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Weak error rates for option pricing under linear rough volatility
Christian Bayer, Eric Hall, Raúl F. Tempone

Abstract

In quantitative finance, modeling the volatility structure of underlying assets is vital to pric-
ing options. Rough stochastic volatility models, such as the rough Bergomi model [Bayer, Friz,
Gatheral, Quantitative Finance 16(6), 887-904, 2016], seek to fit observed market data based
on the observation that the log-realized variance behaves like a fractional Brownian motion with
small Hurst parameter, H < 1/2, over reasonable timescales. Both time series of asset prices
and option-derived price data indicate that H often takes values close to 0.1 or less, i.e., rougher
than Brownian motion. This change improves the fit to both option prices and time series of un-
derlying asset prices while maintaining parsimoniousness. However, the non-Markovian nature of
the driving fractional Brownian motion in rough volatility models poses severe challenges for the-
oretical and numerical analyses and for computational practice. While the explicit Euler method
is known to converge to the solution of the rough Bergomi and similar models, its strong rate of
convergence is only H. We prove rate H + 1/2 for the weak convergence of the Euler method
for the rough Stein–Stein model, which treats the volatility as a linear function of the driving
fractional Brownian motion, and, surprisingly, we prove rate one for the case of quadratic payoff
functions. Indeed, the problem of weak convergence for rough volatility models is very subtle; we
provide examples demonstrating the rate of convergence for payoff functions that are well approx-
imated by second-order polynomials, as weighted by the law of the fractional Brownian motion,
may be hard to distinguish from rate one empirically. Our proof uses Talay–Tubaro expansions
and an affine Markovian representation of the underlying and is further supported by numerical
experiments. These convergence results provide a first step toward deriving weak rates for the
rough Bergomi model, which treats the volatility as a nonlinear function of the driving fractional
Brownian motion.

1 Introduction

Rough stochastic volatility models form an increasingly popular paradigm in quantitative finance, as
they simultaneously address two empirical challenges. Firstly, time series of realized variance indicate
that variance is rough in the sense of having Hölder regularity H � 1/2, see [16, 8, 14]. Secondly,
rough volatility models recover the power-law explosion of the at the money implied volatility skew
of the form τ−γ for γ ∼ 1/2 as time to maturity τ → 0. In fact, these two constants are linked by
γ = 1/2−H, giving further evidence of regularity H being small, say around 0.1. We refer to [5] for
the pricing perspective.

To fix notation, we consider a rough stochastic volatility model for an asset price process St of the
form

dSt =
√
vtStdZt ,

where Z is a Brownian motion (Bm). There are two classes of rough volatility models which differ in
the specification of the instantaneous variance component vt. The rough Heston model ([13]) is an
example of one kind, with vt given as a solution to a Volterra stochastic differential equation (SDE)
with a power law kernel K(r) ∼ rH−1/2, r > 0. This paper will consider an alternative where the
variance process is an explicit function of a fractional Brownian motion (fBm) WH

t , which does not
need to be the classical fBm. For instance, the rough Bergomi model ([5]) is specified by the choice

vt := ξ(t) exp
(
ηWH

t −
1
2η

2t2H
)
, (1.1)
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C. Bayer, E. Hall, R. Tempone 2

where ξ(t) denotes the forward variance and WH
t denotes the Riemann–Liouville fBm given by

WH
t :=

∫ t

0
K(t− s)dWs, K(r) :=

√
2HrH−1/2, (1.2)

for a Bm W with correlation ρ with Z. A related model where the variance process is an explicit
function of the fBm is the fractional or rough Stein–Stein model ([1]), given by

dSt = vtStdZt ,

vt = v0(t) +
∫ T

0
K(t, s)κvsds+

∫ T

0
K(t, s)ηdWs , (1.3)

for a Volterra kernel K and for arbitrary correlation ρ between Z and W . This extends the classic
Stein–Stein model ([29]) and its generalization ([28]). For the particular choice κ = 0 and K(t, s) =
K(t− s) from (1.2), the volatility term (1.3) is a linear function of the fBm,

vt = v0(t) + ηWH
t .

For the later volatility, the rough Stein–Stein model can be viewed as a simplified fractional SABR
model that enables explicit computations of certain quantities of interest ([15]).

The modelling advantages gained by capturing these two empirical challenges, i.e., low Hölder reg-
ularity (H � 1/2) and the power-law explosion, using a rough stochastic volatility model are paid
for both on the theoretical and the numerical side. Indeed, rough stochastic volatility models are
neither semi-martingales nor Markov processes. Despite the former, rough volatility models do not
violate the no-arbitrage-condition, as the asset price process itself is a martingale. On the other
hand, the difficulties caused by the lack of Markov property are more severe. In particular, there is
no finite dimensional pricing PDE anymore (although we refer to [22, 7] for implementations of an
infinite-dimensional pricing PDE based on machine learning). For some rough volatility models of
affine Volterra type, for instance, the rough Heston model, there is still a semi-explicit formula for
the asset price’s characteristic function in terms of a deterministic fractional ODE. Otherwise, the
rough stochastic volatility approach necessitates simulation-based methods.

On the numerical side, WH
t1 , . . . ,W

H
tN

can be exactly sampled at discrete-time points as WH is a
Gaussian process with known covariance function. (The hybrid scheme of [9] is a popular alternative
to exact simulation, sacrificing accuracy for speed.) However, simulation of St requires discretization
of a stochastic integral, even in the case of the rough Bergomi and rough Stein–Stein models. As we
shall see in further detail later, we essentially need to compute stochastic integrals of the form∫ T

0
ψ(t,WH

t )dWt, (1.4)

for some deterministic, “nice” function ψ. In particular, note that the integrand is adapted and
square-integrable (under appropriate conditions). Hence, the stochastic integral exists in the classical
Itō sense, and strong convergence of the numerical scheme

n−1∑
i=0

ψ(ti,WH
ti )(Wti+1 −Wti) (1.5)

is also classical. The speed of convergence is considerably less clear. Indeed, Neuenkirch and Sha-
laiko [25] proved strong convergence with rate H for a very similar problem, i.e., phrased in terms of
classical fBm, and strong rate H is widely expected to hold also for the approximation scheme (1.5)
to (1.4). Using techniques from regularity structures, in particular, renormalization by an exploding
constant, [4] proved essentially the same strong rate for a Wong–Zakai type approximation of (1.4).
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Weak error rates rough Bergomi 3

Combining our observations—that volatility is rough (H ≈ 0.1) and typical schemes converge with
strong rate H— we run into problems, as the rate of convergence is so small as to make it indis-
tinguishable from lack of convergence in many cases of practical importance. Indeed, suppose that
H = 0.1 and we need n time steps to reach an error tolerance ε. If we now decrease our tolerance by
a factor ten, i.e., we require one additional significant digit, then the number of time-steps needed
is increased by a factor 1010 in the asymptotic regime.

For most applications we really require weak as opposed to strong convergence of the numerical
scheme. For instance, the price of a European option with payoff ϕ is E[ϕ(ST )], and its computation
relies on weak convergence of the scheme. Weak approximation of stochastic integrals is often much
faster than strong approximation. Consider the Euler scheme for standard SDEs (the case H = 1/2).
Generically, i.e., when the problem is sufficiently “nice”, the weak rate of convergence is one, whereas
the strong rate is 1/2. This poses the interesting question about the relation between the Hölder
regularity (H = 1/2), the weak rate of convergence (1) and the strong rate of convergence (1/2).
Indeed, [25] showed us that the strong rate is equal to the Hölder regularity H, but there are several
plausible candidates for the weak rate: 2H, H+1/2, and 1 (independent of H).1 We stress that only
the last two alternatives allow for feasible numerical simulations in the truly rough regime. Bluntly
put, if the true weak error only decays proportionally to n−2H in the number of time steps n, then
simulation methods are not viable numerical methods for option pricing in rough volatility models.

Despite the importance of the problem of determining the weak rate, only little work has been
done. Horvath, Jacquier and Muguruza [20] study a Donsker theorem for a rough volatility model,
which translates into a week tree-type approximation. The rate of convergence of their method is
H in the number of time-steps. At this stage, we should note that the trees are non-recombining,
implying that the memory load increases exponentially in the number of time-steps. To the best of
our knowledge, this work provides the only rigorous weak convergence result in the literature of rough
volatility models. Indeed, it is worth pointing out that standard proof techniques for diffusions, see
[30], strongly rely on the Markov property, and are, hence, not applicable in this setting.

At the same time, discretization-based simulation methods are often used in the literature, with
great success. While convergence is rarely considered (not even empirically), we would expect to see
difficulties emerge in the very rough cases H ≈ 0.1 if the convergence rates were truly as bad as only
H or 2H. In fact, the few available empirical studies (for instance, [6]) indicate a much larger weak
rate of convergence. In fact, the authors of [6] observe a weak rate of one which is stable enough to
allow accelerated convergence by Richardson extrapolation.

In this paper we prove novel weak rates for the convergence of the left-hand rule (1.5) to (1.4):

Theorem 1.1. The left-point approximation (1.5) to the rough stochastic integral (1.4) converges
with weak rate H + 1/2 for ψ(t,WH

t ) = WH
t – i.e., in the rough Stein–Stein model. For the case

that the payoff ϕ is a quadratic polynomial the convergence is with weak rate one.

We refer to Theorems 2.1 and 4.1 for more precise statements. Some remarks are in order:

� The problem of weak convergence in this setting is very subtle; if we restrict ourselves to
quadratic polynomials as payoff functions, then the weak rate of convergence is actually one,
see Lemma 4.2. This implies the rate of convergence for payoff functions ϕ that can be well
approximated by quadratic polynomials, as seen from the law of the solution, may be hard to
distinguish from rate one empirically, due to prevalence of higher order terms (see Figure 3).
Note that the result 4.2 and its proof were communicated to us by Andreas Neuenkirch [24]
prior to starting this work; Lemma 4.2 indicates rate one for quardatic payoffs ϕ for a more

1Anecdotally, we asked several experts on stochastic numerics in early stages of working on this problem, and all
three possibilities were put forward.
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C. Bayer, E. Hall, R. Tempone 4

general class of ψ (i.e., including rough Bergomi) but it is unclear how to generalize this result
to a broader class of payoffs.

� We do not have a lower bound establishing that the weak rate of convergence cannot be better
than H + 1/2 in the generic case. We do offer numerical evidence for this assertion, though,
see Figures 1 to 3.

� We do not doubt that the proof extends to the general case of non-linear ψ, which includes the
rough Bergomi model. Indeed, the present paper is partly motivated to expose a possible proof
strategy for the general case. Extending the method of proof using Faà di Bruno’s formula poses
some technical challenges, mainly due to the needed to control more complicated formulas.

Our proof for Theorem 1.1 relies on deriving Taylor expansions for the weak error using an affine
Markovian representation of the underlying. The basic flavor of this approach, i.e., obtaining a
Markovian extended variable system to facilitate analysis, is a strategy utilized in other non-Markovian
stochastic dynamical systems such as the Generalized Langevin equation (see, e.g., [17, 12]) and open
Hamiltonian systems ([26]). In the context of rough volatility models, Markovian approximations were
also used in [2].

Outline of the paper

In Section 2 we provide the setting and the main result and discuss the general strategy of the proof.
Section 3 introduces auxiliary, Markovian approximations to both (1.4) and (1.5) based on [10]. This
high dimensional Markovian problem will serve as a surrogate problem for most of the convergence
analysis. Section 4 considers the special case of quadratic payoff functions, for which the general proof
strategy simplifies considerably. We contrast this with a specific proof only applicable to quadratic
payoffs, which also works for general non-linear ψ. The proof of Theorem 1.1 (and Theorem 2.1) is
then carried out in Section 5.

2 Problem setting: weak rate of convergence for Euler scheme is
H + 1/2

We consider a smooth, bounded payoff function ϕ(XT ) for an underlying

Xt :=
∫ t

0
ψ(s,WH

s )dWs , (2.1)

whereWH
t is a Riemann–Liouville fBm given by (1.2) with Hurst parameterH ∈ (0, 1/2). A simplified

model of rough stochastic volatility, (2.1) retains keys features of the rough Bergomi model (1.1)
and the rough Stein-Stein model (1.3). Namely, the Xt in (2.1) is non-Markovian as WH

t , and hence
ψ(t,WH

t ), depends on the full history of (Ws)s∈[0,t] (cf. ψ to the instantaneous variance vt in (1.1)).
In fact, for the purposes of European option, the rough Bergomi model can be reduced to (2.1) in
the following way (often attributed to [27]). First, Itō’s formula implies that

ST = S0 exp
(
−1

2

∫ T

0
vsds+

∫ T

0

√
vsdZs

)
.

We can now replace the Bm Z by ρW +
√

1− ρ2W⊥ for an independent Bm W⊥. Conditionally on
W , ST has a log-normal distribution with parameters

µ := logS0 −
1
2

∫ T

0
vsds+ ρ

∫ T

0

√
vsdWs, σ2 := (1− ρ2)

∫ T

0
vsds.
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Weak error rates rough Bergomi 5

If we denote the Black–Scholes price for the payoff function ϕ at maturity T by CBS(S0, σ
2
BST, ϕ),

for interest rate r = 0 and volatility σBS , then we get

E[ϕ(ST )] = E
[
CBS

(
S0 exp

[
−ρ

2

2

∫ T

0
vsds+ ρ

∫ T

0

√
vsdWs

]
, (1− ρ2)

∫ T

0
vsds, ϕ

)]
. (2.2)

Computation of the right hand side of (2.2) requires simulation of the Lebesgue integral
∫ T

0 vsds as
well as simulation of ∫ T

0

√
vsdWs =

∫ T

0

√
ξ(s) exp

(
η

2W
H
s −

η2

4 s
2H
)

dWs, (2.3)

which is of the form (2.1).

Presently, we derive weak rates of convergence,∣∣E[ϕ(XT )− ϕ(X∆t
T )]

∣∣ = O(∆tγ) , (2.4)

for the left-hand scheme (1.5) with step-size ∆t such that n∆t = T . Restricting to the the rough
Stein–Stein model ψ(s,WH

s ) = WH
s , the main finding of this work, in Theorem 2.1 (and implying

the first statement in Theorem 1.1), is that the weak rate is γ = H + 1/2 for the Hurst parameter
H.

Theorem 2.1 (Weak rate). For general ϕ ∈ Cηb , for integer η = d 1
H e, and the rough Stein–Stein

model ψ(s,WH
s ) = WH

s , we have

|Err(T,∆t)| =
∣∣E[ϕ(XT )− ϕ(X∆t

T )]
∣∣ = O(∆tH+1/2) ,

i.e. the Euler method is weak rate H + 1/2.

The proof of Theorem 2.1 is presented in Section 5. Before diving into the machinery needed for
the proof, we first consider some numerical evidence that supports the rates in Theorem 1.1 and the
accompanying remarks. Details of the implementation are outlined in Appendix A.

The first group of numerical experiments, in Figure 1, provide support for rateH+1/2 in Theorem 2.1.
In Figure 1, the weak error rate is observed to depend on H for the general (i.e. non-quadratic) payoff
functions ϕ(x) = x3 and ϕ(x) = Heaviside(x). Indeed, the best fits (least squares) of the weak error
to ∆t, as well as the extremes suggested by the upper and lower 95% confidence interval for the
mean based on M = 3 × 106 samples, is consistent with the rate H + 1/2. Comparing Figure 1a
to Figure 1b, the rate increases (and by approximately 0.1) as H increases from H = 0.05 to 0.15.
Although the function ϕ(x) = Heaviside(x) is not continuous and therefore does not fit precisely
into our theory, the consistency of the observed rates in Figure 1 hint at the generality of the findings
in Theorem 2.1 to, e.g., digital call options.

In Figure 2b, we observe that for H = 1/2, i.e. standard Brownian motion, the best fit of the
weak error rate is consistent with the known weak rate one for general payoff functions. However,
in contrast to the rates observed in Figure 1, the behavior of quadratic payoffs looks decidedly
different. We observe in Figure 2a that the weak rate for quadratic ϕ(x) = x2 appears to be γ = 1
even for small H = 0.05 and H = 0.15. Weak rate one for quadratic payoff functions is recorded
in Theorem 4.1 and Lemma 4.2 in Section 4; this surprising finding, that the rate depends on the
payoff function, will be readily explained using the asymptotic expansions that are at the center of
our approach.

Finally, in Figure 3, we observe that the best fit of weak rate to ∆t for the shifted-cubic ϕ(x) =
(x+ 1.5)3 is consistent with rate 1 even for small H = 0.05 and H = 0.15 (cf. compare the rates in
Figure 3 to those forthe cubic payoff ϕ(x) = x3 in Figures 1a and 1b). As seen from the law of the

DOI 10.20347/WIAS.PREPRINT.2916 Berlin 2022
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10-1

10-3

10-2

10-1

100

(a) H = 0.05

10-1

10-3

10-2

10-1

100

(b) H = 0.15

Figure 1: For small Hurst parameters, (a) H = 0.05 and (b) H = 0.15, the best fit slope for the weak
error for scheme (1.5), together with extremes suggested by the 95% CI based on M observations,
are consistent with the rate H + 1/2 obtained in Theorem 2.1 for general payoff functions ϕ. In
particular, the rate holds for the discontinuous ϕ(x) = Heaviside(x) suggesting our findings are
robust. Here ∆t ∈ [2−6, 2−1] and the reference mesh is ∆tref = 2−12.

solution, the shifted cubic is better approximated by quadratic polynomials and therefore its rate of
convergence is much harder to distinguish from rate one. This numerical experiment not only drives
home the subtlety of the problem of deriving weak rates for rough stochastic volatility models, but
also leads us to be optimistic that efficient numerical methods can be obtained for a wide array of
real-world problems where the effective rate of convergence is not as bad as the theoretical rate.
Remark 2.2 (Financial applications). Although the assumptions of Theorem 2.1 seem extremely
strong, they do reflect meaningful financial situations. In particular, note that (2.2) allows us to
replace the (generally non-smooth) payoff functions of European options by their smooth Black–
Scholes prices. Additionally, put-call-parity may allow us to assume bounded payoffs. Linearity of ψ
is, admittedly, a very strong assumption, which should be seen as the first stepping stone to the
general result. We conjecture that Theorem 2.1 holds in the setting of the rough Bergomi model,
i.e., for non-linear ψ as given in (2.3).
Remark 2.3 (Scheme). For the simple model problem (1.4) the numerical integration scheme (1.5)
is the left-point approximation. If the problem were not trivialized to a stochastic integral, then in
general X∆t

T would correspond to the Euler–Maruyama approximation for the underlying SDE and
we will refer to the scheme interchangeably as both.

In the next section, we introduce the notation and concepts that will be used to derive asymptotic
expansions for the weak error in powers of ∆t. In particular, we first use these expansions to derive
weak rate one for quadratic payoffs, see Theorem 4.1, in Section 4. Finally in Section 5, a proof,
following the approach used for Theorem 4.1 as a guide, is given for Theorem 2.1 obtaining weak
rate H + 1/2 for general payoff functions. Taken together, the statements of Theorems 2.1 and 4.1
imply Theorem 1.1.

3 Markovian extended state space formulation

We first consider a well-known affine representation for the driving fBm. Discretizing this affine
representation yields an extended state space for the dynamics of the underlying. A novelty of our

DOI 10.20347/WIAS.PREPRINT.2916 Berlin 2022
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10-1

10-2

10-1

(a) Quadratic ϕ, small H

10-1

10-3

10-2

10-1

100

(b) General (non-quadratic) ϕ, H = 0.5

Figure 2: (a) Surprisingly, the best fit line for the weak error for scheme (1.5) for the quadratic
payoff ϕ(x) = x2 is consistent with weak rate one even for small H, as found in Theorem 4.1. (b)
For Hurst parameter H = 1/2, the weak rate in Theorem 2.1 for scheme (1.5) is consistent with
the expected rate one (for standard Bm), as illustrated by the best fit slope for the weak error for
ϕ(x) = x3 and ϕ(x) = Heaviside(x) (cf. weak rate H+1/2 observed in Figure 1 for small H). Here
∆t ∈ [2−6, 2−1] and the reference mesh is ∆tref = 2−12.

10-1

10-1

100

Figure 3: The weak error for scheme (1.5) for the shifted cubic payoff ϕ(x) = (x+ 1.5)3 achieves a
higher rate than ϕ(x) = x3 as the shifted cubic is better approximated by a quadratic in the support
of the distribution for the underlying (cf. Figure 1). Here ∆t ∈ [2−6, 2−1] and the reference mesh is
∆tref = 2−12.
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approach is to utilize this formulation to obtain asymptotic expansions for the weak error. In particular,
we utilize the Markovian structure of the extended state space to show that (3.7) admits a Taylor
expansion in ∆t where the coefficients can be controlled independently of the choice of parameters
used to obtain the extended state space formulation.

3.1 Affine representations for small Hurst index

Over the Hurst parameter regime of interest, the fBm (1.2) admits an affine representation as a
linear functional of an infinite-dimensional family of Ornstein–Uhlenbeck (OU) processes ([10]).

Lemma 3.1 (Affine representation). For 0 < H < 1/2,

WH
t = c̃H

∫ ∞
0

Ỹt(θ)θ−(H+ 1
2 )dθ , (3.1)

where
Ỹt(θ) =

∫ t

0
e−θ(t−s)dWs

and c̃H is a positive and finite constant depending on H.

Although this statement is well-known we provide key details of the proof that will be referenced
later for the convenience of the reader. The full proof can be found in, e.g., [10, 19] (see also [11, 23,
18] where [11] gives a Markovian representation for H > 1/2, [23] a time-homogeneous Markovian
representation that is also defined for t ∈ (−∞, 0), and [18] gives bounds on tails and derivatives of
the affine representation).

Proof. Writing the kernel appearing in (1.2) as a Laplace transform,

(t− s)H−
1
2 = 1

Γ(1
2 −H)

∫ ∞
0

θ−(H+ 1
2 )e−θ(t−s)dθ ,

and then using stochastic Fubini one obtains the desired result,

WH
t =

∫ t

0

√
2H

Γ(1
2 −H)

∫ ∞
0

θ−(H+ 1
2 )e−θ(t−s)dθdWs

=
∫ ∞

0
c̃H

∫ t

0
e−θ(t−s)dWsθ

−(H+ 1
2 )dθ

= c̃H

∫ ∞
0

Ỹt(θ)θ−(H+ 1
2 )dθ ,

where c̃H :=
√

2H/Γ(1
2 −H) <∞.

A key tool in our proof of the weak rates will be to utilize the Markovian structure of a projection of
the fBm obtained by discretizing the affine representation Lemma 3.1. We observe that the integral
in (3.1) has a singularity at θ = 0, but behaves essentially like θ−(H+ 1

2 ) before Ỹt(θ) vanishes in the
limit of θ. To make (3.1) more amenable to quadrature we remove the singularity by introducing the
change of variable,

ϑ = θ−(H+ 1
2−1) = θ

1
2−H ,

thereby obtaining the representation

WH
t = cH

∫ ∞
0

Ỹt(ϑ2/(1−2H))dϑ = cH

∫ ∞
0

Yt(θ)dθ , (3.2)

DOI 10.20347/WIAS.PREPRINT.2916 Berlin 2022
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where the constant,

cH := c̃H
1
2 −H

=
√

2H
Γ(3

2 −H)
,

is an increasing function of H ∈ (0, 1
2) such that 0 < cH < 1. In (3.2),

Yt(θ) =
∫ t

0
e−(t−s)θpdWs (3.3)

is an OU process with speed of mean-reversion given by θp with a positive power

p := 2/(1− 2H) > 2 . (3.4)

One realization of Yt(θ) is plotted in Figure 4 together with an envelope illustrating plus/minus two
standard deviations of Yt(θ), computed using the formula for the covariance, i.e.

Cov(Yt(θ), Yt(η)) = 1
θp + ηp

(1− e−(θp+ηp)t) .

Replacing the integral in (3.2) with a quadrature rule in the parameter θ yields a projection of the
fBm onto a finite state space.

Figure 4: A sample of Yt(θ) in (3.3), at left, with speed of mean reversion θ2/(1−2H) for H =
0.07 plotted together with an envelope demonstrating plus/minus two standard deviations, at right,
(cf. time series data of asset prices and option derived price data indicate that H often takes values
close to 0.1 or even smaller [16]). Yt(θ) is a smooth analytic function of θ and discretizing in θ yields
an extended variable state space which we utilize in our analysis.

Lemma 3.2 (Approximate affine representation). For 0 < H < 1/2, let

ŴH
t = cH

NL∑
l=1

Y l
t ∆θl =: S(Y t) , (3.5)

depend on NL degrees of freedom Y t = (Y 1
t , . . . , Y

NL
t ) where Y l

t := Yt(θl) are OU process in (3.3)
with speed of mean-reversion θpl for p in (3.4). Then ŴH converges to WH as L,NL → ∞ in
L2 (Ω;C([0, T ])).
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Proof. We obtain an approximate affine representation of the fBm by discretizing (3.2) in two steps.
First, we divide the integral in (3.2) into two parts,

WH
t = cH

∫ L

0
Yt(θ)dθ + cH

∫ ∞
L

Yt(θ)dθ︸ ︷︷ ︸
=:RL(Yt)

,

where RL denotes the error in restricting the integral to a fixed computational domain L > 1.
Second, we consider a quadrature rule

WH
t = cH

NL∑
l=1

Yt(θl)∆θl +RNL(Yt) +RL(Yt) ,

with points 0 ≤ θ1 < · · · < θNL ≤ L and weights ∆θl = θl+1−θl where RNL denotes the quadrature
truncation error.

That ŴH converges to WH in the limit of L,NL essentially follows from the “strong rates” in [18].
The RNL can be made arbitrarily small as Yt(θ) is a smooth bounded (even analytic) function of
θ (e.g. see Figure 4), i.e. the regularity in θ allows one to approximate efficiently using arbitrarily
higher order quadrature rules if desired ([18]). The RL(Yt) is a mean zero Gaussian process, since
for all δ ∈ [0, H),

sup
L∈[1,∞]

Lδ
∥∥∥ sup
t∈[0,T ]

|RL(Yt)|
∥∥∥
Lp(Ω)

<∞ ,

guarantees integrability ([18, Lemma 1(b)]). Then RL can be made arbitrarily small for sufficiently
large L by observing that the variance,

Var[RL(Yt(θ))] = c2
H

∫ ∞
L

∫ ∞
L

Cov(Yt(θ), Yt(η))dθdη ≤ c2
H

2π
4

∫ ∞
L

θ1−pdθ = c2
H

π

2
L2−p

p− 2 ,

decays in L since p > 2.

We split the weak error (2.4) using the representations in Lemmas 3.1 and 3.2,

E
[
ϕ(XT (WH))− ϕ(XT (ŴH))

]
+ E

[
ϕ(XT (ŴH))− ϕ(X∆t

T (ŴH))
]

+ E
[
ϕ(X∆t

T (ŴH))− ϕ(X∆t
T (WH))

] (3.6)

where we emphasize the dependence of the underlying on the driving process. The first and third terms
both correspond to the error in approximating WH with ŴH and therefore vanish by Lemma 3.2.
Indeed, we have the following result.

Lemma 3.3. Assume that ϕ and ψ are Lipschitz, the latter uniformly in time, with Lipschitz constants
Kϕ and Kψ, respectively. Then the first and the third term of (3.6) converge to zero as NL, L→∞.
Regarding the third term, the convergence is uniform with respect to ∆t.

Proof. We consider the third term first. By basic probabilistic estimates using the Lipschitz property
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of ϕ and ψ, we have

∣∣∣E [ϕ(X∆t
T (ŴH))− ϕ(X∆t

T (WH))
]∣∣∣ ≤ Kϕ E

[(
X∆t
T (ŴH)−X∆t

T (WH)
)2
]1/2

= Kϕ E

(n−1∑
i=0

(
ψ(si, ŴH

si )− ψ(si,WH
si )
)
Wsi,si+1

)21/2

= Kϕ

(
n−1∑
i=0

E
[(
ψ(si, ŴH

si )− ψ(si,WH
si )
)2
]

(si+1 − si)
)1/2

≤ KϕKψ

(
n−1∑
i=0

E
[(
ŴH
si −W

H
si

)2
]

(si+1 − si)
)1/2

≤ KϕKψ

∥∥∥ŴH −WH
∥∥∥
L2(Ω;C([0,T ])

T 1/2 → 0

as NL, L→∞ by Lemma 3.2. The result for the first term follows in the same manner.

Remark 3.4 (Convergence rates in NL, L). Following [18, Theorem 1], convergence rates in NL and
L for the first and third terms of (3.6) could undoubtedly be established. Keep in mind, however,
that we only use the scheme X∆t

T (ŴH) as a tool for the analysis of the scheme X∆t
T (WH), i.e.,

with exact simulation of WH . Consequently, rates of the convergence in NL and L are not required
to get rates of convergence of X∆t

T (WH) in terms of ∆t. Indeed, with respect to the actual scheme
X∆t
T (WH) analyzed in this paper, the error contributions from the first and third terms vanish.

The sole remaining term in (3.6),

Err(T,∆t) := E[ϕ(XT (ŴH))]−E[ϕ(X∆t
T (ŴH))] , (3.7)

that gives the weak error in the Euler scheme, depends on the approximate affine representation in
Lemma 3.2. Indeed, suppose that we are given an error tolerance ε. By Lemma 3.3, we can find
L = L(ε,H, T, ϕ, ψ) and NL = NL(ε,H, T, ϕ, ψ) such that the first and third terms of (3.6) are
bounded by ε/3 each, the third one irrespectively of ∆t. Our task is now to choose time steps ∆t
such that also the second term is bounded by ε/3 for the given L,NL. In the next section, we will
obtain an extended variable system for the dynamics of the underlying that we will use to obtain an
asymptotic expansions for (3.7).
Remark 3.5 (Quadrature). In the interest of keeping our arguments constructive, we first fixed a
computational domain L and then introduced a quadrature based on NL points without specifying
the precise rule. One could also choose, e.g., a Gauss–Laguerre quadrature suitable for the half-line
thereby reducing the number of parameters to one (see also [18]). The splitting (3.7) still holds.

3.2 Forward Euler scheme for extended variable system

Substituting (3.5) into the underlying (2.1), yields

X̂t :=
∫ t

0
ψ
(
s, ŴH

s

)
dWs =

∫ t

0
ψ
(
s,S(Ys)

)
dWs , (3.8)

a finite dimensional Markovian approximation X̂t = Xt(ŴH) of the underlying Xt that appears in
the weak error (3.7). The dynamics of (3.8) are described by

Z = (X̂, Y 1, . . . , Y NL) ,
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a d-dimensional extended variable state space (d = NL + 1), solving the system

dZt = −b(Zt, t)dt+ σ(Zt, t)dWt , Z0 = 0 , (3.9)

with d-vectors b and σ given by,

b(Zt, t) := (0, Y 1
t θ

p
1, . . . , Y

NL
t θpNL) ,

σ(Zt, t) :=
(
ψ
(
t,S(Y t)

)
, 1, . . . , 1

)
,

where there is a single driving Brownian motion, i.e. (3.9) is a degenerate system.

For the interval [0, T ], we define the uniform time grid discretization ti := i∆t for i = 0, . . . , n− 1,
where n := T/∆t, and consider the Euler–Maruyama scheme for the underlying,

Xti+1 = Xti + ψ
(
ti,S(Y ti)

)
∆Wti , Xt0 = 0 , (3.10)

where
∆Wti := Wti,ti+1 = Wti+1 −Wti

are the increments of the driving Wiener process and where at each time step the vector of extended
variables Y · = (Y l

· )l=1,...,NL is sampled exactly. That is, for the Euler update at ti+1, one can form
the joint distribution

(Yτ ,∆Wτ )τ=t0,...,ti , (3.11)

an (NL+1)×(i+1)-dimensional Gaussian. The variance-covariance matrix for (3.11) can be obtained
using the known covariances Cov(Y k

ti , Y
l
tj ), Cov(Y k

ti ,∆Wtj ), and Cov(∆Wti ,∆Wtj ), and then the
target variables Y ti required in (3.10) can be sampled exactly from the joint distribution, e.g., using
the Cholesky decomposition. We extend X in (3.10) to all t ∈ [0, T ] by the interpolation,

X(t) =
∫ t

0
ψ
(
κs, Ŵ

H
κs

)
dWs =

∫ t

0
ψ
(
κs, cH

NL∑
l=1

∆θlY l
κs

)
dWs , (3.12)

where κs = ti if s ∈ [ti, ti+1) for each i = 0, . . . , n− 1.

Coupling the interpolant for the Euler scheme with the exact dynamics of the OU variables leads us
to define the “discretized” extended variable system Z = (X,Y 1, . . . , Y NL) embedded in the SDE

dZs = −b(Zs)ds+ σ(Zs)dWs , s ∈ [0, T ] , Z0 = 0 , (3.13)

with coefficients

b(Zs) = (0, Y 1
s θ

p
1, . . . , Y

NL
s θpNL) = b(Zs, s) ,

σ(Zs) =
(
ψ
(
κs,S(Yκs)

)
, 1, . . . , 1

)
= σ(Zκs , κs) .

For (3.13) and Section 3.2, we are able to formulate a corresponding Kolmogorov backward equation.
For a smooth and bounded payoff ϕ(ZT ) = ϕ(Z1

T ) = ϕ(X̂T ), we consider the value function,

u(z, t) := E[ϕ(ZT ) | Zt = z] = E[ϕ(X̂T ) | Zt = z] , (3.14)

that is the conditional expected value of the payoff at time t < T given the starting value Zt = z
for z = (z1, . . . , zd) = (x, y1, . . . , yNL). The associated Kolmogorov backward equation is given by

∂tu(z, t)− bj(z, t)Dju(z, t) + 1
2A

jk(z, t)Djku(z, t) = 0 , t < T , z ∈ Rd ,

u(z, T ) = ϕ(z1) ,
(3.15)
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where repeated indices indicate summation (over 1, . . . , d), bj = bj(z, t) is the jth component of
the d-vector,

b(z, t) := (0, z2θ
p
1, . . . , zNL+1θ

p
NL

) ,

and Ajk = Ajk(z, t) are elements of the d× d-matrix A = (σσ∗),

A11 = ψ(t,S(z))2 , A1j = Aj1 = ψ(t,S(z)) , j > 1 , Ajk = 1 , j, k > 1 , (3.16)

i.e. that contains ones except along the first row and column, where we slightly abuse notation,

S(z) := 0 · z1 + cH

d∑
j=2

zj∆θj+1 = cH

NL∑
l=1

yl∆θl .

Remark 3.6 (Kolmogorov backward equation). In the presentation of the Kolmogorov backward
equation, we assume necessary regularity conditions on ϕ, i.e. smoothness and boundedness, as
a matter of convenience. From the context of the problem this is not a strong assumption, see
Remark 2.2.

3.3 Local weak error representation

Throughout the remainder of this work we consider the case when ψ(s,WH
s ) = WH

s in (2.1).
Returning to (3.7), we obtain a representation for the weak error in terms of local errors. First, we
write the discretization error as a telescoping sequence in the value function (3.14),

Err(T,∆t) = E
[
ϕ(X̂T )− ϕ(Xtn)

]
= −

(
Eu(Ztn , T )−Eu(Zt0 , 0)

)
= −

n−1∑
i=0

E
[
u(Zti+1 , ti+1)− u(Zti , ti)

]
, (3.17)

using that
Eϕ(Xtn) = E

[
E[ϕ(Z1

T ) | ZT = Ztn ]
]

= Eu(Ztn , T )

and
Eϕ(X̂T ) = E

[
E[ϕ(Z1

T ) | Z0 = Zt0 ]
]

= Eu(Zt0 , 0) .

We then represent each difference appearing in (3.17) as a stochastic differential over a small time
increment. Over the interval [ti, ti+1), we have that

E[u(Zti+1 , ti+1)−u(Zti , ti)] = E
∫ ti+1

ti

du(Zs, s)

= E
∫ ti+1

ti

(
∂tu(Zs, s)− bj(Zs, s)Dju(Zs, s) + 1

2A
jk(Zti , ti)Djku(Zs, s)

)
ds ,

using Itō’s formula applied to (3.13) where repeated indices indicate summation over 1, . . . , d. Sub-
tracting off the Kolmogorov backward equation (3.15) evaluated at (Zs, s) then yields

E[u(Zti+1 , ti+1)− u(Zti , ti)] = 1
2 E

∫ ti+1

ti

(
Ajk(Zti , ti)−Ajk(Zs, s)

)
Djku(Zs, s)ds . (3.18)

We note that the non-zero terms correspond to differences along the first row and column of A in
(3.16), and thus (3.18) simplifies to the following expression for the local weak error in the value
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function,

E[u(Zti+1 , ti+1)− u(Zti , ti)] = 1
2 E

∫ ti+1

ti

(
A11(Zti , ti)−A11(Zs, s)

)
D11u(Zs, s)ds

+ E
∫ ti+1

ti

d∑
j=2

(
Aj1(Zti , ti)−Aj1(Zs, s)

)
Dj1u(Zs, s)ds

= −1
2 E

∫ ti+1

ti

S(Y ·)2
ti,sD11u(Zs, s)ds

−E
∫ ti+1

ti

S(Y ·)ti,s
d∑
j=2

Dj1u(Zs, s)ds ,

(3.19)

where we express the differences in components of A in terms of the increments of the approximate
fBm

S(Y ·)kti,s := S(Ys)k − S(Y ti)k , k = 1, 2 .
Observe that the derivatives of the value function appearing in (3.19) can be further resolved by
directly computing fluxes. Here we consider the simplification ψ(s, ŴH

s ) = ŴH
s in (2.1) (i.e. “linear

ψ”).

Lemma 3.7 (Fluxes). Let ψ(s,WH
s ) = WH

s . For the value function u(z, t) defined in (3.14),

Dβu(z, t) = c
|β|−β1
H E

[
ϕ(|β|)(X̂T )

NL∏
j=1

(∆θjM j
t,T )βj+1 | Zt = z

]
, (3.20)

for a multi-index β = (β1, . . . , βd) where

M j
t,T :=

∫ T

t
e−(r−t)θpj dWr , j = 1, . . . , NL .

Proof. Let Zt,z
s be the Markov process started at Zt = z with components

Zt,z
s = (X̂t,x

s ,Y t,y
s ) = (X̂t,x

s , Y t,y1
s , . . . , Y

t,yNL
s ) ;

here we drop the index Y t,yl = Y l;t,yl when the index is clear from the initial condition. We recall
that Y t,yl

s started at the value yl at time t is given by,

Y t,yl
s = e−(s−t)θp

l yl +
∫ s

t
e−(s−r)θp

l dWr , t < s , (3.21)

and, similarly, that X̂t,x
s is given by,

X̂t,x
s = x+

∫ s

t
S(Y t,y

r )dWr = x+
∫ s

t
cH

NL∑
l=1

Y t,yl
r ∆θldWr , t < s .

Working directly with (3.21) and Section 3.3, derivatives of the underlying with respect to the initial
conditions are given by

∂X̂t,x
s

∂x
= 1 ,

and, for l = 1, . . . , NL,

∂X̂t,x
s

∂yl
= cH∆θl

∫ s

t
e−(r−t)θp

l dWr =: cH∆θlM l
t,s .

The formula (3.20) follows as all higher derivatives of X̂t,x
s vanish.
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Returning to our expression for the local weak error in the value function (3.19) we apply (3.20)
thereby obtaining,

E[u(Zti+1 , ti+1)− u(Zti , ti)] = −1
2 E

∫ ti+1

ti

S(Y ·)2
ti,s E[ϕ′′(X̂T ) | Zs = Zs]ds

−
NL∑
l=1

E
∫ ti+1

ti

S(Y ·)ti,s E[ϕ′′(X̂T )cH∆θlM l
s,T | Zs = Zs]ds .

(3.22)

We introduce deterministic functions of z,

ν(z, s) := E[ϕ′′(X̂T ) | Zs = z] ,

and
ν̃(z, s) := E

[
ϕ′′(X̂T )

(
cH
∑
lM

l
s,T∆θl

)
| Zs = z

]
.

Rewriting (3.22) with this new notation leads to an expression for the local weak error in the value
function,

E[u(Zti+1 , ti+1)− u(Zti , ti)] = −1
2 E

∫ ti+1

ti

S(Y ·)2
ti,sν(Zs, s)ds−E

∫ ti+1

ti

S(Y ·)ti,sν̃(Zs, s)ds

=: J + J̃ ,

(3.23)

that will serve as our starting point for the convergence rates. Next we derive an expansion for (3.23)
in powers of ∆t from which we obtain convergence rates.

3.4 Taylor expansions and conditional independence

Starting with the local weak error (3.23), we derive asymptotic expansions for J (and J̃) in in powers
of ∆t by Taylor expanding ν (and ν̃) at Zti and applying a conditioning argument.

We observe that Z = (X,Y ) in (3.13), i.e. the interpolation (3.12) together with the exact dynamics
of the OU extended variables, is linear with respect to the increment over [ti, s],

Zs −Zti =
(
S(Y ti)Wti,s , Y

1
ti,s , . . . , Y

NL
ti,s

)
(3.24)

where
Wti,s := Ws −Wti and Y l

ti,s
:= Y l

s − Y l
ti , for s ∈ [ti, ti+1) ,

are increments of the driving Brownian motion and extended variable OU processes, respectively.
Using the linearization (3.24), the Taylor expansion of ν at Zti is,

ν(Zs, s) = ν(Zti , s) +
∑
β∈Iκ

Dβν(Zti , s) · (S(Y ti)Wti,s)β1(Y ti,s)β̂ +Rκ(ν) , (3.25)

for sums over multiindices in the set

Iκ =
{
β = (β1, β̂) = (β1, β2, . . . , βd) : 1 ≤ |β| ≤ κ− 1

}
where

(Y ti,s)β̂ =
NL∏
l=1

(Y l
ti,s)

βl+1 = (Y 1
ti,s)

β2 · · · (Y NL
ti,s )βd
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and the remainder is given in integral form by,

Rκ(ν) = 1
κ!

∑
|β|=κ

(S(Y ti)Wti,s)β1(Y ti,s)β̂
∫ 1

0
Dβν(ξτ , s)dτ ,

ξτ := Zti + τ
(
S(Y ti)Wti,s , Y

1
ti,s , . . . , Y

NL
ti,s

)
.

(3.26)

In (3.25), the terms ν and Dβν are deterministic functions of the Fti-measurable random variable
Zti and are therefore Fti-measurable. Analogous expressions hold for (3.25) and (3.26) with ν̃ in
place of ν.

Plugging the ν-expansion (3.25) into (3.23), we obtain an asymptotic expansion for J ,

2J = −E
∫ ti+1

ti

ν(Zti , s) E
[
S(Y ·)2

ti,s | Fti
]
ds

−
∑
β∈Iκ

E
∫ ti+1

ti

Dβν(Zti , s)S(Y ti)β1 E
[
S(Y ·)2

ti,s(Wti,s)β1(Y ti,s)β̂ | Fti
]
ds

−E
∫ ti+1

ti

E
[
S(Y ·)2

ti,sRκ(ν) | Fti
]
ds ,

(3.27)

by conditional independence. An expansion analogous to (3.27) holds for J̃ with ν̃ in place of ν. The
only terms that depend on ∆t in (3.27) (and in the analogously expansion for J̃) are the conditional
expectations involving products of the increments S(Y ·)2

ti,s or S(Y ·)ti,s together with powers ofWti,s

and Y ti,s. The key obtain weak error rates will be to show after isolating the order in ∆t using these
expansions that the expansion coefficients, which depend on the extended state space variables Y ,
are controlled with respect to summation in the parameter(s) θ.

In the next section, we observe that for quadratic payoffs, the expansions in ν and ν̃ truncate after
the first term since ν and ν̃ already depend on two derivatives of ϕ. In this special case, we derive
weak rate one in Theorem 4.1. In Section 5, we prove that in general the weak rate is H + 1/2, as
reported in Theorem 2.1, also using the asymptotic expansions approach.

4 Weak rate one for quadratic payoffs

Using the preceding machinery, we will now derive rates of convergence for the weak error via Taylor
expansions in powers of ∆t such that all terms stay integrable in θ. For quadratic payoff functions,
we obtain that the weak error is O(∆t), i.e. rate one in Theorem 4.1 below, which is supported by
numerical evidence, recall Figure 2a. The mechanism by which rate one is achieved can be observed
in the expansions; the expansion coefficients depend on derivatives of the payoff function and higher-
order terms that reduce the rate vanish when ϕ is quadratic.

4.1 Asymptotic expansion approach to weak rate one

Returning to the increment of the value functional (3.23), if ϕ ∈ P2, that is, is a quadratic polynomial,
then the derivatives of ν and ν̃ (as defined in Section 3.3) vanish and only the first terms in the
expansion (3.25) remain. Then,

J + J̃ = −1
2 E

∫ ti+1

ti

ν(Zti , s) E
[
S(Y ·)2

ti,s | Fti
]
ds−E

∫ ti+1

ti

ν̃(Zti , s) E
[
S(Y ·)ti,s | Fti

]
ds

=: 1
2J0 + J̃0 ,

(4.1)

and estimating J0 and J̃0 yields the weak rate corresponding to quadratic payoff functions.
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Theorem 4.1 (Weak rate quadratic payoff). Let ϕ ∈ P2 and let ψ(s, ŴH
s ) = ŴH

s , then

Err(T,∆t, ϕ) := E
[
ϕ(X̂T )− ϕ(Xtn)

]
. O(∆t) ,

i.e. the Euler method is weak rate one.

Proof. We estimate the terms J0 and J̃0 in (4.1) beginning with J̃0. Working directly with the
increments of the extended variables,

E
[
S(Y ·)ti,s | Fti

]
= −cH

NL∑
l=1

E
[
Y l
ti,s | Fti

]
∆θl = 0 ,

and thus we conclude

J̃0 = −E
∫ ti+1

ti

ν̃(Zti , s) E
[
S(Y ·)ti,s | Fti

]
= 0 .

In the case of quadratic ϕ, we observe that ‖ν‖∞ = O(1) and deterministic. From the definition of
Ys (e.g. see (3.21)), working again directly with the increments of the extended variables we have
that

S(Y ·)2
ti,s = −c2

H

NL∑
k,l=1

(Y k
tiY

l
ti − Y

k
s Y

l
s )∆θk∆θl

= −c2
H

NL∑
k,l=1

{
(1− e−(s−ti)(θpk+θp

l
))Y k

tiY
l
ti − e

−(s−ti)θpkY k
ti

∫ s

ti

e−(s−r)θp
l dWr

− e−(s−ti)θpl Y l
ti

∫ s

ti

e−(s−r)θp
kdWr −

∫ s

ti

e−(s−r)θp
kdWr

∫ s

ti

e−(s−r)θp
l dWr

}
∆θk∆θl .

From this the key conditional expectation term reduces to

E
[
S(Y ·)2

ti,s | Fti
]

= −c2
H

NL∑
l,k=1

∆θl∆θk(1− e−(s−ti)(θpl +θp
k
))
(
Y l
tiY

k
ti −

1
θp
l
+θp

k

)
. (4.2)

Only the component 1− e−∆t(θp
l
+θp

k
) will contribute to the estimate for the weak rate, provided that

the sums over θ in (4.2) converge.

Using (4.2) we find

J0 = −2c2
H

∫ ti+1

ti

NL∑
l,k=1

∆θl∆θk E[Y l
tiY

k
ti −

1
θp
l
+θp

k
](1− e−(s−ti)(θpl +θp

k
))ds

= −2c2
H

NL∑
l,k=1

∆θl∆θk E
[
Y l
tiY

k
ti −

1
θp
l
+θp

k

] ∫ ∆t

0
g(s)ds .

(4.3)

The integrand,
g(s) := 1− e−s(θ

p
l
+θp

k
) , (4.4)

is a function of s ∈ [0,∆t) such that g(0) = 0 and the associated Lipschitz constant K is given by,

K = ∂

∂s
g(s)

∣∣∣
s=0

= θpl + θpk .

Then, since |g(s)− g(0)| ≤ Ks, we have

|J0| ≤ 2c2
H

NL∑
l,k=1

∆θl∆θk
∣∣∣E[Y l

tiY
k
ti (θ

p
l + θpk)− 1

]∣∣∣ ∫ ∆t

0
sds .
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Computing the covariance appearing above,

E[Y l
tiY

k
ti ] =

∫ ti

0
e−(ti−r)(θpl +θp

k
)dr = 1− e−ti(θ

p
l
+θp

k
)

θpl + θpk
,

we see that

|J0| ≤ 2c2
H

(NL∑
l=1

∆θle−tiθ
p
l

)2
∆t2 ≤ c2

H

p2 Γ
(1
p

)2
t
−2/p
i ∆t2 . O(∆t2) , (4.5)

since
NL∑
l=1

∆θle−tiθ
p
l ≤

∫ L

0
e−tiθ

p
l dθl ≤

∫ ∞
0

e−tiθ
p
l dθl = 1

p
Γ
(1
p

)
t
−1/p
i .

Importantly, t−2/p is integrable on [0, T ] when p > 2 and therefore the t−2/p
i appearing in (4.5) will

remain uniformly bounded when summing over ti in (3.17).

Turning now to the telescoping representation of the weak error (3.17) and using (4.5), we obtain
the desired rate

|Err(T,∆t, ϕ)| =
∣∣∣n−1∑
i=0

E
[
u(Zti+1 , ti+1)− u(Zti , ti)

]∣∣∣
=
∣∣∣n−1∑
i=0

E
∫ ti+1

ti

ν(Zti , s) E
[
S(Y ·)2

ti,s | Fti
]
ds
∣∣∣

≤ c2
H

p2 Γ
(1
p

)2 n−1∑
i=0

∆t2t−2/p
i

≤ c2
H

p(p− 2)Γ
(1
p

)2
T (p−2)/p∆t

≤ T 2H∆t .

Although initially surprising that the rate depends on the payoff, the Taylor expansion for the weak
error provides insight into this behavior. The expansion coefficients in (3.25) depend on increasingly
higher order derivatives of the payoff function ϕ through derivatives of ν and ν̃ (in Section 3.3).
Unlike for quadratic ϕ where terms in (3.25) vanish, the higher order derivative terms persist for
general payoff functions. Oddly, it is only the next higher term (compared to those involved in the
expansion for quadratic ϕ) that reduces the overall rate for general ϕ. In this context, one might
hope to obtain an effective rate that is independent of H for payoff functions well approximated by
quadratic polynomials.

4.2 A simpler proof for weak rate one

Before moving on to the proof of the main result in Section 5, we first present a simpler proof of
weak rate one for quadratic payoff functions that is also applicable to nonlinear ψ. This proof as well
as the weak rate itself was communicated to us by A. Neuenkirch [24].

Lemma 4.2. Suppose that ψ ∈ C1
pol, i.e. ψ ∈ C1 and ψ, ∂tψ, ∂xψ have polynomial growth, and

ϕ(x) = x2. Then ∣∣∣E[ϕ(XT )− ϕ(X̃T )
]∣∣∣ = O(∆t) ,

where
X̃T :=

∫ T

0
ψ(s,WH

κs)dWs ,

for κs = ti if s ∈ [ti, ti+1) for each i = 0, . . . , n− 1.
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Proof. By the Itō isometry, we have

E [ϕ (XT )] =
∫ T

0
E
[
ψ2(s, sHWH

1 )
]

ds =
∫ T

0
g(s)ds ,

E
[
ϕ(X̃T )

]
=
∫ T

0
E
[
ψ2(κs, κHs WH

1 )
]

ds =
∫ T

0
g(κs)ds ,

where

g(s) := E
[
ψ2(s, sHV )

]
, V ∼ N(0, 1) .

Note that g is differentiable with integrable derivative and we assume the time derivative of ψ is
bounded. Indeed,

g′(t) = 2 E
[
∂tψ(t, tHV )

]
+ 2 E

[
∂xψ(t, tHV )V

]
tH−1 ,

which is of order tH−1 and, hence, integrable.

Setting

ζt := min{ti | ti ≥ t} ,

we conclude with∣∣∣∣∣
∫ T

0
g(s)ds−

∫ T

0
g(κs)ds

∣∣∣∣∣ ≤
∫ T

0

∣∣∣∣g(κs) +
∫ s

κs
g′(t)dt− g(κs)

∣∣∣∣ ds
≤
∫ T

0

∫ s

κs

∣∣g′(t)∣∣ dtds
=
∫ T

0

∫ ζt

t
ds
∣∣g′(t)∣∣ dt

≤ max
i=0,...,n−1

|ti+1 − ti|
∥∥g′∥∥L1([0,T ]) .

For simplicity, we assumed that ψ(s, ŴH
s ) = ŴH

s in Theorem 4.1. In contrast Lemma 4.2 is applicable
to any ψ including nonlinear functions. However, it is not clear how to extend the approach of the
simple proof for Lemma 4.2 to more general payoff functions ϕ. In the next section we use the
asymptotic expansions to prove the main result, Theorem 2.1, obtaining the weak rate H + 1/2 for
general payoff functions for ψ(s, ŴH

s ) = ŴH
s .

5 Proof of Theorem 2.1

Our proof of Theorem 2.1 follows the expansion approach used to obtain rate one for quadratic
payoffs in Section 4.1. We derive asymptotic expansions in powers of ∆t for increments of the value
function in (3.23), i.e., for J and J̃ . For the case of general payoff functions, this requires two rounds
of Taylor expansions. The first round expands ν and ν̃ at Zti using (3.25), as was done in Section 4.1.
Then after applying a conditioning argument, we explicitly deal with correlations by expressing our
expansions in terms of the extended variables and making a second round of Taylor expansions with
respect to select components of Y ti . Again, a key point in the proof is that all the terms in the
expansions are controlled with respect to θ.

Returning to the local weak error (3.19), we use the ν-expansion (3.25) to find that J , the term
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corresponding to the increment S(Y ·)2
ti,s, up to order κ = 3 is given by,

2J = −E
∫ ti+1

ti

ν(Zti , s) E
[
S(Y ·)2

ti,s | Fti
]
ds

−E
∫ ti+1

ti

D1ν(Zti , s)S(Y ti) E
[
S(Y ·)2

ti,sWti,s | Fti
]
ds

−
d∑
j=2

E
∫ ti+1

ti

Djν(Zti , s) E
[
S(Y ·)2

ti,sY
j−1
ti,s | Fti

]
ds

−E
∫ ti+1

ti

D11ν(Zti , s)S(Y ti)2 E
[
S(Y ·)2

ti,s(Wti,s)2 | Fti
]
ds

− 2
d∑
j=2

E
∫ ti+1

ti

Dj1ν(Zti , s)S(Y ti) E
[
S(Y ·)2

ti,sWti,sY
j−1
ti,s | Fti

]
ds

−
d∑

j,k=2
E
∫ ti+1

ti

Djkν(Zti , s)
[
S(Y ·)2

ti,sY
j−1
ti,s Y

k−1
ti,s | Fti

]
ds

−E
∫ ti+1

ti

E
[
S(Y ·)2

ti,sR3(ν) | Fti
]
ds

=: J0 + J1,0 + J1,1 + J2,0 + J2,1 + J2,2 −E
∫ ti+1

ti

E
[
S(Y ·)2

ti,sR3(ν) | Fti
]
ds . (5.1)

Here J0 is as before and the Jk,i involve kth order derivatives of ν that do not necessarily vanish
for general payoff functions ϕ (here the second index i ≤ k is the number of the derivatives that
correspond to extended variable directions and hence the number of sums over extended variable
indices). Analogously, for J̃ , the term corresponding to the increment S(Y ·)ti,s, we have,

J̃ = J̃0 + J̃1,0 + J̃1,1 + J̃2,0 + J̃2,1 + J̃2,2 −E
∫ ti+1

ti

E
[
S(Y ·)ti,sR3(ν̃) | Fti

]
ds , (5.2)

with ν̃ in place of ν and the increment S(Y ·)ti,s in place of S(Y ·)2
ti,s compared to (5.1). In the

sequel, we will simply write

Jk =
k∑
i=0

Jk,i and J̃k =
k∑
i=0

J̃k,i , k > 0 , (5.3)

for the sum of all terms involving kth order derivatives of ν and ν̃. In what follows, we first take the
fBm view and assume deterministic ‖Dν‖∞ = O(1) and similarly for ν̃. Since the terms corresponding
to ν and ν̃ contribute only to the constant and not to the rate, this assumption allows us to easily
deduce the order in ∆t, namely, that terms Jk are at least order O(∆tH+3/2). Expressing the Jk in
extended variables, as in (4.3), it is then possible to carrying out a second round of Taylor expansions
to demonstrates that the constants are controlled.

5.1 Estimate for general payoffs: J0 is O(∆tH+3/2)

In Section 4.1, ν is deterministic and O(1) since it depends on two derivatives of the quadratic payoff
ϕ. Continuing as in (4.2), our starting point for the full estimate for J0 is

J0 = −c2
H E

∫ ti+1

ti

ν(Xti ,Y ti ; s)
NL∑
k,l=1

∆θk∆θl
[
Y k
tiY

l
ti −

1
θp
k
+θp

l

]
g(s)ds , (5.4)

where we emphasize the dependence of ν on Y ti . We define an auxiliary function,

fkls (Y k
ti , Y

l
ti) := E

[
ν(Xti ,Y ti ; s) | Y k

ti , Y
l
ti

]
, (5.5)
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and expand fkls in a Taylor series at zero,

fkls (Y k
ti , Y

l
ti) = fkls (0) +

∑
α∈Jαmax

1
|α|!∂

α
klf

kl
s (0)

(
Y k
tiY

l
ti

)α +Rαmax(Y k
ti , Y

l
ti) , (5.6)

for a set of multiindices Jαmax = {α = (α1, α2) : 1 ≤ |α| < αmax} where we use the notation,

∂αl1...lj = ∂α1
l1
. . . ∂

αj
lj
, α = (α1, . . . , αj) ,

(as opposed to D) to emphasize that the derivatives are taken with respect to yl directions only. The
remainder is given by,

Rαmax(Y k
ti , Y

l
ti) :=

∑
|α|=αmax

1
αmax!∂

α
klf

kl
s (ξk, ξl)(Y k

tiY
l
ti)
α , (5.7)

for an intermediate point (ξk, ξl).

Plugging this second round of Taylor expansions (5.6) into (5.4), yields

J0 = −c2
H

(
NL∑
k,l=1

E
[
Y k
tiY

l
ti −

1
θp
k
+θp

l

] ∫ ti+1

ti

fkls (0)g(s− ti)ds∆θk∆θl

+
∑
α∈J

1
|α|!

NL∑
k,l=1

E
[
(Y k
ti )

α1(Y l
ti)
α2
(
Y k
tiY

l
ti −

1
θp
k
+θp

l

)] ∫ ti+1

ti

∂αklf
kl
s (0)g(s− ti)ds∆θk∆θl

+
NL∑
k,l=1

E
[
Rαmax(Y k

ti , Y
l
ti)
(
Y k
tiY

l
ti −

1
θp
k
+θp

l

)]
∆θk∆θl

∫ ti+1

ti

g(s− ti)ds
)
,

(5.8)

where g(s) as in (4.4). For the remainder term in (5.8), we use the Hölder regularity of the fBm to
estimate the derivative of the auxiliary function evaluated at an intermediate point,

NL∑
k,l=1

E
[
|Rαmax(Y k

ti , Y
l
ti)||Y

k
ti ||Y

l
ti |
]
∼ E

[
|WH

ti,ti+1 |
αmax

]
. ∆tHαmax .

From this last expression, the number of terms in the auxiliary expansion, αmax, is finite and the
contribution from the remainder can be made to be order one by choosing

αmax := d 1
H e .

For the remaining terms in (5.8), the fkl can be estimated by the payoff ϕ (see Lemma B.1 in
Appendix B) and therefore we write for convenience that fkl and all derivatives are bounded by a
constant Q,

fkl ∈ Cαmax
b and ‖Dαfkl‖∞ ≤ Q a.s. (5.9)

To estimate the first term in (5.8), we use the Lipschitz argument from the proof of weak rate one
for quadratic payoffs in (4.4) together with (5.9), and find that,

c2
HQ∆t2

NL∑
k,l=1

|E[Y k
tiY

l
ti(θ

p
k + θpl )− 1]|∆θk∆θl ≤

c2
H

2p2QΓ
(1
p)2t

−2/p
i ∆t2 , (5.10)

for a constant proportional to t−1/p
i as in (4.5). The key to obtaining the rate in ∆t for terms of

higher order in α again depends on demonstrating summability in k and l, as in (5.10). The higher
order terms in (5.8) are of the form,{

E
[
(Y k
ti )

α1+1(Y l
ti)
α2+1

]
−E

[
(Y k
ti )

α1(Y l
ti)
α2
]

1
θp
k
+θp

l

}∫ ∆t

0
∂αklfs−ti(0)g(s)ds ,
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and we use Isserlis’ theorem to expand the expectations into products of covariances of the extended
variables. For |α| odd, e.g. when |α| = 1 as α1 = 1 , α2 = 0 or α1 = 0 , α2 = 1, then the term
is zero by Isserlis’. For |α| even, we use the exact expression for the covariance and then check
the summability in k and l. In contrast to (5.10), for these higher order terms we obtain the rate
O(∆tH+3/2).

For example when |α| = 2, we apply Isserlis’ theorem and obtain a term containing,

E[Y k
tiY

k
ti ] E[Y l

tiY
l
ti ] + 2 E[Y k

tiY
l
ti ]

2 −E[Y k
tiY

l
ti ]

1
θp
k
+θp

l

= 1− e−2θp
k
ti

2θpk
1− e−2θp

l
ti

2θpl
+ 2

(
1− e−(θp

k
+θp

l
)ti

θpk + θpl

)2

− 1− e−(θp
k
+θp

l
)ti

(θpk + θpl )2 .
(5.11)

Using the Lipschitz argument as in (5.10), the final two terms in (5.11), containing powers of (θpk+θpl )
in the denominator, are summable in k and l yielding the estimate O(∆t2). Neglecting ∂αfs, we
focus on the contribution to J0 from first term in (5.11),

F (θpk)F (θpl )
∫ ∆t

0
(1− e−s(θ

p
k
+θp

l
))ds∆θk∆θl ≤ F (θpk)F (θpl )

(
1− e−(θp

k
+θp

l
)∆t
)

︸ ︷︷ ︸
=:G(θp

k
,θp
l
,∆t)

∆t∆θk∆θl

where we introduce the notation

F (u) := 1− exp(−2uti)
2u .

We thus consider the sum ∑
(k,l)∈N2

G(θpk, θ
p
l ,∆t)∆t∆θk∆θl (5.12)

and obtain an upper bound C̃∆tH+3/2, for a constant independent of ∆t, by partitioning according
to the four cases below; we let C,C ′, C ′′ > 0 and α ∈ (0, 1) be constants that are independent of
∆t.

For the first case, we consider

N1 := {(k, l) ∈ N2 : θpk + θpl ≤ C} .

Since 1− exp(−u) ≤ min(1, u), for u > 0, the summand in (5.12) is bounded by

G(θpk, θ
p
l ,∆t) ≤ t

2
iC∆t ,

for (k, l) ∈ N1, and thus ∑
(k,l)∈N1

G(θpk, θ
p
l ,∆t)∆t∆θk∆θl = O(∆t2) .

In the second case, we consider

N2 := {(k, l) ∈ N2 : C ≤ θpk + θpk ≤ C
′∆t−α} .

For (k, l) ∈ N2, we estimate

1− e−(θp
k
+θp

l
)∆t ≤ 1− e−C′∆t1−α ≤ C ′∆t1−α

and also
F (θp) = 1− e−2θpti

2θp ≤ min(ti, 1
2θp ) =: m(θp) ,
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so that the summand in (5.12) is bounded by

G(θpk, θ
p
l ,∆t) ≤ C

′∆t1−αm(θpk)m(θpl ) .

Although N2 grows as ∆t → 0, the order one contribution from m is overtaken by the decay in θ,
and thus, ∑

(k,l)∈N2

G(θpk, θ
p
l ,∆t)∆t∆θk∆θl = O(∆t2−α) .

In the third case, we let

N3 := {(k, l) ∈ N2 : C ′∆t−α ≤ θpk + θpl ≤ C
′′∆t−1} ;

this is the most critical case, where our estimate must be sharpest. In paricular, first observe that the
function 1 − exp(−(θpk + θpl )∆t) varies from O(∆t1−α) for values θpk + θpl = O(∆t−α) up to O(1)
for values θpk + θpl = O(∆t−1) and we exploit this variation to achieve our estimate. Recalling that
1− exp(−u) ≤ u, for 0 ≤ u ≤ 1, then for (k, l) ∈ N3 (taking C ′ = 1) we bound

1− e−(θp
k
+θp

l
)∆t ≤ (θpk + θpl )∆t .

Thus, ∑
(k,l)∈N3

G(θpk, θ
p
l ,∆t)∆t∆θk∆θl ≤

∑
(k,l)∈N3

m(θpk)m(θpl )(θ
p
k + θpl )∆t

2∆θk∆θl

so that we are left to estimate the quantity on the right-hand side which blows up with a certain
rate on ∆t as ∆t→ 0. We bound the sum by the corresponding integral, i.e.,∑

(k,l)∈N3

m(θpk)m(θpl )(θ
p
k + θpl )∆θk∆θl ≤

∫∫
∆t−α≤θp

k
+θp

l
≤∆t−1

θj≥0

θpk + θpl
max(t−1

i , θpk) max(t−1
i , θpl )

dθkdθl

and further divide the right-hand side above into three integrals, I1, I2, and I3, according to the
regions

R1 := {∆t−α ≤ θpj ≤ ∆t−1 for j = k, l} ,
R2 := {∆t−α ≤ θpk ≤ ∆t−1 and 0 ≤ θpl ≤ ∆t−α} ,
R3 := {∆t−α ≤ θpk + θpl ≤ ∆t−1 and 0 ≤ θpj ≤ ∆t−α for j = k, l} ,

respectively. Then,

I1 ≤
∫∫
R1

(
θ−pl + θ−pk

)
dθkdθl

≤ 2
∆t−1/p∫

∆t−α/p

dθk
θpk

= −θ
−(p−1)
k

p− 1

∣∣∣∣∣
∆t−1/p

∆t−α/p
. ∆tα(1−1/p) ,

and we note that ∆tα(1−1/p) → 0 as ∆t→ 0, since 0 < α < 1 and p > 2, so this is not the dominant
term. For R2,

I2 .

∆t−1/p∫
∆t−α/p

∆t−α/p∫
0

(θpk + θpl )
max(t−1

i , θpk) max(t−1
i , θpl )

dθldθk

.

∆t−1/p∫
∆t−α/p

∆t−α/p∫
t
−1/p
i

θpk + θpl
θpkθ

p
l

dθldθk +
t
−1/p
i∫
0

∆t−1/p∫
∆t−α/p

θpk + θpl
θpkt
−1
i

dθkdθl .
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The first integral is equal to

∆t−1/p∫
∆t−α/p

∆t−α/p∫
t
−1/p
i

(θ−pl + θ−pk )dθkdθl = 2∆t−α/p
∆t−1/p∫

∆t−α/p

θ−pk dθk = ∆t−α/p θ−p+1

−p+ 1

∣∣∣∣∣
∆t−1/p

∆t−α/p
= ∆tα(1−2/p) ,

which we note converges to 0 as ∆t → 0 since p > 2, 0 < α < 1 and therefore this is not the
dominant term. On the other hand, the second integral is equal to

t
−1/p
i∫
0

∆t−1/p∫
∆t−α/p

(
1
t−1
i

+ θpl
θpkt
−1
i

)
dθkdθl = O(∆t−1/p) +O(1)

 ∆t−1/p∫
∆t−α/p

θ−pk dθk

 ,

which diverges as ∆t→ 0 and therefore this is the dominant term. For R3,

I3 .

∆t−α/p∫
0

∆t−α/p∫
0

(θpk + θpl )
max(t−1

i , θpk) max(t−1
i , θpl )

dθldθk ,

can be seen to converge to zero as ∆t → 0, following similar reasoning to I2, and is therefore not
the dominant term. In conclusion, we get that the contribution from (k, l) ∈ N3 (after summing over
ti) is

∆t1−1/p = ∆tH+1/2 ,

and it seems that we can take α as close to zero as we want.

In the fourth and final case, we consider

N4 = {(k, l) ∈ N2 : C ′′∆t−1 ≤ θpk + θpl } ,

where we bound the summand in (5.12),

G(θpk, θ
p
l ,∆t) ≤ m(θpk)m(θpl ) ,

for (k, l) ∈ N4. Now estimating the sum by the corresponding integral yields,
∑

(k,l)∈N4

∆θk∆θl
max(t−1

i , θpk) max(t−1
i , θpl )

.
∫∫

θp
k
+θp

l
≥C′′∆t−1

θj≥0

dθkdθl
max(t−1

i , θpk) max(t−1
i , θpl )

,

and we again consider three integrals, I1, I2 and I3, now corresponding to the regions

R′1 := {θpj ≥ ∆t−1 for j = k, l} ,
R′2 := {θpk ≥ ∆t−1 and θpl ≤ ∆t−1} ,
R′3 := {θpk + θpl ≥ ∆t−1 and θpj ≤ ∆t−1 for j = k, l} ,

respectively. Then,

I1 =
∫∫
R′1

θ−pk θ−pl dθkdθl =

 ∞∫
∆t−1/p

θ−pk dθk


2

=
(
− θ−p+1

−p+ 1

∣∣∣∣∣
∞

∆t−1/p

)2

= O(∆t2(1−1/p)) ,

I2 = 2
∫∫
R′2

dθkdθl
θpk max(t−1

i , θpl )
= O(∆t1−1/p)

(
tit
−1/p
i + · · ·

)
︸ ︷︷ ︸

O(1)

= O(∆t1−1/p) ,
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and

I3 '
∫∫
R′3

dθkdθl
max(θpk, t

−1
i ) max(θpl , t

−1
i )
.

∆t−1/p∫
0

dθl
max(θpl , t

−1
i )︸ ︷︷ ︸

O(1)

∆t−1/p∫
1
2 ∆t−1/p

dθk
max(θpk, t

−1
i )︸ ︷︷ ︸

O(∆t(p−1)/p)

= O(∆t1−1/p) .

Then taking the three integrals into account,∑
(k,l)∈N4

G(θpk, θ
p
l ,∆t)∆t∆θk∆θl = O(∆t1−1/p)∆t ,

and we observe that the estimate in this region does not depend on α and therefore, recalling
p = 2/(1− 2H), we obtain ∆tH+1/2 as the rate (after summing over ti).

Altogether, our full estimate for J0 is then

|J0| . C(H,Q,αmax, ti)∆tH+3/2 . O(∆tH+3/2) , (5.13)

for a constant C independent of ∆t. In the next section, we consider estimates for the terms J1 and
J̃1 in (5.1) and (5.2). Inspired by the observation that we obtain the same rate in (5.10) as in (4.5)
with only the constant changing, we first work directly with the fBm view to easily ascertain the
rate. However, to obtain the full estimate, we proceed as in this section by utilizing the structure of
the affine approximation to make a second round of Taylor expansions and subsequently observing
that the coefficients are controlled.

5.2 Estimate for general payoffs: J1 and J̃1 are also O(∆tH+3/2)

For the term J1,0 in (5.1),

J1,0 = −E
∫ ti+1

ti

D1ν(Xti ,Y ti ; s)S(Y ti) E
[
S(Y ·)2

ti,sWti,s | Fti
]
,

we first determine the order in ∆t which arises from the conditional expectation. Working directly
with the increment,

S(Y ·)2
ti,s = ŴH

ti,s(Ŵ
H
s + ŴH

ti ) = ŴH
ti,s(Ŵ

H
ti,s + 2ŴH

ti ) ,

we take the fBm view and express

ŴH
ti,s ∼W

H
ti,s =

∫ ti

0
K(s− r)−K(ti − r)dWr︸ ︷︷ ︸

:=V Hti (s)

+
∫ s

ti

K(s− r)dWr ,

using the power law kernel, i.e. K(r) =
√

2HrH−1/2, (inverse discrete Laplace transform). We
observe

E[(WH
ti,s)

2Wti,s | Fti ] = 2V H
ti (s)

∫ s

ti

K(s− r)dr ,

E[WH
ti,sWti,s | Fti ] =

∫ s

ti

K(s− r)dr ,

and
∣∣E[WH

ti V
H
ti (s)]

∣∣ =
∣∣∣∣∫ ti

0
K(ti − r)K(s− r)−K2(ti − r)dr

∣∣∣∣ ≤ ∣∣∣∣∫ ti

0
K2(ti − r)dr

∣∣∣∣ ∼ t2Hi ≤ 1 .
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Then,

J1,0 = −E
∫ ti+1

ti

D1ν(Xti ,Y ti ; s)ŴH
ti E

[
ŴH
ti,s(Ŵ

H
ti,s + 2ŴH

ti )Wti,s | Fti
]
ds

∼= −E
∫ ti+1

ti

D1ν(Xti ,Y ti ; s)WH
ti

(
E[(WH

ti,s)
2Wti,s | Fti ] + 2WH

ti E[WH
ti,sWti,s | Fti ]

)
ds

∼= −2 E
∫ ti+1

ti

D1ν(Xti ,Y ti ; s)WH
ti (V H

ti (s) +WH
ti )
∫ s

ti

K(s− r)dr︸ ︷︷ ︸
∝(s−ti)H+1/2

ds , (5.14)

which suggests J1,0 = O(∆tH+3/2) provided the coefficient is controlled. The order of J1,0 in ∆t is
asymptotically exact in (5.14), i.e. there is only estimation of the constant.

In general, D1ν is random and depends on Y ti . This changes the coefficient in the estimate but not
the order in ∆t, as was observed by comparing (5.13) to (4.5). Following Section 5.1, we proceed to
estimate the coefficient by making a second round of Taylor expansions by introducing an auxiliary
function f . In this spirit, we start directly from (5.14), noting that

V H
ti (s) ∼ V̂ H

ti (s) := cH

NL∑
l=1

Y l
ti(e
−θp

l
(s−ti) − 1)∆θl ,

since ∫ ti

0
K(s− r)dWr =

∫ ti

0

√
2H(s− r)H−1/2dWr

=
∫ ti

0

√
2H

Γ(1
2 −H)

∫ ∞
0

θ−(H+1/2)e−θ(s−r)dθdWr

= c̃H

∫ ∞
0

θ−(H+1/2)e−θ(s−ti)
∫ ti

0
e−θ(ti−r)dWrdθ

= c̃H

∫ ∞
0

θ−(H+1/2)e−θ(s−ti)Ỹtidθ

≈ cH
NL∑
l=1

Y l
tie
−θp

l
(s−ti)∆θl .

Rewriting J1,0 directly in terms of the extended variables, we obtain

J1,0 = −2 E
∫ ti+1

ti

D1ν(Xti ,Y ti ; s)ŴH
ti (V̂ H

ti + ŴH
ti )g(s)ds

= −2c2
H

NL∑
k,l=1

∫ ti+1

ti

E
[
D1ν(Xti ,Y ti ; s)Y k

tiY
l
ti

]
e−θ

p
l
(s−ti)g(s)ds∆θk∆θl ,

where
g(s) :=

∫ s

ti

K(s− r)dr ∝ (s− ti)H+1/2 .

Recalling that ν(Zti , s) = ν(Xti ,Y ti ; s) is a deterministic function of Zti , we further write

E[D1ν(Xti ,Y ti ; s)Y k
tiY

l
ti ] = E

[
E[D1ν(Xti ,Y ti ; s) | Y k

ti , Y
l
ti ]Y

k
ti , Y

l
ti

]
,

where we define a new auxiliary function (here ϕ is already higher order compared to (5.5))

fkls (Y k
ti , Y

l
ti) := E

[
D1ν(Xti ,Y ti ; s) | Y k

ti , Y
l
ti

]
.
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We Taylor expand fkl at zero, yielding

J1,0 = −2c2
H

(
NL∑
k,l=1

E[Y k
tiY

l
ti ]
∫ ti+1

ti

fkls (0)e−θ
p
l
(s−ti)g(s)ds∆θk∆θl

+
∑

α∈Jαmax

1
|α|!

NL∑
k,l=1

E
[
(Y k
ti )

α1+1(Y l
ti)
α2+1] ∫ ti+1

ti

∂αklf
kl
s (0)e−θ

p
l
(s−ti)g(s)ds∆θk∆θl

+
NL∑
k,l=1

E
[
Rαmax(Y k

ti , Y
l
ti)Y

k
tiY

l
ti

] ∫ ti+1

ti

e−θ
p
l
(s−ti)g(s)ds∆θk∆θl

)

where Jαmax = {α = (α1, α2) : 1 ≤ |α| < αmax} and the remainder Rαmax is given in the Lagrange
form as in (5.7). Since fkl is bounded by ϕ (see Lemma B.1 in Appendix B), we write the bound in
terms of Q, as in (5.9), to obtain

|J1,0| . C(H,Q,αmax)t1−2/p
i ∆tH+3/2 . O(∆tH+3/2) ,

where we use Isserlis’ theorem and the explicit form of the covariances, e.g.,

NL∑
k,l=1

E[Y k
tiY

l
ti ]∆θk∆θl =

NL∑
k,l=1

∆θk∆θl
θpk + θpl

(1− e−(θp
k
+θp

l
)ti)

≤ 2π
4

∫ ∞
0

θ1−p(1− e−θpti)dθ

≤ 2π
4

1
p− 1Γ(2

p)t1−2/p
i ,

to observe that the sums over θk and θl converge independently of L,NL.

The term J1,1 includes increments of OU processes arising from the extended variables. Taking the
fBm view using the power law kernel,

J1,1 = −
NL∑
j=1

E
∫ ti+1

ti

Dj+1ν(Xti ,Y ti ; s) E
[
ŴH
ti,s(Ŵ

H
ti,s + 2ŴH

ti )Y j
ti,s | Fti

]
ds

∼= −
NL∑
j=1

E
∫ ti+1

ti

Dj+1ν(Xti ,Y ti ; s)
(
(V H
ti (s))2 + 2WH

ti V
H
ti (s)

)
Y j
ti(e
−θpj (s−ti) − 1)ds (5.15a)

−
NL∑
j=1

E
∫ ti+1

ti

Dj+1ν(Xti ,Y ti ; s)(2V H
ti (s) + 2WH

ti )
∫ s

ti

e−θ
p
j (s−r)K(s− r)drds (5.15b)

−
NL∑
j=1

E
∫ ti+1

ti

Dj+1ν(Xti ,Y ti ; s)Y
j
ti(e
−θpj (s−ti) − 1)

∫ s

ti

K2(s− r)drds , (5.15c)

since

E[(WH
ti,s)

2Y j
ti,s | Fti ] = Y j

ti(e
−θpj (s−ti) − 1)

∫ s

ti

K2(s− r)dr + 2V H
ti (s)

∫ s

ti

K(s− r)e−θ
p
j (s−r)dr

+(V H
ti (s))2Y j

ti(e
−θpj (s−ti) − 1)

and
E[WH

ti,sY
j
ti,s | Fti ] =

∫ s

ti

e−θ
p
j (s−r)K(s− r)dr + V H

ti (s)Y j
ti(e
−θpj (s−ti) − 1) .

We examine the contributions to the rate in ∆t from each of the terms (5.15a) to (5.15c); after
integrating over s we find that (5.15a) yields O(∆t2), (5.15b) yields O(∆tH+3/2), and (5.15c) yields
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O(∆t2H+2). Since (5.15a) and (5.15c) are higher order in ∆t we examine only (5.15b), where we
note ∫ s

ti

eθ
p
j (s−ti)K(s− r)dr = e−θ

p
j s
√

2H
∫ s

ti

eθ
p
j r(s− r)H−1/2dr

=
√

2Hθ−(H+1/2)p
j

[
Γ
(
H + 1

2 , (s− r)θ
p
j

)]r=s
r=ti

=
√

2Hθ−(H+1/2)p
j

[
es−r(s− r)H+1/2Γ

(
H + 1/2, θpj

)]r=s
r=ti

= −
√

2Hθ−(H+1/2)p
j Γ

(
H + 1

2 , θ
p
j

)
es−ti(s− ti)H+1/2

(5.16)

by a change of variable in the argument of the incomplete gamma function where

q := (H + 1/2)p = 2H + 1
1− 2H > 1 , H ∈ (0, 1/2) .

This suggests J1,1 = O(∆tH+3/2) since the sum over θj converges (also helpful to note Γ
(
H +

1
2 , θ

p
j

)
→ 0 as θj →∞).

For the full estimate of J1,1, we note

Dj+1ν(XtiY ti ; s) = cH∆θj E
[
ϕ(3)(X̂T )M j

s,T | (X̂s,Ys) = (Xti ,Y ti)
]
,

where we assume that M j
s,T <∞ (see (3.22) for definition of M). Omitting the higher order terms

in ∆t in (5.15a) and (5.15c), we return directly to (5.15b),

J1,1 = −2cH
NL∑
j=1

E
∫ ti+1

ti

E
[
ϕ(3)(X̂T )M j

s,T | (X̂s,Ys) = (Xti ,Y ti)
]
(V̂ H
ti (s)+ŴH

ti )g(s)h(θj)ds∆θj ,

where we let
g(s) := −

√
2Hes−ti(s− ti)H+1/2

and
h(θj) := θ−qj Γ

(
H + 1

2 , θ
p
j

)
.

We define a new auxiliary function

fks (Y k
ti ) := E

[
E[ϕ(3)(X̂T )M j

s,T | (X̂s,Ys) = (Xti ,Y ti)] | Y k
ti

]
,

where, although the inner expectation depends implicitly on j, here the index k refers to the general
component Y k

ti that we are conditioning against. Expanding fk at zero, we find

J1,1 = −2c2
H

NL∑
j,k=1

h(θj)
∫ ti+1

ti

E
[
fks (Y k

ti )Y
k
ti

]
e−θ

p
k
(s−ti)g(s)ds∆θj∆θk

= −2c2
H

αmax−1∑
α1=1

1
α1!

NL∑
j,k=1

h(θj) E
[
(Y k
ti )

α1+1]e−θpk(s−ti)
∫ ti+1

ti

∂α1
k fks (0)g(s)ds∆θj∆θk

− 2c2
H

NL∑
j,k=1

h(θj) E
[
Rαmax(Y k

ti )Y
k
ti

]
e−θ

p
k
(s−ti)

∫ ti+1

ti

g(s)ds∆θj∆θk .

Following from the boundedness of f and its derivatives (as in (5.9)), we obtain the full estimate for
J1,1,

|J1,1| . C(H,Q,αmax)t1−2/p
i ∆tH+3/2 . O(∆tH+3/2) ,

DOI 10.20347/WIAS.PREPRINT.2916 Berlin 2022



Weak error rates rough Bergomi 29

where we use Isserlis’ theorem and the representation of the covariance for the extended variables to
determine the coefficient depending on ti (which we note is also summable over i).

The estimation of J̃1,0 and J̃1,1 follows the program above. For J̃1,0 we begin by taking the fBm
view with the kernel K,

|J̃1,0| =
∣∣∣E ∫ ti+1

ti

D1ν̃(Xti ,Y ti ; s)WH
ti E

[
WH
ti,sWti,s | Fti

]
ds
∣∣∣

= cH
∣∣∣NL∑
k=1

∫ ti+1

ti

D1ν̃(Xti ,Y ti ; s)WH
ti

∫ s

ti

K(s− r)dr︸ ︷︷ ︸
(s−ti)H+1/2

ds
∣∣∣

which suggests J̃1,0 = O(∆tH+3/2). We recall that

D1ν̃(Zti , s) = E
[
ϕ(3)(X̂T )

(
cH
∑
lM

l
s,T∆θl

)
| Zs = Zti

]
,

where we assume that

cH

NL∑
l=1

M l
s,T∆θl <∞ ,

and then define an auxiliary function

fks (Y k
ti ) := E

[
E
[
ϕ(3)(X̂T )

(
cH
∑
lM

l
s,T∆θl

)
| (X̂s,Ys) = (Xti ,Y ti)

]
| Y k

ti

]
.

Finally, Taylor expanding fks at zero we encounter terms similar to those estimated previously yielding
the full estimate,

|J̃1,0| . O(∆tH+3/2) .

Likewise for J̃1,1, taking the fBm view with the conditional expectation term E[ŴH
ti,sY

j
ti,s | Fti ] yields

|J̃1,1| =
∣∣∣NL∑
j=1

E
∫ ti+1

ti

Dj+1ν̃(Xti ,Y ti ; s)
∫ s

ti

e−θ
p
j (s−r)K(s− r)drds

∣∣∣ ,
where the estimate (5.16) (encountered in J1,1) suggest the rate J1,1 = O(∆tH+3/2). For the full
estimate, we recall that

Dj+1ν̃(Zti , s) = E
[
ϕ(3)(X̂T )

(
cH
∑
lM

l
s,T∆θl

)2 | Zs = Zti

]
and expand in a second round of Taylor expansions for an appropriate auxiliary function thereby
obtaining

|J̃1,1| . O(∆tH+3/2) .

Taken together, the estimates Section 5.2 imply that the terms corresponding to first order derivatives
of ν and ν̃ in (5.1) and (5.2), respectively, yields

|J1|+ |J̃1| = O(∆tH+3/2) ,

using the notation in (5.3).
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5.3 Estimate for general payoffs: remaining terms are higher order

Additional terms (5.1) and (5.2) appearing in the expansion are higher order than H + 3/2. For
example, We find J2,0 = O(∆t2+2H) which can be seen by once again taking the fractional view,

E
[
S(Y ·)2

ti,s(Wti,s)2 | Fti
]

= E
[
ŴH
ti,s(Ŵ

H
ti,s + 2ŴH

ti )(Wti,s)2]
= E

[
(ŴH

ti,s)
2(Wti,s)2]+ 2ŴH

ti E
[
ŴH
ti,s(Wti,s)2]︸ ︷︷ ︸

Isserlis’ =⇒ 0

= E[(ŴH
ti,s)

2] E[(Wti,s)2] + 2(E[ŴH
ti,sWti,s])2

= ∆t2H∆t− 2(∆tH+1/2)2 =: g(∆t) ,

where g(s) ∝ (s− ti)2H+1 and then expanding in a second round of Taylor expansions for a suitable
auxiliary function and checking the control of the coefficient with respect to θ,

|J2,0| .
1
2

∣∣∣E[(WH
ti )2

∫ ∆t

0
D11ν(Zti , s+ ti)s2H+1ds

]∣∣∣ = O(∆t2+2H) .

The term J̃2,0 vanishes,

|J̃2,0| =
∣∣∣12 E

[∫ ti+1

ti

D11ν̃(Zti , s)(ŴH
ti )2 E

[
ŴH
ti,s(Wti,s)2]︸ ︷︷ ︸

Isserlis’ =⇒ 0

ds
]∣∣∣ = 0 ,

by Isserlis’ theorem (although one could argue that the integrand is formally contributing rate H + 2
here for J̃2,0). The terms involving increments of the OU processes yield similar results (constants
obtained would be better behaved owing to the additional decay).

5.4 Closure argument to finish proof of Theorem 2.1

Thus far we have estimated the first few terms (5.1) and (5.2) arising from the Taylor expansion in
powers of ∆t. Returning to the telescoping sum (3.17), we summarize our estimates up to order κ,

Err(T,∆t) = E
[
ϕ(X̂T )− ϕ(XT )

]
=

n−1∑
i=0

(
κ−1∑
k=0

(
Jk + J̃k

)
+Rκ(ν) +Rκ(ν̃)

)

≤
n−1∑
i=0

(
C1(ti)∆tH+3/2 + C0(ti)∆t2 +O(∆tH+2) +Rκ(ν) +Rκ(ν̃)

)
, (5.17)

using the notation in (5.3). Here the constants Ck, for k = 0, . . . , κ−1, depending on ti, H, and Q,
are the coefficients that appear in the estimates (5.13) and Section 5.2, etc., for J· and likewise for
J̃·. Importantly, each of these constants was obtained independently of NL, L, that is, independently
of the choice of parameter θ arising in the Markovian extended variable state space formulation.
Moreover, each constant was summable in ti. Interchanging the order of summation in (5.17) we
obtain,

Err(T,∆t, ϕ) . C ′1∆tH+1/2 + C ′0∆t+O(∆tH+1)

−
n−1∑
i=1

E
∫ ti+1

ti

(
E
[
S(Y ·)2

ti,sRκ(ν) | Fti
]

+ E
[
S(Y ·)ti,sRκ(ν̃) | Fti

])
ds ,

(5.18)

with new constants

C ′j =
n−1∑
i=1

Cj(ti)∆t .
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The remainders have a integral form (3.26), and thus the conditional expectations in (5.18) are,

E
[
S(Y ·)2

ti,sRκ(ν) | Fti
]

= 1
κ!

∑
|β|=κ

(ŴH
ti )β1 E

[
(ŴH

ti,s)
2(Wti,s)β1(Y ti,s)β̂

∫ 1

0
Dβν(ξτ , s)dτ

]

and

E
[
S(Y ·)ti,sRκ(ν̃) | Fti

]
= 1
κ!

∑
|β|=κ

(ŴH
ti )β1 E

[
ŴH
ti,s(Wti,s)β1(Y ti,s)β̂

∫ 1

0
Dβ ν̃(ξτ , s)dτ

]
,

where

E
[
S(Y ·)2

ti,sRκ(ν) | Fti
]
∼ (ŴH

ti,s)
κ and E

[
S(Y ·)ti,sRκ(ν̃) | Fti

]
∼ (ŴH

ti,s)
κ .

We recall that
E |WH

ti,ti+1 |
γ . ∆tγH ,

by the Hölder continuity of the sample paths. Then by applying Cauchy–Schwarz, we obtain in (5.18)
that the remainder terms yield O(∆tκH). Thus, κ can be chosen such that κ > 1

H yields a large but
finite expansion for general payoff functions ϕ. Then the error is is given by

Err(T,∆t, ϕ) . C ′1∆tH+1/2 + C ′0∆t+O(∆tH+1) ,

with weak error rate H + 1/2 where all the coefficients are controlled.
Remark 5.1 (Kernel). In the proof of the main result Theorem 2.1 and of Theorem 4.1, the specific
form of K in Section 3.1 and (1.2) is not relevant and the spirit of the proof follows with any relevant
L2 kernel where the integrability conditions need to be checked.

6 Conclusions and outlook

Rough stochastic volatility modles are increasingly popular for option pricing in quantitative finance.
On the one hand, the rough stochastic volatility overcomes empirical challenges to deliver predictions
consistent with observed market data. On the other hand, the non-Markovian nature of the fractional
Brownian motion (fBm) driver is an impediment to both theory and numerics. Despite the widespread
use of discretization-based simulation methods for option pricing under the rough Bergomi model
and the rough Stein–Stein model, few works have studied the weak convergence rates that underpin
this practice.

For the rough Stein–Stein model, which treats the volatility as a linear function of the driving
fractional Brownian motion, we prove that the weak convergence of the Euler scheme depends on
the Hurst parameter H of the fBm driver and is weak rate H + 1/2 for general payoff functions
(see Theorems 1.1 and 2.1). Strong numerical evidence is provided to support our theory. Our
proof relies on Taylor expansions for an extended variable system that is derived from an affine
Markovian approximation of the fBm drive. Our novel approach also yields insights into unexpected
behavior (that we suspect has contributed to the consternation among experts regarding the weak
rate, as remarked in the footnote in Section 1). In particular, the expansions (see Theorem 4.1)
easily explain the better weak rate 1 obtained for quadratic payoffs (see Lemma 4.2). This last
point leads us to conjecture that the rate of convergence for payoff functions well approximated by
quadratic polynomials, as seen from the law of the solution, may be hard to distinguish from rate 1
as illustrated in Figure 3. As stated in Remark 2.2, we do not doubt that the proof of Theorem 2.1
can be extended to nonlinear rough volatility models such as the rough Bergomi model and this is
the subject of ongoing work.
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XT (n) =
n∑
i=0

WH
ti (Wti+1 −Wti) , (A.1)
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T := XT (212) and computationsX∆t

T = XT (n) for log2 n = {6, . . . , 1}.
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the reference mesh using the Cholesky decomposition method. For each {H,T, n} we first form the
eigenvalue decomposition (L,D) of the full covariance matrix

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
,

with blocks (Σ11)ij = Cov(WH
ti ,W

H
tj ), (Σ12)ij = Cov(WH

ti ,Wtj ), (Σ22)ij = Cov(Wti ,Wtj ). We
refer to, e.g., Lemma 4.1 of [3], for the covariance function of the Riemann-Liouville fBm and to
pfq.m from [21] to compute hypergeometric functions:

1 t = T/n:T/n:T;
2 % require pfq.m from MATLAB File Exchange
3 G = @(x) 2.0*H*( x.^(-gam)/(1.0-gam) + (gam*x.^(-1.0-gam)./(1.0-gam)) .* ...
4 pfq([1.0, 1.0+gam], 3.0-gam, x.^(-1.0))/(2.0-gam) );
5 disp('Computing blocks S11 S12 S22')
6 [X,Y] = meshgrid(t,t);
7 Gmat = G((tril(Y./X)+tril(Y./X)') - eye(size(Y,1)).*diag(Y./X));
8 Gmat = Gmat.*~eye(size(Gmat)) + eye(size(Gmat)); % diag is 1 b/c G(1)=1
9 S11 = ((tril(X)+tril(X)') - eye(size(X,1)).*diag(X)).^(2*H) .* Gmat;

10 S12 = sqrt(2*H)*(Y.^(H+0.5)-(Y-min(Y,X)).^(H+0.5))./(H+0.5);
11 S22 = min(X,Y);
12 disp('Finished blocks S11 S12 S22')
13 % LDL decomposition; defaults to Cholesky method
14 disp('Computing L D via eig')
15 [L,D] = eig([S11 S12; S12.' S22]);

We then generate M samples using the LDL eigenvalue decomposition:

1 z = randn(2*n,M);
2 X = real(L*(D^0.5)*z);
3 WH = [zeros(1,M); X(1:n, :)];
4 W = [zeros(1,M); X(n+1:end, :)];

and note that for H = 0.5 the sample paths of WH generated by this method is identical to W .
One sample of Xref

T and X∆t
T at the final time can then be computed by summing the appropriate

terms using the reference paths:

1 XTref(1,:) = sum(WH(1:end-1,:) .* diff(W(1:end,:)));
2 XTdt = nan(numDt,M);
3 for j=1:numDt
4 XTdt(j,:) = sum(WH(1:2^(j+gap-1):end-1,:) .* diff(W(1:2^(j+gap-1):end,:)));
5 end

The code referenced above can be found at the git repository:
https://bitbucket.org/datainformeduq/rbwc_code.

B Bound auxiliary functions f by ϕ

Lemma B.1. Let ϕ(x) be the payoff function, and define

fs(Y l1
ti , . . . , Y

lk
ti ) := E

[
ν(Zti , s) | Y

l1
ti , . . . , Y

lk
ti

]
= E

[
E
[
ϕ(m)(X̂T ) | Zs = (Xti ,Y ti)

]
| Y l1

ti , . . . , Y
lk
ti

]
,
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for components (Y l1
ti , . . . , Y

lk
ti ) ⊂ Y ti . Then for a multiindex α = (α1, . . . , αk),

|∂αfkls (0)| .
|α|∑
j=0
‖ϕ(m+j)‖∞ .

Proof. (Lemma B.1) Recall that ν(Zti , s) is a deterministic function of the jointly Gaussian η-
dimensional vector (with η := (NL + 1)× (i+ 1)),

ξ = (Yτ ,∆Wτ )τ=t0,...,ti ,

(cf. (3.11)). Denoting the density as %(ξ), we note ξ is mean zero and has variance-covariance Σ
given by the known quantities Cov(Y l

ti , Y
k
tj ), Cov(Y l

ti ,∆Wtj ), and Cov(∆Wti ,∆Wtj ), which have
closed form expressions. For each s, the variable ν(Zti , s) has a density proportional to %(ξ),

dPν ∝ %(ξ)dξ .

Writing y = (Y l1
ti , . . . , Y

lk
ti ), a subset of components of Y ti of size k = |y| such that k ≤ NL, the

function
fs(y) = E[ν(Zti , s) | y] ,

a deterministic function of y, can be expressed in terms of a conditional Gaussian density. Partitioning
ξ = (ξ̃,y) and, likewise, the covariance matrix Σ into components Σ11 corresponding to ξ̃, Σ22 to
y, and Σ12 to the mixed terms, the the conditional Gaussian density %(ξ̃ | y) has conditional mean

µ̃ = Σ12Σ−1
22 y ,

which is linear in y, and conditional variance-covariance matrix
Σ̃ = Σ22 −Σ>12Σ−1

11 Σ12 ,

that does not depend on y.

Rewritten in terms of this conditional density, f is given by

fs(y) =
∫
Rη−k

ν(Xti , ξ̃,y; s)%(ξ̃ | y)dξ̃ ,

where
ν(Xti , ξ̃,y; s) = E

[
ϕ(m)(X̂T ) | Zs = (Xti , ξ̃,y)

]
.

For a multiindex α = (α1, . . . , αk) corresponding to the components of y,

∂α = ∂α

∂yα
= ∂α1

∂yl1
· · · ∂

αk

∂ylk
,

taking the derivative inside the integral we obtain

∂αfs(y) =
∫
Rη−k

{(
∂αν(Xti , ξ̃,y)

)
%(ξ̃ | y) + ν(Xti , ξ̃,y)∂α%(ξ̃ | y)

}
dξ̃

=
∫
Rη−k

{
∂αν(Xti , ξ̃,y) + ν(Xti , ξ̃,y)Pk(y)

}
%(ξ̃ | y)dξ̃ ,

(B.1)

where
∂α%(ξ̃ | y) = Pk(y)%(ξ̃ | y) ,

for Pk a polynomial of degree k since
%(ξ̃ | y) ∝ exp[−1

2(ξ̃ − µ̃)>Σ̃(ξ̃ − µ̃)] = exp[−1
2(ξ̃ −Σ12Σ−1

22 y)>Σ̃(ξ̃ −Σ12Σ−1
22 y)] .

The remaining derivative in (B.1) follows similarly to the computation of the fluxes in Lemma 3.7,

∂αν(Xti , ξ̃,y; s) = c
|α|
H E

[
ϕ(|α|+m)(X̂T )

|α|∏
j=1

(
∆θljM

lj
s,T

)αj | Zs = (Xti , ξ̃,y)
]
,

and the estimate follows.
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