
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Two-scale topology optimization with heterogeneous

mesostructures based on a local volume constraint

Moritz Ebeling-Rump1, Dietmar Hömberg1,2,3, Robert Lasarzik1

submitted: December 22, 2021

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: moritz.ebeling-rump@wias-berlin.de

dietmar.hoemberg@wias-berlin.de
robert.lasarzik@wias-berlin.de

2 Department of
Mathematical Sciences
NTNU
Alfred Getz vei 1
7491 Trondheim
Norway

3 Technische Universität Berlin
Institut für Mathematik
Str. des 17. Juni 136
10623 Berlin
Germany

No. 2908

Berlin 2021

2020 Mathematics Subject Classification. 49Q10, 74P05, 49Q20, 65M60, 74P10.

Key words and phrases. Additive manufacturing, topology optimization, linear elasticity, phase field method, optimality
conditions, numerical simulations.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Two-scale topology optimization with heterogeneous
mesostructures based on a local volume constraint

Moritz Ebeling-Rump, Dietmar Hömberg, Robert Lasarzik

Abstract

A new approach to produce optimal porous mesostructures and at the same time optimizing
the macro structure subject to a compliance cost functional is presented. It is based on a phase-
field formulation of topology optimization and uses a local volume constraint (LVC). The main
novelty is that the radius of the LVC may depend both on space and a local stress measure. This
allows for creating optimal topologies with heterogeneous mesostructures enforcing any desired
spatial grading and accommodating stress concentrations by stress dependent pore size. The re-
sulting optimal control problem is analysed mathematically, numerical results show its versatility
in creating optimal macroscopic designs with tailored mesostructures.

1 Introduction

The last decade has seen a fast development of additive manufacturing (AM) techniques from rapid
prototyping to a versatile tool for industrial manufacturing. Its layer-by-layer building technique allows
for creating lightweight components of nearly arbitrary shapes. In addition to printing elaborate outer
shapes an important trend in AM is the creation of porous infill structures. Compared to fully filled
structures, depending on topology, size and density, these cellular structures can achieve a wide range
of properties for different purposes (see (Li et al., 2018) and the references therein). A high surface to
volume ratio improves heat transfer efficiency, large numbers of internal pores are used for acoustic
or thermal insulators. Cell structures are known to deform at relatively low stress levels and are thus
useful for energy absorbtion and vibration damping. Moreover, they show a better design robustness
with respect to load variation and local material deficiencies (Wu et al., 2017a) and a significantly
increased stability with respect to buckling (Clausen et al., 2015).

A well established two-stage procedure to create components with mesostructures is to begin with a
topology optimization of the design space subject to a global volume constraint to obtain an optimal
macroscopic material distribution. Then, in a second step, the solid material is replaced with an infill
structure, which can be homogeneous, graded or heterogeneous, build of regular cells or of pores
with varying density as in (Panesar et al., 2018). See also (Tamburrino et al., 2018) for an overview
of strut-node mesostructures. In (Lu et al., 2014) the interior material distribution is determined via
Voronoi diagrams leading to irregular honeycomb-like cell structures, prioritizing the strength-to-weight
ratio. Another way to design infill is to use rhombic structures. They offer the geometric advantage of
bounded overhangs, which in turn ensure printability of the structures, as shown in (Wu et al., 2016).
In (Wu et al., 2019) hierarchical lattice structures create light weight structures where substructures
share a common lattice geometry pattern. In general, structures with fillet joints and gyroid shapes are
advantageous as compared to common truss structures (Li et al., 2018).

In (Clausen et al., 2015), a porous, less dense inner structure is coated by a more dense outer struc-
ture, which may lead to more cost-efficient 3D printing (Wang et al., 2013). The separation into inner
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and outer structure takes place via a two-step smoothing and projecting process. In the realm of 3D
printing one can think of the inner material as infill. This approach is compared with anisotropic coating
and infill in (Dapogny et al., 2019). More on the projection method can be found in (Wang et al., 2011).
This is built upon by incorporating optimized infill in (Wu et al., 2017b).

The aforementioned two-stage procedures will necessarily provide at most sub-optimal configurations.
A first strategy for a joint optimization of macroscopic shape and a homogeneous pore-like mesostruc-
ture has been considered in (Wu et al., 2017a) based on the combination of a global and a local
volume constraint. The concept of local volume constraints is also employed in (Cai & Gao, 2012) and
(Hesse et al., 2018) to achieve specific local material accumulations.

A different approach has been taken in (Carraturo et al., 2019), where a phasefield - based topol-
ogy optimization approach is used to create optimized topolgies with graded density structures by
introducing an additional mesoscopic density variable.

The aim of this paper is to provide a unified approach to produce optimal porous mesostructures while
at the same time optimizing the macro structure subject to a compliance cost functional. Our approach
is based on a phasefield formulation of topology optimization (see also, e.g.,(Bourdin & Chambolle,
2003), (Blank et al., 2014), (Ebeling-Rump et al., 2021)) and uses a local volume constraint (LVC). In
comparison to previous works the main novelty is that the radius of the LVC may depend both on space
and a local stress measure. Thereby our concept provides a versatile tool for creating optimal topolo-
gies with heterogeneous mesostructures enforcing any desired spatial grading and accommodating
stress concentrations by stress dependent pore size.

The paper is organized as follows. Section 2 describes the resulting optimal control problem. The state
equation is a Hellinger Reissner model for mechanical equilibrium allowing to obtain both displacement
and stress simultaneously by solving a saddle point problem, which leads to a more accurate stress
computation. This is numerically advantageous over the commonly used pure displacement model
because of the considered stress dependent local volume term. The control problem is analyzed in
Section 3, where existence of a solution is shown and first order optimality conditions are derived.
The effects of the local volume constraint can be seen in Section 4, where numerical examples are
presented.

2 Problem formulation

2.1 Notation

Let Ω ⊂ Rd, d = 2, 3 be a bounded Lipschitz domain and denote its boundary by Γ. In case of a
Dirichlet boundary ΓD ⊂ Γ the notation

H1
D

(
Ω,Rd

)
:=
{
ξ ∈ H1

(
Ω,Rd

)
| ξ = 0 on ΓD

}
is used.
Duality pairings for a normed space V and its dual V ∗ are written via 〈·, ·〉V ∗,V , where the subscript
will be dropped when it is clear which spaces are meant.
Denote the set of all symmetric d× d matrices by Sd.
The Frobenius inner product for second order tensors M,N is defined by the pairwise sum of
element-products

M : N :=
d∑

i,j=1

MijNij.
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Two-scale topology optimization 3

For a fourth order tensor C , the product CM is defined via

[CM]ij :=
d∑

k=1

d∑
l=1

CijklMkl.

2.2 The state equation – mechanical equilibrium, linear elasticity

Using the displacement u : Ω→ Rd, the linearized strain tensor

E(u) :=
1

2

(
∇u+∇uT

)
is defined. The distribution of material in Ω is described by a phase field ϕ with

0 ≤ ϕ(x) ≤ 1 a.e. in Ω. (1)

Here, ϕ = 0 describes void and ϕ = 1 represents areas containing material. In a physically accurate
setting each point in space either does or does not contain material, i.e. ϕ ∈ {0, 1}, leading to a
sharp transition. However, in the realm of optimization a smooth transition between material and void
is desired in order to calculate derivatives. This is achieved by explicitly allowing impure phases, i.e.
states with 0 < ϕ < 1 such that the sharp interface is replaced with a mushy transition zone.

Assuming that the material under consideration behaves linearly elastic the relationship between
stress σ and strain E(u) is governed by Hooke’s law

σ = C (ϕ) E (u) , (2)

where C(ϕ) is the fourth order stiffness tensor, which has to satisfy the symmetry conditions

Cijkl = Cklij = Cjikl = Cijlk,

moreover we demand:

Assumption A1. C(·) has continuously differentiable components and its inverse C−1(·) is globally
Lipschitz continuous with Lipschitz constant LC−1 . The derivative (C−1)

′
(·) is also globally Lipschitz

continuous with Lipschitz constant L(C−1)′ . There exist positive constants
¯
Λ, Λ̄,

¯
Θ, Θ̄,Λ′,Θ′ such

that for allM,N ∈ Sd \ {0} and all ϕ, ω ∈ R, the following relationships hold:

(i)
¯
Λ |M|2 ≤ C (ϕ)M :M≤ Λ̄ |M|2 ,

(ii)
¯
Θ |M|2 ≤ C−1 (ϕ)M :M≤ Θ̄ |M|2 ,

(ii) |C ′ (ϕ)ωM : N| ≤ Λ′ |ω| |M| |N | ,
(iv)

∣∣(C−1)′ (ϕ)ωM : N
∣∣ ≤ Θ′ |ω| |M| |N | .

In the following an example of a stiffness tensor fulfilling these assumptions is constructed assuming
isotropic and homogeneous material behaviour. First, the tensors in material and void are defined as

CmatE := λ1 tr(E)I + 2λ2E and
CvoidE := ε20CmatE

for a small ε0 > 0. The constants λ1 and λ2 are called Lamé parameters. This definition warrants
0 6= |Cvoid| � |Cmat|, which ensures low stiffness in void, but avoids degeneracy.
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Figure 1: Bounded transition function s(x).

The aim is to extend C(ϕ) to the whole domain, accounting for interfacial regions between material
and void. For ζ > 0, p̃ ≥ 1 a transition function is defined via

s(x) :=


0 for x < 0
xp̃ for 0 ≤ x ≤ 1
sr(x) for 1 < x ≤ 1 + ζ
1 + ζ for x > 1 + ζ,

where sr is a monotone C1,1-function such that s is in C1,1. We are using p̃ = 3, which is often done
in the SIMP approach to encourage the creation of pure phases, see (Bendsøe & Sigmund, 2004). An
example plot of such a function can be seen in Figure 1. The elasticity tensor for the whole domain is
defined via

C(ϕ) := s(ϕ)Cmat + (1− s(ϕ))Cvoid.

To proof that this tensor fulfills Assumption A1, one follows the arguments in (Blank et al., 2014, Chapt.
2.2). The main idea is that by using s(ϕ), the stiffness tensor becomes bounded.

The inverse of the material tensor has the form

C−1
matσ =

1

2λ2

σ − λ1

2λ2(3λ1 + 2λ2)
tr(σ)I.

One gets

C−1 (ϕ) =
(
s(ϕ) + ε20 − ε20s(ϕ)

)−1
C−1

mat.

To describe mechanical equilibrium we use a mixed formulation, the so-called Hellinger-Reissner for-
mulation, see (Braess, 2007, Chapt. VI). While in the pure displacement variant the stress tensor σ has
to be retrieved via differentiation from Hooke’s law (2), it is kept in the Hellinger-Reissner formulation
as a state variable, which allows for a numerically more accurate computation of stresses.

With a surface load f ∈ L2
(
Γf ,Rd

)
acting on a part of the boundary labeled Γf and outer normal

vector n, we consider the strong formulation of the static mechanical equilibrium problem of linear
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Two-scale topology optimization 5

elasticity,

− div σ = 0 in Ω (3a)

σ − C (ϕ) E (u) = 0 in Ω (3b)

u = 0 on ΓD (3c)

σn = f on Γf (3d)

σn = 0 on Γ \
(
ΓD ∪ Γf

)
. (3e)

With the L2 scalar product (·, ·)0 the weak formulation is written compactly as the Hellinger-Reissner
saddle point problem.

Definition 2.1. The pair (u, σ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
is a weak solution of (3), if it satisfies

the Hellinger Reissner saddle point problem(
C−1 (ϕ)σ, η

)
0
− (η, E (u))0 = 0 ∀η ∈ L2

(
Ω,Sd

)
(4a)

− (σ, E (v))0 = −
∫

Γf

f · v dω ∀v ∈ H1
D

(
Ω,Rd

)
. (4b)

2.3 The phasefield approach to structural topology optimization

Topology Optimization is concerned with the optimal distribution of material in a domain Ω. Without
restrictions the solution of the optimal control problem would be trivial: The stiffest structure is produced
by setting ϕ ≡ 1 on Ω, i.e. covering the whole domain with material. To make the problem more
interesting we constrain the fraction of mass to be retained. To this end we introduce the volume
fraction m ∈ (0, 1) and impose the global volume constraint∫

Ω

ϕ dx = m|Ω|, (5)

where |Ω| denotes the Lebesque measure of the domain Ω. The admissible set is defined as

Gm :=

{
ϕ ∈ H1 (Ω,R) | 0 ≤ ϕ (x) ≤ 1 a.e. in Ω and

∫
Ω

ϕ dx = m|Ω|
}
.

The objective is to find a material distribution ϕ ∈ Gm and a corresponding solution of the elasticity
problem (u, σ) such that the mean compliance

F (u) :=

∫
Γf

f · u dω (6)

is minimized. However, this minimization problem is not well-posed as explained in (Allaire et al.,
2004). The regularity of the solution is not ensured. In computational examples this can lead to a
checkerboard solution. Checkerboarding is the frequent occurrence of jumps between material and
void, which is not desirable, see (Shukla et al., 2013). The ill-posedness can be alleviated by adding
a perimeter regularization which was proposed by (Ambrosio & Buttazzo, 1993). In the phasefield
formulation the latter is approximated by the Ginzburg-Landau functional, see, e.g., (Takezawa et al.,
2010).

Eε (ϕ) :=

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx, (7)
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(a) Fixed on the left, force applied on the right hand side. (b) Only global volume constraint imposed.

(c) Only local volume constraint imposed. (d) Both global and local volume constraint imposed.

Figure 2: Phasefield topology optimization of cantilever beam with local and global volume constraints.
The compliance values are in (b) 2.78, in (c) 2.26 and in (d) 3.58.

with ε > 0 and ϕ ∈ H1 (Ω,R) ∩ L∞(Ω,R). The first term penalizes transitions between material
and void through the gradient of the material distribution. The second term contains a potential ψ ∈
C1,1 (R,R) with ψ ≥ 0, ψ(0) = ψ(1) = 0 to penalize impure phases. A commonly used potential
is the double well potential

ψ (ϕ) =
1

4
((ϕ− 1)ϕ)2 =

1

4

(
ϕ2 − ϕ

)2
.

The macroscopic phasefield based topology optimization problem then amounts to minimizing a weight-
ed sum of compliance (6) and Ginzburg-Landau functional (7) subject to the state system (4) and the
control constraint ϕ ∈ Gm. A typical result for the macroscopic cantilever structure is depicted in
Figure 2(b).

2.4 Local volume constraint for porous mesostructures

The goal of this paper is to develop a strategy for coupling the macroscopic optimized topology with
an optimal mesoscopic infill structure. To this end we now introduce two new parameters which will
govern the meso-structure. The radius r defines the typical length scale of the desired meso-structure
and the local volume fraction µ the fraction of material present in a local cell. As mentioned earlier,
the global volume constraint can be enforced as an equality constraint since minimizing compliance
strives for the stiffest structure. However, the local volume constraint only demands that at most a
fraction µ ∈ (0, 1) of material is used in local meso-cells thereby allowing for macroscopic voids in
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Two-scale topology optimization 7

the component. This can be described as a pointwise inequality constraint, i.e.∫
Br(x)

χςΩ(q) (ϕ (q)− µ) dq ≤ 0 for x ∈ Ω.

To assure that the integrand is evaluated only for q ∈ Ω, we have introduced the smoothed character-
istic function χςΩ ∈ C2

0

(
Rd
)

of the domain Ω, such that for any ς > 0 we have χςΩ(x) = 0 if x /∈ Ω
and χςΩ(x) = 1 if dist (x,Γ) ≥ ς with a smooth transition in between. The gradient of χςΩ exists and
is globally bounded by Cς > 0, i.e.

|∇χςΩ(x)| ≤ Cς ∀x ∈ Rd. (8)

In the present paper we have chosen to rewrite the inequality constraint as a penalty function. Using
the positive part function [x]+ = max{x, 0} and a proper scaling, we introduce the LVC penalty term
as

V (r, ϕ) :=

∫
Ω

[
1

rd

∫
Br(x)

χςΩ(q) (ϕ (q)− µ) dq

]2

+

dx. (9)

If the local volume fraction is restricted by µ in the whole domain, one cannot expect a larger value
for the global volume fraction, m. Thus, it is sensible to choose µ ≥ m. In case of equality, the
whole domain will be filled with mesoscale structures and holes. For a detailed parameter study we
refer to Section 4, however Figure 2 already anticipates some findings, comparing the results with
macroscopic holes due to a global volume constraint (b) with a purely porous structure caused by the
LVC without enforcing the global one (c) and a combination of both constraints (d) leading to a porous
mesostructure with macroscopic holes. In (d) the parameters µ = 0.6 and m = 0.4 were used.

A distinctive feature of this approach is that it easily allows for extensions to create a wealth of differ-
ent inhomogeneous mesostructures. Introducing a space dependent radius one can easily generate
graded porous structures and adding a spatial dependency of µ, also the local material can be con-
trolled. For results in this direction we refer again to Section 4.

However, we can even go one step further. From the results depicted in Figure 2 we see that intro-
ducing a porous mesostructure to a macroscopically optimized structure deteriorates its compliance.
As a remedy, we allow for inhomogeneous mesostructures by introducing a stress dependency of
the radius. This leads to bone-like structures (see, e.g., (Pahr & Reisinger, 2020)) and an improved
compliance.

Instead of assuming a dependency on stress together with an explicit spatial dependency, to avoid
technicalities we drop the latter and confine ourselves to considering the radius r and thereby the
length-scale of the mesostructure to be stress dependent. Since the radius is bounded by the domain
diameter, we demand:

Assumption A2. The radius r : Sd → R>0, σ 7→ r (σ) is a smooth function, globally bounded in
C1 with 0 < rmin ≤ r(σ) ≤ rmax <∞ ∀σ ∈ Sd and

|Dσr (σ)| ≤ C ∀σ ∈ Sd.

In view of this assumption, the local volume constraint V (r (σ) , ϕ) as defined in (9) acts both as a
state and control constraint.
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Finally we are in a position to formulate the phasefield based two-scale topology optimization problem
subject to penalty parameters γ, α ∈ R+:

(CP)


min J (u, σ, ϕ) := F (u) + γEε (ϕ) + α

2
V (r (σ) , ϕ)

over (u, σ, ϕ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
× Gm

s.t. (u, σ) is the weak solution of the state equation, see

Definition 2.1.

3 Analysis of the optimal control problem

3.1 Analysis of the state system

The following lemma is a particular formulation of Brezzis splitting theorem.

Lemma 3.1 (Existence of a solution). Let Assumption A1 hold true. For a given phase field ϕ ∈
L∞(Ω,R) and generic right hand sides F ∈ L2

(
Ω, Sd

)
, G ∈

(
H1
D

(
Ω,Rd

))∗
there exists a unique

weak solution (u, σ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
of the saddle point problem

(C−1 (ϕ)σ, η)0 − (η, E (u))0 = 〈F, η〉 ∀η ∈ L2
(
Ω,Sd

)
− (σ, E (v))0 = 〈G, v〉 ∀v ∈ H1

D

(
Ω,Rd

)
.

The following a priori estimate holds for (u, σ)

‖u‖H1
D(Ω,Rd) + ‖σ‖L2(Ω,Sd) ≤ C1‖F‖L2(Ω,Sd) + C2‖G‖(H1

D(Ω,Rd))
∗ ,

with positive constants C1, C2.

Proof. The crucial step is to show the inf-sup-condition, which can be done using Korn’s second
inequality

inf
v∈H1

D(Ω,Rd)
sup

η∈L2(Ω,Sd)

(η, E (v))0

‖η‖L2(Ω,Sd)‖v‖H1
D(Ω,Rd)

≥ inf
v∈H1

D(Ω,Rd)

‖E (v)‖2
L2(Ω,Sd)

‖E (v)‖L2(Ω,Sd)‖v‖H1
D(Ω,Rd)

= inf
v∈H1

D(Ω,Rd)

‖E (v)‖L2(Ω,Sd)

‖v‖H1
D(Ω,Rd)

Korn
≥ c > 0.

The rest follows from Brezzis Splitting Theorem, see (Braess, 2007, p. 132).

Theorem 3.2 (Well-Posedness of the state system). Let Assumption A1 hold true. For a given phase
field ϕ ∈ L∞(Ω,R) there exists a unique weak solution (u, σ) ∈ H1

D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
of the

Hellinger Reissner linear elasticity system such that Definition (2.1) is fulfilled.

Furthermore, for two controls ϕi ∈ L∞(Ω,R) and corresponding states (ui, σi), i = 1, 2 there exists
a constant c > 0 such that

‖σ1 − σ2‖L2(Ω,Sd) ≤ c ‖ϕ1 − ϕ2‖L∞(Ω,R) .
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Proof. Set 〈G, v〉 := −
∫

Γf
f · v dω. Using Hölder’s inequality, Poincaré-Friedrichs inequality and

the trace theorem it can be seen that G ∈
(
H1
D

(
Ω,Rd

))∗
. The first statement of the theorem follows

from Lemma 3.1.

For the second part, we subtract the state equations (4) for ϕ1, ϕ2 and obtain(
C−1 (ϕ1) (σ1 − σ2), η

)
0
− (η, E (u1 − u2))0 = −

((
C−1 (ϕ1)− C−1 (ϕ2)

)
σ2, η

)
0

=: 〈F, η〉
− (σ1 − σ2, E (v))0 = 0.

Note that

|〈F, η〉| ≤ LC−1 ‖ϕ1 − ϕ2‖L∞(Ω,R) ‖σ2‖L2(Ω,Sd) ‖η‖L2(Ω,Sd) , thus F ∈ L2
(
Ω,Sd

)
.

The bilinear forms are the same as in Lemma 3.1, hence we can directly deduce

‖σ1 − σ2‖L2(Ω,Sd) ≤ C1‖F‖L2(Ω,Sd)

≤ C1LC−1 ‖ϕ1 − ϕ2‖L∞(Ω,R) ‖σ2‖L2(Ω,Sd)

≤ c ‖ϕ1 − ϕ2‖L∞(Ω,R) ,

with a constant c > 0.

Definition 3.3 (Control-to-state Operator). Theorem 3.2 defines a function, known as the control-
to-state operator, which maps the phase field ϕ to the unique weak solution (u, σ) of the elasticity
problem

S : L∞(Ω,R)→ (u, σ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
.

Lemma 3.4. Under Assumption A1 the control-to-state operator is Fréchet-differentiable. Its derivative
at ϕ ∈ L∞(Ω,R) in direction ω ∈ L∞(Ω,R) is given by

S ′(ϕ)ω = (u∗, σ∗),

where (u∗, σ∗) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω, Sd

)
is the unique weak solution of the linearized system

(C−1 (ϕ)σ∗, η)0 − (η, E (u∗))0 = − ((C−1)′ (ϕ)ωσ, η)0 ∀η ∈ L2
(
Ω,Sd

)
− (σ∗, E (v))0 = 0 ∀v ∈ H1

D

(
Ω,Rd

) (10)

and (u, σ) is the unique weak solution of the Hellinger Reissner system, see Definition (2.1).

Proof. Calculate the linearized system by computing derivatives ∂
∂ϕ

(·)ω of (4), which yields(
C−1 (ϕ)σ∗, η

)
0
− (η, E (u∗))0 = −

(
(C−1)′ (ϕ)ωσ, η

)
0

=: 〈F, η〉
− (σ∗, E (v))0 = 0.

Applying Assumption A1 (iv) and Hölder’s inequality to 〈F, η〉, one receives

|〈F, η〉| ≤Θ′‖ω‖L∞(Ω,R)‖σ‖L2(Ω,Sd)‖η‖L2(Ω,Sd), thus F ∈ L2
(
Ω, Sd

)
.

Lemma 3.1 then shows existence of a unique solution

(u∗, σ∗) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
.
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Now we define

ur := uω − u− u∗ ∈ H1
D

(
Ω,Rd

)
and σr := σω − σ − σ∗ ∈ L2

(
Ω,Sd

)
,

where (uω, σω) is the solution to the state system (4) corresponding to ϕ + ω. Subtracting the lin-
earized system (10) and the state system from the one corresponding to the control ϕ + ω, we see
that (ur, σr) satisfy the saddle point problem(

C−1 (ϕ)σr, η
)

0
− (η, E (ur))0 = 〈F, η〉 ∀η ∈ L2

(
Ω,Sd

)
− (σr, E (v))0 = 0 ∀v ∈ H1

D

(
Ω,Rd

)
,

where

〈F, η〉 := −
([
C−1 (ϕ+ ω)− C−1 (ϕ)− (C−1)′ (ϕ)ω

]
σω, η

)
0
−
(
(C−1)′ (ϕ)ω(σω − σ), η

)
0
.

The two terms of |〈F, η〉| are investigated separately. Using Taylor’s theorem for the first term it holds
that ∣∣∣([C−1 (ϕ+ ω)− C−1 (ϕ)−

(
C−1

)′
(ϕ)ω

]
σ, η
)

0

∣∣∣
≤ ‖C−1 (ϕ+ ω)− C−1 (ϕ)−

(
C−1

)′
(ϕ)ω‖L∞(Ω,R)‖σ‖L2(Ω,Sd)‖η‖L2(Ω,Sd)

≤ 1

2
L(C−1)′‖ω‖2

L∞(Ω,R)‖σ‖L2(Ω,Sd)‖η‖L2(Ω,Sd).

Applying Assumption A1 (iv) and Theorem 3.2 to the second term leads to∣∣((C−1)′ (ϕ)ω(σω − σ), η
)

0

∣∣ ≤ Θ′ ‖ω‖L∞(Ω,R) ‖σ
ω − σ‖L2(Ω,Sd)‖η‖L2(Ω,Sd)

≤ Θ′ ‖ω‖2
L∞(Ω,R) ‖η‖L2(Ω,Sd).

Thus, F ∈ L2
(
Ω,Sd

)
and via Lemma 3.1 it holds for (ur, σr) that

‖ur‖H1
D(Ω,Rd) ≤ C1‖F‖L2(Ω,Sd) ≤ c ‖ω‖2

L∞(Ω,R) ,

‖σr‖L2(Ω,Sd) ≤ C1‖F‖L2(Ω,Sd) ≤ d ‖ω‖2
L∞(Ω,R) ,

with positive constants c and d, which proves the Fréchet-differentiability.

3.2 Existence of an optimal control

Lemma 3.5. Under Assumptions A1, A2 and with f ∈ L2
(
Γf ,Rd

)
the optimal control problem (CP)

has a solution.

Proof. Let the admissible set be defined by

Fad := { (u, σ, ϕ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
× Gm , (u, σ) = S(ϕ) }

Note that the compliance F in the optimization problem (CP) can be rewritten using Definition 2.1.
Applying Assumption A1 (ii) shows that

J (u, σ, ϕ) =
(
C−1 (ϕ)σ, σ

)
0

+ γ

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx

+
α

2

∫
Ω

[
1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]2

+

dx
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Two-scale topology optimization 11

has a lower bound on the non-empty set Fad. Thus the infimum

inf
(u,σ,ϕ)∈Fad

J (u, σ, ϕ)

exists. We take a minimizing sequence

{(uk, σk, ϕk)} ⊂ Fad, k ∈ N

i.e.,
lim
k→∞

J (uk, σk, ϕk) = inf
(u,σ,ϕ)∈Fad

J (u, σ, ϕ) .

First note that {ϕk} ⊂ Gm implies
‖ϕk‖L∞(Ω,R) ≤ 1

and thus {ϕk} is uniformly bounded. From Lemma 3.1 it is known that

‖u‖H1
D(Ω,Rd) + ‖σ‖L2(Ω,Sd) ≤ C2‖G‖H1

D(Ω,Rd) = C2‖f‖L2(Γf ,Rd).

Thus the sequences {uk} and {σk} are bounded in H1
D

(
Ω,Rd

)
and L2

(
Ω,Sd

)
, respectively.

Hence we can extract weakly convergent subsequences, still indexed with k such that

uk ⇀ u in H1
D

(
Ω,Rd

)
σk ⇀ σ in L2

(
Ω, Sd

)
ϕk ⇀ ϕ in H1 (Ω,R) .

By Sobolev embedding, we infer

ϕk −→ ϕ strongly in L2 (Ω,R) ,

and, possibly extracting a further subsequence indexed in the same way, we also get

ϕk(x) −→ ϕ(x) a.e. in Ω. (11)

Thus, we can conclude
ϕ ∈ Gm.

For symmetry reasons, we have

(C−1(ϕk)σk, η)0 = (σk, C
−1(ϕk)η)0.

Using Lebesgue’s dominated convergence theorem yields strong convergence of {C−1(ϕk)η} in
L2
(
Ω,Sd

)
, from which we can conclude

(C−1(ϕk)σk, η)0 −→ (C−1(ϕ)σ̄, η)0 ∀η ∈ L2
(
Ω,Sd

)
.

Consequently, (ū, σ̄, ϕ̄) fulfills the saddle point problem (4) and thus, we have

(ū, σ̄, ϕ̄) = S(ϕ).

Next, we show that the sequence {σk} converges strongly in L2
(
Ω,Sd

)
, i.e.

lim
k→∞
‖σk − σ̄‖2

L2(Ω,Sd) = 0. (12)
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Applying Assumption A1 (ii) leads to

¯
Θ‖σk − σ̄‖2

L2(Ω,Sd) ≤
(
C−1 (ϕk) (σk − σ̄) , σk − σ̄

)
0

=
(
C−1 (ϕk)σk − C−1 (ϕ̄) σ̄, σk − σ̄

)
0

+
((
C−1 (ϕ̄)− C−1 (ϕk)

)
σ̄, σk − σ̄

)
0

= (E (uk)− E (ū) , σk − σ̄)0

+
((
C−1 (ϕ̄)− C−1 (ϕk)

)
σ̄, σk − σ̄

)
0

=

∫
Γf

f · (uk − ū)dω +
((
C−1 (ϕ̄)− C−1 (ϕk)

)
σ̄, σk − σ̄

)
0
.

For the first term it was used that the triples (ϕk, uk, σk) and (ϕ̄, ū, σ̄) both fulfill the saddle point
problem (4) with η = σk − σ̄ and v = uk and v = ū, respectively. Utilizing Lebesgue’s dominated
convergence theorem once again we obtain (12).

Finally, we are in a position to prove

J (ū, σ̄, ϕ̄) ≤ lim inf
k→∞

J (uk, σk, ϕk) .

For the first term of

J (ū, σ̄, ϕ̄) =

∫
Γf

f · ūdω + γ

∫
Ω

ε

2
|∇ϕ̄|2 +

1

ε
ψ (ϕ̄) dx

+
α

2

∫
Ω

[∫
Br(σ̄)(x)

χςΩ(q) (ϕ̄ (q)− µ) dq

]2

+

dx

this is clear because of the weak convergence of {uk}.
Moreover,∇ϕk ⇀ ∇ϕ̄ implies ‖∇ϕ̄‖ ≤ lim infk→∞‖∇ϕk‖. Convergence of the double-well poten-
tial is guaranteed by pointwise convergence of {ϕk}, the continuity of the potential ψ on the bounded
set Gm and the dominated convergence theorem.

It is left to show that∫
Ω

[F (ϕk, σk(x), x)]2+ dx −→
∫

Ω

[F (ϕ̄, σ̄(x), x)]2+ dx, (13)

with

F (ϕ, σ, x) :=

∫
Br(σk)(x)

χςΩ(q) (ϕk (q)− µ) dq.

Applying Assumption A2 and Hölder’s inequality readily gives

|F (ϕk, σk(x), x)| ≤ |Br(σ(x))| ≤ νdr
d
max,

where the constant νd only depends on the spatial dimension d. In view of (12) and Assumption A2,
we can extract a subsequence such that r(σk(x))→ r(σ̄(x)) for almost every x ∈ Ω.

Now we prove pointwise convergence of F (ϕk, σk(x), x) almost everywhere in Ω utilizing the notion
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of symmetric difference of two sets A,B, i.e., A∆B := (A \B) ∪ (B \ A).

|F (ϕk, σk(x), x)−F (ϕ̄, σ̄(x), x)|

=

∣∣∣∣∣
∫
Br(σk)(x)

χςΩ(q) (ϕk (q)− µ) dq −
∫
Br(σ̄)(x)

χςΩ(q) (ϕk (q)− µ) dq

+

∫
Br(σ̄)(x)

χςΩ(q) (ϕk (q)− µ) dq −
∫
Br(σ̄)(x)

χςΩ(q) (ϕ̄ (q)− µ) dq

∣∣∣∣∣
≤
∫
Br(σk)(x)∆Br(σ̄)(x)

|χςΩ(q) (ϕk (q)− µ)| dq +

∫
Br(σ̄)(x)

|χςΩ(q) ((ϕk − ϕ̄) (q))| dq

≤ νd
∣∣r(σk(x))d − r(σ̄(x))d

∣∣+

∫
Br(σ̄)(x)

|χςΩ(q) ((ϕk − ϕ̄) (q))| dq −→ 0.

A further application of Lebesgue’s dominated convergence theorem yields (13).

Finally one arrives at

−∞ < inf
(u,σ,ϕ)⊂Fad

J (u, σ, ϕ) ≤ J (u, σ, ϕ)

≤ lim inf
k→∞

J (uk, σk, ϕk)

≤ lim
k→∞

J (uk, σk, ϕk)

= inf
(u,σ,ϕ)⊂Fad

J (u, σ, ϕ) ,

which proves that

J (u, σ, ϕ) = inf
(u,σ,ϕ)⊂Fad

J (u, σ, ϕ) .

Thus (u, σ, ϕ) is a solution to problem (CP).

3.3 First-order optimality conditions

3.3.1 Preliminaries

The radius of the local volumes is dependent on the local stresses. Towards deriving the adjoint equa-
tion for the stress, the ∂

∂r
derivative has to be calculated as part of the chain rule. For that the following

transformation φ will be employed

φ : B1 (0)→ Br (x)

q = φ (y) = ry + x

Dφ (y) = rI

detDφ (y) = rd

∂φ

∂r
= y.
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Applying this transformation to the inner integral of the local volume constraint yields

F (r, x) =
1

rd

∫
Br(x)

χςΩ(q) (ϕ (q)− µ) dq

=
1

rd

∫
φ(B1(0))

χςΩ(q) (ϕ (q)− µ) dq

=
1

rd

∫
B1(0)

χςΩ(φ (y)) (ϕ (φ (y))− µ) |detDφ (y)| dy

=

∫
B1(0)

χςΩ(φ (y)) (ϕ (φ (y))− µ) dy.

Equivalently the following term can be transformed via

∫
B1(0)

χςΩ(φ (y))∇ϕ (φ (y)) · y dy =
1

rd+1

∫
Br(x)

χςΩ(q)∇ϕ (q) · (q − x) dq,

where y = q−x
r

was used. This is used to calculate the DrF derivative

DrF (r, x) =

∫
B1(0)

[χςΩ(φ (y))∇ϕ (φ (y)) +∇χςΩ(φ (y))ϕ (φ (y))] · ∂
∂r
φ (y) dy

=

∫
B1(0)

[χςΩ(φ (y))∇ϕ (φ (y)) +∇χςΩ(φ (y))ϕ (φ (y))] · y dy

=
1

rd+1

∫
Br(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq.

Next, the derivatives of the LVC term are calculated. The ∂V
∂σ

derivative will be needed when deriving
the adjoint equation. The results from the transformation together with the chain rule lead to

∂V

∂σ
τ =

∫
Ω

2F+
∂F

∂r
Dσr (σ) : τ dx = 2

∫
Ω

c̃ (ϕ, r(σ), σ) Dσr (σ) : τ dx,

with

c̃ (ϕ, r(σ), σ) :=

[
1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]
+(

1

r(σ)d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq

)
.
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The Fréchet derivative ∂V
∂ϕ
ω will be needed when deriving the variational inequality

∂V

∂ϕ
ω =

∫
Ω

2F+
∂F

∂ϕ
ω dx =

∫
Ω

2

[∫
Br(σ)(x)

χςΩ(ξ) (ϕ (ξ)− µ) dξ

]
+

∫
Br(σ)(x)

χςΩ(q)ω (q) dq dx

Fubini
=

∫
Ω

2

∫
Ω

[∫
Br(σ)(x)

χςΩ(ξ) (ϕ (ξ)− µ) dξ

]
+

χBr(σ)(x) (q)χςΩ(q) dx ω (q) dq

= 2

∫
Ω

∫
Ω

[∫
Br(σ)(q)

χςΩ(ξ) (ϕ (ξ)− µ) dξ

]
+

χBr(σ)(q) (x)χςΩ(x) dq︸ ︷︷ ︸
=:G(σ,ϕ,x)

ω (x) dx

= 2

∫
Ω

G (σ, ϕ, x)ω (x) dx.

(14)

After using the chain rule, Fubini’s theorem was applied.

3.3.2 Derivation of first order optimality conditions

The adjoint problem is derived formally using the Lagrange functionL with Lagrange multipliers (p, τ),
i.e.

L =

∫
Γf

f · u dω + γEε (ϕ) +
α

2
V (r (σ) , ϕ)

+
(
C−1 (ϕ)σ, τ

)
0
− (τ, E (u))0 − (σ, E (p))0 +

∫
Γf

f · p dω.

By calculating the ∂L
∂u

and ∂L
∂σ

derivatives using results of Section 3.3.1, we get the saddle point prob-
lem of the adjoint system

(C−1 (ϕ) τ, η)0 − (η, E (p))0 = −α (c̃ (ϕ, r(σ), σ)Dσr (σ) , η)0 ∀η ∈ L2
(
Ω, Sd

)
− (τ, E (v))0 = −

∫
Γf
f · v dx ∀v ∈ H1

D

(
Ω,Rd

)
.

(15)

Formally we arrive at the strong form of the adjoint problem

− div τ = 0 in Ω
τ = C (ϕ) E (p)− αc̃ (ϕ, r(σ), σ)C (ϕ)Dσr (σ) in Ω
p = 0 on ΓD
τn = f on Γf ,
τn = 0 on Γ \

(
ΓD ∪ Γf

)
.

Theorem 3.6 (The adjoint problem is well-posed). Let Assumption A2 hold true. For given ϕ ∈
H1 (Ω,R) ∩ L∞ (Ω,R) and (u, σ) ∈ H1

D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
there exists a unique weak so-

lution (p, τ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
of the adjoint problem such that (15) is fulfilled.

Proof. Define

〈F, η〉 : = −α (c̃ (ϕ, r(σ), σ)Dσr (σ) , η)0

〈G, v〉 : = −
∫

Γf

f · v dx.
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Applying Hölder’s inequality and Assumption A2 leads to

|〈F, η〉| = |α (c̃ (ϕ, r(σ), σ)Dσr (σ) , η)0|

= α

∣∣∣∣∣
∫

Ω

[
1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]
+

·

(
1

r(σ)d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq

)
Dσr (σ) : η dx

∣∣∣∣∣
≤ α

∣∣∣∣∣
[

1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]
+

∣∣∣∣∣
·

∣∣∣∣∣ 1

r(σ)d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq

∣∣∣∣∣ · C‖η‖L2(Ω,Sd).

Noting that the first terms are independent of η and bounded (see proof of in Lemma 3.9) one receives
F ∈ L2

(
Ω,Sd

)
.

Additionally, as in Theorem 3.2, we get G ∈
(
H1
D

(
Ω,Rd

))∗
and the result follows from Lemma 3.1.

Definition 3.7 (Reduced Cost-Functional). The cost functional J (u, σ, ϕ) can be viewed as being
only dependent on the control ϕ, which defines the reduced cost-functional j (ϕ)

J (u, σ, ϕ) = J (u (ϕ) , σ (ϕ) , ϕ) =: j (ϕ) .

To prove the differentiability of the occuring Nemytskii operators, we apply a result found in (Appell &
Zabrejko, 1990, Thm. 3.12). We are using a variant found in (Tröltzsch, 2010, p. 204), which is stated
here:

Lemma 3.8. Let a bounded and measurable set E ⊂ Rn be given, and assume that ϕ = ϕ(x, y)
satisfies the Carathéodory condition. Let the Nemytskii operator Φ(y) := ϕ(·, y(·)) map Lp(E) into
Lq(E) for 1 ≤ q ≤ p <∞. The operator Φ is for q <∞ automatically continuous if it maps Lp(E)
into Lq(E). In addition, let the partial derivative ϕy(x, y) exist for almost every x ∈ E, and assume
that the Nemytskii operator generated by ϕy(x, y) maps Lp(E) into Lr(E). If 1 ≤ q < p < ∞
satisfies the condition

r =
pq

p− q
,

then Φ is Fréchet differentiable from Lp(E) into Lq(E), and we have

(Φ′(y)h) (x) = ϕy(x, y(x))h(x).

Lemma 3.9. The reduced cost-functional j : H1 (Ω,R) ∩ L∞ (Ω,R)→ R is Fréchet-differentiable.
The derivative in direction ω ∈ H1 (Ω,R) ∩ L∞ (Ω,R) is given by

j′ (ϕ)ω =
(
(C−1)′ (ϕ)ωσ, τ

)
0

+ γ

∫
Ω

ε∇ϕ · ∇ω +
1

ε
ψ′ (ϕ)ω dx+ α

∫
Ω

G (σ, ϕ, ·)ω dx,

where (u, σ) is the weak solution of the elasticity system according to Definition 2.1, (p, τ) is the weak
solution of the adjoint system, see Theorem 3.6 and G (σ, ϕ, ·) stems from Section 3.3.1.
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Proof. The function J is defined as

J : H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
×H1 (Ω,R) ∩ L∞ (Ω,R)→ R.

Note that via the chain rule one formally gets

j′ (ϕ)ω =
∂J

∂u
u∗ +

∂J

∂σ
σ∗ +

∂J

∂ϕ
ω, (16)

where (u∗, σ∗) = S ′(ϕ)ω stems from Lemma 3.4 . Since continuous partial derivatives imply
Fréchet-differentiability, they are examined here. The first one is

∂J

∂u
u∗ =

∫
Γf

f · u∗dω = (τ, E (u∗))0 , (17)

where the second equation of the adjoint system (15) was used with v := u∗.

Towards calculating the second term, we look at

r : Sd → R+, σ 7→ r (σ) .

According to Assumption A2 the function r is globally bounded. Therefore we can define the Nemytskii
operator with 0 < δ < 1

2
as

Φr : L2
(
Ω,Sd

)
→ L2−δ (Ω,R+) , σ 7→ r (σ (·)) .

Towards proving Fréchet differentiability of Φr, we look at the Nemytskii operator ΦDσr induced by
Dσr. Again, via Assumption A2

‖ΦDσr (σ)‖L∞ ≤ C a.e. in Ω ∀σ ∈ L2
(
Ω, Sd

)
.

We can define the associated Nemytskii operator ΦDσr to Dσr as

ΦDσr : L2
(
Ω,Sd

)
→ L

2(2−δ)
δ

(
Ω,Sd

)
, σ 7→ Dσr (σ (·))

Thus, according to Lemma 3.8, the Nemytskii operator Φr is Fréchet differentiable from L2
(
Ω,Sd

)
to

L2−δ (Ω,Sd) with Φ′r (σ) = ΦDσr (σ), where

(Φ′r (σ) : τ) (x) = Dσr (σ(x)) : τ(x) for σ, τ ∈ L2
(
Ω,Sd

)
.

As a next step we are looking at G := F 2
+, where F was defined in Section 3.3.1

G : Ω× R× R→ R

We infer that G is globally bounded, which follows from

|F (x, r, ϕ)| ≤ C

for almost every x ∈ Ω and for all (r, ϕ) ∈ L2−δ (Ω,R>0) × H1 (Ω,R) with 0 < rmin < r <
rmax <∞. This holds true since

|F (x, r, ϕ)| =

∣∣∣∣∣ 1

(r(σ))d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

∣∣∣∣∣ ≤ 1

(r(σ))d

∫
Ω

|ϕ(q)− µ| dq

≤ 1

rdmin

(
‖ϕ‖L1(Ω,R) + µ |Ω|

)
.

(18)
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Then we can define the Nemytskii operator

ΦG : L2−δ (Ω,Sd)×H1 (Ω,R)→ L2−2δ
(
Ω,Sd

)
, (r, ϕ) 7→ G (·, r (·) , ϕ (·)) .

We have to show that DrG is globally bounded, which follows from

|DrF (x, r, ϕ)| ≤ C for a.e. x ∈ Ω and for all (r, ϕ) ∈ L2−δ (Ω,Sd)×H1 (Ω,R) ,

which holds true since

|DrF (x, r, ϕ)| =

∣∣∣∣∣ 1

(r(σ))d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq

∣∣∣∣∣
≤ 1

(r(σ))d+1

∫
Br(σ)(x)

|χςΩ(q)∇ϕ (q)| rmax dq

+
1

(r(σ))d+1

∫
Br(σ)(x)

|∇χςΩ(q)ϕ (q)| rmax dq

≤ 1

(r(σ))d+1

∫
Ω

|∇ϕ (q)| rmax dq

+
1

(r(σ))d+1

∫
Ω

|∇χςΩ(q)ϕ (q)| rmax dq

≤ 1

(r(σ))d+1
‖∇ϕ‖L2(Ω,Rd)rmax

+
1

(r(σ))d+1
‖∇χςΩ‖L2(Ω,Rd)‖ϕ‖L2(Ω,R)rmax

≤ 1

rd+1
min

(1 + Cς) ‖ϕ‖H1(Ω,R)rmax,

where we inserted (8) and Assumption A2. Then we can define the Nemytskii operator induced by
DrG via

ΦDrG : L2−δ (Ω,Sd)×H1 (Ω,R)→ L
4−6δ+2δ2

δ (Ω,R) , (r, ϕ) 7→ Dr (G (·, r (·) , ϕ (·))) .

Looking at (14) and following the arguments in (18), we also see thatDrG is globally bounded. There-
fore, again via Lemma 3.8, the Nemytskii Operator ΦG is Fréchet differentiable from L2−δ (Ω, Sd) ×
H1 (Ω,R) to L2−2δ

(
Ω, Sd

)
with derivatives(

∂ΦG

∂r
(r, ϕ) s

)
(x) = DrG (x, r(x), ϕ(x)) s(x),(

∂ΦG

∂ϕ
(r, ϕ)ω

)
(x) = DϕG (x, r(x), ϕ(x))ω(x),

where DrG = 2F+DrF and DϕG = 2F+DϕF were calculated in Section 3.3.1.

We can write

V (σ, ϕ) =

∫
Ω

ΦG (Φr (σ) , ϕ) dx
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and via the chain rule for Fréchet derivatives we get

∂V

∂σ
(σ, ϕ) τ =

∫
Ω

∂ΦG

∂r
(Φr (σ) , ϕ) Φ′r (σ) : τ dx

=

∫
Ω

DrG (·, r (σ (ϕ)) , ϕ)Dσr (σ) : τ dx, and

∂V

∂ϕ
(σ, ϕ)ω =

∫
Ω

∂ΦG

∂ϕ
(Φr (σ) , ϕ)ω dx.

Applying the results from Section 3.3.1 the second term of (16) is calculated as

∂J

∂σ
σ∗ = α

∂V

∂σ
σ∗ = α

∫
Ω

∂ΦG

∂r
(Φr (σ) , ϕ) Φ′r (σ) : σ∗dx

= α (c̃ (ϕ, r(σ), σ) Dσr (σ) , σ∗)0

= −
(
C−1 (ϕ) τ, σ∗

)
0

+ (σ∗, E (p))0 ,

(19)

where the definition of Section 3.3.1 was inserted and the first equation of the adjoint system (15) was
used with η := σ∗.

Adding (17) and (19) together and applying system (10) of Lemma 3.4 with η := τ and v := p we get

∂J

∂u
u∗ +

∂J

∂σ
σ∗ = (τ, E (u∗))0 −

(
C−1 (ϕ) τ, σ∗

)
0

+ (σ∗, E (p))0

=
(
(C−1)′ (ϕ)ωσ, τ

)
0
.

Via Section 3.3.1 we receive

∂J

∂ϕ
ω = γ

∫
Ω

ε∇ϕ · ∇ω +
1

ε
ψ′ (ϕ)ω dx+ α

∫
Ω

G (σ, ϕ)ω dx.

Since these partial derivatives are continuous, they can be assembled to

j′ (ϕ)ω =

∫
Ω

(C−1)′ (ϕ)ωσ : τ dx+ γ

∫
Ω

ε∇ϕ · ∇ω +
1

ε
ψ′ (ϕ)ω dx+ α

∫
Ω

G (σ, ϕ, x)ω dx.

For the readers convenience, the first-order optimality conditions are summarized in a theorem.

Theorem 3.10 (First-order necessary optimality conditions). Under Assumptions A1, A2 and with f ∈
L2
(
Γf ,Rd

)
there exists an optimal control ϕ̄ ∈ Gm. For any optimal control ϕ̄ there exists a unique

solution (ū, σ̄) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω, Sd

)
of the state equation and a unique solution (p̄, τ̄) ∈

H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
of the adjoint equation, such that the following variational inequality is

satisfied:

j′ (ϕ̄) (ϕ− ϕ̄) =

∫
Ω

(C−1)′ (ϕ̄) (ϕ− ϕ̄)σ̄ : τ̄ dx+ γ

∫
Ω

ε∇ϕ̄ · ∇(ϕ− ϕ̄) +
1

ε
ψ′ (ϕ̄) (ϕ− ϕ̄) dx

+ α

∫
Ω

G (σ̄, ϕ̄, x) (ϕ− ϕ̄) dx ≥ 0 ∀ϕ ∈ Gm.
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4 Numerical results

4.1 Preliminaries

The implementation took place in FEniCS. For references, see (Logg et al., 2012) and (Alnaes et al.,
2019). An Allen Cahn gradient flow is employed and inequality constraints are handled via the Pri-
mal Dual Active Set Method. For a detailed description of the basic macroscopic phasefield topology
optimization algorithm we refer to (Ebeling-Rump et al., 2021).

The joint optimization of macroscale and mesoscale structures in this paper and specifically the eval-
uation of the LVC represent an additional computational burden that needs to be dealt with. To speed
up the computation adaptive meshing was implemented together with a diffusion step after each mesh
refinement step. For an efficient evaluation of the LVC term the code was parallelized via the multipro-
cessing package, which is part of the Python Standard Library. A further important requirement for an
efficient solution is the scaling of penalty terms in the cost functional. The LVC term is normalized by
its maximum value, i.e. V (r, ρ) with ρ : Ω→ R, ρ (x) = 1. A more detailed explanation of adaptivity,
multiprocessing and normalization is planned for a forthcoming paper.

As suggested in (Eigel et al., 2018), the factor γ in front of the Ginzburg-Landau regularization is
updated in each iteration step such that the ratio between the compliance and Ginzburg-Landau term

cGL :=
γk+1Eε (ϕk)

F (uk)

stays fixed. Thus γk+1 is chosen via

γk+1 = cGL
F
(
uk
)

Eε (ϕk)
(20)

Throughout this paper cGL is set to 0.2.

For reasons of efficiency, the transition zone between material and void is only gradually narrowed
during the course of iterations. To this end the Ginzburg-Landau parameter ε, which is related to the
interface width, is updated according to the minimum cell diameter hmin whenever the mesh is refined,
i.e., we choose

ε = 2hmin.

4.2 Definition of the stress dependent radius

As a starting point we choose the von Mises stress as a scalar stress measure. Assuming plane stress,
it is defined as

σv =
√
σ2

1 − σ1σ2 + σ2
2.

There are various ways to define the stress dependency of r. For a pronounced transition we have
chosen to multiply a base radius r0 by a factor a > 1 in areas where the von Mises stress is larger
than a set threshold value σ̂v, i.e.

r (σ) ≈

{
r0 if σv ≤ σ̂v

ar0 else .
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Figure 3: Local radius r(σ) as a function of the von Mises stress.

The regularized Heaviside function

Hβ(x) =


0 if x < 0
10
β6x

6 − 24
β5x

5 + 15
β4x

4 if 0 ≤ x < β

1 if x ≥ β

is used for a controlled and smooth transition between the two radii, i.e., we define

r (σ) = (1 + (a− 1)Hβ(σv − σ̂v)) r0.

For r0 = 1 the behaviour of r(σ) is shown in Figure 3.

Note that r0 ≤ r (σ) ≤ ar0 =: rmax and via the chain rule we obtain

Dσr (σ) =
a− 1

2σv

r0

[
2σ1 − σ2 0

0 2σ2 − σ1

]
dHβ

dσv

(σv − σ̂v).

For the numerical examples β is set to σ̂v

10
.

4.3 LVC mesh independence

For an efficient computation of the local volume constraint it is evaluated on a coarser uniform grid, in
the following referred to as the LVC mesh. The mesh size is chosen in terms of the minimal radius r0

and the requirement that the local volumes should cover the domain, i.e. Ω ⊂
⋃
x

Br (x) defines an

upper bound for it.

In the example seen in Figure 4 the FEM mesh always has Nx = 200 points in x-direction. When
using Nx = 36 instead of Nx = 200 for the LVC mesh, one saves 96.5% of the computational effort
for calculating the LVC integrals. This does not introduce large errors, which can be seen in Table 1.
While the difference in results from Nx = 10 and Nx = 36 is quite noticeable, for larger Nx values
the results do not change significantly anymore.
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(a) Nx = 10 (b) Nx = 36

(c) Nx = 100 (d) Nx = 200

Figure 4: Once the LVC mesh reaches a certain fineness, the structure does not change anymore.
This allows for a faster computation of the LVC term.

Table 1: Influence of a coarser LVC mesh.

Figure 4 Nx F V #holes

(a) 10 2.29 0.0132 98
(b) 36 2.36 0.0116 206
(c) 100 2.41 0.0125 196
(d) 200 2.43 0.0138 191
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(a) µ = 0.1, #holes: 95 (b) r = 0.2, #holes: 22

(c) µ = 0.4, #holes: 264 (d) r = 0.08, #holes: 113

(e) µ = 0.7, #holes: 380 (f) r = 0.04, #holes: 406

(g) µ graded from 0.7 to 0.1, #holes: 256 (h) r graded from 0.2 to 0.04, #holes: 288

Figure 5: The parameter r controls the size of the holes, the parameter µ defines the local material
percentage.

4.4 Parametric control of the mesostructure

As explained in Section 2.4, the mesostructure is governed by the local volume fraction µ and radius
r. One might argue that smaller pores than balls with radius r could be created as well. However, this
has not been observed in the numerical experiments and the the reason is that the Ginzburg-Landau
penalization strives for minimizing interface curvature and number of interfaces thus preferring coarser
structures. Hence it is fair to say that the mesoscopic length scale is indeed defined by r. Therefore
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our approach right away allows to control the minimum feature size, see (Guest et al., 2004).

Table 2: Influence of the parameters µ and r

Figure 5 µ r F V #holes

(a) 0.1 0.06 4.87 0.0704 95
(c) 0.4 0.06 2.90 0.0445 264
(e) 0.7 0.06 1.95 0.0427 380
(g) graded in x from 0.7 to 0.1 0.06 3.00 0.0487 256

(b) 0.4 0.2 2.80 0.00696 22
(d) 0.4 0.08 2.36 0.00744 113
(f) 0.4 0.04 2.13 0.0154 406
(h) 0.4 graded in x from 0.2 to 0.04 2.51 0.00369 288

In the following parameter study no global volume constraint is present. With a local volume fraction
µ = 0.1, as in Figure 5(a), the material distribution ϕ should not use more than 10% material in any
local ball Br(x). For this setting the structures are quite filigree with long thin beams. This would not
be beneficial when aiming to improve the buckling behaviour. As µ is increased to 0.4 one notices a
larger local material usage in Figure 5(c). Especially in the center of the domain the individual beams
become shorter as more crossings appear, which can also be observed by an increase in the number
of holes. Increasing µ further to 0.7 leads to a perforated sponge-like material with many small holes,
see Figure 5(e).

This approach also allows for a grading of the parameter µ. A simple grading in x-direction from
µ = 0.7 on the left hand side to µ = 0.1 on the right hand side is shown in Figure 5(g). One notices
that as expected the left hand side of the domain is similar to the left side of Figure 5(e), whereas the
right side is matches the design in Figure 5(a).

Another way to influence the mesostructure is via the radius r in the local volumes Br(x). As the
radius is decreased from 0.2 to 0.08 and 0.04, more holes appear, which can be observed when
comparing Figures 5 (b), (d) and (f).

The radius can also be graded. For example in Figure 5(h) the radius reaches from 0.2 on the left
hand side to 0.04 on the right hand side. Again, the left and right side of the domain correspond to the
designs in (b) and (f) for the constant radii.

The results are summarized in Table 2. To count the number of holes, Betti numbers are computed
using the CHomP software from the computational homology project, which is based on (Harker et al.,
2014). Note that only fully enclosed holes count.

We remark that if the radius is chosen large enough such that Ω ⊂ Br (x) for all x in Ω, the LVC term
acts like a global volume constraint penalty term.

Figure 6: Macroscopic optimization of an MBB beam.
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Figure 7: Two-scale optimization with constant radius.

Figure 8: Two-scale optimization with stress dependent radius.

4.5 Results for two-scale topology optimization

As the first example we consider the two-scale topology optimization of an MBB beam. All calculations
are done with at most 100 iteration steps, the global material volume fraction is set to 40%. The
number of degrees of freedom in x-direction is 500. The compliance to Ginzburg-Landau relation is
set to 0.2.

Table 3: Influence of a constant and a stress dependent radius.

Figure α r F α * V #holes time

6 : original 1109 4 1h 14min
7: constant radius 4× 10−7 constant 0.04 1284 586853 318 9h 54min
8: stress dep radius 4× 10−7 stress-dep. from 0.04 to 0.4 1171 21545 181 9h 57min

Figure 6 depicts the result of the purely macroscopic topology optimization. Figure 7 shows a two-scale
optimization with a constant radius. As can be checked in Table 3, the compliance of the two-scale
structure with constant mesostructure radius is increased by 15% as compared to the purely macro-
scopic structure. On the other hand, a two-scale optimization with stress dependent radius (see Figure
8) leads to a design where the compliance is only about 5% bigger as compared to the macroscopic
case.

Figure 9: Two-scale optimization with stress dependent radius for the cantilever beam.
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Figure 10: The extruded version of the optimized structure seen in Figure 9 (left) and its printed coun-
terpart (right).

As a second example, a cantilever beam was examined. The structure without a local volume con-
straint can be seen in Figure 2 (b), the one for two-scale optimization with constant radius in Figure
2 (d), respectively. When incorporating the local volume constraint with the stress dependent radius
defined in Section 4.2, the structure in Figure 9 arises. The stress-dependency leads to intricate struc-
tures with larger beams in areas of larger local stress.

The advantage of 3D printing is that complex parts, like the one seen in Figure 9, can easily be
extruded and directly manufactured. As a first step towards 3D two-scale topology optimization Figure
10 depicts the extruded 2D result and its printed version.

5 Conclusion

The paper investigates a novel two-scale topology optimization concept where the mesostructure can
be homogeneous or spatially graded either by imposing a predefined spatial size distribution or by con-
sidering a stress dependent local radius. To this end, the Hellinger Reissner mixed formulation was
introduced to allow for a more precise stress calculation. From a developers point of view, the ease of
implementation and the great speedup of the LVC term calculation via multiprocessing are especially
noteworthy. For future 3D calculations further speedup is necessary. Solving the state equation is cur-
rently a computational bottleneck, but tremendous speed up can be achieved using GPU-accelerated
geometric multigrid solvers, see (Wu et al., 2015).

Since 3D printers cannot create arbitrarily small structures, there is an interest in minimum feature
size control. This has been tackled in the well-known paper (Guest et al., 2004). As seen in Section
4.3, in our approach this comes for free from the control of r0. A larger minimum feature size can be
achieved by increasing the radius. The filigree, porous structures created by our approach are better
equipped to deal with uncertainty or material failure.
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