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Positivity and polynomial decay of energies for square-field
operators

Artur Stephan, Holger Stephan

Abstract

We show that for a general Markov generator the associated square-field (or carré du champs)
operator and all their iterations are positive. The proof is based on an interpolation between the
operators involving the generator and their semigroups, and an interplay between positivity and
convexity on Banach lattices. Positivity of the square-field operators allows to define a hierarchy
of quadratic and positive energy functionals which decay to zero along solutions of the corre-
sponding evolution equation. Assuming that the Markov generator satisfies an operator-theoretic
normality condition, the sequence of energies is log-convex. In particular, this implies polynomial
decay in time for the energy functionals along solutions.

1 Introduction

The study of the long time behavior of solutions of differential equations

ġ(t) = Ag(t), g(0) = g0 ∈ X , (1.1)

where A is a (in general unbounded) linear operator in a Banach space X , plays a major role
in mathematical physics. Usually, the time asymptotic behavior is studied by investigating energy
functionals along the solution. Let E : X → R be such an energy functional. If E is positive,
i.e. E(g) ≥ 0 for g ∈ X , and it decays along the solution, i.e., if the function t → E(g(t))
has a negative derivative d

dt
E(g(t)) ≤ 0, then one can at least deduce the existence of a limit

limt→∞ E(g(t)) = E(g(∞)) ≤ E(g(0)).

The prototypical example is given by the scalar diffusion equation ġ = 1
2
∆g on Ω ⊂ Rd with no-

flux boundary condition. We define the quadratic energy E0(g) =
∫

Ω
g2dx, and, furthermore, the

functionals E1(g) :=
∫

Ω
|∇g|2dx and E2(g) :=

∫
Ω
|∆g|2dx. Obviously, we have Ei ≥ 0. Then,

along (sufficiently smooth) solutions t 7→ g(t) of ġ = 1
2
∆g, we have

d

dt
E0(g(t)) = −E1(g(t)),

d

dt
E1(g(t)) = −E2(g(t)),

showing the decay of t 7→ E0(g(t)) and t 7→ E1(g(t)) along solutions. Often, the functional E1 is
called dissipation rate, and E2 would describe the “dissipative loss” of the dissipation. In the following,
we will call an operator A or the corresponding equation of type (1.1) dissipative if the dissipation rate
is positive. The asymptotic decay can be quantified by, for example, proving a Poincaré-type inequality
Ek+1 ≥ c Ek with some c > 0. Then exponential decay is obtained for t 7→ Ek(g(t)) by the classical
Gronwall lemma.

Extending dissipativity to other systems usually operators in divergence form A = −1
2
D∗LD in a

suitable Hilbert space are considered. Here D is an operator, containing the constant function in the
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kernel (e.g., the gradient), D∗ is its adjoint with respect to a scalar product (·, ·) in a suitable Hilbert
space, L is a positive multiplication operator such that −A is a symmetric operator that is positive in
the form sense. Defining the energy E0(g) = (g, g), we obtain

d

dt
E0(g(t)) = (g,Ag) = −(g,D∗LDg) = −(Dg,LDg) =: −E1(g) .

Since L is a positive multiplication operator, we have E1(g) ≥ 0, and, hence, operators in divergence
form are dissipative by construction. Moreover, it is easy to check that for functionals

Ek(g) = (g, (−A)kg) (1.2)

we have Ek(g) ≥ 0 and d
dt

Ek(g(t)) = −Ek+1(g(t)).

As dissipativity, another important physical property is positivity. A solution g, describing for example
the concentration or density, should be certainly positive for being physical reasonable1, and this prop-
erty of the solution has often to be either proved by hand or assumed. The aim of the paper is to show
that dissipativity is the mathematical consequence of the general notion of positivity from the theory
of Banach lattices.

Linear operators A in (1.1) preserve positivity and mass if and only if they are Markov generators
generating a semigroup (T(t))t≥0 of Markov operators. Here, we consider Markov operators on the
Banach lattice of continuous functions C(Z) on a compact topological space Z . Their adjoints map
the space of probability measures to itself, ensuring the system to remain physical reasonable.

To investigate dissipativity of the system, the fundamental object will be the so-called square-field
operators (or carré du champs operators). They have been introduced by Meyer and Bakry [Mey82,
Mey84, Bak85] and played an important role in the theory of evolution equations and stochastic anal-
ysis since then. They are recursively defined by

Γ0(f, g) := f · g
Γn+1(f, g) := AΓn(f, g)− Γn(Af, g)− Γn(f,Ag),

and measure the difference from A being a derivation (i.e. A satisfying A(f · g) = Af · g+f ·Ag).
In the following, we use the notation Γn(g) = Γn(g, g) for evaluating at the diagonal f = g. Many
interesting features have been investigated for square-field operators in the last decades, connecting
analysis, stochastics and geometry. The pioneering Bakry-Émery [BaÉ85, Led00] condition Γ2 ≥ cΓ1

connects geometric properties with analytic functional inequalities. They are of great interest particu-
larly for diffusion Markov generators, where A is given by, generally speaking, ∆−∇V · ∇ (we refer
to [BGL14] and reference therein concerning diffusion Markov generators). In this paper, we do not
assume any particular structure of the Markov generator, but aim at showing general inequalities. In-
equalities for square-field operators and geometric curvature bounds provide insights also in spectral
properties and exponential decay to equilibrium, which has been further investigated and exploited,
e.g. [AM∗01, MaV00]. In particular, the Bakry-Émery condition ensures that Γ2 ≥ 0, which has geo-
metric implications for the underlying manifold and was one of the starting point for the research on
square-field operators (see [Bak85]). We also remark that in [Wu00] different functional inequalities
have been derived under the condition that higher iterations, namely Γ3, are positive.

In this paper, our first main result is that for a general Markov generator A, all iterated square-field
operators evaluated at the diagonal are positive, i.e. Γn(g, g) ≥ 0 whenever they are defined (see
Theorem 2.8). To show this, we do not use any restrictive symmetry assumption on A (like detailed

1In theory, there is no reason for a system not to be dissipative.
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balance) or assumptions on the spectrum. The proof exploits an iterative interpolation between Γn
involving the Markov generator and a version involving only the associated semigroup of (bounded)
Markov operators. The idea is to start with the semigroup of Markov operators, derive inequalities for
them and transfer them afterwards to the corresponding Markov generators. The crucial observation
is the interplay of positivity and convexity by a parallelogram identity as an inherent feature of Banach
lattices (see Lemma 2.6). For Markov operators we may use classical inequalities and circumvent
technical difficulties that occur for unbounded operators. However, technical difficulties arise because
differentiation does not preserve positivity.

To show the main idea for Γ1 (basically as in [Led00]), we aim at showing that Γ1(g, g) = Ag2− 2g ·
Ag ≥ 0 for all g ∈ D(A) with g2 ∈ D(A). From Jensen’s inequality we know that for all Markov
operator M and all g ∈ D(A) we have Mg2 − (Mg)2 ≥ 0. Hence, T(t)g2 − (T(t)g)2 ≥ 0.
Differentiating in time at t = 0, we obtain for g ∈ D(A)

d

dt

(
T(t)g2 − (T(t)g)2

)
|t=0 = T′(t)g2 − 2T(t)g ·T′(t)g|t=0 = Ag2 − 2g ·Ag = Γ1(g, g).

Although, differentiating generally does not preserve inequalities, the reasoning holds true because
we have the decomposition

T(t)g2 − (T(t)g)2 = (T(t)− I)g2 − g · (T(t)− I)g −T(t)g · (T(t)− I)g, (1.3)

where I is the identity operator. Then we have

d

dt

(
T(t)g2 − (T(t)g)2

)
|t=0 = lim

t→0

1

t

(
T(t)g2 − (T(t)g)2

)
−
(
T(0)g2 − (T(0)g)2

)
= lim

t→0

1

t

(
T(t)g2 − (T(t)g)2

)
= lim

t→0

1

t

(
(T(t)−I)g2 − g · (T(t)−I)g −T(t)g · (T(t)−I)g

)
= Ag2 − g ·Ag − g ·Ag = Γ(g, g),

which proves the desired estimate. This idea can be used also for higher iterations Γn, n ≥ 1, and,
moreover, a whole family of new inequalities involving A and its semigroup can be obtained as a
byproduct.

Positivity of Γn implies that the corresponding energies2

En(g) := 〈Γn(g), µ〉, en(t) := En(g(t))

decay along solutions ġ = Ag and, moreover, are convex (see Theorem 2.12). Here µ is a stationary
measure, i.e. A∗µ = 0. This fact is well known for E0 and also studied for E1, which corresponds
to the Dirichlet form of A. In the present paper we show that all iterations en monotonically decay to
zero. This shows in fact, that dissipativity is not a special physical property but instead a mathematical
consequence of a the natural physical property of positivity.

In the second part of the paper, we quantify the convergence rate of t 7→ en(t) towards zero. Usually
exponential decay is derived assuming a Poincaré-type inequality between, say, En(g) and En+1(g).
It is clear, that exponential decay can only be expected whenever a spectral gap for the operator A
is present. In particular, for general Markov generators no exponential decay is expected. To obtain
nevertheless quantitative convergence for general Markov generators without assumptions on their
spectrum, we adapt the operator-theoretic notion of normality for the lifted version of A in the natu-
ral Hilbert space L2(µ). This enables to prove that the sequence (En(g))n∈N is log-convex implying

2Note that we call them all energies and neglect the physical interpretation.
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many interesting features. First, polynomial decay of the energies t 7→ en(t) can be derived (The-
orem 3.4). Secondly, log-convexity in time and also an upper bound for powers of energies can be
shown (see Theorem 3.7). We finally note that normality is much general than symmetry, which would
translate to detailed balance or reversibility for stochastic processes. We refer to Section 3.5 where
normality is discussed.

2 Positivity of quadratic operators in C(Z)

Before defining the square-field operators and proving their positivity, we first briefly present the math-
ematical setting.

2.1 Markov semigroups and their generators

Let us start with a few well known facts from the theory of Markov generators and their semigroups
(see e.g. [AG∗86, Paz83] for more details). In what follows, let Z be a compact (if necessary, suitably
compactified) and metrizable topological space, i.e. a compact, first-countable, Hausdorff space. Let
C(Z) be the space of continuous real-valued functions onZ and C∗(Z) (the dual of C(Z)) the space
of Radon measures on Borel sets generated by the open sets of Z . The space C(Z) is a Banach
algebra by the pointwise multiplication (denoted by ·); the constant function 1(z) ≡ 1 is denoted by
1 ∈ C(Z). The dual pairing is denoted by 〈g, p〉 =

∫
Z g(z)p(dz) with g ∈ C(Z) and p ∈ C∗(Z).

The spaces C(Z) and C∗(Z) are Banach lattices with the order relations C(Z) 3 g ≥ 0 if and
only if for all z ∈ Z we have g(z) ≥ 0, and C∗(Z) 3 p ≥ 0 if and only if for all Borel sets
B ⊂ Z we have p(B) ≥ 0. The order relation in C∗(Z) as a space of measures coincides with
the order relation in dual spaces, i.e. p ≥ 0 if and only if 〈g, p〉 ≥ 0 for all 0 ≤ g ∈ C(Z).
In the following, elements g or p with g ≥ 0 and p ≥ 0 are called positive3. The convex subset
P(Z) =

{
p ∈ C∗(Z)

∣∣ p ≥ 0, 〈1, p〉 = ‖p‖ = 1
}

is the set of probability measures describing
the statistical states of the system.

As usual, by L(C(Z)) and L(C(Z)∗) we denote the spaces of linear bounded operators. A linear
operator T ∈ L(C) on a Banach lattice is called positive (written T ≥ 0) if it conserves positivity, i.e.,
g ≥ 0 implies Tg ≥ 0. A linear, bounded operator M ∈ L(C(Z)) with M1 = 1 and M ≥ 0 is
called Markov operator. The set of Markov operatorsM =

{
M ∈ L(C)

∣∣M ≥ 0, M1 = 1
}

is
convex and constitute a (noncommutative) semigroup with unit I, where I is the identity operator on
C(Z). A Markov operator is contractive, because we have ‖M‖ = 1. Important for us will be Jensen’s
inequality, which says that for all convex function Φ : R→ [−∞,∞], all Markov operators M ∈ M
and all g ∈ C(Z) we have

MΦ(g) ≥ Φ(Mg), (2.1)

where Φ(g) is defined pointwise, i.e. Φ(g)(z) = Φ(g(z)). The simple proof for that, based on the
fact that Markov operators provide convex combinations, is contained in [Ste05].

Adjoints of Markov operators M∗ are also positive and contractive with ‖M∗‖ = 1. Given an operator
T∗ ∈ L(C(Z)∗) we have T∗P(Z) ⊂ P(Z) if and only if T ∈ M. In this sense, we can say that
Markov operators and only these provide physical reasonable state changes. For all M ∈ M there

3Throughout the paper, positive is meant to be non-negative. Moreover, positivity of functions is defined pointwise and
not “almost everywhere”.
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is at least one invariant measure µ ∈ P with M∗µ = µ by the Frobenius–Perron–Krein–Rutman
Theorem.

A Markov semigroup (T(t))t≥0 is strongly-continuous semigroup of Markov operators, i.e. T(0) = I,
T(t1 + t2) = T(t2)T(t1) for all t1, t2 ≥ 0, and T(t)g converges strongly to g as t→ 0. A Markov
semigroup is contractive, since for all t ≥ 0 we have ‖T(t)‖ = 1. Moreover, a Markov semigroup is a
commuting family of Markov operators, and therefore, there exists an invariant measure µ ∈ P(Z) not
depending on t with T∗(t)µ = µ by the Markov–Kakutani Theorem (see e.g. [DuS59]). For a given
strongly-continuous semigroup (T(t))t≥0 the Markov generator is denoted by (A,D(A)), where

D(A) :=

{
g ∈ C(Z) : lim

t→0

1

t
(T(t)g − g) exists

}
, Ag := lim

t→0

1

t
(T(t)g − g) , g ∈ D(A) .

Denoting D(An) the domain of An and setting
⋂
n∈ND(An) =: D(A∞), we have that D(A∞) is

a core of (A,D(A)) and a dense subset of C(Z) (see, e.g., [Paz83]). In particular, in the following
we will sometimes omit denoting the domain of definition for operators An, because obviously all
identities only hold, if both sides of the relation are well-defined. Since D(A∞) is dense, we may
always consider f, g ∈ D(A∞).

Given a differential equation

ġ = Ag, g(0) = g0 ∈ D(A) ⊂ C(Z), (2.2)

where A is a Markov generator with semigroup (T(t))t≥0, then the solution t 7→ g(t) is given by
g(t) = T(t)g0. If µ is an invariant measure of a (T(t))t≥0, then µ ∈ D(A∗) and A∗µ = 0 and vice
versa: If a measure µ ∈ D(A∗) satisfy A∗µ = 0 then we have T∗(t)µ = µ.

In mathematical physics and stochastics, equations of the type (2.2) describe the time evolution of
observations and is called (Chapman-Kolmogorov) backward equation. From physical perspective,
the so-called (Chapman-Kolmogorov) forward equation for the evolution of a probability measures
t 7→ p(t) ∈ P(Z) is interesting. It can be formally expressed as ṗ(t) = A∗p(t), p(0) = p0, which
is defined in the weak-* sense by

d

dt
〈g, p(t)〉 = 〈Ag, p(t)〉, g ∈ D(A), p(0) = p0. (2.3)

Although in general A∗ is not a generator (it does not need to be densely defined), the solution of
(2.3) can be found by solving the equation (2.2), finding T(t) and setting p(t) = T∗(t)p0.

Assuming that p0 has a density h0 with respect to µ, p(t) can also be calculated as p(t) = h(t)µ,
where h(t) is the solution to an equation of type (1.1) but with a different Markov operator as A. In
this form, the equation is commonly used as Fokker–Planck equation [AM∗01], Levy–Fokker–Planck
equation [GeI08], master equation and others. Due to their universality, we restrict ourselves in this
paper to equation (2.2).

2.2 Square-field operators and their interpolation

For a given Markov generator (A,D(A)), we define the so-called square-field operators by

Γ0(f, g) = f · g
Γn+1(f, g) = AΓn(f, g)− Γn(Af, g)− Γn(f,Ag).
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Of course, to ensure that Γn is well-defined, we have to restrict to a subalgebra and to elements of
D(An). To do so, we defineD := D(A∞)∩

(
D(A∞) ·D(A∞)

)
the largest subalgebra4 contained

in D(A∞). Here, in Section 2.2 and Section 2.3 we always assume that f, g ∈ D. Note that for the
associated energies in Section 2.4, no subalgebra is needed and it suffices to consider functions from
D(A∞).

The first elements are given by

Γ1(f, g) = A(f · g)− f ·Ag − g ·Af
Γ2(f, g) = A2(f · g)− 2A(f ·Ag)− 2A(g ·Af) + g ·A2f + 2Ag ·Af + f ·A2g.

Moreover, we define the following square-field type operators which contain bounded Markov oper-
ators. For this, consider a sequence of Markov operators (Mn)n∈N. We define a sequence Gn =
Gn(Mn, · · · ,M1, ·, ·) of quadratic operators on C(Z) by the recursion formula

G0(f, g) = f · g
Gn+1(Mn+1, ...,M1, f, g) = Mn+1Gn(Mn, ...,M1, f, g)−Gn(Mn, ...,M1,Mn+1f,Mn+1g) .

(2.4)

The first terms of Gn are given by

G1(M1, f, g) = M1(f · g)−M1f ·M1g

G2(M2,M1, f, g) = M2M1(f · g)−M2(M1f ·M1g)−M1(M2f ·M2g)

+ (M1M2f) · (M1M2g).

Note that Gn has n Markov operators in their argument. Since G0 is symmetric and linear in both
arguments separately the same holds for all Gn by definition. Moreover, if f, g ∈ C(Z), then also
Gn(Mn, ...,M1, . . . , f, g) ∈ C(Z).

As we will see the operators Γn can be obtained from Gn by subsequently substituting Mk by the
semigroup T(t) of the Markov generator A and taking the limit t→ 0. For this, we introduce operators
Gk
n, which interpolate between Gn and Γn, and are defined by

G0
n(Mn, . . . ,M1, f, g) = Gn(Mn, . . . ,M1, f, g),

Gk
n(Mn−k, . . . ,M1, f, g) = AGk−1

n−1(Mn−k, . . . ,M1, f, g)

−Gk−1
n−1(Mn−k, . . . ,M1,Af, g)−Gk−1

n−1(Mn−k, . . . ,M1, f,Ag) .

By definition, Gk
n(f, g) is only defined if Gk−1

n−1(f, g) ∈ D(A) and Gk−1
n−1(Mn−k, . . . ,M1,Af, g) as

well asGk−1
n−1(Mn−k, . . . ,M1, f,Ag) are well-defined. We note thatGk

n has n−k Markov operators
in their arguments and all Gk

n are symmetric.

Next, we are going to show how to obtain Γn from Gn to carry over Gn ≥ 0 to Γn ≥ 0. First, in
Lemma 2.1, we show that Γn = Gn

n. Secondly, in Proposition 2.2 we show how to obtain Gk
n+1 from

Gk
n. The connection between the operators can be summarized in the following diagram:

Lemma 2.1. Let (Mn)n∈N be a sequence of Markov operators. The operators Gk
n have the following

properties:

4To decide whether a subalgebra D ⊂ C(Z) is dense, it suffices to show that it separates points by the Stone-
Weierstraß-Theorem, see e.g. [Sem71].
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Definition

Definition

Lemma 2.1

Lemma 2.4

Proposition 2.2

G0 = G0
0

G1 = G0
1

G2 = G0
2

G3 = G0
3

G1
1

G1
2

G1
3

G2
2

G2
3 G3

3

Γ0

Γ1

Γ2

Γ3
...

...
...

...
...

=

=

=

=

1 Gk
n is continuous, i.e., if ft → f , gt → g in C(Z) as t→ 0, thenGk

n(Mn−k, . . . ,M1, ft, gt)→
Gk
n(Mn−k, . . . ,M1, f, g) whenever Gk

n(Mn−k, . . . ,M1, f, g) is defined.

2 For all n ∈ N, we have Gn
n(f, g) = Γn(f, g).

Proof. To simplify notation, we just write Gk
n = Gk

n(Mn−k, . . . ,M1, ·, ·) because all Mk are fixed.
For the first claim, we observe that ft → f and gt → g implies G0

n(ft, gt)→ G0
n(f, g) since all Mj

are bounded and C(Z) is a Banach algebra. By induction, we obtain that alsoGk
n(ft, gt)→ Gk

n(f, g)
because A is a generator and hence a closed operator.

The proof of the second claim is done by induction. By definition, the claim holds for n = 0. The
recursion formula for Gn

n is given by

Gn
n(f, g) = AGn−1

n−1(f, g)−Gn−1
n−1(Af, g)−Gn−1

n−1(f,Ag) .

This is the same for Γn.

The following proposition relates Gk
n with Gk+1

n by replacing Mn−k with T(t) and taking the rescaled
limit t→ 0.

Proposition 2.2. Let a sequence of Markov operators
(
Mn

)
n∈N be given such that Mn commutes

with the semigroup T(t). Then, for all n ∈ N and k ∈ {0, . . . , n− 1} we have

lim
t→0

1

t
Gk
n(T(t),Mn−k−1, . . . ,M1, f, g) = Gk+1

n (Mn−k−1, . . . ,M1, f, g) .

Before proving the proposition, we immediately observe the following. Replacing subsequently all
Markov operators Mk by the semigroup T(tk) we derive the following connection between Gn and
Γn.

Corollary 2.3. We have

lim
t1→0

1

t1

(
lim
t2→0

1

t2

(
. . . lim

tn→0

1

tn
Gn(T(tn), . . . ,T(t1), f, g)

))
= Γn(f, g) .

Proof. This follows directly from the definition G0
n = Gn, Proposition 2.2 and the relation Gn

n = Γn
from Lemma 2.1.

DOI 10.20347/WIAS.PREPRINT.2901 Berlin 2021
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To prove Proposition 2.2, we need the following lemma, which can be understood as the generalization
of (1.3) from the Introduction.

Lemma 2.4. Let a sequence of Markov operators (Mn)n∈N be given such that Mn−k commutes with
the semigroup T(t). For all n ∈ N and k ∈ {0, . . . , n−1} we have

Gk
n(Mn−k,Mn−k−1, . . . ,M1, f, g) =Mn−kG

k
n−1(Mn−k−1, . . . ,M1, f, g)

−Gk
n−1(Mn−k−1, . . . ,M1,Mn−kf,Mn−kg).

In particular, we have that

Gk
n(Mn−k, . . . , f, g) = (Mn−k − I)Gk

n−1(. . . , f, g)− (2.5)

−Gk
n−1(. . . ,Mn−kf, (Mn−k − I) g)−Gk

n−1(. . . , (Mn−k − I) f, g) .

Proof. To simplify notation, we again just write Gk
n(M, f, g) = Gk

n(M,Mn−k−1, . . . ,M1, f, g)
and Gk

n−1(f, g) = Gk
n−1(Mn−k−1, . . . ,M1, f, g). We are going to show that Gk

n(M, f, g) =
MGk

n−1(f, g)−Gk
n−1(Mf,Mg); the second formula follows directly by linearity of Gk

n.

For k = 0 and all n ∈ N this follows from the recursion formula of G0
n = Gn. Assume that it holds for

a fixed k ≥ 0 and all n ∈ N. We want to show that also

Gk+1
n+1(M, f, g) = MGk+1

n (f, g)−Gk+1
n (Mf,Mg) .

By definition, the left-hand side is – assuming that M and A commute – given by

Gk+1
n+1(M, f, g) = AGk

n(M, f, g)−Gk
n(M,Af, g)−Gk

n(M, f,Ag)

= A
(
MGk

n−1(f, g)−Gk
n−1(Mf,Mg)

)
−MGk

n−1(Af, g)−Gk
n−1(MAf,Mg)

−MGk
n−1(f,Ag)−Gk

n−1(Mf,MAg)

= M
{
AGk

n−1(f, g)−Gk
n−1(Af, g)−Gk

n−1(f,Ag)
}

−AGk
n−1(Mf,Mg) +Gk

n−1(AMf,Mg) +Gk
n−1(Mf,AMg)

= MGk+1
n (f, g)−Gk+1

n (Mf,Mg) ,

which is the desired formula.

Using that lemma, we are able to prove Proposition 2.2.

Proof of Proposition 2.2. Again, we just write Gk
n(T(t), f, g) = Gk

n(T(t),Mn−k−1, . . . ,M1, f, g)
andGk

n−1(f, g) = Gk
n−1(Mn−k−1, . . . ,M1, f, g). With (2.5) from Lemma 2.4 and using the linearity

of Gk
n, we have

1

t
Gk
n(T(t), f, g) =

1

t
(T(t)−I)Gk

n−1(f, g)−Gk
n−1

(
T(t)f,

1

t
(T(t)−I) g

)
−Gk

n−1

(1

t
(T(t)−I) f, g

)
.

In the limit t→ 0, the first term converges to AGk
n(f, g), if Gk

n(f, g) ∈ D(A). Moreover, we have

Gk
n−1(T(t)f,

1

t
(T(t)− I) g)→ Gk

n−1(f,Ag), Gk
n−1(

1

t
(T(t)− I) f, g)→ Gk

n−1(Af, g),

as t→ 0 by continuity (see Lemma 2.1). Hence, we obtain

lim
t→0

1

t
Gk
n(T(t), f, g) = AGk

n−1(f, g)−Gk
n−1(Af, g)−Gk

n−1(f,Ag),

which is equal to Gk+1
n (f, g) by definition.
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Remark 2.5. We remark that similarly, Γn can be obtained from Gn by subsequently inserting Mk =
T(t) and then differentiating with respect to t at t = 0. Indeed, one can show that

Γn(f, g) =
d

dt
· · ·

{
d

dt

{
d

dt
Gn(Mn, . . . ,M1, f, g)|M1=T(t)

∣∣∣
t=0

}∣∣∣∣
M2=T(t)

∣∣∣∣∣
t=0

}
· · ·

∣∣∣∣∣
Mn=T(t)

∣∣∣∣∣∣
t=0

.

Similar formulas also hold true for Gk
n, but can not directly by used to derive positivity. Moreover, it is

possible to derive the following product rule for Γn

d

dt
Γn(T(t)f,T(t)g)

∣∣∣∣
t=0

= AΓn(f, g)− Γn+1(f, g).

2.3 Positivity for Γn and Gk
n

So far, we introduced Gk
n as an iterative approximation of Γn. Next, we want to show that indeed Gk

n

and Γn are positive, when evaluated at the diagonal f = g. For this, with a slight abuse of notation,
we introduce

Γn(g) := Γn(g, g)

Gn(Mn,Mn−1, . . . ,M1, g) := Gn(Mn,Mn−1, . . . ,M1, g, g)

Gk
n(Mn−k,Mn−k−1, . . . ,M1, g) := Gk

n(Mn−k,Mn−k−1, . . . ,M1, g, g).

There will be now confusion with the notation because in this section, we only consider the operators
evaluated at the diagonal. The first operators are given by

G0(g) = Γ0(g) = g2

G1(M, g) = Mg2 − (Mg)2

G2(M2,M1, g) = M2M1g
2 −M2(M1g)2 −M1(M2g)2 + (M1M2g)2.

Γ1(g) = A(g2)− 2g ·Ag
Γ2(g) = A2(g2)− 4A(g ·Ag) + 2g ·A2g + 2Ag ·Ag.

The next lemma shows the estimate for Gn = G0
n which is based on the interplay between convexity

and positivity. With the help of Proposition 2.2 we are then able to transfer the estimates to Gk
n and to

Γn.

Lemma 2.6. Let a sequence of Markov operators (Mn)n∈N be given. With the above notation, we
have:

1 For all n ∈ N, the function g 7→ Gn(Mn,Mn−1, . . . ,M1, g) satisfies the parallelogram
identity, i.e. for all f, g ∈ C(Z) we have

Gn(Mn,Mn−1, . . . ,M1, g) +Gn(Mn,Mn−1, . . . ,M1, f) =

2Gn

(
Mn,Mn−1, . . . ,M1,

f + g

2

)
+ 2Gn

(
Mn,Mn−1, . . . ,M1,

f − g
2

)
.

2 The function g 7→ Gn(Mn,Mn−1, . . . ,M1, g) is convex and non-negative.
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Proof. We prove the claims in several steps, mainly using induction over n ∈ N. Again, we simply
write Gn(g) = Gn(Mn,Mn−1, . . . ,M1, g).

For the first part, we observe that the parallelogram identity holds for n = 0, since G0(g) = g2 and
we have

f 2 + g2 = 2

(
f + g

2

)2

+ 2

(
f − g

2

)2

.

For the step from n to n+ 1, we add the equations

Gn+1(f) = Mn+1Gn(f)−Gn(Mn+1f)

Gn+1(g) = Mn+1Gn(g)−Gn(Mn+1g),

and obtain,

Gn+1(f) +Gn+1(g) =

= Mn+1Gn(f) + Mn+1Gn(g)− {Gn(Mn+1f) +Gn(Mn+1g)}

= 2Mn+1

{
Gn

(
f + g

2

)
+Gn

(
f − g

2

)}
− 2

{
Gn

(
Mn+1

f + g

2

)
+Gn

(
Mn+1

f − g
2

)}
= 2Mn+1Gn

(
f + g

2

)
− 2Gn

(
Mn+1

f + g

2

)
+ 2Mn+1Gn

(
f − g

2

)
− 2Gn

(
Mn+1

f − g
2

)
= 2Gn+1

(
f + g

2

)
+ 2Gn+1

(
f − g

2

)
,

where we have used the linearity 1
2

(Mn+1f ±Mn+1g) = Mn+1

(
f±g

2

)
. This proves the claim.

The proof of the second part is done by induction in two steps. First we show that convexity of Gn im-
plies thatGn+1 ≥ 0. Secondly, we show that ifGn ≥ 0 thenGn is convex, by using the parallelogram
identity. By induction this would conclude the proof.

Clearly, we have that G0(g) = g2 is positive and convex. Assuming that g 7→ Gn(g) is convex, we
have for all Mn+1 by Jensen’s inequality (2.1) that

∀g ∈ C(Z) : Mn+1Gn(g) ≥ Gn(Mn+1g),

which proves the positivity of Gn+1 because

Gn+1(g) = Mn+1Gn(g)−Gn(Mn+1g) ≥ 0.

Next, we show that positivity implies convexity. By the parallelogram identity, we have for all f, g ∈
C(Z) that

Gn(f) +Gn(g) = 2Gn

(
f + g

2

)
+ 2Gn

(
f − g

2

)
,

which implies
Gn(f) +Gn(g)

2
−Gn

(
f + g

2

)
= Gn

(
f − g

2

)
.

Since Gn ≥ 0, we obtain that Gn is convex.

Remark 2.7. The key to the proof of positivity is the equivalence of positivity and convexity expressed
by the parallelogram identity, which suggests that Gn(g) behaves like a norm in a Hilbert space.

Using Lemma 2.6 and Proposition 2.2, we immediately obtain positivity for Gk
n(g) and Γn(g).
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Theorem 2.8. Let a sequence of Markov operators Mn be given such that all Mn commute with the
semigroup T(t). Then, for all n ∈ N, k ∈ {0, . . . , n} we have that
Gk
n(Mn−k,Mn−k−1, . . . ,M1, g) ≥ 0. In particular, for all n ∈ N we have Γn(g) ≥ 0.

Proof. By Proposition 2.2, we have

lim
t→0

1

t
Gk
n(T(t),Mn−k−1, . . . ,M1, f, g) = Gk+1

n (Mn−k−1, . . . ,M1, f, g) .

Since G0
n = Gn is positive on the diagonal f = g by Lemma 2.6, we also obtain that Gk

n(g) ≥ 0
iteratively for all k ∈ {1, . . . , n}. In particular, we have Gn

n(g) = Γn(g) ≥ 0.

2.4 Associated energies

By Theorem 2.8 we know that Γn(g) is positive for all g ∈ D(An). Hence, we may define the
associated energies. For µ ∈ P(Z) being the stationary probability measure of A, i.e. A∗µ = 0, we
inductively define the bilinear forms

E0(f, g) = 〈f · g, µ〉 − 〈f, µ〉〈g, µ〉
En+1(f, g) = −En(Af, g)− En(f,Ag) ,

whenever the right-hand side is well-defined. In particular, we have

E1(f, g) = −〈Af · g, µ〉 − 〈Ag · f, µ〉 ,

which is usually called the Dirichlet form associated with the Markov generator A. Moreover, we
introduce the notation En(g) := En(g, g).

Lemma 2.9. For all n ≥ 1 we have that

En(f, g) = 〈Γn(f, g), µ〉.

In particular, we have that En(g) ≥ 0 for all n ∈ N.

Proof. For n = 1, we have

E1(f, g) = −E0(Af, g)− E0(f,Ag) =

= −〈Af · g, µ〉+ 〈Af, µ〉〈g, µ〉 − 〈f ·Ag, µ〉+ 〈f, µ〉〈Ag, µ〉
= −〈Af · g + f ·Ag, µ〉 = 〈Γ1(f, g), µ〉,

where we have used that A∗µ = 0. This proves the claim for n = 1.

Assuming that the claim holds for n ≥ 1 and using the recursion formula, we obtain for n+ 1 that

En+1(f, g) = −En(Af, g)− En(f,Ag) =

= −〈Γn(Af, g), µ〉 − 〈Γn(Af, g), µ〉 =

= 〈AΓn(f, g)− Γn(Af, g)− 〈Γn(Af, g), µ〉 = 〈Γn+1(f, g), µ〉,

where we again have used A∗µ = 0. This proves the desired relation.

Since we have En(g) = 〈Γn(g), µ〉, positivity follows for n ≥ 1 by Theorem 2.8 by using that µ ≥ 0.
Moreover, E0(g) ≥ 0 by Jensen’s inequality.
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One can easily derive an explicit formula for En.

Proposition 2.10. We have the following explicit form for n ≥ 1

En(f, g) = (−1)n
n∑
j=0

(
n

j

)
〈An−jf ·Ajg, µ〉 . (2.6)

Proof. We observe that for n = 1, the right-hand side is given by
− (〈Af · g, µ〉+ 〈f ·Ag, µ〉), which is E1. Assuming that the formula holds true for n ∈ N, we
obtain, by using

(
n+1
j

)
=
(
n
j−1

)
+
(
n
j

)
that

(−1)n+1

n+1∑
j=0

(
n+ 1

j

)
〈An+1−jf ·Ajg, µ〉 =

= (−1)n+1

{
n+1∑
j=1

(
n+ 1

j

)
〈An+1−jf ·Ajg, µ〉+ 〈An+1f · g, µ〉

}

= (−1)n+1

{
n+1∑
j=1

(
n

j − 1

)
〈An+1−jf ·Ajg, µ〉+

(
n

j

)
〈An+1−jf ·Ajg, µ〉+ 〈An+1f · g, µ〉

}

= (−1)n+1

{
n∑
k=0

(
n

k

)
〈An−kf ·Ak+1g, µ〉+

n∑
j=0

(
n

j

)
〈An+1−jf ·Ajg, µ〉

}
= −{En(f,Ag) + En(Af, g)} = En+1(f, g),

which proves the claimed formula.

Remark 2.11. Similar explicit expression like (2.6) can also be derived for Γn and Gk
n.

Considering the solution g of ġ = Ag, we may define the energy along solutions given by

en(t) := En(g(t), g(t)) .

The next theorem shows that all energies en decay along solutions and are convex in t > 0.

Theorem 2.12. Let n ∈ N. We have the following properties for en:

1 Along solutions g = g(t) of ġ = Ag with g(0) = g0 ∈ D(A∞) the trajectory t 7→ en(t) is
differentiable and we have

d

dt
en(t) = −en+1(t) . (2.7)

In particular, t 7→ en(t) is monotonically decreasing and convex.

2 For n ≥ 1 we have limt→∞ en(t) = 0 and
∫∞

0
en+1(t) dt = en(0).

Proof. We prove both claims separately. For the first claim, we exploit the explicit expression of En.
Then, we have for all n ∈ N

d

dt
en(t) = (−1)n

n∑
j=0

(
n

j

)
〈An−j ġ ·Ajg, µ〉+ (−1)n

n∑
j=0

(
n

j

)
〈An−jg ·Aj ġ, µ〉

= (−1)n
n∑
j=0

(
n

j

)
〈An−jAg ·Ajg, µ〉+ (−1)n

n∑
j=0

(
n

j

)
〈An−jg ·AjAg, µ〉 =

= En(Ag, g) + En(g,Ag) = −En+1(g(t)) = −en+1(t).
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Since En+1 is positive en decays. Moreover, the above formula provides that d2

dt2
en(t) = en+2(t) ≥ 0,

which shows that en is convex. This proves the first claim.

From (2.7) we have for all n ∈ N that

en(0)− en(t) =

∫ t

0

en+1(t′) dt′

Since the left-hand side is monotone and bounded, the limit limt→∞ en(t) =: en(∞) exists and we
have

en(0)− en(∞) =

∫ ∞
0

en+1(t′) dt′ (2.8)

This shows the integrability of t 7→ en+1(t) on [0,∞). Since en+1(t) is monotone and positive it has
to tend to 0. This proves the second part.

In the next section, we show that an explicit quantitative convergence rate can be derived for A being
a normal operator. For completeness, we recall that ek decays exponentially for k ∈ {1, . . . , n} under
the assumption of a Poincare-type inequality En+1(g) ≥ c En(g), for fixed n ≥ 1 with some constant
c > 0.

Corollary 2.13. Assume, we have for some fixed n ∈ N a Poincare-type inequality En+1(g) ≥
cEn(g) with some constant c > 0. Then, t 7→ ek(t) decays exponentially in time for all k ∈
{1, . . . , n} with exponential rate exp(−ct).

Proof. By assumption, we get that ėn(t) ≤ −c en(t), which implies en(t) ≤ en(0)e−ct, the exponen-
tial decay of en. Integrating ėn−1(t) = −en(t) in time, we conclude

en−1(T )− en−1(t) =

∫ T

t

−en(s)ds ≥ −
∫ T

t

en(0)e−csds =
en(0)

c

(
e−cT − e−ct

)
.

Taking the limit T →∞ and using that en−1(T =∞) = 0 by Theorem 3.4, we conclude that

en−1(t) ≤ en(0)

c
e−ct .

Clearly this can be iterated to show that t 7→ ek(t) decays exponentially for all k ∈ {1, . . . , n}.

Remark 2.14. We remark that the presented theory is valid for arbitrary Markov generators. How-
ever, there are cases for which the discussed inequalities are trivially satisfied but do not contain any
information.

The first obvious case is when parts of the spectrum lie on the imaginary axis (without considering 0)
which is true for derivations. A Markov generator A is called derivation, if D(A) is a subalgebra of
C, 1 ∈ D(A), A1 = 0 and A(f · g) = f · Ag + g · Af, f, g ∈ D(A) holds. Then we have
Γ1(f, g) ≡ 0 what implies Γn(f, g) ≡ 0 for all n ≥ 1.

A second case is a degenerated generator A. A Markov generator A is called degenerate if there
exists a closed set B ⊂ Z and (Ag)(z) = 0 holds for all z ∈ B and g ∈ D(A). Obviously, any
measure µ ∈ P with µ(B) = 1 is a stationary measure for A∗. Although in this case Γn 6≡ 0 holds,
we obtain En(f, g) = 〈Γn(f, g), µ〉 = 0 for all n ≥ 1.
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3 Decay rate for energies in Hilbert space

So far the decay of the energies t 7→ en(t) = En(g(t)) for a general Markov generator A along
solution is not quantified. It is well-known that whenever the generator A has a spectral gap, i.e. the
largest non-trivial eigenvalue has strictly negative real part, then exponential decay of the solution and,
hence, also for energies should hold in theory. For a general Markov generator A the real-parts of its
eigenvalues may accumulate in zero, i.e. there is no spectral gap and no exponential decay. Moreover,
in practice it is rather difficult to compute the spectral gap for a given Markov generator.

As we will see it is possible to derive polynomial (n-dependent) decay for all energies t 7→ en(t)
for general A, which satisfy an operator-theoretic normality condition. Because normality (like self-
adjointness) are terms for operators in Hilbert spaces, we first lift A to the natural Hilbert space
L2(µ). Then in Section 3.3, we derive log-convexity for the sequence (En(g))n∈N which enables to
derive conclusion for t 7→ en(t).

3.1 Hilbert space embedding of A

The generator (A,D(A)) with semigroup T(t) with stationary measure µ ∈ P(Z) is defined on
C(Z). Certain important properties, however, are naturally to be studied in a Hilbert space.

As usual we define the real separable Hilbert space L2(µ) as the completion of C(Z) with the norm
(written ‖g‖µ) induced by the scalar product

(f, g)µ := 〈f · g, µ〉 =

∫
Z
f(z)g(z)p(dz) .

By definition C(Z) ⊂ L2(µ) is dense5. We implicitly use this fact in the following, writing for example
(f, g)µ = 〈f · g, µ〉, although this identity is valid only for f, g ∈ C(Z) ⊂ L2(µ).

Recall, that if µ is the invariant measure of the Markov operator M, i.e. M∗µ = µ, then M can be
boundedly extended to L2(µ). To see this, we observe for g ∈ L2(µ) that

‖Mg‖2
µ = (Mg,Mg)µ = 〈(Mg)2 , µ〉 ≤ 〈Mg2, µ〉 = 〈g2,M∗µ〉 = 〈g2, µ〉 = (g, g)µ,

where we have used Jensen’s inequality and that M∗µ = µ. Hence, M is bounded on L2(µ) with
constant 1. In the following we also denote the operator on the larger space L2(µ) by the same
symbol.

Similarly, a strongly-continuous semigroup of operators (T(t))t≥0 on C(Z) with invariant measure
µ ∈ P(Z) can be extended to the space L2(µ). Clearly, then the family (T(t))t≥0 is a semigroup of
bounded operators on L2(µ). Moreover, (T(t))t≥0 is also strongly-continuous in L2(µ), because we

5The choice of L2(µ) instead of any L2(p) with an arbitrary positive measure p, has good reasons. In order to transfer
the theory in C to L2, certain properties should be preserved as boundedness and strong-continuity of T(t). We note that
in general a bounded operator M on C(Z) is not bounded on L2(p). Take for exampleZ = [0, 1], Mg(z) := g(z0) and
p the Lebesgue measure on [0, 1]. The distinguished role of the stationary measure µ becomes clear when considering,
for example, symmetry of A, i.e. (Af, g)p = (f,Ag)p or, equivalently, 〈g ·Af, p〉 = 〈f ·Ag, p〉. Setting f = 1 we
conclude A∗p = 0, so p must then be a stationary measure of A.
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have

‖T(t)g − g‖2
µ =〈(T(t)g − g) · (T(t)g − g), µ〉

=〈(T(t)g)2, µ〉 − 〈g2, µ〉 − 2〈g · (T(t)g − g), µ〉
≤〈T(t)g2, µ〉 − 〈g2, µ〉 − 2〈g · (T(t)g − g), µ〉
=〈T(t)g2 − g2, µ〉 − 2〈g · (T(t)g − g), µ〉.

The right hand side tends to 0 for t → 0 due to the strong continuity of T(t) in C. The generator of
(T(t))t≥0 on L2(µ) is (with a slight abuse of notation) also denoted by (A,D(A)),D(A) ⊂ L2(µ).
It is closed and densely defined on L2(µ). There will be no confusion with the notation because in this
section we are only interested in the Hilbert space L2(µ)-version. The generator A coincides with the
original generator on C(Z) because the semigroups coincide there. Since T(t) is a contraction, the
spectrum of A is located on the left-hand side of the complex plane.

3.2 Normality of A and the connection to En

To quantify the decay rate of the energies en, we assume that A is a normal operator. For this, we
first define its L2(µ)-adjoint (A?,D(A?)) as usual6 (we refer e.g. to [Sch12] for unbounded operators
on Hilbert spaces). The operator A? is well defined since A is densely defined, and moreover, it is
closed. In the following we make the following assumption.

Assumption. The operator (A,D(A)) is a normal operator on L2(µ), meaning that D(A) =
D(A?) and ‖Ag‖µ = ‖A?g‖µ for all g ∈ D(A) = D(A?).

Since A is closed, we have A?A = AA?. We note that normality is a substantially more general
concept than self-adjointness, which would mean that D(A) = D(A?) and A = A?. In Section 3.5,
we discuss what normality of A means for the original operator on C(Z). In particular we provide an
operator-theoretic version for normality with respect to C(Z). Moreover, we show with an example that
without the assumption log-convexity may fail, which is our main ingredient to derive polynomial decay
of the energy.

For the normal operator A, we define the operator

C := − (A + A?) , D(C) = D(A) = D(A?) . (3.1)

In particular, normality of A implies thatD(C) = D(A) and that C is densely defined. Moreover, we
see that for all f, g ∈ D(C) = D(A), we have

(f,Cg)µ = −(f, (A + A?) g)µ = −(f,Ag)µ − (Af, g)µ,

which shows that C is symmetric and, hence, also closable. In general C is, as a sum of a normal
operator with its adjoint, not necessarily closed7. However classical spectral theory for normal opera-
tors provides that the closure C = −(A + A?) is self-adjoint, see e.g. [Sch12]. In fact the complex
spectral family for a (in general unbounded) normal operator can be split into two real spectral families,

6Note that we use a star (?) to distinguish the Hilbert-space adjoint A? with the Banach space dual A∗, where the latter
is defined on C∗(Z).

7As an example consider A = d
dx on L2(R). Then A is normal on D(A) = H1(R) because A? = − d

dx = −A.
But A + A? = 0, which is not closed as defined on H1(R). See e.g. [ArT20] for recent results on the variety of domain
intersection for an operator with its adjoint
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which provides a decomposition into a real and imaginary part of the normal operator that are essen-
tially self-adjoint. Here, we are not interested in spectral properties of A, and, in particular, we do not
make any assumptions on the spectrum of A, we only use the fact that C is essentially self-adjoint.

Moreover, C as well as its closure C is positive in the form sense, because

(g,Cg)µ = −(g,Ag)µ − (g,Ag)µ = −2〈g ·Ag, µ〉 = E1(g, g) ≥ 0 ,

holds for all g ∈ D(C). Summarizing, C is a positive essentially self-adjoint operator. In particular,
there is a unique positive self-adjoint square-root B of C (see e.g. [Kat95]), which will be used later.

As it turns out powers of the operator C are directly related to the energies En(f, g). Since A is
normal, we immediately obtain that the operators C and A commute on D(A2). Hence, also higher
powers of C commute with A. This is used to express En in terms of powers of C. We remark that
an analogous statement is well known and commonly used for symmetric operators (see, e.g., (1.2) in
the Introduction)

Proposition 3.1. Let (A,D(A)) be normal and C be defined by (3.1). Then for n ≥ 1 we have

En(f, g) = (f,Cng)µ ,

whenever the right-hand side is bounded (i.e. for all f, g ∈ D(An)).

Proof. We prove that the sequence,
{

(f,Cng)µ

}
n∈N

satisfies the same recursion formula as En(f, g).

For n = 1, we have already seen that (f,Cg)µ = − (f,Ag)µ − (Af, g)µ = E1(f, g).

For n ≥ 2, we observe that for f, g ∈ D(An+1):(
f,Cn+1g

)
µ

= (f,CCng)µ = − (f,ACng)µ − (Af,Cng)µ = − (f,CnAg)µ − (Af,Cng)µ

= −En(f,Ag)− En(Af, g) = En+1(f, g) ,

where we have used that A and Cn commute on D(An+1).

Remark 3.2. We remark that the above formula makes also sense to define fractional powers of the
energies Eα via C

α
for α > 0 by interpolation. This will be investigated in subsequent work.

3.3 Log-convexity in n and polynomial decay

With the explicit and closed form of the energies En(f, g) = (f,Cng)µ we are able to show that
t 7→ en(t) decays with polynomial rate. To see this we show that the sequence (En(g))n∈N is log-
convex for any g ∈ D(A∞).

Proposition 3.3. Let (A,D(A)) be a normal operator and let g ∈ D(A∞). Then:

1 The sequence (En(g))n∈N is log-convex, i.e. for all n ∈ N we have En+1(g)En−1(g) ≥
En(g)2.

2 If E0(g) > 0, then we have
(

En+1(g)
E0(g)

) 1
n+1 ≥

(
En(g)
E0(g)

) 1
n

.
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Proof. Since A is normal, the operator (C,D(C)) defined by (3.1) is positive and essentially self-
adjoint. Let B be the positive and self-adjoint square-root of C on L2(µ), i.e. we have B2g = Cg for
all g ∈ D(C). Then, for α, β ∈ N and g ∈ D(B2 max{α,β}) we have that

0 ≤
∫
Z

∫
Z

[(
Bαg

)
(z)
(
Bβg

)
(z′)−

(
Bαg

)
(z′)
(
Bβg

)
(z)
]2

µ(dz)µ(dz′)

=

[∫ (
Bαg

)2
(z)µ(dz) ·

∫ (
Bβg

)2
(z′)µ(dz′) +

∫ (
Bαg

)2
(z′)µ(dz′) ·

∫ (
Bβg

)2
(z)µ(dz)

− 2

∫ (
Bαg

)
(z)
(
Bβg

)
(z)µ(dz) ·

∫ (
Bαg

)
(z′)
(
Bβg

)
(z′)µ(dz′)

]
= (Bαg,Bαg)µ(Bβg,Bβg)µ − (Bαg,Bβg)2

µ = (g,B2αg)µ(g,B2βg)µ − (g,Bα+βg)2
µ .

Setting, α = n+ 1 and β = n− 1 and using B2g = Cg = Cg for g ∈ D(Cn+1), we obtain

0 ≤ (g,B2(n+1)g)µ(g,B2(n−1)g)µ − (g,B2ng)2
µ

= (g,Cn+1g)µ(g,Cn−1g)µ − (g,Cng)2
µ = En+1(g)En−1(g)− En(g)2 ,

which proves the first claim.

For the second claim, we use the fact that for a given non-negative log-convex sequence (an)n∈N with

a0 > 0, we have
(
an+1

a0

) 1
n+1 ≥

(
an
a0

) 1
n

for all n ≥ 1. A proof8 for this can be found for example in

[BeB61], which is given here for completeness.

Assuming that (an)n∈N is a non-negative log-convex sequence with a0 > 0, we have

a2
1 ≤ a0a2, a2

2 ≤ a1a3, a2
3 ≤ a2a4, ..., a2

n ≤ an−1an+1 .

If we take the j-th inequalities to the j-th power and multiply all inequalities, we get

a2
1a

4
2a

6
3 · · · a2n−2

n−1 a
2n
n ≤ (a0a2)1(a1a3)2(a2a4)3 · · · (an−2an)n−1(an−1an+1)n.

This can be simplified to a2n
n ≤ a0a

n−1
n ann+1, which implies (an/a0)

1
n ≤ (an+1/a0)

1
n+1 .

With the help of the log-convexity of the sequence (En(g))n∈N, we can derive asymptotic polynomial
decay for t 7→ en(t) as an upper bound.

Theorem 3.4. Let g be a solution of ġ = Ag with g(0) = g0 ∈ D(A∞) such that e0(0) > 0.
Moreover, let the generator A be normal. If en(0) > 0, then we have

en(t) ≤
(
en(0)−1/n +

t

n
e0(0)−1/n

)−n
.

In particular, t 7→ en(t) decays to zero with polynomial rate O(t−n).

Proof. Using that g = g(t) is solution, we have that

d

dt
en(g) = ėn(t) = −en+1(t) .

8The historic proof is from 1729 and goes back to C. Maclaurin.
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By Proposition 3.3 we have En+1(g) ≥ E0(g)−1/nEn(g)
n+1
n for all n ≥ 1. Using e0(0) ≥ e0(t), we

obtain that
ėn(t) ≤ −e0(t)−1/nen(t)

n+1
n ≤ −e0(0)−1/nen(t)

n+1
n . (3.2)

From this differential inequality we conclude that en(t) satisfies the desired estimate. Indeed, we may
assume that en(t) > 0 for all t > 0, otherwise the claim is trivial. Introducing

α := e0(0)−1/n, X(e) :=
n

α
e−1/n, x(t) := X(en(t))−X(en(0))− t,

we get x(0) = 0 and

ẋ(t) = X ′(en(t))ėn(t)− 1 = − 1

α
en(t)−1−1/nėn(t)− 1 ≥ 0,

by (3.2). Hence, we have x(t) ≥ 0 for t ≥ 0 which means X(en(t)) ≥ X(en(0)) + t. Inserting the
definition of X , we obtain

n

α
en(t)−1/n ≥ n

α
en(0)−1/n + t ⇒ en(t) ≤

(
en(0)−1/n + e0(0)−1/n t

n

)−n
,

which we wanted to show.

Remark 3.5. Crucial for Theorem 3.4 was the log-convexity from Proposition 3.3 of the form En+1(g)
E0(g)

≥(
En(g)
E0(g)

)n+1
n

. Heuristically, the exponent on the right-hand side converges to 1 as n → ∞, meaning

that the above estimate becomes more and more a linear inequality with increasing n ∈ N. This
means that at least in theory it becomes easier to prove a linear inequality for larger n ∈ N, and to
proceed as in Corollary 2.13 to obtain exponential decay.

Remark 3.6. We remark, that for a general Markov generator A no exponential decay is to be ex-
pected, because, in principle, the real parts of the spectrum of A may have a clustering point in 0, or,
in other words, no spectral gap is present.

Although it is not easy to find examples for this and to make the above polynomial estimates explicit,
we provide a well-known example, namely diffusion on the real line. However, we note that the example
does not fit exactly into the presented theory since it considers a non-compact domain. Considering
the diffusion equation ut = D

2
uxx on R, the fundamental solution is given by the Gaussian kernel

u = 1√
2πDt

e−
x2

2Dt , where the stationary measure is the Lebesgue measure µ = dx. It is well-known
that whole negative real axis belongs to the continuous spectrum. It is easy to calculate that

e0(t) = 1, e1(t) = −2(u,Au)µ =
1

4
√
πDt3

,

e2(t) = 4(u,A2u))µ =
3

8
√
πDt5

, e3(t) = −8(u,A3u))µ =
3 · 5

16
√
πDt7

,

e4(t) = 16(u,A4u))µ =
3 · 5 · 7

32
√
πDt9

, e5(t) = −32(u,A5u))µ =
3 · 5 · 7 · 9
64
√
πDt11

.

3.4 Log-convexity in time

The log-convexity of the sequence (En(g))n ∈ N provides also log-convexity of the trajectory of
energies t 7→ en(t), which is a stronger statement than the convexity of t 7→ en(t) from Theorem
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2.12. Moreover, log-convexity provides another interesting feature, namely that t 7→
(
en(t)/en(0)

)1/t

is increasing in time. This can be understood an a complementary information to the asymptotic decay
of t 7→

(
en(t)/en(0)

)
as in Theorem 3.4.

Theorem 3.7. Let g be a solution of ġ = Ag with g(0) = g0 ∈ D(A∞) such that for fixed n ∈ N
we have en(t) > 0 for all t > 0. Moreover, let A be normal. Then we have the following:

1 The energy trajectory t 7→ en(t) is log-convex in time, i.e., d2

dt2
log en(t) ≥ 0.

2 The trajectory t 7→
(

en(t)
en0

)1/t

is increasing in time, and, moreover, it converges.

Proof. By log-convexity with respect to n we have

ën(t) = −ėn+1(t) = en+2(t) ≥ e−1
n (t)e2

n+1(t) = e−1
n (t)ė2

n(t),

where we have used that en(t) is strictly positive for all t > 0. Hence, we conclude

d2

dt2
log en(t) =

d

dt

ėn(t)

en(t)
=

en(t)ën(t)− ė2
n(t)

e2
n(t)

≥ 0.

This proves the first claim.

For the second claim, we define the function fn(t) = en(t)
en(0)

. Then, fn is also log-convex in time,

positive, and we have fn(0) = 1. Using the following identity

d

dt

(
1

t
log fn(t)

)
=

1

t2

∫ t

0

s
d2

ds2

(
log fn(s)

)
ds

which can be easily checked to hold for all t > 0 and any positiveC1-function fn satisfying fn(0) = 1,
we have that

0 ≤ d

dt

(
1

t
log fn(t)

)
=

d

dt

(
log fn(t)1/t

)
.

Hence, t 7→ log fn(t)1/t is increasing which implies that also t 7→ fn(t)1/t =
(
en(t)
en(0)

)1/t
is increasing.

To see that fn converges, we use the polynomial bound from Theorem 3.4. We have

fn(t) =
en(t)

en(0)
≤

(
1 +

(
e0(0)

en(0)

)−1/n
t

n

)−n

⇒ fn(t)1/t =

(
en(t)

en(0)

)1/t

≤

(
1 +

(
e0(0)

en(0)

)−1/n
t

n

)−n/t
≤ 1.

In the last estimate we used that (1 +αs)−1/s ≤ 1 for all s > 0 and α > 0. This completes the proof
of the second claim.

Since en(0)1/t converges to 1, we obviously obtain that en(t)1/t converges as t → ∞. We finally
remark that the above formulas show clearly the connection of the limit limt→∞ fn(t)1/t =: e−λ,
λ ∈ [0,∞[ to the spectral gap of A.
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3.5 Discussion of normality

In this section we discuss the assumption that the L2(µ)-version of A is normal. In particular, we are
interested how normality transfers to operators on the space C(Z). Moreover, we will see that if A is
not normal in L2(µ) then the sequence (En(g))n∈N is not log-convex in general.

From operator-theoretic perspective, normality for an unbounded operator is the canonical property of
an operator in Hilbert space. Roughly speaking, a normal operator is just as diagonalizable as a self-
adjoint operator, but may have complex spectrum. Normal operators behave to self-adjoint ones like
complex numbers to real ones. One can show that for a generic Markov operator there exists a Hilbert
space in which its extension is normal (see [StS22] where for general Markov operators appropriate
Hilbert spaces are constructed). The Hilbert space is not necessarily L2(µ) suggesting that lack of
normality of an operator indicates an incorrectly chosen Hilbert space (compare also with the footnote
on p. 14).

To understand what L2(µ)-normality means on C(Z), we make the technical assumption that all
involved operators are bounded (i.e. neglecting non-trivial domain issues), although much reasoning
generalizes to unbounded operators. We define the multiplication operator Qµ given by

Qµ : C(Z)→ C∗(Z), ∀f, g ∈ C(Z) : 〈f,Qµg〉 = 〈f · g, µ〉 .

Then Qµ is symmetric and positive. With this we may express the L2(µ)-adjoint A? of A in term of the
Banach-space dual A∗: The L2(µ)-adjoint is given by (f,A?g)µ = (Af, g)µ, which is, by definition,
equivalent to

〈f ·A?g, µ〉 = 〈Af · g, µ〉 ⇔ 〈f,QµA
?g〉 = 〈Af,Qµg〉 = 〈f,A∗Qµg〉.

Since f, g are arbitrary, we conclude that the L2(µ)-adjoint A? has to satisfy QµA
? = A∗Qµ. Assum-

ing that there is a Markov generator X solving the operator equation QµX = A∗Qµ as an equation
for operators C(Z) → C∗(Z), we observe that A? is the L2(µ)-extension of X. If, moreover, µ is
positive (i.e. µ(U) > 0 for any open set U ⊂ Z), then on the range of A∗Qµ, Qµ is one-to-one9 and
we have X = Q−1

µ A∗Qµ. For details, we refer to [Ste22].

Regarding symmetry, we observe that A is L2(µ)-self-adjoint if and only if QµA = A∗Qµ, which
for stochastic processes is usually called detailed balance, or that A∗ generates a reversible pro-
cess. The normality condition can be expressed by XA = AX, or equivalently, by AQ−1

µ A∗Qµ =
Q−1
µ A∗QµA. We discuss these two conditions with a finite dimensional example.

Let us consider on Z = {1, 2, 3} a Markov generator given by

A =

−a a 0
0 −b b
c 0 −c

 ,

which describes the exchange of mass along a loop with rates a, b, c > 0. The stationary measure
is proportional to µ =

(
1
a
, 1
b
, 1
c

)
, i.e. A∗µ = 0. The multiplication operator Qµ is a diagonal operator

given by diag(µ). An easy calculation shows that the L2(µ)-adjoint A? is then given by

A? =

−a 0 a
b −b 0
0 c −c

 ,

9The function Q−1
µ p can be understood as a Radon-Nikodym derivative of p ∈ C∗(Z) with respect to µ.
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describing the exchange of mass along the reverse loop. We observe that A 6= A?, i.e. A never
satisfies detailed balance.

Moreover, we can easily verify that A and A? commute (i.e. A is normal) if and only if a = b = c. In
this situation, Theorem 3.4 is applicable and provides the polynomial decay. Of course, along solutions
etA the energies en will decay also exponentially fast with rate given by the real part of the first non-
trivial eigenvalue of A, which is −3

2
a.

Finally, we observe that log-convexity for the sequence (En(g))n∈N does not hold if A and A? do not
commute. To see this, we set a = 4, b = c = 1, compute E0,E1,E2 and evaluate E2E0 − E2

1 for
gα = (1, 2α, 4α) which is

E2(gα)E0(gα)− E2
1(gα) =

8

3
(1− 3α)α.

We see that this is either positive or negative depending on the choice of the parameter α. Thus, we
do not have log-convexity. (Although we have exponential decay, of course.)
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