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Numerical upscaling of parametric microstructures in a
possibilistic uncertainty framework with tensor trains

Martin Eigel, Robert Gruhlke, Dieter Moser

Abstract

A fuzzy arithmetic framework for the efficient possibilistic propagation of shape uncertainties
based on a novel fuzzy edge detection method is introduced. The shape uncertainties stem from a
blurred image that encodes the distribution of two phases in a composite material. The proposed
framework employs computational homogenisation to upscale the shape uncertainty to a fuzzy
effective material. For this, many samples of a linear elasticity problem have to be computed,
which is significantly sped up by a highly accurate low-rank tensor surrogate. To ensure the conti-
nuity of the underlying mapping from shape parametrisation to the upscaled material behaviour, a
diffeomorphism is constructed by generating an appropriate family of meshes via transformation
of a reference mesh. The shape uncertainty is then propagated to measure the distance of the
upscaled material to the isotropic and orthotropic material class. Finally, the fuzzy effective mate-
rial is used to compute bounds for the average displacement of a non-homogenized material with
uncertain star-shaped inclusion shapes.

1 Introduction

Composite materials are ubiquitous in many applications. Whether they are formed by chance (like
with unfavourable impurities in metal) or by design (like pebbles in concrete), the mechanical proper-
ties of the whole material are determined by the resulting composite structure [27]. The different types
of composite materials – e.g. metal matrix composites [12], fiber-reinforced polymers [52], composite
wood [41] and other advanced composite materials [56] – find their use in a wide range of applications,
e.g. masonry, aerospace industry, wind power plants and sports equipment. In many applications, the
added composite material improves a base matrix material in terms of wear resistance, damping prop-
erties and mechanical strength, while keeping the same weight. However, such improved composite
materials are a result of empirical studies, experimentation and chance. It hence is obvious that a
thorough understanding of composite materials via theoretical and accurate computational models is
desirable to predict and systematically improve the properties and applicability of composites.

What makes this task challenging are the influence of material behaviour on the micro- and macro
scales, as well as the multifaceted sources of uncertainties. For instance, the involved length scales
may span up to ten orders of magnitudes, i.e. the size of a nano particle of 10−6 m is embedded in
a material with a length scale of 10−1 − 101 m [12]. The same holds for the material constants if the
constituents are fundamentally different as in metals and polymers. A standard finite element approach
becomes very costly in such a setting since the details of the composite have to be resolved by the
mesh for accurate simulations. Additionally, one has to handle the uncertainty of the material constants
such as the position, form and size of the inclusions. This increases the costs even further since
many realisations are required to correctly capture the uncertainty statistically. Each new realisations
requires a costly (possible automatic) remeshing of the computational domain. The mapping from
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Figure 1: Computed tomography scan of a Henkel beam taken from [15]. Material imperfections are
noticeable but the present resolution does not reveal the exact shapes of the imperfections.

geometric parameters — namely position and shape of each inclusion — onto the generated meshes
are usually discontinuous. This introduces unwanted effects that we tackle in Section 4.1.

The first challenge — the span of scales — is tackled by homogenisation methods, a term introduced
by Babuška in [3]. In some form or another, these methods incorporate micro-scale behaviour into
an adjusted macro-scale model, replacing the full composite material model by a corrected homo-
geneous one, obtained by an asymptotic limit of an assumed (periodic) domain. The central idea is
to derive equations that describe the effective material properties analytically. Alternatively, computa-
tional approaches have been devised to solve particular micro-scale problems to deduce the adjusted
macro-scale behaviour numerically [10, 19]. Some notable examples are stochastic homogenisation,
see [1, 7, 8, 22], projection based homogenisation [18] and (stochastic) representative volume element
methods [43].

The second challenge — the uncertainty of the material — is sometimes neglected [29, 55] by only
considering deterministic material properties. If the probability distribution of the material constants is
known, the uncertainty can be modelled with precise probabilities [4]. Ignoring the uncertainty seems
valid if it has little influence on the system’s response or the model data is known sufficiently accu-
rate and is free of inherent fluctuations. Using precise probabilities is valid if the distributions of the
material constants are known precisely. However, as was pointed out by Motamed and Babuška [5],
stochastic models based on precise probabilities are not always able to model the uncertainty in com-
posite materials. Instead, they propose a model based on an imprecise probability theory. Examples
for this are evidence theory [53], random set theory [34], possibility theory [61] and — more recently
— optimal Uncertainty Quantification (UQ) [45]. In comparison to precise probability, imprecise prob-
ability methods are able to provide estimates of uncertainties based only on a small set of data and
few assumptions, which would be far too limited for a probabilistic method. For an illuminating work
that dissects the difference between precise and imprecise probabilities, we refer the reader to [6].
As a motivation the approach developed in what follows, we especially point to the false confidence
theorem, which qualitatively states that “probability dilution is a symptom of a fundamental deficiency
in probabilistic representations of statistical inference, in which there are propositions that will consis-
tently be assigned a high degree of belief, regardless of whether or not they are true” [6].

In this work, we consider a practical problem that is supposed to illustrate when imprecise probabil-
ities are appropriate (in particular more so than probabilistic methods), the challenges performing a
non-probabilistic uncertainty propagation and quantification, and ways to overcome the computational
difficulties. We assume a material consisting of two phases, namely a soft matrix phase and a hard
inclusion phase. Both phases are linear elastic with precisely known Young’s modulus and Poisson ra-
tio. The inclusions repeat periodically in a checkerboard fashion. Consequently, a classical numerical
homogenisation method would yield a homogenised (globally constant) macro-scale material. Consid-
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ering real applications, the main problem stems from the unknown shape of the inclusions. Often, the
shape is retrieved with a non-intrusive imaging process, e.g. computed tomography scans or magnetic
resonance imaging. To illustrate this, Figure 1 shows a computed tomography scan of an imperfect
adhesive bond within a Henkel beam, cf. [15]. Apparently, the image is noisy, blurred, pixelated and
exhibits artefacts. While it is possible to de-noise and de-blurr the image with image post-processing,
which might make the identification of inclusions possible, different numerical methods yield different
shapes [16]. This reveals the shape uncertainty inherent to the image. Here, we just focus on blurred
images, assuming that the artefacts and noise were successfully removed already, see Figure 3 for an
example.

To tackle this setting, we introduce a novel fuzzy edge detection based on possibility theory, presented
in Section 2.1 and a restriction of possible interface boundaries via bounded total variation in Section 3.
This yields a fuzzy model of the boundary which in turn introduces a computational challenge in terms
of a numerical homogenisation problem as discussed in Section 2.2. For this, the micro-model has
to be solved very often in order to propagate the uncertainty of the boundary to the homogenised
material model. To alleviate this expensive task, we introduce a highly accurate rank adaptive low-rank
tensor surrogate in Section 4. In the numerical experiments Section 5, the surrogate model is validated
numerically. Moreover, we measure the distance of the homogenised material to the class of isotropic
and orthotropic elastic tensors and eventually use the homogenised material to perform a worst/best
case analysis for a full matrix composite model with 64 inclusions, i.e., with help of the homogenised
material we will find bounds for the average displacement of the non-homogenised material.

2 Basics

This section serves as a brief introduction of three fundamental topics that form the basis of this work.
First, fuzzy set theory which is used to model the uncertainty ingrained in the blurred image. Second,
the computational up-scaling method (numerical homogenisation). Third, classes of constitutive ten-
sors to measure the distance of the up-scaled material to the isotropic and orthotropic material are
discussed.

2.1 Fuzzy set theory

We introduce a possibilistic framework with fuzzy sets based on 4 central definitions, see e.g. [60]
or more recently [36, 37, 38]. Fuzzy sets are common sets that are equipped with a membership
function which assigns each element in the set a value between zero and one. This values only task
is to communicate a degree of belongingness to the set. The meaning of this value depends on
the problem and — more importantly — on the community using this value to formalise uncertainty.
Arguably, this ambiguity is a feature and not a short-coming of this theory since it avoids assumptions
that are usually made by other approaches. In probability theory for instance, one has to assume a
prior distribution before updating the posterior distribution with new samples.

The following definition introduces the terminology of fuzzy sets.

Definition 2.1. (Fuzzy set/variable, α-cuts and interactivity)
Let Z 6= ∅ be a set and µ : Z → [0, 1] be a map such that there exists z ∈ Z with µ(z) = 1. The
map µ is called (normalised) membership function. We define a (normalised) fuzzy set z̃ on Z by

z̃ := {(z, µ(z)) | z ∈ Z}. (1)
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If µ(Z) = {0, 1} with unique z∗ ∈ Z and µ(z∗) = 1 then z̃ is called a crisp set. Furthermore,
we denote by F(Z) the set of all fuzzy sets on Z . We thus simply write z̃ ∈ F(Z). For each fuzzy
set z̃ ∈ F(Z) we denote the associated membership function by µz̃. If Z ⊂ RN for N ∈ N, we
call z̃ ∈ F(Z) a fuzzy variable (N = 1) or vectorial fuzzy variable (N > 1) described by a (joint)
membership function µz̃. Let α ∈ [0, 1]. Then the α-cut Cα of µz̃ is defined as

Cα[z̃] := {z ∈ Z : µz̃(z) ≥ α}. (2)

The support of µz̃ is defined as

supp(z̃) = {z ∈ Z | µz̃(z) > 0}.

Let z̃i ∈ F(Zi) for sets Zi with i = 1, . . . ,M < ∞, Z :=×M

i=1
Zi and z̃ = (z̃1, . . . , z̃M). If

the joint membership function associated with z̃ has the form µz̃ = mini µz̃i then z̃ is called non-
interactive and interactive otherwise.

Fuzzy sets are quite versatile since there are no restrictions on the (type and structure of the) used
sets. However, for numerical methods to become efficient, certain assumptions are beneficial. The first
restriction mimics numbers and vectors.

Definition 2.2. (Fuzzy number/vector)
Let z̃ ∈ F(Z) with Z ⊂ RN for some N ∈ N such that Z is bounded and convex and the (joint)
membership function µz̃ is upper semi-continuous, i.e.

lim sup
z→z0

µ(z) ≤ µ(z0), ∀z0 ∈ Z (3)

and quasi-concave, i.e.

µ(λz1 + (1− λ)z2) ≥ min(µ(z1), µ(z2)), ∀z1, z2 ∈ Z. (4)

If there exists a unique z∗ ∈ Z such that µz̃(z∗) = 1 then we call z̃ a fuzzy number for n = 1 and a
fuzzy vector for n > 1.

This notion is easily extended to intervals and domains.

Definition 2.3. (Fuzzy interval/domain)
With the same assumptions as in Definition 2.2, there exists a subset S ⊂ Z such that µz̃(z) = 1 for
all z ∈ S. Then z̃ is called a fuzzy interval for n = 1 and fuzzy domain for n > 1 .

Note that the quasi-concavity of the membership function implies convexity of any α-cut Cα. In par-
ticular, given S ⊂ Z as in Definition 2.3, the convex hull conv(S) is a proper subset of C1, too. The
quasi-concavity also leads to the nestedness property of α-cuts from Definitions 2.2 and 2.3, i.e.

Cα[z̃] ⊂ Cβ[z̃], ∀α ≥ β. (5)

This property is essential for the α-cut propagation method, see Theorem 2.6. In the following exam-
ple, we introduce the most common fuzzy structures. Namely, the fuzzy trapezoidal interval which we
will use throughout this work.
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Example 2.4. A particular class of fuzzy sets is the trapezoidal fuzzy set z̃, forming a subset ofF(Z)
with Z ⊂ R. The respective membership function µz̃ is described by two upper semi-continuous
functions fL : (−∞, 0] → [0, 1] and fR : [0,∞) → [0, 1]. Here, fL(0) = fR(0) = 1 with fL (fR)
is monotonously increasing (decreasing) and limz→−∞ fL(z) = 0 (limz→∞ fR(z) = 0) such that
there exist `∗, r∗ ∈ Z with z∗` ≤ z∗r and

µz̃(z) =


fL(z∗ − z), z ≤ z∗` ,
1, z ∈ (z∗` , z

∗
r ),

fR(z − z∗), z ≥ r∗,
(6)

The triangle fuzzy number z̃ = 〈`, z∗, r〉 specified by left and right limit `, r and peak position z∗ =
z∗` = z∗r is a special case of the trapezoidal fuzzy set. Figure 2 depicts the propagation of a trapezoidal
fuzzy set.

C0[z̃]
Z0

1

α
Cα[z̃]

l r

µz̃

z̃ =< l, z∗l , z
∗
r , r >

z∗rz∗l

f : Z → V

V
C0[f̃ ]

Cα[f̃ ]

µz̃(f−1(v))

v

µf̃

sample based
envelope reconstruction

{(vk, µz̃(zk)}k

0

α

1

v∗l v
∗
r

f(z̃)

Figure 2: Fuzzy propagation via α-cuts or full sampling and membership reconstruction with vk =
f(zk), for Z = V = R.

For arbitrary fuzzy sets Zadeh’s extension principle is the way to propagate uncertainty through a
mapping.

Theorem 2.5. (Zadeh’s extension principle [60])
Consider a function f : Z → V with a non-empty set V . Let z̃ ∈ F(Z) with membership function
µz̃. Define

f̃ := f(z̃) := {(f(z), µf̃ (f(z)) ∈ V × [0, 1], z ∈ Z} (7)

with membership function µf̃ defined as

µf̃ (v) :=

 sup
z∈f−1(v)

µz̃(z) f−1(v) 6= ∅,

0 f−1(v) = ∅,
for all v ∈ V. (8)

Then f̃ ∈ F(V ) with membership function µf̃ .

If more underlying structure is given, the extension principle can be formulated equivalently in terms of
constrained optimization. Zadeh’s principle can be reformulated into the so-called α-cut propagation
for fuzzy vectors and fuzzy domains to reduce the computational costs.

Theorem 2.6. (α-cut propagation [40])
Let f : Z → V be continuous between metric spaces (Z, d1) and (V, d2) and let z̃ ∈ F(Z) with

support C0[z̃] ⊂ K ⊂ Z for a compact set K with convex Z . Furthermore, let the membership
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function µz̃ be quasi-concave and upper semi-continuous. Then µf̃ can be characterised via α-cuts
as

Cα[f̃ ] = f(Cα[z̃]). (9)

Moreover, if V = R then

Cα[f̃ ] =

[
min
z∈Cα[z̃]

f(z), max
z∈Cα[z̃]

f(z)

]
. (10)

Note that (9) follows from the assumption that Cα[z̃] is closed and consequently compact as it is a
closed subset of a compact set K in a metric space. Since f is assumed to be continuous, compact
sets are mapped to compact sets.

Comparing Zadeh’s principle with the α-cut propagation, we immediately see that the former requires
the inverse image and an optimization step for each point v whereas the later only depends on two
optimization steps of f for the number of α-cuts. Since it is infeasible to perform Zadeh’s principle for
all points v ∈ V , it is combined or replaced with a sampling approach. We distinguish two variants to
sample in V :

� Semi sampling approach: directly solve the constrained optimization problem with a global op-
timiser. For a given sequence (vk)k ⊂ V , compute the supremum over Zk := {z ∈ Z :
f(z) = vk}, see the red line in Figure 2.

� Full sampling approach: choose a sequence (zk)k ⊂ Z , compute (fk)k = [f(zk)]k and
(µk)k = [µz̃(zk)]k. Use the data sample pairs (vk, µk) and reconstruct µf̃ , e.g. by convex hull
or an envelope approach, see the orange/purple graphics in Figure 2.

For a reliable sample propagation, sufficiently many samples in critical regions are required. Such a
region may for instance represent configurations that effect an extreme but possible behaviour of a
system, which is unknown a-priori. If such a critical region is missed, the behaviour of the system is
misrepresented and the propagation fails.

The α-cut propagation — if applicable — is more reliable than both sampling approaches. If the op-
timization is performed correctly, it is impossible that a critical sample is missed. In this case, the
optimiser has the task to find the critical regions. Formally, the approach reads

� α-cut propagation: Based on (10) in Theorem 2.6 with V = R for a given discretisation
α ∈ {α1, . . . , αl} ⊂ [0, 1], compute Cα[f̃ ] and build µf̃ based on interpolation between
the obtained points, see the blue lines in Figure 2.

If f has high evaluation costs, the propagation inevitably becomes difficult and costly. This for example
is the case if f represents a finite element solution with a large number of elements. Thus, a surrogate
model fh ≈ f is needed to still render the propagation feasible. The main requirement for such a sur-
rogate model is to represent the model accurately in the critical regions. In the numerical experiments,
such critical regions are highlighted and the accuracy of the used surrogates is verified.

2.2 Upscaling of heterogeneous linear elastic material

In the following we develop a numerical homogenisation method which yields a macroscopic mate-
rial based on microscopic properties. The goal of the approach is to dispose of the computationally
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involved microstructure and construct an upscaled material surrogate with similar homogenised be-
haviour on a larger scale. Equivalent terms for “homogenised behaviour” are macroscopic, effective or
upscaled behaviour [9], where the examined “behaviour” is subject to some quantity of interest (e.g.
average displacement or stress) based on the system response.

In classical (asymptotic) homogenisation, an effective property is calculated based on the assumption
of an infinite periodic domain [51]. The local microscopic structure is defined in terms of a representa-
tive volume element, which in our setting would consist of a single inclusion that has identical shape
in the entire domain. For problems in non-periodic media, the methods of numerical homogenisation
or numerical upscaling as e.g. described in [39] are used, where local boundary value problems are
solved to calculate effective characteristics in each local domain [44], also see [1, 31, 22] for analytical
stochastic homogenisation. Periodic boundary conditions (PBCs) are commonly used for numerical
upscaling methods of matrix composite material [13, 46]. In this work, we focus on numerical ho-
mogenisation with PBCs for linear elasticity. Let D = [−1, 1]2 be a unit cell domain and let the
heterogeneous material law be encoded in a tensorC = C(x) ∈ R2,2,2,2, x ∈ D. For given macro-
scopic strain E write the displacement u as u(x) = E · x + v where the D-periodic fluctuation v
solves 

divσ = 0 in D,
σ = C : ε in D,
ε = E + [∇v +∇Tv]/2 in D,

(11)

such that σ ·n is antiperiodic on D with n denoting the outer normal with respect to ∂D. Let 〈ε〉 and
〈σ〉 denote the average strain and stress of the computed strain ε and stress σ. Then there exists a
tensorH ∈ R2,2,2,2 satisfying

〈ε〉 = H : 〈σ〉. (12)

The tensorH is called the effective or upscaled (macroscopic) tensor, representing the elastic moduli
of the homogenised medium. By construction it holds that E = 〈ε〉. Consequently, H can be ob-
tained from (12) by choosing macro strains E corresponding to different elementary load cases and
subsequently computing 〈σ〉 by solving (11). In what follows, the homogenisation technique will be
applied for every shape parametrisation encoded inC.

2.3 Measuring the distance between constitutive tensors

Constitutive tensors C = (Cijkl) ∈ Rd,d,d,d in the planar case of d = 2 determine the behaviour
of the linear elastic material by relating stress and strain. Such a tensor is said to be in Ela(d) if the
symmetry property

Cijkl = Cjikl = Cijlk = Cklij

holds. A tensor C ∈ Ela(d) may exhibit further symmetry properties. If there exists Lamé constants
λ, µ ∈ R such that

Ciso = λ1⊗ 1 + 2µI, Iijk` =
1

2
(δikδj` + δi`δjk) , 1ij = δij,

the tensor is called isotropic. For orthotropic tensors, we define a rotation matrix

g(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π]
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and the full orthogonal group operation o(g) via

(o(g)C)ijk` = gipgjqgkrg`sCpqrs, C ∈ Ela(d).

We then say thatCortho ∈ Ela(d) is orthotropic if it can be represented as

Cortho = Ciso + T, T = ρ(g(θ))
(
Λ1E

1 + Λ2E
2
)
, (13)

for some isotropic Ciso ∈ Ela(d), Λ1,Λ2 ∈ R, θ ∈ [0, 2π] and tensors E1 and E2 given in Kelvin-
Mandel matrix representation [33] as

1√
2

 1/2 −1/2 0
−1/2 1/2 0

0 0 −1

 and
1√
2

 1 0 0
0 −1 0
0 0 0

 .
Note that any isotropic Ciso ∈ Ela(d) is invariant under action of ρ(g), in particular ρ(g)Ciso =
Ciso. With that representation, any orthotropic tensor has 5 degrees of freedom (λ, µ,Λ1,Λ2, θ). The
orthotropic tensors represented in normal form have only 4 degrees of freedom since θ is chosen
as zero. Let Ela(d, iso),Ela(d, ortho) ⊂ Ela(d) be the set of all isotropic and orthotropic tensors,
respectively. Given any anisotropic tensorC, we define the distance to the symmetry class of isotropic
and orthotropic tensors by

diso(C) = min
X∈Ela(d,iso)

‖C −X‖, dortho(C) = min
X∈Ela(d,ortho)

‖C −X‖ (14)

with the Frobenius norm ‖ ·‖. The distances to the symmetry classes can be characterised as follows.

Proposition 2.7. (Distance to isotropy class [2])
LetC ∈ Ela(d) for d = 2. DefineCiso = 2µI + λ1⊗ 1 with

λ :=
1

8
(C1111 + 6C1122 − 4C1212 + C2222)

µ :=
1

8
(C1111 − 2C1122 + 4C1212 + C2222)

as the orthogonal projection ofC onto the isotropic material class. Then,

diso(C) = ‖C −Ciso‖. (15)

Proposition 2.8. (Distance to orthotropy class [2])
LetC ∈ Ela(d) for d = 2 and (θk)

K
k=1, K ∈ N be the finite roots of

a cos 8θ + b sin 8θ + c cos 4θ + d sin 4θ = 0, θ ∈ [0, 2π]

with a = 4X1Y1, b = 2(Y 2
1 −X2

1 ), c = 2X2Y2 and d = Y 2
2 −X2

2 and

X1 =
1

2
√

2
(C1111 − 2C1122 − 4C1212 + C2222),

Y1 =
√

2(C1112 − C2212),

X2 =
1√
2

(C1111 − C2222),

Y2 =
√

2(C1112 + C2212.
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)

Figure 3: Left: Example of a blurred image of an inclusion in a composite material. Center: the same
image after the application of a gradient filter with sketch of the relation between sample points. Right:
The radial trigonometric function T (θ, R), R ∈ R8.

For θ ∈ [0, 2π], define

Λ1(θ) := X1 cos 4θ + Y1 sin 4θ, Λ2(θ) := X2 cos 2θ + Y2 sin 2θ

and
X(θk) := ρ(g(θk))(Λ1(θk)E

1 + Λ2(θk)E
2) for k = 1, . . . , K.

Then,

dortho(C) = min
k=1,...,K

‖C −X(θk)‖. (16)

With the introduced material class concepts of constitutive tensors we are able to measure the dis-
tance of our effective material to the isotropic respectively orthotropic material class for each shape
parametrisation.

3 Fuzzy Edge Detection

Given a blurred image as depicted in Figure 3, the most common approach to reconstruct the original
image is to use some method from the wide class of blind deconvolution methods [28]. These methods
assume that an image y is the convolution of an original image x and some kernel k, distorted with
additive noise n, i.e.,

y = x ? k + n.

Finding a pair (x, k) satisfying this equation is equivalent to de-blurring the image, leading to a original
image x. This however is an ill-posed problem, since an infinite number of such pairs can be found [54],
making some form of regularisation inevitable. The classical approaches assume zero noise and em-
ploy regularised least squared methods [11, 26, 35]. Each regularisation is based on assumptions of
the kernel and the original image. More recently, natural image statistics and the Bayesian framework
were used to formulate such assumptions more precisely and thus improved the performance of blind
deconvolution methods, see [30, 32, 50] for a first overview. Simply put, prior knowledge and the ability
to incorporate this knowledge improve the deconvolution result. However, we are in a different situation
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Ii(r)

M

δM

δM

Rmax
i0

possibility of one

possibility greater zero

1

0

µr̃θi

membership
extraction

Figure 4: Construction of a trapezoidal membership function µr̃θi as in (6) obtained from a intensity

function Ii for given angle θi and thresholds 0 < δ < δ < 1.

since we miss this prior knowledge and we are shall not be inclined to make unverifiable assumptions.
Furthermore, we are not primarily interested in the most probable reconstructed image x. Instead, we
want a set of possible boundaries given a blurred image and a small set of assumptions. Therefore,
we introduce the fuzzy edge detection which is based on three simple assumptions

(a) Each inclusion is a star-shaped, i.e. there exist a midpoint from which each boundary point is
reached by a straight line.

(b) The gradient of the blurred image yields a connected domain and the boundary of the inclusion
lies in this connected domain.

(c) Each boundary curve has a limited prescribed variation.

These three assumptions implicitly define a possible set of boundary curves provided a blurred image.
Any of these boundary curves is possible but nothing can be said about the probability of each curve.
Since we assume a star-shaped inclusion, a radial function r(θ) : [0, 2π) 7→ R+ is able to describe
the boundary of this inclusion. The uncertainty of the boundary is then captured in a fuzzy function r̃.

In order to construct a fuzzy function r̃ from a blurred image D = [−1, 1]2, we use trigonometric
interpolation on a vector of N ∈ N fuzzy numbers. Each component of the fuzzy vector denoted by

R̃N := R̃N [Θ] := (r̃θ1 · · · r̃θN ) (17)

is constructed from a radial cut (i.e. a line segment) that starts in the center and ends at the outer
boundary for a prescribed set of angles Θ =

{
θi = 2πi

N+1
| i = 1, . . . , N

}
. The continuous function

Ii : [0, Rmax
i ] → R+ with Rmax

i = 1/max{| cos θi|, | sin θi|} determines the intensity of the
gradient along this radial cut, see Figure 4 for an illustration. The information encoded in Ii is used to
construct a trapezoidal fuzzy number. For this, consider lower and upper percentage threshold values
0 < δ < δ < 1 and determine M := maxr∈[0,Rmax

i ] Ii(r). If the intensity in one point is larger

than δM , it is assigned a possibility of one. If it is smaller than δM , it gets assigned a possibility of
zero. For simplicity, in between these thresholds we assign a possibility by linear interpolation. This
algorithm yields a membership function µr̃θi of trapezoidal form, which is illustrated in Figure 4.

Gathering these fuzzy numbers into a vector yields the non-interactive fuzzy vector R̃N , encoded in
the membership function

µR̃N = min{µr̃θ1 (r1), . . . , µr̃θN (rN)},

DOI 10.20347/WIAS.PREPRINT.2907 Berlin 2021



Possibilistic numerical upscaling 11

where non-interactivity means that the value of one sample does not influence the membership func-
tion of another value. Let R = (r1 · · · rN) ∈ C0[R̃N ] and denote the trigonometric interpolation
by T (·, R). It represents the mapping from interpolation points onto the trigonometric polynomials.
This mapping is bijective if the degree of freedom coincides with the number of interpolation points.
The coefficients are efficiently computed via a discrete Fourier transformation and the interpolation
scheme yields convergence rates as follows.

Proposition 3.1. (Trigonometric interpolation)
Let f ∈ Ckper(0, 2π) describe the boundary of a star shaped inclusion in R2, then there exists c =

c(k, f, f (k)) > 0 such that

‖f − T (·; [f(θ1), . . . , f(θN)])‖L2(0,2π) ≤ cN−k.

Given all possible interpolation points R ∈ C0[R̃N ], we define the a set of radial boundary functions
describing the interface as

BN =
{
T (·;R) | R ∈ C0[R̃N ]

}
.

Note that T (·; R̃N) defines a fuzzy function [38]. The number of cuts and thus the number of in-
terpolation points N is setted according to the accuracy required by the considered problem. With
sufficiently many interpolation points, the set BN can represent highly oscillatory boundaries, see
Figure 8 for N = 16. For the sake of efficiency, the interpolation should be carried out with as few
points as possible, which demands an adequate knowledge about the properties (in particular smooth-
ness/roughness) of the physical system at hand. We choose the total variation of the radial function
as a measure for roughness, which is defined for R ∈ C0[R̃N ] as

TV(R) =

∫ 2π

0

|T ′(θ;R)| dθ.

Given some bound 0 ≤ b ≤ ∞, the TV restricted set of radial boundary function based on N grid
points is defined by

BN,b :=
{
T (·;R) : [0, 2π]→ R+ | R ∈ C0[R̃N ] and TV (R) ≤ b

}
. (18)

With this construction, we may define the interactive fuzzy set

R̃N,b :=
{

(R, µR̃N,b)|R ∈ C0[R̃N ] and TV(R) ≤ b
}
, (19)

µR̃N,b := µR̃N1{R|TV (R)≤b}, (20)

where 1X denotes the characteristic function on a set X . In Section 3.1 we make clear that the fuzzy
set in (19) in fact defines a fuzzy vector. This in turn motivates the α-cut propagation of fuzzy uncer-
tainty, introduced in Section 2.1. In particular, consider a continuous real valued function Q defined
on the compact set C0[R̃N ], which is the 0-cut of the non-interactive fuzzy vector R̃N from (17). The
propagated uncertainty of the interactive fuzzy set R̃N,b throughQ is then captured on each α-level

Cα[Q̃b] :=

[
min

R∈Cα[R̃N,b]
Q(R), max

R∈Cα[R̃N,b]
Q(R)

]
(21)

of the fuzzy set Q̃b := Q(R̃N,b). We emphasise that C0[R̃N ] defines a tensor domain on whichQ is
well defined, i.e.

C0[R̃N ] =
N×
i=1

C0[r̃θi ], (22)
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Figure 5: Influence of the total variation with underlying trigonometric interpolation for N = 12 and
R ∈ C0[R̃N ] = [0.3, 0.7]N .

a fact that becomes useful when applying low-rank tensor formats in the upcoming Section 4.2 as
surrogate models forQ. However, the computation of Q̃b only requires evaluation ofQ onC0[R̃N,b] ⊂
C0[R̃N ], which in general is not a tensor domain.

3.1 Properties of the TV bounded fuzzy set R̃N,b

The total variation determines the shape of the inclusion. With a very small total variation, the shapes
become more and more circular. Any circular shape, independent of the radius, has a total variation
of zero. We want to point out, that we do not measure the total variation of the trajectory, where the
total variation of a circle would be larger than zero. Instead we measure the total variation of the radial
function.

In Figure 5 shapes with different total variations are depicted. The blue shape is generated by taking
alternating radii, the white shape is the result of optimization. The maximal total variation is 5.2 for
N = 12, whereas a randomly generated shape has a total variation of around 2. With increasing N
the maximal total variation would also increase.

Note that the resulting shapes may violate the boundaries in between the sampling points. Especially,
the maximum total variation solution. This can be resolved with more sampling points, a sufficiently
strict tv bound or by replacing the trigonometrical interpolation with a corresponding spline interpola-
tion.

Bounding the total variation leads to interaction of the fuzzy set R̃N,b. Figure 6 illustrates the interaction
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Figure 6: Slices of the constrained support of R̃N,b in light gray based on C0[R̃N ] = [0.3, 0.7]N with
N = 3 and b = 1. From left to right: C0[R̃N,b] ∩ [0.3, 0.7]2 × {`} with ` = 0.3, 0.4, 0.5, 0.6, 0.7.

for the case N = 3. It shows that fixing one point constraints the remaining points to the light gray
area. Hence the possibility outside this area is zero. In a non-interactive setting the possibility could be
strictly larger than zero. Consequently, the total variation bound restricts the set of possible curves. The
Figure indicates that the set of valid radial points is convex, which is shown in the following proposition.

Proposition 3.2. (Convexity of TV constrained domain)
Let N ∈ N. Then for b ≥ 0 the 0-cut C0[R̃N,b] defines a convex set.

Proof. Let R1, R2 ∈ supp R̃N , t ∈ [0, 1] and define Rt = tR1 + (1 − t)R2. The radial function to
describe the boundary then takes the form

T (φ,Rt) =
N−1∑
k=0

ak[Rt]e
ikφ

with imaginary number i and coefficients ai[Rt]. Since the Fourier interpolation defines a linear oper-
ator, it holds ai[Rt] = tai[R1] + (1− t)ai[R2]. Thus, by triangle inequality it follows that

TV (Rt) ≤ tTV (R1) + (1− t)TV (R2) ≤ b.

Consequently the α-cuts of R̃N,b are nested and convex.

Proposition 3.3. (Characterisation of R̃N,b)
Let b ≥ 0 and R̃N be a fuzzy (domain) vector with C1[R̃N ] ⊂ C0[R̃N,b]. Then R̃N,b defines a fuzzy
(domain) vector.

Note that for given N , there always exists b = b(N) such that the conditions of Proposition 3.3 hold
true. In particular, for b large enough it holds R̃N = R̃N,b. Consequently, the α-cut propagation (21)
can be applied.

4 Accelerated emulation of fuzzy effective material

The fuzzy edge detection described above yields a fuzzy set R ∈ RN . Trigonometric interpolation
then results in a boundary representation of the inclusion. In the following, we define a composite
material based on this representation.
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Consider the square [−1, 1]2 on which we define a two phase composite materialC(x) = C(x,R)
with Cincl,Cmatrix ∈ Ela(d, iso). This description represents a piecewise isotropic material with star-
shaped inclusion defined as

C(x,R) :=

{
Cincl, r ≤ T (θ, R),

Cmatrix, else,
x = r[cos(θ), sin(θ)], (23)

such that 0 < Rmin < T (θ, R) < Rmax < 1 uniform in θ and R.

Given a fixedR, the homogenisation from Section 2.2 yields the constitutive tensorC(·, R) ∈ Ela(d)
for the upscaled macroscopic material. In Voigt notation, this mapping is denoted as

R 7→ H(R) =

 H11 H12 H13

H22 H23

sym H33

 (R) ∈ R3,3, (24)

with symmetric positive definite matrix H(R) ∈ R3,3. It in general describes an anisotropic material
since the involved geometry of the inclusion may lack any type of symmetry.

We would like to point out that the parametric dependency R → C(·, R) does not define a con-
tinuous function with images in L∞(D)d,d,d,d since marginal changes of the shape of the inclusion
immediately yield an L∞ error equal to the contrast ‖Cincl − Cmatrix‖F with Frobenius norm ‖ · ‖F .
Despite this discontinuity and its effect on the regularity of the parametric solution R → u(R), the
parametric homogenised tensor (24) defines a continuous map.

Recall that the evaluation of H involves multiple simulations of periodic linear elastic boundary value
problems of the form (11). To accelerate the upscaling process, in the following we replace the simu-
lator with an emulator. The emulator relies on a mesh discretisation of the domain D and a group of
tensor train surrogates to approximateH, which is discussed in Section 4.2.

If D is discretised by an automatic mesh generator under the constrained of equal amount of vertices
on the inclusion’s boundary and on the boundary ofD for anyR, the resulting mesh mapR 7→ M(R)
in general is discontinuous. As a consequence, a mesh dependent finite element computation may
inherit the lack of continuity even through the whole geometry has smooth dependence on R, see
Figure 7 for an example. This in turn aggravates optimization based on gradient information. We solve
this issue in Section 4.1 by constructing a family of transformed meshes with smooth dependence on
R.

4.1 Constructive smooth transformation of meshes

For n ∈ N interpolation points, consider the composite interface discretisation

Tn(R) := {x = T (θi, R)[cos(θi) sin(θi)]
>, θi = 2πi/n, i = 0, . . . , n− 1}.

We now construct a smooth diffeomorphism that creates meshes based on a single reference mesh
M̂ denoted as Ψ: Rd×RN → Rd such that Ψ(M̂, R) =M(R). Let Rref = [0.5, . . . , 0.5] ∈ RN

and T (·, Rref) define a circular inclusion with radius 0.5. Consider a fixed reference mesh discretisa-
tionMref of [−1, 1]2 such that

� there is a fixed number of nodes on the boundary ∂[−1, 1]2
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Figure 7: Illustration of discontinuity of the homogenisation map R → H(R) from (24) for N = 3
corresponding to fixing two radial sample points to 0.5, while running through the last sample point
from 0.3 to 0.7. The red lines are based on computations using automatic mesh generation with a fixed
number of mesh vertices on ∂D and on the circle interface. The green lines are computed with meshes
constructed with the diffeomorphism Ψ from (25). Left: Trajectory of H23. On the macroscale, both
curves seem to coincide. The discontinuity becomes visible when zooming in. Right: Finite difference
plot of H23. The red markers demonstrates the extent of discontinuity of H23, while the green line
remains smooth.
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� any node in Fn(Rref) is part of the mesh.

Compute the sets F2n(Rref) and F2n(R) corresponding to higher discrete resolution of the reference
or target interface. The transformation Ψ then consists of two parts as follows. First, let {φi} form a
smooth partition of unity of [0, 2π] with φi(iπ/n) = 1 and suppφi = [(i−1)π/n, (i+ 1)π/n]. This
function set deals with the angular part of the transformation. Second, let χi ∈ Ck[0,

√
2] be a set of

splines with k ≥ 2 for the radial part of the transformation with the following properties:

1 The reference radius is mapped onto the transformed radius, i.e.

χi(T (θi, Rref)) = T (θi, R).

2 The spline is strong monotonically increasing on (Rmin, Rmax) and otherwise equals the identity
map.

Altogether, the transformation reads

Ψ(x̂, R) :=
2n∑
i=1

χi(r̂)φi(θ̂), x̂ = r̂[cos θ̂, sin θ̂]>. (25)

We refer to Figure 8 for an illustration of the capacity of the constructed map Ψ, which is characterised
next.

Proposition 4.1. (Ck diffeomorphism)
The map Ψ : [−1, 1]2 → [−1, 1]2 is bijective and k-times continuously differentiable.

Proof. The bijectivity follows from strong monotonicity in radial direction and the smooth partition of
unity in angular direction. The smoothness of φi and of the polar coordinate mapping away from zero
is given since χi is k-times continuous differentiable. For i = 1, . . . , 2n the desired property follows
immediately.

4.2 Tensor trains based emulation

Assume some function f : C0[R̃] ⊂ RN → R with C0[R̃] =×N

i=1
C0[R̃i]. For f = Hij , 1 ≤ i ≤

j ≤ 3 we consider surrogates of the form

f(R) ≈ fΛ(R) :=
∑
α∈Λ

U [α]Πα(R), Λ =
N×
i=1

Λi ⊂ NN , |Λ| <∞, (26)

based on a polynomial feature class Π := {Πα, α ∈ NN} where each polynomial Pα ∈ Π is
of tensorised form Πα =

⊗N
i=1 q

i
αi

with one dimensional polynomials {qiαi : C0[R̃i] → R, αi ∈
Λi} for i = 1, . . . , N and unknown coefficient tensor U : Λ → R. This model suffers from the
curse of dimensionality since the cardinality |Λ| grows exponential with respect to the dimension N .
A possibility to circumvent this challenge lies in a compressed representation of the coefficient tensor,
here based on the tensor train format (TT format) [42]. Let ρ = (ρ1, . . . , ρN−1) ∈ NN−1 be the
tensor train rank and let ρ0 = ρN = 1. We then chooseU given in tensor train decomposition by

U [α] := U1[α1]U2[α2] · · ·Un[αN ], α ∈ Λ, (27)
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N = 4 N = 16N = 6

Ψ from (25)

Figure 8: Example of the constructive Ck diffeomorphism Ψ with various target structures
parametrised via R ∈ RN . Although a mesh is generated inside and outside of the inclusion, the
inclusions are illustrated as holes for better visibility. From left to right: Reference mesh and random
target meshes with N = 4, 6, 16.

with component tensors of order 3, such that Ui[:] ∈ Rρi−1,|Λi|,ρi for i = 1, . . . , N . The number of
degrees of freedom for this design is given as

∑N
i=1 ρi−1|Λi|ρi, which does not grow exponentially

but only linearly in dimension N . Given data (R(k), y(k))Kk=1, K ∈ N with y(k) = f(R(k)), we
obtain a surrogate as in (26) by carrying out a regularised empirical regression, namely by solving the
optimisation problem

min
U as in (27)

K∑
k=1

‖fΛ(R(k))− y(k)‖+ λ‖U‖∗ (28)

with regularisation parameter λ > 0 and suitable norm ‖ · ‖∗. The optimisation problem (28) can
be solved by regression with an alternating linear scheme (ALS) [25]. As a modification of the basic
ALS, we introduce a scheme for rank adaptivity. This concept offers several advantages to obtain an
adjusted tensor train rank which is in general unknown a priori. From a practical point of view, it reduces
the computational cost during optimisation while obtaining a prescribed accuracy in the approximation
class. Furthermore, starting with a small rank, the iterative process empirically enables the ALS to
converge to a solution based on successive computations of initial guesses for models with higher
ranks based on the given restricted number of samples. The proposed approach is summarised in
Algorithm 1 and the rank adaptivity is presented in Algorithm 2.

A principle of the rank adaptivity is to keep one (control) singular value to monitor the importance of
the related rank coupling value during the optimisation process. This additional singular value per rank
coupling remains until the end of the regression scheme to prevent oscillation between rank growth
and reduction. It ensures an upper bound of the related rank value throughout the entire process. After
successful termination of Algorithm 2, the existing (possibly small) control singular value is removed
by a final rounding [42] of the resulting tensor train. We refer to [25] for more technical details on the
basic ALS, e.g. with regard to setting and moving the non-orthogonal component (the core) via left and
right matricisation and orthogonalisation. Eventually, the overall emulator is obtained by evaluation of
the 6 scalar valued tensor train surrogate maps, replacing R 7→ [H(R)]ij and 1 ≤ i ≤ j ≤ 3
corresponding to the upper triangular part of the symmetric matrixH(R).
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Algorithm 1 Rank adaptive empirical tensor train regression via ALS

Require:



(
R(k), y(k)

)K
k=1

. training data,
Πα, α ∈ Λ . polynomial features,
tolMSE > 0 . desired mean square error (MSE) tolerance,
itermax ∈ N . maximum iteration number,
LHIST ∈ N . history length for rank update,
tolDECAY > 0 . minimum decay rate.

Ensure: Tensor train surrogate fΛ with rank ρ ∈ NN−1

Set rank ρ to (1, . . . , 1)
HIST← [ ] . MSE history
while MSE > tolMSE and #HIST < itermax do

for i in [1, . . . , N,N − 1, . . . , 2] do . forward/backward sweep
Fix Uj in (27) for j 6= i.
Then update Ui by solving (28).

end for
Compute MSE and append to HIST.
DECAY ← Average decay rate of last LHIST entries in HIST.
if DECAY < tolDECAY then

Apply Algorithm 2 to obtain fΛ with modified rank ρ∗.
end if

end while

Note that non-zero values of H13 and H23 solely appear when the effective material behaviour is not
isotropic or rotational-free orthotropic, i.e., this is described by (13) with θ = 0.

5 Numerical Experiments

This section is concerned with the assessment of the numerical performance of the approach pre-
sented above, for which two experiments are examined. In the first experiment, we measure the dis-
tance of the upscaled material to the isotropy and orthotropy class. Additionally, we identify configu-
rations that maximise and minimise the respective distances. In the second experiment, we test if the
upscaled material is suitable for a worst case analysis, i.e., we test if it is possible to find bounds that
envelop the most extreme behaviour of the quantity of interest under consideration. For this, a material
with 8 × 8 arbitrary inclusions placed on a checkerboard is compared to an upscaled material with
the same geometrical dimensions. Both experiments demonstrate the efficacy of the fuzzy approach
to model uncertainty of the inclusion to identify extremal behaviour and its source.

Three types of computational tasks are performed in the experiments. The foundation is laid by Finite
Element (FE) simulations to generate the realisations of constitutive tensors by solving (11). Further-
more, an alternating linear scheme is used to train the surrogate model and for optimization computa-
tions to carry out the uncertainty propagation based on α-cuts.

All FE computations are done with the FEniCS package [20]. The mesh generation is realised using
Gmsh [21] and the Bubbles package [23]. Moreover, the python package TensorTrain [24]
is utilised for the rank adaptive tensor train regression and ALEA [17] for the underlying polynomial
features. The optimization tasks are performed with restarted trust region optimization implemented in
Scipy [58].
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Algorithm 2 Rank adaptivity

Require:


U [α] = U1[α1] · · ·UN [αN ] . TT decomposition with rank ρ ∈ Nn−1

ρmax ∈ Nn−1 . maximal rank limit
ρadd ∈ N . maximal rank increasement
δ > 0 . Dörfler treshold

Ensure: TT decomposition U∗[α] = U∗1 [α1] · · ·U∗N [αN ] with rank ρ∗

Set U1 as core.
Define operators L andR as left and right matricisation of order 3 tensors.
for k = 1, . . . , N − 1 do

Perform SVD: L(Uk) = V diag(σ)W , σ ∈ Rrk .
Define splittings σ1

ρ∗k
= [σ1, . . . , σρ∗k ] and σ2

ρ∗k
= [σρ∗k , . . . , σρk ].

if there exists ρ∗k with δ‖σ1
ρ∗k
‖1 ≥ ‖σ2

ρ∗k
‖1 then . possible rank reduction

Set ρ∗k = min{ρk, ρ∗k + 1}. . keep control singular value
Set U∗k = L−1(V [:, : ρ∗k]).
Set Uk+1 = diag(σ[ : ρ∗k])W [ : ρ∗k, :]. . Ck+1 becomes next core

else . possible k-th rank increase
Set ρ∗k = min{ρk + ρadd, ρmax,k}.
Set d = ρ∗k − ρk
Extend V with d random columns orthogonal to V .
Extend σ with d values smaller than σρ∗k .
ExtendR(WUk+1) with d random rows orthogonal toR(WUk+1).
Set U∗k = R−1(V )
Set Uk+1 = diag(σ∗)R−1(R(WUk+1)) . Uk+1 becomes next core

end if
end for
Set U∗N = UN .
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The computations are performed with N = 6 and N = 12 radial sampling points. Here, the N = 6
case imposes significantly less computational burden on the surrogate and the optimization than the
N = 12 case. In particular, our optimization scheme took up to 106 evaluations of the H(R) for
N = 12 and up to 1× 105 evaluations for N = 6 per propagated quantity of interest. We under-
line that all optimization tasks involved are non-convex with non-linear cost functions and constraints.
Consequently, we take arbitrary points R ∈ [0.3, 0.7]6 for N = 6 and R ∈ [0.4, 0.6]12 — a smaller
domain — for N = 12. This enables sufficiently non-trivial shapes without rendering the surrogate
model and the optimization infeasible. Each realisation R determines a boundary stellar inclusion in
terms of a trigonometric interpolation. Inside and outside of the inclusion we assume isotropic material
behaviour. Concretely, we let the Young’s modulus Eincl = 3230 and Poisson ratio of νincl = 0.3 in
the inside. Outside of the inclusion we choose Ematrix = Eincl/4 and νmatrix = 0.2. These values are
transformed into Lamé constants by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

By adaptation to the plane, adapted Lamé constants are obtained, namely

λ∗ =
2λµ

λ+ 2µ
, µ∗ = µ.

Note that the adapted Lamé constants are dimension free.

For a given R ∈ C0[R̃N ] = [0.3, 0.7]N the homogenisation problem (11) is solved with FE of
uniform polynomial degree p = 2. The reference mesh is based on 80 nodes on the related reference
composite interface T (·;Rref) is shown in Figure 8. The computational mesh with composite interface
T (·, R) is then obtained by applying the transformation Ψ(·, R).

5.1 Surrogate validation

As a preparative step, we build an accelerated emulator in the tensor train format forN = 6 andN =
12 dimensional fuzzy input vectors R̃N , yielding a compressed surrogate of the map R→ H(R).

Given K = 15635 (N = 6) and K = 12000 + 4096 (N = 12) samples that are normalised
with respect to the sample mean and variance, we iteratively apply Algorithm 1 and Algorithm 2 with
tensorised Chebyshev polynomials up to degree 5 in each coordinate. More precisely, we train the
initial tensor train surrogate with a degree of two. Next, a new tensor train for polynomial degree deg+1
up to deg = 4 is set to the last tensor approximation as initial guess instead of starting with a random
rank-1 tensor train. All tensor train component entries associated to the higher polynomial degree
are initially set to zero. This training approach turn out to have two advantages. First, in the iterative
procedure the training and validation sets are split randomly, resulting in a pseudo stochastic solver. A
strategy that is successful in the context of machine learning. Second, there is a huge speed-up in the
training procedure for finding a local minimum. In fact, with a naive tensor train training for N = 12
with initial tensor polynomial degree 5, we rarely observed convergence to meaningful surrogates
given random initial values.

We use tolMSE = 1× 10−8, itermax = 200, LHIST = 10, tolDECAY = 1× 10−5, rmax ≤
5, 7, 9, 20 for deg = 2, . . . , 5 , radd ∈ {1, 2}, and δ = 1× 10−8. The results of the surrogate
learning approach are depicted in Tables 1 and 2, which complement Figures 10 and 11, showing
mean square error or pointwise relative and absolute errors. The highlighted entries in both tables
show a pointwise lack of accuracy of the tensor train surrogate for the H13 and H23 components,
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Figure 9: Final ranks of rank adaptive reconstruction of the tensor train surrogate for N = 6 (top)
and N = 12 (bottom). In the algorithm, the maximum rank is limited to 20. The tensor train surrogate
consists of Chebychev polynomials of degree 5 in each direction.

which represent the pure rotational or anisotropic contribution in the overall upscaled tensorH on the
used test sets. Nevertheless, strikingly small mean squared errors can be observed as a result of the
proposed optimization algorithm. Figures 10 and 11 display the value ranges of the subcomponents
ofH and the overall absolute and relative errors of the subcomponents and the full tensorH. We ob-
serve that the reduced (pointwise) accuracy of the surrogates for H13 and H23 does not influence the
overall error for the full parametric tensorH. The final obtained ranks obtained with the rank adaptive
algorithm are depicted in Figure 9 for N = 6 and N = 12.

5.2 Distances to the isotropy and orthotropy material class

In this section we apply the tensor train emulator to obtain an approximation of the parametric consti-
tutive tensor H(R) of the effective material defined in (24), given an parametrisation of the inclusion
through the vectorR ∈ C0[R̃N,b]. For each constitutive tensor we compute the distance to the isotropy
class, denoted by diso, and orthotropy class, denoted by dortho, according to (14). The fuzzy uncer-
tainty of the boundary is propagated in terms of α-cuts. On each α-level, two optimization problems
with constraints defined in (21) have to be solved, where Q is either diso or dortho. As optimiser we
use a restarted trust region scheme to minimise the non-convex and non-linear target function with
non-linear constraints.

Figure 12 shows the experimental results forQ = diso withN = 6, zero α-cutC0[R̃N ] = [0.3, 0.7]N

and the total variation bounds b = 0.5, 1,∞. We point out that since D = [−1, 1]2 is not of special
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Table 1: Surrogate validation for N = 6 on [0.3, 0.7]N based on 15635 data points randomly split
into 14635 training and 1000 test samples. The highlighted values of maximum relative errors of H13

and H23 are the result of the surrogate model approximating a value 1× 10−7 with 1× 10−4. These
effects do not spoil the accuracy of the total surrogateH in subsequent experiments.

validation set training set

MSE max error max rel. error MSE

H11 4.6× 10−9 2.9× 10−1 2.1× 10−4 4.5× 10−9

H22 10.2× 10−9 6.3× 10−1 6.0× 10−4 9.4× 10−9

H33 9.3× 10−9 1.3× 10−1 3.2× 10−4 8.6× 10−9

H12 9.1× 10−9 7.6× 10−2 3.1× 10−4 8.6× 10−9

H13 88.8× 10−9 1.1× 10−2 1.4× 10+3 43.7× 10−9

H23 97.9× 10−9 9.7× 10−3 1.2× 10+3 45.5× 10−9

Figure 10: Validation of TT surrogate for N = 6 trained on [0.3, 0.7]6. Left: value ranges of the
subcomponents of H, Center: pointwise absolute error on validation set, Right: pointwise relative
error on validation set.
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Figure 11: Validation of TT surrogate for N = 12 trained on [0.4, 0.6]12. Left: value ranges of the
subcomponents of H, Center: pointwise absolute error on validation set, Right: pointwise relative
error on validation set.

Table 2: Surrogate validation for N = 12 on [0.4, 0.6]N trained on normalised data. The mean
squared error (MSE) is computed w.r.t. to the normalised value range of the data. The maximum
pointwise relative and absolute errors are measured w.r.t to the surrogate values, which are shifted
and scaled back to the original range. The highlighted values of maximum relative errors of H13 and
H23 are the result of the surrogate model approximating a value 1× 10−7 with 1× 10−4.

validation set training set

MSE max error max rel. error MSE

H11 1.1× 10−7 3.5× 100 3.1× 10−3 5.9× 10−8

H22 1.0× 10−7 3.8× 100 3.3× 10−3 7.4× 10−8

H33 6.8× 10−7 5.1× 100 1.2× 10−2 5.2× 10−7

H12 5.1× 10−7 1.8× 100 8.0× 10−3 3.0× 10−7

H13 6.9× 10−5 0.8× 100 1.4× 10+4 4.4× 10−5

H23 1.0× 10−4 0.6× 100 3.5× 10+3 7.5× 10−5
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Figure 12: Fuzzy propagation: distance to isotropic material class represented by Ela(2, iso) based
on different bounds b = 0.5, 1,∞ for the total variation with N = 6. Left: membership function of
Q̃b for Q = diso with square markers bounding the alpha-cuts with α = 0., 0.5, 1. Right: underlying
coloured shapes of the inclusions associated with the extremal points displayed as square markers
with same colour along the membership function.
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Figure 13: Fuzzy propagation: distance to the orthotropic material class represented by Ela(2, ortho)
based on different bounds b = 0.5, 1,∞ for the total variation with N = 6. Left: membership
function of Q̃b forQ = dortho with square markers bounding the alpha-cuts for α = 0., 0.5, 1. Right:
underlying coloured shapes of the inclusions associated with the extremal points displayed as square
markers with same colour along the membership function.

hexagonal shape but of square shape, a circular inclusion does not yield isotropic effective material
properties. Nevertheless, the circular shape – while exhibiting vanishing total variation – provides ef-
fective properties closest to the isotropy class. Since in our experiments we choose a stiffer material
as inclusion, the circular inclusion minimises its size proportional to the possible maximal radius en-
coded in the α-level. In this sense, the size of a circle is a measure of perturbation of the isotropic
matrix material. Moreover, if the total variation and radii bounds allow it, the inclusion converges to
a peanut shape. The green peanut shaped inclusion in Figure 12 marks the inclusion with maximum
distance to the isotropic material class for the given parameterisation familyBN,∞ from (18). Note that
by rotational invariance also the peanut rotation of π/2 yields the same maximising shape.

Figure 14 pictures the result for Q = diso with N = 12, zero α-cut C0[R̃N ] = [0.4, 0.6]N and total
variation bounds b = 0.5, 1,∞. The shrinked domain has an immediate impact on the maximal pos-
sible total variation bound of all interface realisations. Consequently, maximum distances are caused
by curves with similar shape up to rotation. Already for a total variation of 0.5, a symmetric shape
emerges that becomes more prominent with increasing total variation.

Figure 13 depicts the experimental results for Q = dortho with N = 6, zero α-cut C0[R̃N ] =
[0.3, 0.7]N and total variation bounds b = 0.5, 1,∞. A minimum of 0 is attained on each alpha cut of
the corresponding membership function, since the orthotropy class Ela(2, ortho) contains the square
symmetric class. Many boundaries in BN,b lead to a shape that yields a square symmetric effective
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Figure 14: Fuzzy propagation: distance to the isotropic material class represented by Ela(2, iso)
based on different bounds b = 0.5, 1,∞ for the total variation with N = 12. Left: membership
function of Q̃b for Q = diso with square markers bounding the alpha-cuts for α = 0., 0.5, 1. Right:
underlying coloured shapes of the inclusions associated with the extremal points displayed as square
markers with same colour along the membership function.

material.

As typical maximiser of the distance to the orthotropy class, a bean shape is found. We observe
that the maximal possible total variation value of BN,b is not exhausted when attaining the maximal
distance. Note that due to rotational invariance, the bean shape can be rotated by multiples of π/2
while still being a (in fact the same) maximiser.

Figure 15 shows the experimental results for Q = dortho with N = 12, zero α-cut C0[R̃N ] =
[0.4, 0.6]N and total variation bounds b = 0.5, 1,∞. Again the shrinked domain has an immediate
impact on the maximal possible total variation bound of all interface realisations. Consequently, maxi-
mum distances are attained by curves with similar shapes up to rotation. We observe that symmetric
dented shape maximises the distance to the orthotropy class for the α = 1 cut or a total variation
smaller or equal to 0.5. However, as the total variation bound gets larger and we allow for larger fluc-
tuations due to a wider parameter range the inclusion converges to a non-axis aligned structure with
non-symmetric dented shape.
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Figure 15: Fuzzy propagation: distance to the orthotropic material class represented by Ela(2, ortho)
based on different bounds b = 0.5, 1,∞ for the total variation with N = 12. Left: membership
function of Q̃b forQ = dortho with square markers bounding the alpha-cuts for α = 0., 0.5, 1. Right:
underlying coloured shapes of the inclusions associated with the extremal points displayed as square
markers with same colour along the membership function.
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5.3 Best/worst case estimates for non-homogenised matrix composites

We consider the domain D = [−Ns, Ns]× [−Ns, Ns] with Ns = 8 and a checkerboard partitioning
D =

⋃
i,j Dij with square subdomains Dij defined by

Dij := [−Ns + (i− 1),−Ns + i]× [−Ns + (j − 1),−Ns + j] for i, j = 1, . . . , Ns.

On each subdomain Dij we consider a single two phase composite as defined by (23) using a local
polar coordinate system w.r.t. the midpoint ofDij , encoded in a material tensorCinhomo with piecewise
valuesCincl andCmatrix specified in Section 5.1.

For this experiment we choose the non-interactive fuzzy set R̃N,∞ with N = 6 trapezoidal fuzzy
components characterised by

C0[R̃N,∞] = [0.32, 0.63]× [0.35, 0.66]× [0.36, 0.70]

× [0.32, 0.62]× [0.38, 0.67]× [0.31, 0.66]

C1[R̃N,∞] = [0.48, 0.55]× [0.47, 0.56]× [0.49, 0.55]

× [0.47, 0.56]× [0.45, 0.59]× [0.48, 0.50].

In between these prescribed points, the α-levels are obtained by linear interpolation. The TV bound is
ignored in this experiment.

Furthermore, we consider a homogenised material tensorChomo = H(R) forR ∈ C0[R̃N,b] obtained
from the homogenisation process of Sections 2.2 and 5.1. In each domain, we model individual star
shaped material inclusions as in (23) with boundaries of uniformly bounded total variation smaller or
equal to b.

Given a material lawC ∈ {Cinhomo,Chomo}, we then solve the linear elasticity problem

0 = − divσ equilibrium eq. }
ε =

[
∇u+∇Tu

]
/2 strain-displacement eq. in D,

σ = C : ε constitutive eq.
u = 0 Dirichlet b.c. on Γ0,

σ · n = g Neumann b.c. on Γσ,

(29)

representing a linear elastic tensile test. Here, Γ0 = {−Ns} × [−Ns, Ns] and

g(x) =

{
0, x ∈ [−Ns, Ns]× {−Ns, Ns},
100e1, x ∈ {Ns} × [−Ns, Ns].

(30)

We are interested in the fuzzy propagation of the homogenised material through the average displace-
mentQ = u defined by

u :=
1

vol(D)

∫
D

‖u(x)‖2 dx,

with the solution u of (29). Figure 16 shows the resulting membership function based on the fuzzy
homogenised material law. The black dots mark resulting average displacements obtained for various
non-periodic inclusions. Moreover, some configurations of possible realisations of the 8× 8 inclusions
are displayed. The corresponding average displacement is marked with colours, accordingly. Given
any non-periodic configuration of prescribed matrix composites, we observe that the membership
function at each α-level bounds the various average displacements. In particular, for α = 0., 0.5, 1
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Figure 16: Fuzzy propagation: average displacement based on fuzzy homogenised material withN =
6. Left: resulting membership function with composite shapes causing the α-cut ranges in a periodic
constellations inCinhomo. Right: various periodic (red and green) and non-periodic (blue and magenta)
composite constellations yielding average displacements within the area of black dots.

we illustrated a corresponding single composite shape that (assumed in a periodic structure) results
in the minimum and maximum average displacements. As the interior composite is slightly stiffer than
the surrounding matrix material, it is to be expected that the shapes of the minimiser and maximiser
attempt to exhaust or avoid the maximum capacity of the parameter range encoded in Cα[R̃N,∞].
It is noteworthy that the homogenised material is able to serve as worst/best case estimator for this
particular quantity of interest (i.e. the average displacement). As long as the repetition of the same
cell leads to extremal values of the quantity of interest, the fuzzy homogenised material functions as a
worst/best case estimator.

6 Conclusion

We considered the possibilistic shape uncertainty of one inclusion induced by a blurred image. In this
setting, computational stochastic homogenisation was carried out to propagate the uncertainty through
the linear elasticity model, resulting in a fuzzy effective material. Eventually, the effective material was
examined with respect to its distance to the orthotropic/isotropic material class. Moreover, it was used
as a worst/best case estimator with respect to the global average displacement for a non-homogenised
material.

To achieve this result, two major obstacles had to be overcome. The first was caused by the dis-
continuous mapping from boundary to effective material, which was a consequence of the automatic
re-meshing for each new boundary instance. This was successfully resolved with an arbitrarily smooth
transformation of a single reference mesh onto the respective mesh for a domain with a star-shaped
inclusion. The second challenge was given by the computational effort needed to perform the (possi-
bilistic) uncertainty propagation. Depending on the optimiser and the quantity of interest at hand, each
α-cut required up to 5× 104 computational homogenisation simulations. This problem was success-
fully resolved with a highly accurate tensor train emulator.
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We provide an (numerical) analysis for a problem where only little knowledge is given and only simple
assumptions can be made. This may be distinguished from other works, where more prior knowl-
edge is given and more elaborated assumptions are suitable. In the latter scenario, one usually can
utilise the Bayesian framework to model the uncertainty, see [47, 59], where in our scenario stochastic
modelling may lead to a false confidence [6]. While usually the uncertainty of material properties is
modelled with precise probabilities, leading to statements about expectation values and probabilities
of failure, cf. [14, 62], we model geometrical uncertainties with imprecise probability, leading to state-
ments about possible intervals and worst/best case configurations. Even if an imprecise probability
approach for geometrical uncertainty is chosen, the geometrical shape is often restricted to simple
parametrisations like a circle of varying diameter [49]. This in fact is a very useful simplification, for
instance if the observed quantities only depend on the volume ratio of the two materials. Nonethe-
less, our experiments demonstrate that the shape determines if the effective material is isotropic,
orthotropic or anisotropic. A circle always results in an orthotropic effective material in the considered
case with unit square cells. Furthermore, our tensor train surrogate shows a remarkable accuracy of
a relative error of order O(10−4). This is partly the result of a suitable choice of features, the novel
rank-adaptive training strategy and the continuity induced by using a mesh transformation instead of
automatic re-meshing. Compared to other works such as [48, 57], where standard generic methods
like artificial neural networks and polynomial chaos are used in a similar context, we gain several
orders of accuracy.

To focus on the influence of the shape uncertainty, other parts in our setting and analysis were kept
simple. These parts are ideal starting points for future research. The homogenisation, for example,
was performed with two phases of linear elastic materials. This can easily be substituted with more
sophisticated materials – one may think of anisotropy, damage and higher contrast – or different ho-
mogenisation settings. The assumption of a star-shaped inclusion can be discarded with an adjusted
edge detection and a different parametrisation of the boundary. Furthermore, the roughness measure-
ment via total variation can be exchanged or extended with other restrictions of the boundary curves.
In addition, it is possible to model the material constants appropriately with precise probabilities. By
doing so, we add a stochastic dimension which together with the possibilistic uncertainty results in a
fuzzy-stochastic model.

Finally, we hope that our presented contributions, namely the treatment of discontinuity from re-
meshing, the fuzzy edge detection, and the highly accurate tensor train surrogate, can be used and
extended beneficially in other research to simulate composite materials in the presence of shape un-
certainty.
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