

∂XN
`+1

∂∆N
` W

= O(1)b(XN
` ) = O(1).

Next we need to identify the increments ∆N
` that depend on Zn,k. This is the case iff the support of ψn,k has

a nonempty intersection with ]tN` , t
N
`+1[. Explicitly, this means that

`2−(N−n+1) − 1 < k < (`+ 1)2−(N−n+1).

18As an example, let us assume that XN
T (y, zN ) = cos(y) + zn,k. Then (A.1) is generally not integrable.
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If we fix N , k, and n, this means that the derivative of ∆N
` W w.r.t. Zn,k does not vanish iff

2N−n+1k ≤ ` < 2N−n+1(k + 1).

Because

(A.2)

∣∣∣∣∂∆N
` W

∂Zn,k

∣∣∣∣ =
∣∣∆N

` Ψn,k

∣∣ ≤ 2−(N−n/2),

we thus obtain

(A.3)
∂XN

T

∂zn,k
(Z−1, Z

N ) =

2N−n+1(k+1)−1∑
`=2N−n+1k

∂XN
T

∂∆N
` W

∂∆N
` W

∂Zn,k
= 2N−n+12−(N−n/2)O(1) = 2−n/2+1O(1).

Lemma A.5. Similar to Lemma A.4, we have

∂2XN
T

∂y∂zn,k
(Z−1, Z

N ) = 2−n/2+1O(1).

Proof. ∆N
` W is a linear function in Z−1 and ZN , implying that all mixed derivatives

∂2∆N
` W

∂Zn,k∂Z−1
vanish. From

equation (A.3) we hence obtain

∂2XN
T

∂zn,k∂y
(Z−1, Z

N ) =

2N−n+1(k+1)−1∑
`=2N−n+1k

∂2XN
T

∂∆N
` W∂Z−1

∂∆N
` W

∂Zn,k
.

Further,

∂2XN
T

∂∆N
` W∂Z−1

=

2N+1−1∑
j=0

∂2XN
T

∂∆N
` W∂∆N

j W

∂∆N
j W

∂Z−1
.

Note that

(A.4)
∂2XN

T

∂∆N
` W∂∆N

j W
=

∂2XN
T

∂XN
`+1∂X

N
j+1

b(XN
` )b(XN

j ) + 1j<`
∂XN

T

∂XN
`

b′(XN
` )

∂XN
`

∂XN
j+1

b(XN
j ) = O(1)

using Assumption A.1. We also have
∂∆N

j W

∂Z−1
= O(2−N ), implying the statement of the lemma.

Remark A.6. Lemmas A.4 and A.5 also hold (mutatis mutandis) for zn,k = y (with n = 0).

Proposition A.7. We have ∂HN (zN )
∂zn,k

= O(2−n/2) such that the constant in front of 2−n/2 does not depend

on n or k.

Proof. We have

∂HN (zN )

∂zn,k
= −

∫
R
g
(
XN
T (y, zN )

) ∂
∂y

[(
∂XN

T

∂y
(y, zN )

)−1
∂XN

T

∂zn,k
(y, zN )

1√
2π
e−

y2

2

]
dy

= −
∫
R
g
(
XN
T (y, zN )

) [
−
(
∂XN

T

∂y
(y, zN )

)−2
∂2XN

T

∂y2
(y, zN )

∂XN
T

∂zn,k
(y, zN )+

+

(
∂XN

T

∂y
(y, zN )

)−1
∂2XN

T

∂zn,k∂y
(y, zN )− y

(
∂XN

T

∂y
(y, zN )

)−1
∂XN

T

∂zn,k
(y, zN )

]
1√
2π
e−

y2

2 dy.

Hence, Lemmas A.4 and Lemma A.5 together with Assumption A.3 (for p = 2) imply that

∂HN (zN )

∂zn,k
= O(2−n/2),

with constants independent of n and k.19

19Notice that when FN (Z−1, Z
N ) = O(c) for some deterministic constant c, this property is retained when integrating out one of

the rdvs, i.e., we still achieve
∫
R F

N (y, ZN ) 1√
2π
e−

y2

2 dy = O(c).
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For the general case we need the following Lemma.

Lemma A.8. For any p ∈ N and indices n1, . . . , np and k1, . . . , kp (satisfying 0 ≤ kj < 2nj ) we have (with
constants independent of nj , kj )

∂pXN
T

∂zn1,k1 · · · ∂znp,kp

(Z−1, Z
N ) = O

(
2−

∑p
j=1 nj/2

)
.

The result also holds (mutatis mutandis) if one or several znj ,kj are replaced by y = z−1 (with nj set to 0).

Proof. We start noting that each ∆N
` W is a linear function of (Z−1, ZN ) implying that all higher derivatives of

∆N
` W w.r.t. (Z−1, ZN ) vanish. Hence,

∂pXN
T

∂Zn1,k1 · · · ∂Znp,kp

=

2N−n1+1(k1+1)−1∑
`1=2N−n1+1k1

· · ·
2N−np+1(kp+1)−1∑
`p=2N−np+1kp

∂pXN
T

∂∆N
`1
· · · ∂∆N

`p
W

∂∆N
`1
W

∂Zn1,k1

· · ·
∂∆N

`p
W

∂Znp,kp

.

By an argument similar to that made for Assumption A.4, we obtain

∂pXN
T

∂∆N
`1
· · · ∂∆N

`p
W

= O(1).

By (A.2) we see that each summand in the aforementioned sum is of order
∏p
j=1 2−(N−nj/2). The number of

summands in total is
∏p
j=1 2N−nj+1. Therefore, we obtain the desired result.

Sketch of a proof of Theorem 3.1. We apply integration by parts p times, as performed in the proof of Proposi-
tion A.7, which shows that we can again replace the mollified payoff function gδ by the true, nonsmooth function
g. Moreover, using this procedure, we obtain a formula of the form

∂pHN

∂zn1,k1 · · · ∂znp,kp

(zN ) =

∫
R
g
(
XN
T (y, zN )

)
�

1√
2π
e−

y2

2 dy,

where � represents a long sum of products of various terms. However, note that when the derivatives w.r.t. y
are ignored, each summand contains all derivatives w.r.t. zn1,k1 , . . . , znp,kp exactly once. (Generally, each
summand will be a product of the derivatives of XN

T w.r.t. some znj ,kjs, possibly including other terms such
as polynomials in y and derivatives w.r.t. y.) As all other terms are assumed to be of order O(1) based on
Assumptions A.1 and A.3, the result suggested by Lemma A.8 is implied, and ends up the proof of Theorem
3.1.

A.1 Discussion of Assumption A.3

Here, we motivate sufficient conditions for Assumption A.3 to be valid in the one-dimensional setting. Moreover,
we discuss its limitation and some multivariate cases in which this assumption hold.

We want to examine the term given by
(
∂XN

T
∂y

(
Z−1,Z

N
))−p

for p ∈ N. For this, we consider the one-

dimensional SDE
dXt = a(Xt)dt+ b(Xt)dWt.

For ease of presentation, we set the drift term a(.) to zero. Moreover, using the Brownian bridge construction,
we achieve

(A.5) dXt = b(Xt)

(
y√
T
dt+ dBt

)
,

where y is a standard Gaussian rdv and B is the Brownian bridge.

The solution of (A.5), at the final time T > 0 is

XT = x0 +
y√
T

∫ T

0

b(Xs)ds+

∫ T

0

b(Xs)dBs,
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and consequently,

∂XT

∂y
=

y√
T

∫ T

0

b′(Xs)
∂Xs

∂y
ds+

1√
T

∫ T

0

b(Xs)ds+

∫ T

0

b′(Xs)
∂Xs

∂y
dBs.

This implies that ∂XT∂y solves {
d
(
∂XT

∂y

)
= b(Xt)√

T
dt+ b′(Xt)

∂Xt

∂y dWt,
∂XT

∂y |t=0 = 0.

Using Duhamel’s principle, we obtain

∂XT

∂y
=

∫ T

0

b(Xs)√
T

exp

((∫ T

s

b′(Xu)dWu

)
− 1

2

∫ T

s

(b′)2(Xu)du

)
ds.

If there exists b0 ∈ R such that

(A.6) b2(x) ≥ b20, ∀x ∈ R,

then ∣∣∣∣∂XT

∂y

∣∣∣∣ ≥ |b0|√T
∫ T

0

exp

((∫ T

s

b′(Xu)dWu

)
− 1

2

∫ T

s

(b′)2(Xu)du

)
ds,

≥ |b0|√
T

exp

((∫ T

0

b′(Xu)dWu

)
− 1

2

∫ T

0

(b′)2(Xu)du

)
ds,

and consequently, for any p ∈ N, we obtain(∣∣∣∣∂XT

∂y

∣∣∣∣)−p ≤ ( |b0|√T
)−p

exp

(
−p

((∫ T

0

b′(Xu)dWu

)
− 1

2

∫ T

0

(b′)2(Xu)du

))
ds,

and the sufficient condition for Assumption A.3 to be valid is that for any p ∈ N, there exists a real deterministic
constant Dp > 0 such that

E

[
exp

(
−p

((∫ T

0

b′(Xu)dWu

)
− 1

2

∫ T

0

(b′)2(Xu)du

))]
≤ Dp.(A.7)

Observe that for the particular one-dimensional GBM model, condition (A.7) is clearly satisfied. Moreover, both
(i) one-dimensional models with a linear or constant diffusion and (ii) multivariate models with a linear drift and
constant diffusion satisfy Assumption A.3. Interestingly, the multivariate lognormal model can be observed in
case (ii) (refer to [7] for further details). On the other hand, we stress that there may be some cases in which
Assumption A.3 is not fulfilled, e.g., XT = W 2

T , which corresponds to a system of SDEs where the diffusion
coefficient does not satisfy condition (A.6). However, our method works well in such cases since, using notation
of Section 2.2, we have g(XT ) = G(y2

1), and then we can apply our numerical smoothing technique to obtain
a highly smooth integrand. Finally, we emphasize that additional investigation on the sufficient conditions for our
smoothness Theorem 3.1 to be valid in high dimensions is an open problem and is not in the scope of this work.

B More Details on the Error and Work Discussion of ASGQ Method

Here, we show that under certain conditions of the regularity parameters p and s, we can achieve WorkASGQ =
O
(
TOL−1

)
under the best scenario (p, s� 1). In fact, using the method of Lagrange multipliers, we obtain

MASGQ ∝ ∆t
p+s−ps
p(ps+p+s) , and Mlag ∝ ∆t

p+s−ps
s(ps+p+s) ,
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and using the constraint in (3.10), we can easily show that for an error tolerance TOL, we achieve ∆t =

O
(

TOL
ps+p+s
ps−p−s

)
. Therefore, the optimal work WorkASGQ solution of (3.10) satisfies

WorkASGQ ∝MASGQ ×MLag ×∆t−1 ∝ ∆t−1∆t
p+s−ps
s(ps+p+s) ∆t

p+s−ps
p(ps+p+s)

∝ TOL−1− 2(p+s)
ps−p−s−

1
p
− 1
s

= O
(
TOL−1

)
, since p, s� 1.

C Simulation Schemes for the Heston Dynamics

C.1 Modified Euler scheme

The forward Euler scheme can be used to simulate the Heston model. Many solutions to avoid the problems
arising from the use of negative values of the volatility process vt in (4.1) have been reported in the literature [21].
In Table C.1, we introduce f1, f2, and f3, which imply different schemes when different choices are adopted.
The use of the forward Euler scheme to discretize (4.1) yields

Ŝt+∆t = Ŝt + µŜt∆t+

√
V̂t∆tŜtZs

V̂t+∆t = f1(V̂t) + κ(θ − f2(V̂t))∆t+ ξ

√
f3(V̂t)∆tZV

V̂t+∆t = f3(V̂t+∆t),

where Zs and ZV are two correlated standard normal rdvs with correlation ρ.

Scheme f1 f2 f3

Full truncation scheme V̂t V̂ +
t V̂ +

t

Partial truncation scheme V̂t V̂t V̂ +
t

Reflection scheme
∣∣∣V̂t∣∣∣ ∣∣∣V̂t∣∣∣ ∣∣∣V̂t∣∣∣

Table C.1: Different variants for the forward Euler scheme for the Heston model. V̂ +
t = max(0, V̂t).

[21] suggests that the full truncation scheme is the optimal option in terms of the weak error convergence.
Therefore, we use this variant of the forward Euler scheme.

C.2 Moment-matching scheme

We consider the moment-matching scheme suggested by Andersen and Brotherton-Ratcliffe [3] (herein, called
the ABR scheme). This scheme assumes that the variance vt is locally lognormal, and the parameters are
determined such that the first two moments of the discretization coincide with the theoretical moments:

V̂ (t+ ∆t) =
(
e−κ∆tV̂ (t) +

(
1− e−κ∆t

)
θ
)
e−

1
2 Γ(t)2∆t+Γ(t)∆Wv(t)

Γ2(t) = ∆t−1 log

1 +
1
2ξ

2κ−1V̂ (t)(1− e−2κ∆t)(
e−κ∆tV̂ (t) + (1− e−κ∆t)θ

)2

 .

As reported in [21], the scheme, being very easy to implement, is more effective than many of the Euler variants
presented in Section C.1; however, it was observed that this scheme shows a nonrobust weak-error behavior
w.r.t. the model parameters.
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C.3 Heston OU-based scheme

It is well known that any OU process is normally distributed. Thus, the sum of n squared OU processes is
chi-squared distributed with n degrees of freedom, where n ∈ N+. Let us define X as a n-dimensional vector-
valued OU process with

(C.1) dXi
t = αXi

tdt+ βdW i
t ,

where W is a n-dimensional vector of independent Brownian motions.

We also define the process Yt as

Yt =

n∑
i=1

(
Xi
t

)2
.

Then, using the fact that

d
(
Xi
t

)2
= 2Xi

tdX
i
t + 2d〈Xi〉t =

(
2α
(
Xi
t

)2
+ β2

)
dt+ 2βXi

tdW
i
t ,

we can write, using the independence of the Brownian motions:

(C.2) dYt = d

(
n∑
i=1

(
Xi
t

)2)
=

n∑
i=1

d
(
Xi
t

)2
=
(
2αYt + nβ2

)
dt+ 2β

n∑
i=1

Xi
tdW

i
t .

Furthermore, the process Zt =
∫ t

0

∑n
i=1X

i
udW i

u is a martingale with quadratic variations

〈Z〉t =

∫ t

0

n∑
i=1

(
Xi
u

)2
du =

∫ t

0

Yudu.

Consequently, using the Lévy’s characterization theorem, the process W̃t =
∫ t

0
1√
Yu

∑n
i=1X

i
udW i

u is a
Brownian motion.

Finally, we obtain

dYt =
(
2αYt + nβ2

)
dt+ 2β

√
YtdW̃t

= κ (θ − Yt) dt+ ξ
√
YtdWt,(C.3)

where κ = −2α, θ = −nβ2/2α and ξ = 2β.

Equations (C.1), (C.2), and (C.3) show that to simulate the process Yt given by (C.3), we can simulate the OU
process X with dynamics (C.1) such that its parameters (α, β) are expressed in terms of those of the process
Yt:

α = −κ
2
, β =

ξ

2
, n =

−2θα

β2
=

4θκ

ξ2
.

Consequently, we can simulate the volatility of the Heston model using a sum of OU processes.

Remark C.1. The previous derivation can be generalized to cases where n∗ is not an integer by considering a
time-change of a squared Bessel process (refer to Chapter 6 in [19] for details). An alternative way to generalize
the scheme for any noninteger n∗ is to consider n∗ = n + p, p ∈ (0, 1), and then compute E [g(Xn∗)] for
any observable g as follows

E [g(Xn∗)] ≈ (1− p)E [g(Xn)] + pE [g(Xn+1)] .

C.4 On the choice of the simulation scheme of the Heston model

We determine the optimal scheme for simulating the Heston model defined in (4.1). In our setting, an optimal
scheme is characterized by two properties: (i) the behavior of mixed rate convergence (Section C.4.1), which is
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an important requirement for the optimal performance of ASGQ and (ii) the weak-error behavior (Section C.4.2)
to apply the Richardson extrapolation when necessary.

Although we tested many parameter sets and obtained consistent numerical observations; for illustration, we
only show the results for the single call option based on the Heston model with parameters listed in Table 4.1.
This set corresponds to n = 1, where n represents the number of OU processes used in the Heston OU-based
scheme (Section C.3). Furthermore, this set does not satisfy the Feller condition, i.e., 4κθ > ξ2.

C.4.1 Comparison of different schemes in terms of mixed difference rates

Before comparing different schemes in terms of the convergence of the mixed difference rates, we recall some
important notations from [6] for the ASGQ estimator. Using the same notations and construction as those used
in Section 4.1 in [6], the ASGQ estimator used for approximating (2.15), and using a set of multi-indices I ⊂
NdN−1 is given by

QASGQ
I =

∑
β∈I

∆Qβ, with ∆Qβ =

(
dN−1∏
i=1

∆i

)
Qβ,

and

∆iQ
β :=

{
Qβ −Qβ′ , with β′ = β − ei, if βi > 0,

Qβ, otherwise,

where Qβ is the Cartesian quadrature operator with m(βi) points along the ith dimension.

As emphasized in [17, 6], one important requirement to achieve the optimal performance of the ASGQ is to
check the error convergence of the first and mixed difference operators, as expressed by the error contribution
(C.4). This is a measure of how much the quadrature error would decrease after the addition of ∆Qβ to the
ASGQ estimator QASGQ

I

(C.4) ∆Eβ =
∣∣∣QASGQ
I∪{β} −Q

ASGQ
I

∣∣∣ .
The ASGQ method exhibits optimal behavior if (i) ∆Eβ decreases exponentially fast w.r.t. βi and (ii) ∆Eβ has a
product structure so that a faster error decay is observed for second differences compared to the corresponding
first difference operators.

In this section, we compare the three approaches of simulating Heston dynamics: (i) the full truncation scheme
(Section C.1), (ii) the ABR scheme (Section C.2), and (iii) the Heston OU-based scheme (Section C.3). The
mixed difference convergences of these approaches are compared. In our numerical experiments, we only ob-
serve the differences in the mixed difference rates related to the volatility coordinates because we use schemes
that only differ in the way in which they simulate the volatility process. Figure C.1 shows a comparison of the
first differences rates related to the volatility coordinates for different schemes. From this figure, we see that the
full truncation scheme is the worst scheme and the Heston OU-based and the ABR schemes show very good
performance in terms of the speed of mixed rate convergence.

C.4.2 Comparison in terms of the weak error behavior

Herein, we compare the ABR scheme discussed in Section C.2 and the Heston OU-based scheme discussed
in Section C.3 in terms of the weak-error convergence. We select the scheme with weak error rate of order
one (O (∆t)) in the preasymptotic regime to efficiently employ the Richardson extrapolation in our proposed
methods. Figure C.2 shows a comparison of the weak error rates for the different schemes. From this figure, the
Heston OU-based scheme exhibits a better weak convergence rate that is closer to 1 than the ABR scheme,
which shows a weak error rate of 0.7.
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Figure C.1: Rate of error convergence of the first-order differences |∆Eβ|, defined in (C.4), (β = 1 + kβ) for
the single call option under the Heston model. The parameters are given in Set 1 in Table 4.1, and the number
of time steps N = 4. We only show the first four dimensions that are used for the volatility noise (mainly dWv

in (4.1)). (a) Full truncation scheme, (b) ABR scheme, and (c) Heston OU-based scheme.
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Figure C.2: Weak error convergence for the single call option under the Heston model for the parameters listed
in Table 4.1. The upper and lower bounds are 95% confidence intervals. (a) Heston OU-based scheme, (b) ABR
scheme.
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