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Homogenization of a porous intercalation electrode
with phase separation

Martin Heida, Manuel Landstorfer, Matthias Liero

Abstract

In this work, we derive a new model framework for a porous intercalation electrode with a
phase separating active material upon lithium intercalation. We start from a microscopic model
consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium
in a solid active phase. Both are coupled through a Neumann–boundary condition modeling the
lithium intercalation reaction Li+ + e– −−⇀↽−− Li. The active material phase is considered to be phase
separating upon lithium intercalation. We assume that the porous material is a given periodic
microstructure and perform analytical homogenization. Effectively, the microscopic model consists
of a diffusion and a Cahn–Hilliard equation, whereas the limit model consists of a diffusion and
an Allen–Cahn equation. Thus we observe a Cahn–Hilliard to Allen–Cahn transition during the
upscaling process. In the sense of gradient flows, the transition goes in hand with a change in the
underlying metric structure of the PDE system.

1 Introduction

The search for new electrode materials is an essential aspect of research and development of lithium
ion batteries. In modern intercalation materials, lithium ions are inserted into some solid host material,
a mechanism which received the 2019 Nobel price in chemistry [18]. Numerous materials were found
or have been developed that allow for some general intercalation reaction y Li+ + y e– + X −−⇀↽−− Liy X,
for instance X = CoO2 as cathode material or X = C6 as anode material. All intercalation electrodes
are essentially an ensemble of intercalation particles, glued or sintered together with some binder
material and conductive additives, which yield a porous medium. Due to several shortcomings, for
example safety issues, low lithium storage capacity, low resulting cell voltage, market price, availability,
environmental aspects or mining conditions of raw materials, the development of next generation
battery materials is an ongoing research topic and lead to new materials such as X –– FePO4 [23, 14].
Liy FePO4 is cheap, environmental friendly, and exhibits a reasonable cell voltage. However, it is a
phase separating material, where upon lithium intercalation the material tends to separate into a lithium
rich phase, LiFePO4, and a lithium poor phase, FePO4. This property has been subject to a wide
scientific discussion [27] and its impact on charging mechanisms, [5], suppression of phase separation
[3], many-particle effects [7, 10], and phase separation across particles [21, 28].

In terms of a mathematical model, the phase separating behaviour is encoded in a double-well free
energy function FA(uA), for example the classical Cahn–Hilliard free energy [4]

FA(uA) = uA log uA + (1−uA) log (1−uA) + a uA(1−uA) , uA ∈ (0, 1) (1.1)

which yields a non-monotone chemical potential function µA with respect to the lithium content uA, for
example (non-dimensionalized with respect to kBT )

µA(uA) = F ′A(uA) = log
uA

1−uA

+ a(1−2 · uA) , (1.2)
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which becomes non-monotone for a > 2 (see Fig. 1).
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Figure 1: (Left) Free energy density and (right) chemical potential in (1.1) and (1.2) as function of the
lithium content y and the phase separation parameter a.

In order to understand, and subsequent control the complex behaviour of a porous, many particle
electrode of a phase separating material, precise mathematical models are required. These should be
capable of simulating the complex behavior on various degrees of spatial and temporal resolution with
predictive value regarding their qualitative and quantitative behaviour. On the other hand, a spatially
homogenized model framework for the porous many-particle electrode is desired in order to reduce
the numerical degrees of freedom. Such homogenized model frameworks are frequently used for
battery modeling, most prominently Newman-type models [17, 6, 11], which, however, neglect phase
separation effects.

In this work, we deduce a homogenized model for a periodic porous medium, consisting of an active
phase ΩA and an electrolyte phase ΩE. Both are assumed to be simply connected. In the active
phase, we consider a rather general Cahn-Hilliard type transport equation for lithium, where µA =
f(uA) + γεAdiv∇uA, while we assume in the electrolyte a simple diffusion equation for the transport
of lithium ions. Of course that later one can be substituted by Poisson-Nernst-Planck type transport
equations [8], but for the sake of this work simple diffusion is sufficient. Both phases are connected via
a general surface reaction rate, which yields Robin-type conditions at the common interface ΣAE. Due
to the porous structure of the domain Ω = ΩA ∪ ΩE, a small scale parameter ε is introduced, which
can be considered as the ratio between the diameter of single particle and the porous media width.

Within this setting, we consider a special scaling of the non-equilibrium parameters, namely the diffusion
coefficients Dε

A = ε2DA and Dε
E = ε0DE of the active and the electrolyte phase, respectively, as well

as the intercalation reaction rate Rε = εR. Most importantly, we consider the interfacial tension term
γεA to be in the order of ε0, i.e. γεA = ε0 · γA. For the transient, coupled transport equation system we
deduce then the effective, homogenized balance equations, which yield a transition from a Cahn-Hilliard
type equation to an Allen-Cahn equation for the active phase. Of course, other scalings of Dε

A and γεA
are thinkable and have partially been studied in literature. We come back to this topic after introducing
our model.

2 The root model and related problems from literature

We consider a cuboidal domain Ω = ]0, `1[× ]0, `2[× ]0, `3[ ⊂ R3 with `1
`2
, `1
`3
∈ Q. For simplicity of

presentation, we focus on `1 = `2 = `3 = 1.
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Figure 2: Sketch of the domain.

We decompose the unit cell Y := [0, 1)3 = YE ∪ YA into the relatively open sets YE and YA

with the common interface σAE := ∂YA ∩YE and we assume that the periodized version of YE is
connected. We then decompose Ω into the (connected) electrolyte domain Ωε

E and the (connected)
solid domain Ωε

A as periodic repetition of the unit cell YE resp. YA scaled by ε (see Fig. 2). Moreover,
Σε

AE is the interface between the phase A and E as the periodiced version of εσAE. Without loss of
generality, we assume that VolY = 1.

On the domain Ω and its components Ωε
E and Ωε

A we consider the following non-dimensional transport
equations:

u̇A = div
(
ε2DA∇µA

)
in Ωε

A (2.1a)

µA = −ε0γA∆uA + F ′A(uA)in Ωε
A (2.1b)

u̇E = div(ε0DE∇µE) in Ωε
E (2.1c)

µE = eEuE in Ωε
A. (2.1d)

Eq. (2.1a) describes the evolution of the concentration field uA(x, t) of intercalated lithium in the
solid active phase ΩA. The corresponding chemical potential function µA, i.e. eq. (2.1b), is not only
dependent on the concentration field uA, but also on the gradient∇uA due to the phase separation
effects. In the surrounding electrolyte phase ΩE we have a (exemplary) the evolution of a single field
variable uE(x, t), e.g. the concentration of lithium ions, described by (2.1c). For the sake of simplicity
we employ a simple chemical potential function µE (eq. (2.1d)) as thermodynamic closure relation. The
diffusion in the active phase is considered to be small, i.e. in the order of ε2, while the diffusion in the
electrolyte phase is considered to be of order ε0. Most importantly, however, the phase separation
parameter in (2.1b) is considered to be of order ε0, while classical Cahn-Hilliard homogenization
approaches assume orders ε2 [25].

Both phases are coupled through surface reaction boundary conditions, modeling the intercalation
reaction Li+|E + e−|A −−⇀↽−− Li |A. Non-equilibrium surface thermodynamics states [19, 20, 9] a
reaction rate R ∝ (µA − µE) such that R · (µA − µE) ≥ 0, which assumes here for the sake of
simplicity that the electrochemical potential of the electrons e− is constant. Most simply we have thus
R = Lε · (µA − µE) with Lε ensuring the local second law of (surface) thermodynamics, and we
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consider Lε to be of order ε, i.e. Lε = εL. This yields the following boundary conditions:

ε2DA∇µA · ν = −DE∇µE · ν = εL · (µA − µE) on Σε
AE (2.1e)

γ∇uA · ν = 0 on ∂Ωε
A (2.1f)

DE∇µE · ν = 0 on ∂ΩE\ΣAE (2.1g)

ε2DA∇µA · ν = 0 on ∂ΩA\ΣAE . (2.1h)

Comparison to literature and outlook
We now discuss several obviously related models and generalizations. The first way to generalize our
model is to apply different scalings in the parameters. Other generalizations are a disconnectedness of
Ωε

A and modifications of the constitutive equations of µE and the boundary conditions on ∂Ω.

Let us first note that (2.1d) can be replaced by any relation that provides |µ′E(uE)| ≥ CµE,0
> 0.

Further, the boundary condition on ∂Ω is of Robin type in application, which is only a minor modification
but makes the work much less readable. Finally, we do not consider disconnected Ωε

A because of
severe mathematical issues that arise in this case which we were not able to resolve, although we
expect that our result would be the same withAhom,A = 0. We come back to this point in the conclusion
Section 5.

In case Dε
A = ε0DA, γεA = ε0γA methods developed in [22] can be applied. The case Dε

A = ε0DA,
γεA = ε2γA was studied in literature [25] with different outcome. Diffusion problems with robin jump
conditions on microscopic inclusions have been studied e.g. in [13, 12] and references therein. The
work [12] is particularly interesting because it features the effect that the diffusion in phase 2 (in our
case phase A) vanishes in the limit and the analysis remains valid also in disconnected phase A. In our
case, the fourth order elliptic operator in phase A turns into a second order elliptic operator. However,
we note that in case of a disconnected domain Ωε

A we expect also this elliptic operator to vanish in the
limit.

3 Setting and main result

In this section, we fix the main assumptions for the problem, introduce relevant function spaces as well
as necessary constructions, and present the main result. In particular, the crucial assumption is the
semiconvexity of the potential FA.

Assumption 1 (Properties ofFA). We assume thatFA : R→ R∞ := R∪{+∞} is twice differentiable
on the interior of its domain and λ-convex with λ ∈ R, which means that F0 : u 7→ FA(u)− λ

2
|u|2 is

convex. Furthermore, one of the following two properties are satisfied.

1. There exist constants −∞ ≤ u− < u+ ≤ +∞ such that limu→u± FA(u) = +∞.

2. There additionally exists a constant f2,0 ∈ R such that supu F
′′
0 (u) < f2,0.

Remark 2. The case λ < 0 leads to a nonconvex potential FA. A prototypical example of FA satisfying
Assumption 1.1 is given by the logarithmic double-well potential (see also (1.1))

FA(u) = κ
(
(1−u) log(1−u) + u log u

)
− λ

2
u2. (3.1)

We note that every λ-convex functional satisfying Assumption 1.1 can be regularized such that it
also satisfies Assumption 1.2. Indeed, assuming supu F

′′
A(u) = +∞ consider u0 > 0 and set
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f2,0 := 2 supu∈[−u0,+u0] F
′′
A(u), then, the modified function F̃A with F̃ ′′A(u) = min{F ′′A(u), f2,0} and

F̃A(0) = FA(0) fulfills the assumption.

3.1 Function spaces

In the following, we write Cper(Y) for continuous functions on R3 that are Y-periodic and Ck
per(Y) for

k-times continuous differentiable periodic functions. Furthermore, we write H1
per(Y) for Y-periodic

functions in H1
loc(R3). If ‘I’ stands for either index A or E, we denote by H1

per(YI) the restriction of
functions in H1

per(Y) onto YI, and we denote by H1
per,(0)(YI) functions in H1

per(YI) having average

0 in YI, i.e.,
´
YI
v(y) dy = 0

We write L2
(m)(A) := {u ∈ L2(A) |

´
A
u dx = m} for bounded, open A ⊂ Rd and interprete

functions on Ωε
I and Ω×YI as functions on Ω resp. on Ω×Y via a simple extension by 0. We define

the spaces
Lε(Ω) := L2(Ωε

A)× L2(Ωε
E) , L0(Ω) := L2(Ω)× L2(Ω)

L(Ω×Y) := L2(Ω×YA)× L2(Ω×YE)

and identify v = (vA, vE) ∈ Lε(Ω) with v = vA + vE ∈ L2(Ω) in an isomorphic way and similarly
v = (vA, vE) ∈ L(Ω×Y) with v = χYA

vA + χYE
vE ∈ L2(Ω×Y). Then we define

Lε,(m)(Ω) :=
{

(uA, uE) ∈ Lε(Ω) |
´

Ω
(uA + uE) dx = m

}
,

L0,(m)(Ω) := {(uA, uE) ∈ L0(Ω) |
´

Ω
(|YA|uA + |YE|uE) dx = m} .

In all cases, we use the notation v = (vA, vE) to indicate the first and second component. Note that
spaces of functions of constant average m 6= 0 are only affine spaces. However, when m = 0, the
above spaces become Hilbert spaces. Furthermore, we introduce the spaces for the chemical potentials

Hε(Ω) :=
(
H1(Ωε

A)× H1(Ωε
E)
)
∩ Lε,(0)(Ω) ,

H0(Ω) :=
(
L2(Ω)× H1(Ω)

)
∩ L0,(0)(Ω) .

While we use the canonical norms and scalar products on Lε(Ω) and L0(Ω), we consider the following
scalar product on Hε(Ω)〈

(µA, µE), (µ̃A, µ̃E)
〉
Hε(Ω)

:=

ˆ
Ωε

A

ε2DA∇µA · ∇µ̃A dx+

ˆ
Ωε

E

DE∇vE · ∇µ̃E dx

+

ˆ
Σε

AE

εL (µA−µE) (µ̃A−µ̃E) da .

The scalar product leads to the canonical norm ‖(µA, µE)‖Hε(Ω), which is only a seminorm in the case
that Lε,(0)(Ω) is replaced by Lε,(m)(Ω) for m 6= 0. For given rates v = (vA, vE) ∈ Lε(Ω), we define
the chemical potentials ξε(v) = (ξεA(v), ξεE(v)) ∈ Hε(Ω) as the unique minimizer of the following
functional on Hε(Ω):

(ξA, ξE) 7→ 1

2
‖(ξA, ξE)‖2

Hε(Ω) −
ˆ

Ωε
A

ξAvA dx−
ˆ

Ωε
E

ξEvE dx . (3.2)

Then, for every µ̃ ∈ Hε(Ω) we find 〈ξε(v), µ̃〉Hε(Ω) =
´

Ωε
A
µ̃AvA dx +

´
Ωε

E
µ̃EvE dx, and we have

constructed the Riesz isomorphism Jε : Hε(Ω)∗ → Hε(Ω) via the closure of Lε(Ω) with respect to
the norm ‖(vA, vE)‖Hε(Ω)∗ := ‖(ξεA(v), ξεE(v))‖Hε(Ω) such that Jεv = ξε(v).

DOI 10.20347/WIAS.PREPRINT.2905 Berlin 2021



M. Heida, M. Landstorfer, M. Liero 6

Finally, we introduce the spaces

Vε,(m)(Ω) :=
(
H1(Ωε

A)× L2(Ωε
E)
)
∩ Lε,(m)(Ω) ,

V0,(m)(Ω) :=
(
H1(Ω)× L2(Ω)

)
∩ L0,(m)(Ω) .

3.2 Cell problems

The derivation of the effective battery model is based on the formulation of cell problems that capture
the relevant microscopic behaviour. For the different phases I = A,E, we introduce the homogenized
coefficient matrices Ahom,I ∈ R3×3 via

(Ahom,I)ij =
1

|YI|

ˆ
YI

(ei−∇yχI,i) · (ej−∇yχI,j) dy, i, j = 1, 2, 3,

where χI,i ∈ H1
per,(0)(YI), for i = 1, 2, 3, is the unique solution of the cell problem

∀v ∈ H1
per,(0)(YI) :

ˆ
YI

(ei+∇yχI,i) · ∇yv dy = 0. (3.3)

The solution ξ̃A,0 ∈ H1
per(YA) of the following problem will play an important role:

1− divy(DA∇y ξ̃A,0) = 0 on YA , −DA∇y ξ̃A,0 · ν = Lξ̃A,0 on σAE . (3.4)

Multiplication of the equation by ξ̃A,0, integration over YA, and integration by parts yields the positive
constant

cA,0 := −
 
YA

ξ̃A,0 dy =
1

|YA|

(ˆ
YA

DA

∣∣∇y ξ̃A,0

∣∣2 dy +

ˆ
σAE

Lξ̃2
A,0 day

)
> 0. (3.5)

The scalar product on H0(Ω) is now introduced as

〈(µA, µE), (µ̃A, µ̃E)〉H0(Ω) :=

ˆ
Ω

DEAhom,E∇µE · ∇µ̃E dx+

ˆ
Ω

|YA|
cA,0

(µA−µE) (µ̃A−µ̃E) dx .

(3.6)
Again, this scalar product leads to a canonical norm on H0(Ω) given by

‖(µA, µE)‖2
H0

= DE‖∇µE‖2
Ahom

+
|YA|
cA,0

‖µA−µE‖2
L2 .

The latter is a seminorm on H0,(m)(Ω) for m 6= 0. Furthermore, replacing Hε by H0 in (3.2) we find a
Riesz isomorphism J0 between H∗0(Ω) and H0(Ω).

We note that we have formulated so far three different cell problems, namely (3.3) to obtained the
effective coefficient matrices Ahom,A and Ahom,E, and (3.4) to introduce ξ̃A,0 and cA,0. All of them will
appear in our main homogenization theorem (Theorem 3).
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3.3 Main result

We are now in position to state the main result, namely, the convergence of solutions to the system in
(2.1) to solutions of an effective limit system. The effective limit system on Ω reads

∂tuA =
1

cA,0

(µE − µA) . (3.7a)

∂tuE = div(DEAhom,E∇µE)− |YA|
cA,0|YE|

(µE − µA) , (3.7b)

µA = F ′A(uA)− div (γAhom,A∇uA) , (3.7c)

µE = eEuE (3.7d)

subject to the boundary conditions on ∂Ω

γAhom,A∇uA · ν = 0 , DEAhom,E∇µE · ν = 0 . (3.7e)

Theorem 3 (Main Theorem). Let Ω be as above and assume that either one of the conditions in
Assumption 1 is fulfilled.

(i) For every ε > 0 with (1/ε) ∈ N and initial conditions uε0 = (uε0,A, u
ε
0,E) ∈ Vε,(m)(Ω) sat-

isfying uε0,A(x) ∈ [0, 1] for a.a. x ∈ Ωε
A there exist a unique solution to the problem (2.1) with

uε = (uεA, u
ε
E) ∈ L∞(0, T ;Vε,(m)(Ω)) with µε = (µεA, µ

ε
E) ∈ L2(0, T ;Hε(Ω)) and ∂tuε ∈

L2(0, T ;Hε(Ω)∗) and such that uεA(x) ∈ [0, 1] for a.a. x ∈ Ωε
A.

(ii) If the initial data uε0 is uniformly bounded in Vε,(m)(Ω), then, the family of solutions uε to (2.1)
satisfy the uniform a priori estimates

‖uεE‖L∞(0,T ;L2(ΩE)) + ‖uεA‖L∞(0,T ;L∞(Ωε
A)) + ‖∇uεA‖L∞(0,T ;L2(Ωε

A)) ≤ C , (3.8)

ε ‖∇µεA‖L2(0,T ;L2(Ωε
A)) + ‖∇µεE‖L2(0,T ;L2(Ωε

E)) +
√
ε ‖µεA − µεE‖L2(0,T ;L2(Σε

AE)) ≤ C , (3.9)∥∥µεA2
∥∥

L2(0,T ;L2(Ωε
A))
≤ C, (3.10)

‖(∂tuεA, ∂tuεE)‖L2(0,T ;H−1
ε (Ω)) ≤ C, (3.11)

where C > 0 is a constant independent of ε.

(iii) If uε0
2s−⇀ u0

0 in two scales (see Definition 5 and (4.7)), then, the family of solutions uε to (2.1) also
converges in the two-scale sense to the unique solution u to the effective problem in (3.7). The latter
satisfies u ∈ L2(0, T ;V0,(m)(Ω)) with ∂tu ∈ L2(0, T ;H0(Ω)∗) and u(0) = u0

0.

Solutions to (2.1) are gradient flows for the energy functional Eε : Hε(Ω)∗ → R∞ given by

Eε(uA, uE) =


ˆ

Ωε
A

γA

2
|∇uA|2 + FA(uA) dx+

ˆ
Ωε

E

eE

2
|uE|2 dx if (uA, uE) ∈ Vε,(m)(Ω),

+∞ otherwise
(3.12)

on the Hilbert space Hε(Ω)∗ equipped with the norm ‖ · ‖Hε(Ω)∗ , i.e., u̇ε(t) ∈ ∂H∗εEε(uε(t)), where
∂H∗εEε(u) ⊂ Hε(Ω)∗ denotes the (Fréchet) subdifferential of Eε in u. The functional Eε is lower
semicontinuous on Hε(Ω)∗ and has compact sublevels (on Hε(Ω)∗). Moreover, the initial data
satisfies u0

ε ∈ dom(Eε). Since FA is λ-convex, it can be shown that there exists Λε ∈ R such that Eε
is Λε-convex (see [22, Lemma 3.7]), in particular, Eε satisfies a chain rule on the Hilbert space Hε(Ω)∗.
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Thus, the existence result follows from Theorem 3 in [24] (see also [1]). The uniqueness follows from
the Λε-convexity of Eε.
The limit system in (3.7) also has a gradient structure. In particular, solutions are gradient flows with
respect to the energy functional E0 : H0(Ω)∗ → R∞ defined as

E0(uA, uE) =


ˆ

Ω

γA

2
|∇uA|2 + FA(uA) +

eE

2
|uE|2 dx if (uA, uE) ∈ V0,(m)(Ω),

+∞ otherwise.

4 Proof of main result

4.1 Periodic Sobolev theory and two-scale convergence

Lemma 4. There exists a constant C > 0 independent from ε such that

∀vεE ∈ H1(Ωε
E)

ˆ
Σε

AE

ε |vεE|
2 da ≤ C

ˆ
Ωε

E

(
|vεE|

2 + ε2 |∇vεE|
2 ) dx, (4.1)

∀vεA ∈ H1(Ωε
A)

ˆ
Ωε

A

|vεA|
2 dx ≤ C

(ˆ
Σε

AE

ε |vεA|
2 da + ε2

ˆ
Ωε

A

|∇vεA|
2 dx

)
. (4.2)

Proof. Note that by assumption Ω = (0, 1)3. For u ∈ L2(Ωε
A) (or u ∈ L2(Ωε

E)) we extend u outside
of Ωε

A (or Ωε
E) and consider iteratively:

1. for x = (x1, x2, x3) ∈ (0, 1)3 the function u(−x1, x2, x3) := u(x1, x2, x3),

2. for x = (x1, x2, x3) ∈ (−1, 1)× (0, 1)2 the function u(x1,−x2, x3) := u(x1, x2, x3),

3. for x = (x1, x2, x3) ∈ (−1, 1)2 × (0, 1) the function u(x1, x2,−x3) := u(x1, x2, x3).

In particular, u can be continued to a (−1, 1)3-periodic function with the property that u ∈ H1(Ωε
A)

implies H1-regularity for the extended function and similarly for u ∈ H1(Ωε
E). Using this extension, the

estimates follow from periodicity and a scaling argument.

Next, we establish the uniform boundedness of the solutions to (2.1), which follows from the energy-
dissipation balance.

Proof of a priori bounds. Note that solutions uε to (2.1) are gradient flows in Hε(Ω)∗ with respect to
Eε according to Theorem 3 in [24]. In particular, they satisfy the energy-dissipation balance

Eε(uε(t)) +

ˆ t

0

ˆ
Ωε

A

ε2DA|∇µεA|2 dx ds+

ˆ t

0

ˆ
Ωε

E

DE|∇µεE|2 dx ds

+

ˆ t

0

ˆ
ΣAE

εL(µεA−µεE)2 da ds = Eε(uε0,A, uε0,E). (4.3)

Since, we assume well-preparedness of the initial condition, i.e., Eε(uε0,A, uε0,E) ≤ C < ∞ the
estimates in (3.8) and (3.9) follow directly. The scaled trace inequalities (4.1) and (4.2) then imply (3.10).
The estimate for the time derivatives in (3.11) follows from (3.9) via standard arguments.
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Since Ωε
E and Ωε

A are connected, it is known (see [16, 15] and references therein) that there exists
CU ,I > 0 such that for every ε = 1/n, n ∈ N, there exists an extension operator U εI : H1(Ωε

I) →
H1(R3) such that

∀u ∈ H1(Ωε
I) : (U εI u)|Ωε

I
= u, ‖U εI u‖L2(Ω) ≤ CU ,I ‖u‖L2(Ωε

I ) ,

and ‖∇(U εI u)‖2
L2(Ω) ≤ CU ,I ‖∇u‖2

L2(Ωε
I ) .

(4.4)

Next, we observe that the trace operator T : H1(YI)→ L2(σAE) is well defined and continuous for
both I ∈ {A,E} with continuity constant CT ,I. From a simple scaling argument this implies that

T ε :

{
H1(Ωε

I) → L2(Σε
AE),

u 7→ [T u(ε · )]
( ·
ε

)
is continuous with the estimate

‖T εu‖L2(Σε
AE) ≤ CT ,I

(
‖u‖L2(Ωε

I ) + ε‖∇u‖L2(Ωε
I )

)
. (4.5)

Definition 5 (Two-scale convergence, [29]). (i) We call a (Radon) measure ω on R3 periodic if for every
z ∈ Z3 and every open subset A ⊂ R3 it holds ω(A) = ω(A+ z). Given a periodic measure ω0 we
define for ε > 0 the family of scaled measures ωε(A) := ε3ω0(ε−1A).

(ii) Given a periodic measure ω0 on R3 and the associated family of scaled measures ωε for every ε > 0,
we say that a sequence uε ∈ L2(Ω;ωε) converges weakly in two scales to u ∈ L2(Ω; L2(Y;ω0)) if
supε>0 ‖uε‖L2(Ω;ωε) <∞ and for every φ ∈ C(Ω) and ψ ∈ L2(Y) it holds

lim
ε→0

ˆ
Ω

uε(x)φ(x)ψ
(x
ε

)
dωε(x) =

ˆ
Ω

ˆ
Y

u(x, y)φ(x)ψ(y) dω0(y) dx .

Remark 6. While in [2] the space L2(Ω; Cper(Y)) is preferred as set of test functions, it is noticed
therein that also other type of test functions would be possible, which are classified as ‘admissible’.
This includes the space L2(Y; C(Ω)). However, in [29] it is revealed that the only important ingredient
into the theory is the density of the test functions in L2(Ω; L2(Y;ω0)).

The most important result which makes the theory applicable is the following.

Proposition 7 ([29, Prop. 2.2]). If a sequence uε is bounded in L2(Ω;ωε), then it is precompact in the
sense of two-scale convergence.

Remark 8. In this work, we consider the two cases for the periodic measure ω: (i) ω0 = L3, the
three-dimensional Lebesgue measure, such that ωε = L3 and (ii) ω0,σ(A) := H2(σAE ∩ A), the
two-dimensional Hausdorff measure such that ωε,Σ(A) = ωεσ(A) := εH2(Σε

AE ∩ A). Since the
characteristic functions χI of YI, for I = A,E, are periodic, also ω0,I = χIω0 is a periodic measure

with associated scaled measures ωε,I = χI(
·
ε
)L3. It is straight forward that uε

2s−⇀ u with respect to

ωε implies uεχI(
·
ε
)

2s−⇀ χIu with respect to ωε,I.

In the case ω0 = L3, we find the following important results.

Lemma 9 ([2, Prop. 1.14]). Let uε be a sequence in H1(Ω) such that for α ∈ {0, 1}

sup
ε>0

{
‖uε‖L2(Ω) + εα‖∇uε‖L2(Ω)

}
<∞ .

Then, there exists u ∈ L2(Ω×Y) such that along a subsequence uε
2s−⇀ u. Furthermore depending

on α the following holds:
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(i) If α = 0, then u ∈ H1(Ω), i.e., u(x, y) = u(x) does not depend on y and there exists

v ∈ L2(Ω; H1
per(Y)) such that∇uε

2s−⇀ ∇u+∇yv.

(ii) If α = 1, then u ∈ L2(Ω; H1
per(Y)) and ε∇uε

2s−⇀ ∇yu.

The last lemma can be used to prove the following result, which has been obtained in similar formulations
before (see e.g. [13] and references therein). We provide a proof for the sake of self-containedness.

Lemma 10. Let uε : Ωε
I → R be a sequence in H1(Ωε

I), for I ∈ {A,E}, such that

sup
ε>0

{
‖uε‖L2(Ωε

I ) + ε‖∇uε‖L2(Ωε
I )

}
<∞.

Then, there exists u ∈ L2(Ω; H1
per(Y)) such that along a subsequence

(i) uε
2s−⇀ χIu and ε∇uε

2s−⇀ χI∇yu with respect to the scaled measures ωε,I = χI(
·
ε
)L3,

(ii) U εI uε
2s−⇀ u and ε∇(U εI uε)

2s−⇀ ∇yu with respect to the scaled measure ω = L3,

(iii) T εuε
2s−⇀ T u with respect to the scaled measure ωεσ = εH2(Σε

AE ∩ A).

Proof. We define ũε := U εI uε. Due to (4.4) as well as Lemma 9, there exists u ∈ L2(Ω; H1
per(Y))

such that along a subsequence ũε
2s−⇀ u, ε∇ũε 2s−⇀ ∇yu. By Remark 8 and the identity uε =

χI(
·
ε
)U εI uε, it follows that uε

2s−⇀ χIu and ε∇uε
2s−⇀ χI∇yu. Estimate (4.5) yields that T εuε is

two-scale precompact, and it remains to identify the limit.

We write νε for the outer normal vector of Ωε
I on Σε

AE and ν for the outer normal vector of YI on σAE.
Then, the set {ψ · ν : ψ ∈ C1(YI)

d} is dense in L2(σAE), and it is sufficient to use ψ · ν as test
functions for two-scale convergence, where ψ ∈ C1(YI). Indeed, we then observe that

ˆ
Σε

AE

T εuε(x) νε(x) · ψ(x
ε
) dωεσ(x) =

ˆ
Ωε

I

εdiv
(
uε(x)ψ(x

ε
)
)

dx

→
ˆ

Ω

ˆ
YI

divy (u(x, y)ψ(y)) dx dy =

ˆ
σAE

T u(x, y)ψ(y) · ν da ,

which proves that T εuε
2s−⇀ T u with respect to the scaled measure ωεσ.

4.2 Limit passage

Lemma 11. The sequences U εEuεE and U εAuεA are precompact in L2([0, T ]×Ω).

Proof. We focus on the sequence U εEuεE the case for U εAuεA follows analogously. We verify the applica-
bility of Simon’s theorem [26, Thm. 1]. For that, we need to show that (i) for all 0 ≤ t1 < t2 ≤ T the
function U ε

E(x) :=
´ t2
t1
U εEuεE(s, x) ds is precompact in L2(Ω) and that (ii) U εEuεE(· + h) → U εEuεE

in L2([0, T−h]×Ω) as h → 0 uniformly with respect to ε. Concerning the first point, let us write
ũεE := U εEuεE. The properties of the extension operator in (4.4) yield

‖ũεE‖
2
L2([0,T ]×Ω) + ‖∇ũεE‖

2
L2([0,T ]×Ω) ≤ C

(
‖uεE‖

2
L2([0,T ]×Ωε

E) + ‖∇uεE‖
2
L2([0,T ]×Ωε

E)

)
. (4.6)
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Since we have supε>0 ‖U ε
E‖H1(Ω) ≤ C due to the a priori estimates for uεE in (3.8) and for µεE = e0u

ε
E

in (3.9), the precompactness of U ε
E follows from the compact embedding of H1(Ω) into L2(Ω). For the

second condition, we set wεE,h(t) := uεE(t+h)− uεE(t) and obtain

ˆ T−h

0

∥∥wεE,h∥∥2

L2(Ωε
E)

dt ≤
ˆ T−h

0

ˆ t+h

t

〈
∂tu

ε
E(s), wεE,h(t)

〉
ds dt

=

ˆ T−h

0

ˆ t+h

t

ˆ
Σε

AE

εL
(
µεE(s)−µεA(s)

)
wεE,h(t) da ds dt

+

ˆ T−h

0

ˆ t+h

t

ˆ
Ωε

E

DE∇µεE(s) · ∇wεE(t) dx ds dt,

where we used the evolution equation (2.1c) for uεE.

Now, we observe that for t ∈ (0, T−h) Hölder’s inequality for g ∈ L2(0, T )(ˆ t+h

t

g(s) ds

)2

≤ h

ˆ t+h

t

g(s)2 ds ≤ h‖g‖2
L2(0,T )

Hence, for g(s) = ‖µεE(s)−µεA(s)‖L2(Σε
AE) and g(s) = ‖∇µεE(s)‖L2(Ωε

E) using the a priori estimates
(3.8) and (3.9) and the inequality (4.1), we get with property (4.4) of the extension operator U εE

ˆ T−h

0

‖ũεE(·+ h)− ũεE(·)‖2
L2(Ω) dt ≤ C

ˆ T−h

0

‖wεE(·)‖2
L2(Ωε

E) dt ≤
√
hC .

This finishes the proof and the precompactness of ũεE := U εEuεE in L2([0, T ]×Ω) is established.

We are now in position to probe the two-scale convergence of the solutions. Note that the a priori
estimates in (3.8)–(3.11) and points (i) and (ii) of Lemma 10 allow us to find subsequences and limits
uE ∈ L2(0, T ; H1(Ω)) and vE ∈ L2(0, T ; L2(Ω; H1

per(Y))) satisfying

U εEuεE ⇀ uE in L2(0, T ; H1(Ω)), ∇(U εEuεE)
2s−⇀ ∇uE +∇yvE (4.7a)

uεE
2s−⇀ χEuE, ∇uεE

2s−⇀ χE (∇uE +∇yvE) , (4.7b)

where the convergences in (4.7b) are with respect to the scaled measure ωE,ε = χE(·/ε)L3. Due to
Lemma 11, we can further assume that U εEuεE → uE strongly in L2([0, T ]×Ω)) and Lemma 10 gives
the convergence of the traces with respect to the scaled measure ωεσ = εH2(Σε

AE ∩ A):

T εµεE
2s−⇀ T µE . (4.7c)

Furthermore, there exists µA ∈ L2(0, T ; L2(Ω; H1
per(YA))) such that

µεA
2s−⇀ µA , ε∇µεA

2s−⇀ ∇yµA . (4.7d)

Concerning the convergence of uεA let us note that since Ωε
A is connected there exist a limit uA ∈

L2(0, T ; H1(Ω)), vA ∈ L2(0, T ; L2(Ω; H1
per(Y))) such that

U εAuεA ⇀ uA in L2(0, T ; H1(Ω)) , ∇(U εAuεA)
2s−⇀ ∇uA +∇yvA, (4.7e)

uεA
2s−⇀ χAuA , ∇uεA

2s−⇀ χA (∇uA +∇yvA) . (4.7f)
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Furthermore, by Lemma 11 we get that U εAuεA → uA strongly in L2(0, T ; L2(Ω)) and Lemma 10 gives
the convergence of the traces with respect to the scaled measure ωεσ = εH2(Σε

AE ∩ A):

T εµεA
2s−⇀ T µA . (4.7g)

For the time derivatives ∂tuεE and ∂tuεA, we consider test functions vE ∈ C1
0(0, T ; H1(Ω)) and

vA ∈ C1
0(0, T ; C1(Ω×YA)) being periodic in Y. We set ṽεA(t, x) := vA(t, x, x/ε). From the a priori

estimate (3.11), we infer

ˆ T

0

∣∣〈(∂tuεA, ∂tuεE), (ṽεA, vE)
〉∣∣ dt ≤ C

(
‖∇xvE‖L2([0,T ]×Ω) + ε ‖∇xvA‖L2([0,T ]×Ω×Y)

+ ‖∇yvA‖L2([0,T ]×Ω×Y) +
√
ε ‖vA−vE‖L2([0,T ]×Σε

AE)

)
.

In the limit ε→ 0 we recall (3.6) to obtain the inequality

lim sup
ε→0

ˆ T

0

∣∣〈(∂tuεA, ∂tuεE), (ṽεA, vE)
〉∣∣ dt ≤ C

(
‖∇xvE‖L2([0,T ]×Ω)

+ ‖∇yvA‖L2([0,T ]×Ω×Y) + ‖vA − vE‖L2([0,T ]×Ω×ΣAE)

)
(4.8)

On the other hand, we can obtain from the fact that both limits uE and uA are independent from y via
integration by parts that

ˆ T

0

〈
(∂tu

ε
A, ∂tu

ε
E), (ṽεA, vE)

〉
dt = −

ˆ T

0

ˆ
Ωε

E

uεE ∂tvE dx dt+

ˆ T

0

ˆ
Ωε

A

uεA ∂tṽ
ε
A dx dt

→ −
ˆ T

0

ˆ
Ω

uE ∂tvE dx dt−
ˆ T

0

ˆ
Ω

ˆ
YA

uA(t, x)∂tvA(t, x, y) dy dx dt.

We now stick to vE ∈ C1
0(0, T ; H1(Ω)) but restrict to test functions vA ∈ C1

0(0, T ; C1(Ω)) and obtain
from (4.8)

lim sup
ε→0

∣∣∣∣ˆ T

0

〈
(∂tu

ε
E, ∂tu

ε
A), (vE, vA)

〉
dt

∣∣∣∣ ≤ C ‖v‖L2(0,T ;H0(Ω)) .

This implies that the time derivatives (χΩε
E
∂tu

ε
E, χΩε

A
∂tu

ε
A) converge weakly as distributions to a limit

in the space L2(0, T ;H0(Ω)). More precisely, we infer that

∂t(χΩε
E
uεE, χΩε

A
uεA) ⇀ ∂t(|YE|uE, |YA|uA) weakly in L2(0, T ;H0(Ω)) . (4.9)

Note that the properties of the subdifferential ∂H∗εEε(uε) yields that we have that F ′A(uεA) is uniformly
bounded in L2([0, T ]×Ωε

A). Thus, we can also assume that U εAF ′A(uεA) ⇀ ξA in L2([0, T ] × Ω).
Since uA 7→ FA(uA) is λ-convex, we get with the strong convergence of U εAuεA from Lemma 11 and
the strong-weak closedness of the convex subdifferential that for all φ ∈ L2([0, T ]× Ω)

ˆ T

0

ˆ
Ωε

A

(
F ′A(uεA)− λuεA

)
φ dx dt→

ˆ T

0

ˆ
Ω

(
F ′A(uA)− λuA

)
φ dx dt. (4.10)
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We finally consider the convergence of the initial data. For this aim we chose test functions vE ∈
C1([0, T ]; H1(Ω)) and vA ∈ C1([0, T ]; C1(Ω)) with (vA(T ), vE(T )) = (0, 0) and use integration
by parts to find the following limit behavior:

ˆ
Ω

{
|YA|u0

0,AvA(0) + |YE|u0
0,EvE(0)

}
dx = lim

ε→0

(ˆ
Ωε

A

uε0,AvA(0) dx+

ˆ
Ωε

E

uε0,EvE(0) dx

)

= lim
ε→0

ˆ T

0

(ˆ
Ωε

A

∂t(u
ε
A(t)vA(t)) dx+

ˆ
Ωε

E

∂t(u
ε
E(t)vE(t)) dx

)
dt

=

ˆ T

0

(ˆ
Ω

|YA|∂t(uA(t)vA(t)) dx+

ˆ
Ω

|YE|∂t(uE(t)vE(t)) dx

)
dt

=

ˆ
Ω

{
|YA|uA(0)vA(0) + |YE|uE(0)vE(0)

}
dx.

Homogenization limit in equations. We are now in position to pass to the limit using the “classical”
approach in the equations for uεA and uεE. For simplicity of notation, we identify T µA with µA and T µE

with µE.

Testing (2.1b) with ϕε ∈ C1(Ω) given via ϕε(x) := φ0(x) + εφ1(x)ψ(x
ε
), where φ0, φ1 ∈ C1(Ω),

ψ ∈ H1(YA), using the boundary condition in (2.1f) gives the weak formulation

ˆ T

0

ˆ
Ωε

A

µεAϕε dx dt =

ˆ T

0

ˆ
Ωε

A

F ′A(uεA)ϕε dx dt

+

ˆ T

0

ˆ
Ωε

A

γ∇uεA(t, x) · ∇
(
φ0(x) + εφ1(x)ψ

(x
ε

))
dx dt .

Exploiting the convergence in (4.7d) and (4.7f) as well as (4.10) gives in the two-scale limit

ˆ T

0

ˆ
Ω

ˆ
YA

φ0(x)µA(t, x, y) dy dx dt = |YA|
ˆ T

0

ˆ
Ω

F ′A(uA(t, x))φ0(x) dx

+

ˆ T

0

ˆ
Ω

ˆ
YA

γ
(
∇uA(t, x)+∇yvA(t, x, y)

)
·
(
∇φ0(x)+φ1(x)∇yψ(y)

)
dy dx dt .

It is well known that for given uA the function vA :=
∑3

i=1 ∂iuAχA,i, where χA,i are given via the cell
problem (3.3), is the only valid choice. Hence, the last equation takes the canonical form

ˆ T

0

ˆ
Ω

ˆ
YA

φ0µA dy dx dt = |YA|
ˆ T

0

ˆ
Ω

{
F ′A(uA)φ0 +∇uA · γAhom,A∇φ0

}
dx dt.

The latter is formally equivalent to the strong formulation

µA :=
1

|YA|

ˆ
YA

µA dy = F ′A(uA)− div (γAhom,A∇uA) . (4.11)

Let us now consider the equation for uA in (2.1a). We test the latter with ψε(t, x) := φ1(t, x)ψ(x
ε
),

where φ1 ∈ C1([0, T ]×Ω), ψ ∈ H1(YA) with φ(0, ·) = φ(T, ·) = 0 and use the boundary condition
(2.1e) to obtain

ˆ T

0

ˆ
Ωε

A

{
−uεA∂tψε + ε2DA∇µεA · ∇ψε

}
dx dt+

ˆ T

0

ˆ
Σε

AE

εL(µεA−µεE)ψε da dt = 0.
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With the convergences in (4.7c), (4.7d), (4.7f), and (4.7g) this identity yields in the limit ε→ 0

ˆ T

0

ˆ
Ω

ˆ
YA

{
−uAψ∂tφ1 + φ1∇yµADA∇yψ

}
dy dx dt

+

ˆ T

0

ˆ
Ω

ˆ
σAE

L(µA−µE)φ1ψ day dx dt = 0,

Thus, for almost every x ∈ Ω we have that uA and µA are weak solutions to

∂tuA − divy(DA∇yµA) = 0 on YA,

−DA∇yµA · ν = L(µA−µE) on σAE .
(4.12)

Next, we pass to the limit in equation (2.1c). Using a similar procedure as in the previous step with test
function ϕε(t, x) := φ0(t, x) + εφ1(t, x)ψ(x

ε
), where φ0, φ1 ∈ C1([0, T ]×Ω), ψ ∈ H1(YE) leads

to

ˆ T

0

ˆ
Ω

ˆ
YE

∂tuEφ0 dy dx dt+ |YE|
ˆ T

0

ˆ
Ω

∇µE · Ahom,EDE∇φ0 dx dt

= −
ˆ T

0

ˆ
Ω

ˆ
σAE

L(µE − µA)φ0 day dx dt,

where we have used the convergences in (4.7b), (4.7c), and (4.7g).

Thus, we obtain that uE and µE = eEuE satisfy

∂tuE − divx(Ahom,EDE∇µE) =
L

|YE|

ˆ
σAE

(µA(·, ·, y)−µE) day

Dimension reduction. Using ξ̃0 from the cell problem (3.4) and the fact that (4.9) implies ∂tuA ∈
L2([0, T ]×Ω) as well as the fact that µE ∈ L2([0, T ]×Ω), we observe that µ̂A := ∂tuAξ̃0 + µE is
an element of L2(0, T ; L2(Ω; H1

per(Y))) and solves (4.12). Indeed, since µE does not depend on y,
we compute

−divy(DA∇yµ̂A) = −∂tuAdivy(DA∇y ξ̃0) = −∂tuA.

For the boundary flux, we have

−DA∇yµ̂A · ν = −DA∂tuA∇y ξ̃0 · ν = L∂tuAξ̃0 = L(µ̂A − µE).

Moreover, with the definition of cA,0 in (3.5), we find that µ̂A = ∂tuAξ̃0 + µE also satisfies

1

|YA|

ˆ
YA

µ̂A dy = −cA,0∂tuA + µE

Inserting (4.11) now yields ∂tuA = 1
cA,0

(µE − µA) or

∂tuA =
1

cA,0

[
µE − F ′A(uA) + div (γAhom,E∇uA)

]
. (4.13)

Thus, we have proven the effective limit equation for uA.
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We use Gauss’ theorem for (4.12) to getˆ
σAE

L(µE − µA) day =

ˆ
YA

∂tuA dy =
|YA|
cA,0

(µE − µA)

and obtain

|YE| ∂tuE = |YE| div(DEAhom,E∇µE)− |YA|
cA,0

(µE − µA) . (4.14)

This finally proves Theorem 3, i.e., the convergence of the solutions uε to solutions of the effective
problem.

5 Conclusion

As already stated in the introduction, an open issue remains the case of disconnected Ωε
A, which

is relevant for application. Conceptually, there does not seem to be any deep reason, why a result
similar to the homogenization result in Theorem 3 should not hold in this case with Ahom,A = 0. In
particular, recent results in [12] underpin this stand point. However, from the point of view of analytical
homogenization, the major issue is the lack of compactness of U εAuεA in L2(0, T ; L2(Ω)). Compared
to the recent work [12], this lack is due to the fact that the Cahn–Hilliard equation forces us to compare
solutions with their shifted versions in H−1 instead of L2. Worse, the space H−1(Ωε

A) depends in our
case on ε, as we have seen, and the limit problem is again an Allen–Cahn type problem in the space
L2. We were not able to identify a way to compensate for this issue.

However, in order to formally justify our educated guess of the limit equations in the disconnected
case, note that disconnectedness of YA implies Ahom = 0 (since in this case for every i the function
χA,i(y) = −yi is the unique solution of the cell problem). We can test (3.7c) by uA and findˆ

Ω

µAuA dx ≥
ˆ

Ω

F ′A(uA)uA dx+

ˆ
Ω

γAhom,A |∇uA|2 dx

and from there

1

2

ˆ
Ω

µ2
A dx+ C ≥ 1

2

ˆ
Ω

|uA|2 dx+

ˆ
Ω

γAhom,A |∇uA|2 dx .

This implies for the weak formulationˆ
Ω

µAφ dx =

ˆ
Ω

F ′A(uA)φ dx+
√
Ahom,A

ˆ
Ω

γ
(√

Ahom,A∇uA

)
· ∇φ dx

in the limit Ahom,A → 0 that ˆ
Ω

µAφ dx =

ˆ
Ω

F ′A(uA)φ dx .

This is a weak formulation of
µA(x) dy = F ′A(uA) .
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