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Dynamical low–rank approximations of solutions to the
Hamilton–Jacobi–Bellman equation

Martin Eigel, Reinhold Schneider, David Sommer

Abstract

We present a novel method to approximate optimal feedback laws for nonlinar optimal control
basedon low-rank tensor train (TT) decompositions. The approach is based on the Dirac-Frenkel
variationalprinciple with the modification that the optimisation uses an empirical risk. Compared
to currentstate-of-the-art TT methods, our approach exhibits a greatly reduced computational
burden whileachieving comparable results. A rigorous description of the numerical scheme and
demonstrations ofits performance are provided.

1 Introduction

Feedback control is ubiquitous and indispensable in real dynamical systems. Since the controlled
system can in general not be expected to follow model predictions exactly, system trajectories will
eventually leave the forecasted path, meaning that any preplanned series of controls (albeit an optimal
one) is based on wrong assumptions and therefore not only suboptimal, but potentially dangerous. As
an illustration, one might think of an astronaut who calculated an optimal course to land on the moon
but then does not modify the forecasted actuation values of their rocket-drive when atmospheric effects
steer them off said course, which will leave them drifting to outer space. It is therefore vital to deploy
controls based on current state feedback, where current means as frequently as possible in practical
applications.

However, The problem of computing an optimal feedback control law for nonlinear optimal control
problems is notoriously difficult. This is because the synthesis of such a feedback law requires solving
the Hamilton-Jacobi-Bellman (HJB) equation, which is a nonlinear parabolic partial differential equation
(PDE) of generally high dimension d ≫ 1 [BC97]. Classical schemes to solve the HJB equation
such as Galerkin-schemes in linear ansatz spaces suffer from the curse of dimensionality [KK18],
i.e. an exponential complexity growth. In practice, this means that the computation of a solution is
often infeasibly slow if it can be discretized and stored at all. Another severe obstacle can be the low
regularity of viscosity solutions, cf [BD+97]. In this paper, our focus lies on the alleviation of the curse of
dimensionality in order to enable the numerical treatment of high-dimensional control problems. We
hence only consider problems where the lack of regularity is not present or not pronounced enough to
prevent a sufficiently accurate approximation.

The relevance of efficient numerical methods can be seen by the fact that true feedback control
methods - that is: methods solving the HJB equation - are rarely used in practice due to the necessary
computational effort. Control problems arising e.g. in mechanical engineering often require new planning
of controls to be computed within seconds. There hence is a tight upper limit on the time budget available
for generating new controls. Therefore, most engineers deploy variations of Model Predictive Control
(MPC) where open-loop controls are computed in such rapid succession that they effectively “close the
loop” [CA13]. This is a conservative approach since the feedback property of the resulting controller is
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obtained solely by means of the measurements at the discrete planning steps. In between two state
measurements, the controller is not in feedback form.

In this work, we present a novel method to tackle nonlinear optimal control problems that (1) yields a
true feedback controller and (2) has greatly reduced computational cost compared to current state-of-
the-art methods. Our method is based on policy iteration, linearizing the HJB equation (which is then
sometimes called the generalised Hamilton-Jacobi-Bellman or GHJB equation) and a modification of
the Dirac-Frenkel variational principle. This then allows the computation of approximate solutions on a
specified function manifold, for which we choose the set of multivariate polynomials with a fixed tensor
train (TT) rank.

Tree based tensor networks and tensor trains in particular have already been used for successful
approximations of the value function in various works, see e.g. [Fac+20; KKD19; OSS21a]. These recent
results are summarized in the PhD thesis of Leon Sallandt [Sal21], which is still being finalised as this
paper is written. There, the approach is based on a Lagrangian (or dynamic programming) perspective
by computing the value functions for several initial states and learning the global function from these
values by regression using a multi-polynomial TT model. With appropriate modifications, this approach
can already be combined with regression techniques performed e.g. by machine learning methods,
in particular artificial neural networks (NN). In the present paper, we follow a different approach,
exploiting the Riemannian structure of the TT manifold [HRS12a; Ste16] by an empirical version of the
Dirac-Frenkel principle.

The solution obtained by the abstract Dirac-Frenkel principle can be shown to be quasi-optimal in
some time interval [0, TDF] but detoriates from the best low-rank approximation after a certain time
[Lub+13]. We expect a similar behaviour in our case which may restrict the time interval in practice.
Combining both approaches - abstract and empirical - is an open research question, which we aim to
address in future work. Similarly, we defer the stochastic control case to a forthcoming paper, confining
ourselves to deterministic control in this paper. We conjecture that the present approach is even more
advantageous in the stochastic case.

The rest of the paper is organised as follows: In Section 2 we provide a short overview of the related
literature, specifically the current state-of-the-art of tensor based methods to solve the HJB equation.
Section 3 introduces the finite horizon optimal control problem in feedback form, which the rest of
this work revolves around. In Section 4 the tensor train format, the corresponding manifold and the
representation of the tangent space are introduced. These are needed to formulate the Dirac-Frenkel
variational principle, which is introduced in its abstract form in Section 5. In Section 6, we combine the
concepts of Sections 4 and 5 to develop our proposed DLRA method for approximately solving the HJB
equation. Numerical results that illustrate the practical performance are presented and discussed in
Section 7. Finally, we close in Section 8 with an outlook on future work.

2 Related work

The Bellman equation governing the value function of an optimal control (OC) problem was introduced
as early as 1957 by Richard Bellman [Bel57]. Since then, numerous sophisticated methods have
been introduced to approximate solutions, mostly based on the principle of dynamical programming,
see e.g. [Ber05] for a broad introduction to the subject. The alternative approach, which we follow
in this work, is to consider the infinitesimal version of the Bellman equation, namely the Hamilton-
Jacobi-Bellman equation [BC97], which is a nonlinear parabolic PDE. In both cases, many methods
rely on a fixed point iteration of the equation, which in the OC and Reinforcement Learning (RL)
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literature is called policy iteration [How60]. Alternatives are domain splitting algorithms [FLS94], semi-
Lagrangian methods [Fal87; FK14; TAK17], data-based methods using Neural Networks [Luo+14],
variational iterative methods [KDK13], actor-critic methods [ZH21], tree-based methods [AS19] and
tropical methods [AF18; AGL08].

For a fixed starting value, an optimal control can be obtained by open-loop approaches such as
Pontryagin’s maximum principle [BGP61; Pon87]. In this way, the value function can be evaluated
pointwise by simply adding up the cost of that optimal control. Controls of this type have been used to
find the value function e.g. in [AKK21; KW17; NGK19; OSS21a]. In this work, we use optimal open-loop
controls as benchmarks to which we compare the feedback controller computed by our method.

Since any solution method for the HJB equation has to deal with the curse of dimensionality, some form
of model order reduction has to take place in practical applications. Possible function approximations
can be obtained by using neural networks [DLM19; IRZ21; NR21] or sparse polynomials [AKK21]. In this
work we use the TT format introduced to the mathematical community by Oseledets [Ose11; OT09] for
multivariate polynomials. A striking recent example of the power of the low rank TT structure for function
approximation can be found in [RSN21], in which the authors use TTs with polynomial basis functions
to outperform state-of-the-art NNs on the solution of parabolic PDEs by orders of magnitude, while
requiring lower computational time. For further details on TTs and more general hierarchical tensor
networks, we refer the reader to the survey articles [BSU16; HS14] and the standard textbooks [Hac12;
Hac14]. For recent applications of TTs as value function approximators, see e.g. [KKD19; OSS21a].
Solution methods based on high-dimensional polynomials and tensor spaces have also been considered
in [DKK21; KK18]. As a conjecture for future work, block sparsity of the TTs appearing in optimal control
methods could be exploited to further reduce the sample complexity [TSG21].

In contrast to the aforementioned methods, our new approach is a dynamical low rank approximation
(DLRA) [KL07; KL10] of the value function. The main idea is to approximate solutions to matrix- or
tensor-valued ordinary differential equations (ODEs) by projecting the right-hand side onto the tangent
space of the manifold of matrices/tensors of fixed (TT-)rank at the current approximation. In this abstract
setting, the projection is usually decomposed into orthogonal parts of the tangent space after which a
splitting scheme is applied, resulting in so called projector-splitting schemes [CKL21; CL20; KLW16;
LOV15; Lub+13]. The obtained approximation is quasi-optimal on a finite time domain, a property known
as the Dirac-Frenkel variational principle, or Dirac-Frenkel/McLachlan variational principle [McL64;
Mur35]. DLR approximations to parabolic PDEs have been studied in [Bac+21; Con20], but – to the
best of our knowledge – this work is the first application of DLR methods to a finite horizon optimal
control problem and in particular to the nonlinear HJB equation. In order to derive an abstract DLR
problem on the TT manifold, we use a Variational Monte Carlo (VMC) approach [Bay+21; EST20]. In
our setting it can be understood as an empirical least squares tensor regression based on random
samples.

3 The optimal control problem

Throughout this work, we consider a deterministic dynamical system

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), t ∈ [t0, T ], (1)

x(t0) = x0, (2)

with initial time t0 ∈ [0, T ], initial condition x0 ∈ Ω ⊂ Rd, control u ∈ L2(0, T ;Rm), free dynamics
f : [0, T ]×Ω → Ω and control interface g : [0, T ]×Ω → Rd×m. To ensure existence and uniqueness
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of solutions (for admissible controls u), we assume f and g to be smooth (possibly nonlinear) functions.
A total cost is associated with the triple (t0, x0, u) ∈ [0, T ]× Ω× L2(0, T ;Rm) in terms of the cost
functional

J (t0, x0, u) =

∫ T

t0

c(t, x(t)) + u(t)⊺R(t)u(t)dt+ cT (x(T )), (3)

where the running cost c : [0, T ]× Ω → R+ and the terminal cost cT : Ω → R+ are non-negative,
coercive and smooth functionals. Moreover, R : [0, T ] → Rm×m is continuous, R(t) is positive
definite for all t, and the trajectory x(·) is subject to (1)+(2) with the given control u. The function
mapping time-state pairs to optimal future costs is called the value function. It is canonically defined as

V ∗ : [0, T ]× Ω → R, (t0, x0) 7→ inf
u∈L2(0,T ;Rm)

J (t0, x0, u).

If the dynamics and cost terms satisfy sufficient regularity conditions, the value function is given as the
viscosity solution of the well known Hamilton-Jacobi-Bellman equation.

Theorem 1 (see e.g. [BC97; BD+97]). Let ℓ(t, x, u) = c(t, x) + u⊺R(t)u and assume there are
σ, δ ≥ 1 with σ < δ, ℓ0 > 0. Moreover, for every compact K ⊂ Rd there exists some fK > 0 such
that

∥f(x, u)∥ ≤ fK(1 + ∥x∥σ), for all (x, u) ∈ K × Rm,

|ℓ(x, u)| ≥ ℓ0∥a∥δ for all (x, u) ∈ Rd × Rm.

Then, the value function V ∗ is the unique viscosity solution of the HJB equation

∂

∂t
V ∗(t, x) + min

u∈Rm
[∇xV

∗(t, x)⊺(f(t, x) + g(t, x)u) + c(t, x) + u⊺R(t)u] = 0 (4)

V ∗(T, ·) = cT (·). (5)

Note that the HJB equation is an infinitesimal version of the Bellman equation, which we state for the
sake of completeness.

Theorem 2 ([BC97; BD+97]). For all x0 ∈ Ω and 0 ≤ t0 ≤ t1 ≤ T , we have

V ∗(t0, x0) = inf
u∈L2(t0,t1;Rm)

[∫ t1

t0

ℓ(t, x(t), u(t))dt+ V ∗(t1, x(t1))

]
, (6)

where x(t) satisfies (1) with initial condition x(t0) = x0 and control u.

Now consider feedback controls of the form u(t) = α(t, x(t)), where α : [0, T ] × Ω → Rm

is continuous on [0, T ] and Lipschitz in Ω. We call such functions α admissible feedback laws (or
equivalently admissible policies) and we denote the set of admissible policies by A. Next, we define
the policy evaluation function Jα via the associated cost

J α(t0, x0) =

∫ T

t0

c(t, x(t)) + α(t, x(t))⊺R(t)α(t, x(t))dt+ cT (x(T )). (7)

An optimal policy α∗ is a policy which achieves minimal costs for any starting values, i.e.

J α∗
(t0, x0) = min

α∈A
J α(t0, x0), for all (t0, x0) ∈ [0, T ]× Ω.

The goal of optimal (feedback) control is to approximate such an optimal policy. If the value function
is known and partially differentiable, an optimal policy can be obtained immediately, as the following
theorem states.
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Theorem 3 ([BC97]). An optimal policy is given by

α∗(t, x) = −1

2
R(t)−1g(t, x)⊺∇xV

∗(t, x), (8)

if the gradient of V ∗ exists.

Hence, the problem of synthesizing an optimal policy is the problem of finding the value function, which
involves solving the HJB equation (4) or the Bellman equation (6).

In the following, we always assume that the conditions of Theorem 1 are satisfied so that that an optimal
policy is given by the value function via (8). Hence, we can identify the value function with the policy
evaluation function of that optimal policy denoted by V ∗ = J α∗

. Our goal is to approximate the value
function successively on small subintervals, moving backwards in time from t = T to t = 0. This
approach is based on Bellman’s principle. However, in contrast to comparable recent work [OSS21a],
we use the HJB equation (4) on each subinterval instead of the Bellman equation. In particular, we
define suitable approximate solutions to the HJB equation by means of the Dirac-Frenkel variational
principle. While theoretical simplicity is lost to some extend, computational simplicity is gained in return.
This is mainly because DLR approximations of (4) can be computed very efficiently since samples do
not have to be propagated through the dynamics to evaluate the integral in (6).

Assume now that 0 = t0 < t1 < . . . tm = T is an equidistant discretisation and consider a partitioning
{[ti, ti+1]}mi=0 of the time interval [0, T ]. An immediate consequence of Bellman’s principle is that
an optimal policy for the whole time domain [0, T ] must also be optimal on any subinterval [ti, ti+1].
Conversely, a policy that is optimal on all subintervals is also optimal on the whole interval. This
enables to learn the value function by moving backwards in time and (approximately) computing the
restrictions V ∗(t, x)

∣∣
t∈[ti,ti+1]

for i = m− 1, . . . , 0. In the following, we denote by V ∗
i = V ∗

∣∣
[ti,ti+1]

for i = 0, . . . ,m − 1 the restrictions of the value function to a particular subinterval and set V ∗
m =

cT . Approximations of V ∗
i are denoted by V̂i and the approximation V̂ of V ∗ on the whole time

domain is defined by V̂ = V̂i on [ti, ti+1]. Algorithm 1 summarizes the idea of successive backward
approximation, which we deploy to approximate the value function.

Algorithm 1: Bellman-based backwards scheme to approximate the value function

Data: Time discretisation points 0 = t0 < . . . < tm = T , approximation V̂m of the terminal cost.
Result: Approximation V̂ of the value function.
for i = m− 1,m− 2, . . . , 0 do

Compute approximate solution V̂i of the HJB-eq. (4) on [ti, ti+1] with terminal condition V̂i+1.
Set V̂ = V̂i on [ti, ti+1].

end

TT approximations of the value function by means of such a backwards scheme were already presented
e.g. in [OSS21a]. In that work however, the integral formulation (6) is used exclusively, sampling
trajectories x(t) for given controls and adding up the costs. In contrast, the DLR approximation method
used here allows to directly work with the HJB equation (4).

4 Tensor trains as function approximators

For practical computations, the approximations V̂i from Algorithm 1 have to be confined to a finite-
dimensional functions space. To this end, consider a set of one-dimensional basis functions ϕ1, . . . , ϕn :
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R → R and functions v : Rd → R of the form

v(x) = Aϕ(x) =
n∑

i1,...,id=1

Ai1,...,idϕi1(x1) · . . . · ϕid(xd), (9)

with coefficient tensor A ∈ Rn×n×...×n of order d. Usually, the basis functions ϕi are (orthonormal)
polynomials. Consequently, v is a multivariate polynomial with a storage complexity of O(nd) for
its coefficient tensor. The TT format provides a possiblity to alleviate this exponential complexity by
assuming some low-rank structure. A TT representation of A is any decomposition of the form

Ai1,...,id = U1
i1
· . . . · Ud

id
, (10)

where

U1 ∈ Rn×r1 , Uµ ∈ Rrµ−1×n×rµ for i = 2, . . . , d− 1, Ud ∈ Rrd−1×n

are called the components of the representation and iµ denotes the middle index of the component,
i.e. Uµ

iµ
∈ Rrµ−1×rµ . The rank of the specific representation is given by the tuple (r1, . . . , rd−1).

The TT-rank r = (r1, . . . , rd−1) of A is defined as the (entry-wise) minimal rank tuple such that a
TT representation (10) with the corresponding ranks exists. Such a minimal TT representation exists
for any tensor. In fact, the minimal rank entry rµ is equal to the matrix rank of the µ-th unfolding
of A (for details we refer to [HRS12b]). The TT representation exhibits a storage complexity of
O(ndmax(r1, . . . , rd−1)

2), scaling only linearly in the dimension d, and hence avoiding the curse of
dimensionality, provided that the ranks stay bounded. It is important to note that even for fixed rank r, a
decomposition of the form (10) is not unique. For any µ = 1, . . . , d− 1 we can set Uµ → UµS and
Uµ+1 → S−1Uµ+1 for invertible S ∈ Rrµ×rµ without changing the tensor. A unique representation is
then given by requiring left- and right-orthogonality of the components in the sense of the following
definition.

Definition 1. For a component Uµ ∈ Rrµ−1×n×rµ , define the left and right unfolding

L(Uµ) ∈ Rrµ−1n×rµ , R(Uµ) ∈ Rrµ−1×rµn,

by suitable matrix reshaping (for details regarding the order, see e.g. [Ste16]). A component Uµ is
called left- or right-orthogonal if

L(Uµ)⊺L(Uµ) = Id ∈ Rrµ×rµ , or R(Uµ)R(Uµ)⊺ = Id ∈ Rrµ−1×rµ−1 ,

respectively. A TT representation Ai1,...,id = U1
i1
· . . . · Ud

id
of a tensor A is called µ-orthogonal if

U1, . . . , Uµ−1 are left orthogonal and Uµ+1, . . . , Ud are right orthogonal. In that case, Uµ is called
the core of the representation.

Left and right orthogonality of all but one component imposes
∑d−1

µ=1 r
2
µ additional conditions on the

representation. Hence, the µ-orthogonal TT representation of A is unique for any µ.

For a given TT rank r, we define the set

Mr = {A ∈ Rn×...×n : A has TT rank r}.

It is noteworthy that Mr is a smooth manifold in Rn×...×n [HRS12b]. With a chosen suitable basis
{ϕ1, . . . , ϕn}, we define a set of function approximations

Fr =
{
v : Rd → R : v admits a representation (9) with A ∈ Mr

}
.
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Note that by identification of a function with its coefficient tensor, Fr forms a smooth manifold in the
nd-dimensional linear space F =

⋃
r Fr in the same way that Mr forms a smooth manifold in Rn×...×n.

In order to do perform an optimisation on Fr, or Mr, respectively, we require a representation of the
tangent space TU(Mr) of Mr in U . Throughout this work, we use the following representation.

Theorem 4 ([HRS12b] or [Ste16]). Let U ∈ Mr be d-orthogonal. The tangent space TU(Mr) of Mr

in the point U is given by τ(X), where

X = U ℓ
1 × . . .× U ℓ

d−1 × Rrd−1×n×rd ,

U ℓ
µ = {W µ ∈ Rrµ−1×n×rµ : L(Uµ)⊺L(W µ) = 0 ∈ Rrµ×rµ},

and

τ : X −→ TU(Mr), τ(W 1, . . . ,W d) = δU

δUi1,...,id =
d∑

µ=1

U1
i1
· . . . · Uµ−1

iµ−1
W µ

iµ
Uµ+1
iµ+1

· . . . · Ud
id
. (11)

The tangent space has the same dimension as the underlying manifold. The previously mentioned
ambiguity in the representation is now eliminated due to the gauging conditions L(Uµ)⊺L(W µ) = 0
in U ℓ

µ.

Corollary 1. Each of the spaces U ℓ
µ has dimension rµ−1nrµ − r2µ and hence the tangent space has

dimension

nX := dim(X) =
d∑

µ=1

rµ−1nrµ −
d−1∑
µ=1

r2µ.

Using the representation (11) for elements δU of the tangent space of U , a simple form for the sum
U + δU can be obtained.

Lemma 1 (see [Ste16]). Let U ∈ Mr be d-orthogonal and denote its component tensors by
U1, . . . , Ud. Let δU ∈ TU(Mr) be given by (δU1, . . . , δUd) ∈ X . Then,

U(i1, . . . , id) + δU(i1, . . . , id) =
[
δU1(i1) U1(i1)

] [ U2(i2) 0
δU2(i2) U2(i2)

]
. . .

. . .

[
Ud−1(id−1) 0
δUd−1(id−1) Ud−1(id−1)

] [
Ud(id)

Ud(id) + δUd(id)

]
.

This can easily be verified by multiplying out the matrix products. In particular, the sum U + δU has at
most TT-rank 2r.

5 The Dirac-Frenkel variational principle

The Dirac-Frenkel variational principle [Mur35] provides a principled way to approximate tensor valued
ODEs of the form

Ȧ(t) = F (t, A(t)), (12)

A(0) = A0, (13)
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where A(t) ∈ Rn×...×n, on the manifold Mr. More precisely, given an approximation Y0 ∈ Mr of the
initial condition A0, an approximation Y (t) ∈ Mr of A(t) is defined as the solution of the TT-valued
ODE

Ẏ (t) = argmin
ϑ∈TMr (Y (t))

∥ϑ− F (t, Y (t))∥, (14)

Y (0) = Y0. (15)

The minimum in (14) is attained by the orthogonal projection of the right-hand side onto the tangent
space, leading to

Ẏ (t) = PTMr (Y (t))F (t, Y (t)). (16)

In this abstract setting, error bounds can be derived, which we quote for the sake of completeness.

Theorem 5. [Lub+13] Suppose that Ȧ(t) ≤ µ and that a continuously differentiable best approximation
X(t) ∈ Mr to A(t) exists for t ∈ [0, T ]. Let δ > 0 be such that the smallest nonzero singular value
of every matrix unfolding of X(t) is greater or equal to ρ, and assume that the best-approximation error
is bounded by ∥X(t)− A(t)∥ ≤ cρ for t ∈ [0, T ] with a constant c depending only on the dimension
d. Then, the approximation error of the dynamical low-rank approximation defined by (20) with initial
value Y (0) = X(0) is bounded by

∥Y (t)−X(t)∥ ≤ 2βeβt
∫ t

0

∥X(s)− A(s)∥ds,

with β = Cµρ− 1 for t ∈ [0, T ], as long as the right-hand side remains bounded by cρ. The constant
C is only dependent on d and is given in [Lub+13].

In recent years there have been numerous works on the numerical treatment of ODEs of this type,
see [KLW16; KL07; LO13] for an introduction in the matrix case and [CKL21; CL20; LOV15] for more
recent tensor-based research directions. Generally, these methods rely on a splitting of the projector
PMr(Y (t)) into orthogonal parts of the tangent space, so-called projector splitting algorithms. The norm
∥.∥ governing (14) and hence the projector is usually the Frobenius norm. This is in contrast to our work,
where ∥.∥ is an empirical norm1. Carrying over results from the treatment of the abstract Dirac-Frenkel
principle to the empirical case (specifically the projector splitting schemes) is an important direction of
future work, that we do not yet address in this paper.

6 Dynamical low-rank approximation of the HJB equation

Based on the preceding review of tools that we require, we now return to the HJB equation (4) on
[ti, ti+1] with terminal condition V̂i+1(ti+1, ·). The goal is to obtain an approximation V̂i of the value
function on the current interval. Inserting (8) into the HJB (4) leads to a coupled problem:

Find V such that

∂

∂t
V (t, x) +∇xV (t, x)⊺(f(t, x) + g(t, x)α(t, x)) + c(t, x) + α(t, x)⊺R(t)α(t, x) = 0, (17)

V (ti+1, ·) = V̂i+1(ti+1, ·),
(18)

1the details of which are provided in the next chapter
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where α satisfies

α(t, x) = −1

2
R(t)−1g(t, x)⊺∇xV (t, x). (19)

To compute V̂i, we use a fixed point iteration of the coupled problem, iteratively solving (17)+(18) for
fixed α and then updating α via (19). This procedure is known as policy iteration in the optimal control
literature. We depict a conceptual summary in algorithm 2. If the solutions to (17) are exact, it converges
under mild assumptions on dynamics and cost terms [SL79]. In order to track the convergence of the
scheme under approximations, we introduce on L2((ti, ti+1);L

2(Ω, ρ)) and L2((0, T );L2(Ω, ρ))
the norms

∥v∥2i =
∫ ti+1

ti

∥v(t, ·)∥2L2(Ω,ρ)dt, ∥v∥2 =
m−1∑
i=0

∥v∥2i ,

and stop the iteration once the ∥.∥i-difference of two consecutive approximations becomes smaller
than a specified threshold.

Algorithm 2: Policy iteration on subinterval

Data: Interval [ti, ti+1], terminal condition V̂i+1, admissible policy α, error tolerance δ.
Result: Approximation V̂i.
while norm change of V̂i > δ do

Compute approximate solution V̂i of (17)+(18) on [ti, ti+1].
Update α ∝ ∇xV̂i according to (19).

end

It remains to be shown how to compute the approximations V̂i. To ease notation, without loss of
generality we consider the interval [t0, t1] instead of [ti, ti+1] for the remainder of this chapter. We
construct V̂0 as a dynamical low-rank approximation of (17) in the tensor train format.

Let the terminal condition V̂1 ∈ Fr and consider for given α the following problem:

Find V such that

∂

∂t
V (t, ·) = argmin

ϑ∈TV (t,·)(Fr)

∥ϑ− F̃ (t, V (t, ·))∥2L2(Ω,ρ), (20)

V (t1, ·) = V̂1(t1, ·), (21)

where F̃ (t, V (t, ·))(·) = −∇xV (t, ·)⊺(f(t, ·) + g(t, ·)α(t, ·))− c(t, ·) + α(t, ·)⊺R(t)α(t·). Note
that this essentially means that the time derivative of V0 is approximated in the tangent space of the
current solution. By a simple time inversion t → t0 + (t1 − t), the terminal condition can be turned
into an initial condition. Crucially, any solution to (20) stays on the manifold Fr and can therefore be
identified with a time-dependent coefficient tensor A(t) ∈ Mr via V (t, x) = A(t)ϕ(x). Denoting the
coefficient tensor of V̂1 by Â1, we see that the abstract problem (20)+(21) is equivalent to the TT-valued
ODE

Ȧ(t) = argmin
B∈TA(t)(Mr)

∥Bϕ− F (t, A(t)ϕ)∥2L2(Ω,ρ), (22)

A(t0) = A1, (23)
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where F arises from time inversion of F̃ .

In general, the L2-integral on the right-hand side of (22) is difficult to compute. Nevertheless, we can
easily carry out a pointwise evaluation of the basis functions ϕ as well as the other terms in F (t, A(t)ϕ).
In practice, we hence replace the exact L2-norm with a Monte Carlo approximation

∥v∥2L2(Ω,ρ,M) =
1

M

M∑
k=1

|v(xk)|2, xk ∼ ρ,

for v ∈ L2(Ω, ρ). This turns the right-hand side of the ODE into an empirical risk minimisation. We
eventually arrive at

Ȧ(t) = argmin
B∈TA(t)(Mr)

1

M

M∑
k=1

|Bϕ(xk)− F (t, A(t)ϕ(xk))(xk)|2, t ∈ (t0, t1) (24)

A(t0) = Â1. (25)

Statistical bounds for the error of the empirical minimiser in (24) compared to the best L2-approximation
Φ∗(t) = argminΦ∈L2(Ω,ρ) ∥Φ− F (t, A(t)ϕ(·))(·)∥2L2(Ω,ρ) are given in [Eig+19].

A crucial observation is that the minimisation on the right-hand side is a linear problem since the
optimisation is over the linear tangent space. Implementation details on how the minimum in (24) for
a given t can be computed are given in Appendix A. Since the fit is linear, issues of local minima are
avoided which for instance occur in the alternating linear scheme (ALS) [HRS12b] and other nonlinear
optimisation methods. Alternating methods can still be applied here to divide the problem into smaller
sub-problems and reduce the computational burden, leading (in their simplest form) to an effective
Lie-Trotter type splitting of the right hand side. A more detailed examination of this topic is however
beyond the scope of this paper and might be addressed in future work.

The numerical realisation of (24) poses an additional hurdle. While the true solution A(t) always stays
on the manifold Mr, it is straightforward to see that any one step with a numerical integrator, e.g. a
Runge-Kutta method, leads to leaving it. This is due to the fact that by Lemma 1 any sum U + δU
where U ∈ Mr and δU ∈ TU(Mr) has rank 2r in general. We therefore need to retract back onto
the manifold after each step of the integrator by truncating the ranks appropriately. To make this precise,
let t0 = t(0) < t(1) < t(2) < . . . < t(L) = t1 be a micro-discretisation of the macro-interval [t0, t1]
with equidistant step size τ and define a numerical approximation Aℓ of A(t(ℓ)) by the explicit Euler
scheme

A0 = Â1,

Aℓ+1 = R(Aℓ + τ∆Aℓ), ℓ = 0 . . . , L− 1.

Here, ∆Aℓ is the solution to the minimisation problem on the right-hand side of (24) if Aℓ is substituted
for A(t), the addition Aℓ + τ∆Aℓ is performed like in Lemma 1, and R denotes the rank-truncation
of a TT with rank 2r back to a tensor of rank r. This truncation is performed by a TT-SVD with fixed
rank [OT09]. Once all Aℓ are obtained in this way, we define V̂0(t, x) by linear interpolation, i.e.

V̂0(t, x) = Aℓϕ(x) +
t− t(ℓ)

τ
(Aℓ+1 − Aℓ)ϕ(x) for t ∈ [t(ℓ), t(ℓ+1)],

or by simply always setting it to

V̂0(t, x) = Aℓϕ(x) for t ∈ [t(ℓ), t(ℓ+1)].
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Now, if V̂ old
0 is the approximation from the previous policy iteration step, one could compute the empirical

approximation to the ∥.∥0-norm

∥V̂0 − V̂ old
0 ∥20,L,M =

1

L− 1

L−1∑
ℓ=0

∥V̂0(t
(ℓ), ·)− V̂ old

0 (t(ℓ), ·)∥2L2(Ω,ρ,M)

=
1

(L− 1)M

L−1∑
ℓ=0

M∑
k=1

|V̂0(t
(ℓ), xk)− V̂ old

0 (t(ℓ), xk)|2

and stop the iteration once this norm difference becomes smaller than the threshold δ. However, since
we are first and foremost interested in obtaining a nearly optimal control α, we instead add the change
in the controls α ∝ ∇xV̂0 and αold ∝ ∇xV̂

old
0 and stop the iteration once

1

(L− 1)M

L−1∑
ℓ=0

M∑
k=1

|V̂0(t
(ℓ), xk)− V̂ old

0 (t(ℓ), xk)|2 + ∥α(t(ℓ), xk)− αold(t(ℓ), xk)∥2 < δ. (26)

The reason for this is that the L2-norm is agnostic to errors in the gradients, which may arise due to
overfitting. By requiring (26), we demand that not only V̂0 but also the relevant part of the gradient
∇xV̂0 converges. In that sense, the left-hand side of (26) can be seen as an empirical approximation of
an H1-norm of V̂0− V̂ old

0 , where the norms for the gradients are now weighted by R and g to represent
only the gradient parts relevant for the control.

7 Numerical tests

This chapter is concerned with numerical experiments that illustrate the performance of the proposed
DLR approximation2. We consider a problem of the form

ẋ = Ax+ nl(x) + gu,

where x ∈ Rd, A ∈ Rd×d, g ∈ Rd, u is scalar and nl is a smooth nonlinear function with nl(0) = 0.
In particular, the optimal control problem is derived from a modified one dimensional heat equation

∂

∂t
x(s, t) = σ

∂2

∂s2
x(s, t) + x(s, t)3 + g(s)u(t), for (s, t) ∈ [−1, 1]× (0, T ),

x(s, 0) = x̃0(s), for s ∈ [−1, 1],

∂

∂s
x(−1, t) =

∂

∂s
x(1, t) = 0 for t ∈ (0, T ),

with unstable reaction term x(s, t)3, diffusion σ > 0, scalar control u and initial state x̃0. Note that
due to the instability introduced by the reaction term, this problem is generally more difficult to control
than most other canonically treated examples like viscous Burgers’ type equations, Allen-Kahn or
degenerate Zeldovich equations [KK18; OSS21a] since the quadratic regulator usually provides a
strong and mostly stable controller for these types of problems. This however is not the case for the
nonlinear reaction problem defined above. We hence omit the mentioned alternative examples and just
note that our method can be applied with them as well, although the difference to the linear quadratic
regulator would turn out to be small.

2All computations are carried out on an Intel Xeon Gold 6154 CPU 3.00GHz, openSUSE Leap 15.2 distribution.
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Our goal is to find a control u such that the quadratic cost functional

J̃(0, x0, u) =

∫ T

0

∥x(·, t)∥2L2(Ω) + γu(t)2 dt+ cT∥x(·, T )∥L2(Ω),

is minimal with γ, cT > 0. A semi-discretization of the PDE with finite differences at d equidistant points
−1 = s1 < . . . < sd = 1 leads to a an ODE of the form

ẋ = Ax+ x3 + gu, (27)

x(0) = x0, (28)

with x0 = (x̃0(s1), . . . , x̃0(sn))
⊺, x(t) ∈ Rd, g = (g(s1), . . . , g(sd))

⊺ ∈ Rd and A ∈ Rd×d is
given by

A =
σ

h2


−2 2
1 −2 1

. . . . . . . . .

1
. . . 1
2 −2

 , h = s1 − s0 =
2

d− 1
.

The x-dependent term in the cost functional can be approximated using a simple quadrature rule with
nodes s1, . . . , sd (here, we use the rectangle rule with an additional node at the last grid point sd). This
yields the new cost functional

J(0, x0, u) =

∫ T

0

x(t)⊺Qx(t) + γu(t)2 dt+ cTx(T )
⊺Qx(T ), (29)

where

Q = h

1
. . .

1

 ,

and x(t) is understood to be the solution of ẋ = Ax + x3 + gu with starting value x0. The control
problem is now to find a control u for the nonlinear system (27) such that (29) is minimal for every
starting value x0.

To specify the control problem, we choose the parameters σ = 1, γ = 0.1, cT = 1 and g = χ[−0.4,0.4]

and discretise with n = 12 equidistant grid points. The time horizon is T = 0.3 and the time step size
τ = ti+1 − ti is 0.001, which is used for both the macro-intervals as well as the micro-intervals of the
policy iteration (see Section 6). The same step size is also used to discretise the integral in (29) when
computing the costs. As a threshold for the policy iteration, δ = 10−6 is set. We choose Ω = (−2, 2)d

and let ρ be the uniform distribution on Ω. For the TT approximations, we use the first n H2
mix(Ω)-

orthonormal polynomials ϕ1, . . . , ϕn as basis functions (up to degree n− 1). Here, H2
mix(Ω) denotes

the tensorised space
⊗d

µ=1H
2((−2, 2)), H2 is the Sobolev space of twice weakly differentiable

functions. We set n = 9, yielding a maximal polynomial degree of 8 in the basis. The rank of the TT
manifold is chosen to be

r = (3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3).
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Note that by this the dimension of the approximation space is reduced from nd = 912 > 282 trillion to
a manageable number of degrees of freedom ≤ ndmaxµ=1,...,d(rµ)

2 = 2700. The number of sample
points used to approximate the L2-norm in (24) is chosen as

M = 6 · nd max
µ=1,...,d

(rµ)
2 = 6 · 8 · 12 · 52 = 16200,

which is a generous upper bound for the number of degrees of freedom of the fit.

As a benchmark for assessing the performance of our method, we use the TT-based approach
from [OSS21a] with the same hyper-parameters. To make this precise, instead of solving (24) by means
of our dynamical low-rank scheme, V̂i is approximated in each policy iteration step by sampling the
trajectories xk(t), t ∈ [ti, ti+1] of all sample points. With this, the integrals

V̂i(ti, xk) =

∫ ti+1

ti

ℓ(t, xk(t), α(t, xk(t))dt+ V̂i+1(ti+1, xk(ti+1))

are evaluated subsequently. An approximation of Vi(ti, ·) is then obtained via a nonlinear fit of a rank-r
TT to the resulting data-target pairs (xk, yk = V̂i(ti, xk))

M
k=1, which is performed by the ALS. Note that

the authors in [OSS21a] suggest replacing the upper integral bound ti+1 with ti+l, l > 1, where the
trajectory on [ti+1, ti+l] is controlled by the already computed (nearly optimal) controls from previous
steps, to remove the error associated with V̂i+1 from the computation of V̂i. Since this greatly increases
the computational complexity, we stick with the above mentioned “one-step scheme” and refer to this
benchmark method as the Bellman method, since it explicitly utilises Bellman’s principle in the form
of the terminal cost V̂i+1. Our method, utilising Dynamical Low Rank Approximation, will be called
the DLRA method. Even for the DLRA method we have found it beneficial for stable convergence
to compute some V̂i with the Bellman method before starting the dynamical low rank solver. In this
example the first 10 of the 300 approximations are computed in this way.

Remark 1. In both the nonlinear fit required for the Bellman method and the linear fit of our DLRA
method, we add a regularisation term δ∥V̂i(ti, ·)∥2H2

mix(Ω)
to the minimisation functional. Due to the

multilinear structure of the TT and our choice of the basis functions as H2
mix(Ω)-orthonormal, this leads

to local minimisation problems of the form

min
c

∥Mc− y∥22 + δ∥c∥2F

in ALS (compare to [OSS21b]). Here, c ∈ Rrµ−1×nµ×rµ denotes the core that is currently optimised
and ∥.∥F denotes the Frobenius norm. In both methods, we use δ = 10−10 but in ALS we successively
lower δ via

δ → max(0.9, ∥Mc− y∥22/∥y∥22) · δ

after every sweep. This is a purely heuristical rule to make sure the regularisation is relaxed once the
attractor of the global minimum is found.

Remark 2. For the DLRA method we add an additional regularisation term

δ0|Bϕ(0)|2

to the minimisation in (24) since we know that the right-hand side satisfies F (t, A(t)ϕ(0)) = 0. Note
that this can be realised by simply adding the point xM+1 = 0 to the set of samples {xk}Mk=1. Since
this is a hard constraint on the true solution, we set δ0 = 1010.
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Figure 1: Control values u(t) of the different controllers along the trajectory of a fixed polynomial initial
condition x0.

As a second, classical benchmark, we consider the linear quadratic regulator (LQR), resulting from
linearising the problem around x = 0. Since this controller does not see the unstable reaction term, we
expect poor performance compared to both the Bellman and the DLRA method.

To compare the practical performance of the methods, two different sets of initial conditions x̃0 are
generated. For the first set, we sample a polynomial degree between 2 and 20 and then again randomly
sample the coefficients of a univariate polynomial of that degree. Denoting this polynomial p, we then
set x̃0(s) = (s−1)2(s+1)2p(s) to make sure x̃0 satisfies the Neumann boundary conditions. Finally,
in order to have interesting trajectories (27) for which the x3-term requires strong control beyond LQR,
we normalise such that maxs∈[−1,1] |x̃0(s)| = 1.9. The second set of initial conditions is generated by
simply setting x̃0(s) ≡ c for constants c ∈ [1, 2).

Figures 1 and 3 show the control values u(t) along one trajectory of each type of initial conditions.
Figures 2 and 4 depict the mean costs over 500 randomly sampled initial conditions in each of the two
cases, where we have omitted those initial conditions for which the open-loop solver used to compute
the optimal control did not converge. Examining the graphs, we note that the Bellman method and the
DLRA method achieve similar, almost optimal performance over the chosen test sets. Interestingly, the
DLRA method actually slightly outperforms the full Bellman method and is often closer to the optimal
control trajectories, which for instance can be seen in Figure 3. We attribute this to the generalisation
error of the Bellman method: even if the value function approximation should be more accurate – due
to a projection directly onto the manifold – the associated optimisation is nonlinear and may get stuck
in local optima. In the DLRA method, we avoid this problem by coping only with linear minimisation
problems.

7.1 Computational cost and a hybrid approach

The distinct advantage of the DLRA method is its greatly reduced computational cost. Table 1 contains
the computation times for the two methods (Bellman and DLRA), as well as their mean costs on the set
of polynomial initial conditions, with the same hyper-parameters and maximal polynomial degrees of 4,
6 and 8, respectively. We observe that the two methods achieve comparable performance for degrees
6 and 8. However, the DLRA method achieves this performance in roughly one tenth of the time that
the Bellman method requires. We stress again that the version we used is the fastest version of the

DOI 10.20347/WIAS.PREPRINT.2896 Berlin 2021



DLR approximations to the HJB equation 15

1.6

1.8

2.0

2.2

2.4

u(
0,

)

LQR. Mean cost = 2.0685
Bellman. Mean cost = 1.8800
DLRA (ours). Mean cost = 1.8799
Optimal. Mean cost = 1.8793

Figure 2: Sample-mean costs Ju(0, ·) ≈
1

N

∑N
k Ju(0, x

(k)
0 ) of polynomial initial conditions x(k)

0 with

the different controllers.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t

16

14

12

10

8

6

4

2

u(
t)

LQR. Cost = 5.6371
Bellman. Cost = 4.6060
DLRA (ours). Cost = 4.5784
Optimal. Cost = 4.5587

Figure 3: Control values u(t) of the different controllers along the trajectory of a fixed uniform initial
condition x0 = c · (1, . . . , 1)⊺. In this example c = 1.28 is used.
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Bellman method available, since we employ the one-step scheme. As discussed in [OSS21a; OSS21b],
this method also suffers from error propagation due to a large number of time steps. Moreover our
proposed method projects onto the tangent space, whereas Bellmann always tries to project onto the
tensor manifold.

The DLRA method performs significantly worse for a lower polynomial degree of 4. We attribute this
to an effect that can be seen already for degree 8 in Figure 3. The DLRA controller drifts away from
the true optimal control the further it moves away from the terminal time t = T . This error seems to
originate from two main factors: for one, the true value function V ∗(t, ·) successively moves further
away from the manifold Mr even if the terminal condition satisfies cT ∈ Mr. To visualise that the
true solution does not stay on the manifold, the relative norm error of the last tangent fit in each policy
iteration is plotted over time in Figure 5. Note that these errors should be close to 0 if the solution to
the GHJB equation is an element of the manifold. Instead, the errors increase monotonically over time.
The second major source of error is the retraction after every Euler step. Both sources of errors get
worse for lower degrees because of the restricted manifold. Hence, a degree of 4, which is perfectly
feasible for the Bellman method, produces bad results with the DLRA method. Note that the observed
behaviour is expected.

Bellman DLRA Hybrid
comp. time mean cost comp. time mean cost comp. time mean cost

pol. deg. 4 3078.44 1.8822 333.29 2.6147 909.65 1.8804
pol. deg. 6 4270.33 1.8801 421.52 1.8802 1851.93 1.8798
pol. deg. 8 5967.91 1.8800 499.96 1.8799 – –

Table 1: Computation time of the methods in seconds as well as mean costs of polynomial initial
conditions for different maximal polynomial degrees of the basis functions. The mean optimal cost is
1.8793.

This observation leads to a natural formulation of a hybrid method, possibly alleviating the main
weaknesses of both methods. These are the high computational complexity for the Bellman method
and error accumulation for the DLRA method. The hybrid method uses DLRA updates but after each m
steps, instead of computing V̂i with the regular DLRA update, it performs a full Bellman update [OSS21a]
with an m-step scheme

V̂i(ti, xk) =

∫ ti+m

ti

ℓ(t, xk(t), α(t, xk(t))dt+ V̂i+m(ti+m, xk(ti+m)). (30)

For m = 1 this method is equivalent to the Bellman method, for m greater than the number of total time
steps it is equivalent to the DLRA method. For any intermediate m it periodically performs one costly
but accurate Bellman update in between fast DLRA updates. Since the maximal number of consecutive
DLRA steps is now m, the DLRA solver is prevented from drifting too far away from the real solution,
before being corrected again by the Bellman update, yielding a new (more accurate) initial condition.
Note in particular that the evaluation of (30) does not include any V̂j computed with the DLRA method.
Hence, after every m steps, the accumulated error of the DLRA steps is reset to 0. Globally, only the
error of the m-step Bellman updates (30) accumulates.

The results for the hybrid method with m = 10 are depicted in Table 1 for degrees 4 and 6. We remark
that for polynomials of degree 4, the hybrid scheme provides an essential improvement with respect
to accuracy when compared to both Bellmann and DLRA. There is an improvement for degree 6 but
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Figure 5: Relative norm error of the last tangent fit (see Appendix A) in each policy iteration step of the
DLRA solver over time and for different polynomial degrees.

compared to DLRA this effect is not pronounced. Surprisingly, for a sufficiently accurate model, DLRA
alone was sufficiently accurate. The case of degree 8 is omitted since the DLRA controller is already
nearly optimal in that case. The periodic 10-step Bellman updates with intermediate DLRA steps are
sufficient to outperform the full 1-step Bellman method, but at much lower computational costs. From
the perspective of the DLRA method, the periodic Bellman updates enable the use of more restricted
manifolds.

8 Concluding remarks

In this paper we present a novel method to approximate optimal feedback laws for optimal control
problems. The proposed method utilizes a tensor train compression to break the curse of dimensionality
of a multivariate polynomial ansatz space. Moreover, it employs an empirical version of the Dirac-Frenkel
variational principle to solve the HJB equation. The method was tested numerically on a canonical
benchmark example which is difficult to control with standard methods, and demonstrated to achieve
near optimal performance with greatly reduced computation time compared to state-of-the-art methods.

In the experiments it comes as no surprise that the proposed method works quite well for short
time intervals. However, it is striking that we can also observe that with a sufficiently good model –
meaning an adequate polynomial degree in our case – the method even performs well on a large time
horizon. Although we have not considered infinite horizon problems yet, as long as we know stabilizing
controls, the present approach probably is applicable as well. Moreover, for large time horizons we
have presented a robust hybrid method.

We would like to point out that the present successful approach strongly exploits the explicit knowledge
about the geometry of the considered model class, i.e. (multi-)polynomial tensor trains in our setting.
This advantage is something which cannot be easily transferred to a neural network setting.

We expect the method to also perform favourably with higher dimensional problems, which might be
a future research topic. We predict that this will require some form of rank adaptivity to retain the
computational advantage over state-of-the-art methods while achieving similar levels of accuracy. Rank
adaptivity can be incorporated very naturally in the proposed DLRA method: instead of the full retraction
onto the manifold Mr after every step of the solver, one could round the TT based on an adaptive

DOI 10.20347/WIAS.PREPRINT.2896 Berlin 2021



M. Eigel, R. Schneider, D. Sommer 18

threshold. Analysing the effect of a changing manifold on the Dirac-Frenkel variational principle might
be an interesting topic for future work.

As a second direction, the method could be applied to stochastic optimal control problems. There, the
GHJB equation (17) gets an additional Laplacian term ∝ ∆xV (t, x), turning it into a Kolmogorov-
Backward type equation. Equations of this type for instance govern the time development of observables
of Itô diffusion processes. The application of our method to such problems is currently being investigated.

A Details of the empirical risk minimisation

We detail how to reduce the minimisation in (24) to a standard system of linear equations. To achieve
this, we use the characterization of the tangent space given by Theorem 4 and represent an element
δU ∈ τ(X) of the tangent space as a vector x ∈ RnX . The first step towards this representation is
the parametrisation of the spaces U ℓ

µ.

A.1 A parametrisation of the tangent space

By Theorem 4, U ℓ
µ is precisely the set of all rµ−1nµ×rµ-matrices whose columns are orthogonal to the

columns of L(Uµ). Let QR = L(Uµ) be the QR decomposition and denote the orthonormal columns
of Q by q1, . . . , qrµ . By the Gram-Schmidt procedure, we can expand the columns to an orthonormal
basis of Rrµ−1nµ and denote the additional vectors by q̂1 = qrµ+1, . . . , q̂rµ−1nµ−rµ = qrµ−1nµ . Now,
let Wµ ∈ U ℓ

µ and denote its j-th column by wj . Then there are coefficients cj,k such that

wj =

rµ−1nµ−rµ∑
k=1

cj,kq̂k.

In total we get (rµ−1nµ − rµ)rµ coefficients cj,k, which are stored in a vector

xµ = (c1,1, . . . , c1,rµ−1nµ−rµ , c2,1, . . . , c2,rµ−1nµ−rµ , . . . , . . . , crµ,1, . . . , crµ,rµ−1nµ−rµ)
⊺

∈ R(rµ−1nµ−rµ)rµ = Rrµ−1nµrµ−r2µ .

From now on we always identify an element of U ℓ
µ with its coefficient vector xµ. Elements of Cd =

Rrd−1×nd×rd are represented in the same manner with the only difference that the sum in each column
representation goes from k = 1 to rd−1nd and the q̂i can be chosen as the canonical basis in Rrd−1nd .

We eventually can represent an element of the tangent space δU ∈ τ(X) by the concatenation of its
coefficients vectors,

δU ∼= x = (x⊺
1, . . . ,x

⊺
d)

⊺ ∈ RnX .

Since this becomes important when solving the regression problem (24) on the tangent space later on,
we define a “lift”

Lµ : Rrµ−1nµrµ−r2µ −→ Rrµ−1nµrµ ,
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which maps the coefficient vector of the gauged representation to the vectorised entries of the corre-
sponding tensor in U ℓ

µ. This is achieved by means of a rµ−1nµrµ × (rµ−1nµrµ − r2µ)-lifting matrix

Zµ =


Q⊥

µ 0 . . . . . . 0
0 Q⊥

µ 0
. . .

0
0 0 Q⊥

µ

 , Q⊥
µ = [q̂1, . . . , q̂rµ−1nµ−rµ ] ∈ Rrµ−1nµ×(rµ−1nµ−rµ).

By construction, Zµxµ is the concatenation of the columns of L(Wµ). Hence, Lµ(xµ) can be obtained
by Lµ(xµ) = Zµxµ.

A.2 Solving the system of linear equations

We examine problem (24) in a more general setting. Let U ∈ Mr be d-orthogonal and consider the
minimisation problem

min
T∈TU (Mr)

M∑
k=1

∣∣T [x(k)]− y(k)
∣∣2 , (31)

where (x(k), y(k))Mk=1 ⊂ Rd × R is a set of data-target pairs. This leads to

min
T∈TU (Mr)

M∑
k=1

|T [x(k)]− y(k)|2

= min
W∈X

M∑
k=1

|τ(W )[x(k)]− y(k)|2

= min
W∈X

M∑
k=1

∣∣∣∣∣
d∑

µ=1

[
n1,...,nd∑
j1,...,jd

U1(j1) · . . . ·Wµ(jµ) · . . . · Ud(jd)ϕj1(x
(k)
1 ) . . . ϕjd(x

(k)
d )

]
− y(k)

∣∣∣∣∣
2

= min
W∈X

∥O(W )− y∥22 ,

where y = (y(1), . . . , y(M))⊺ and the operator O : X −→ RM is defined by

O(W ) =
d∑

µ=1

Cµ(Wµ), for W = (W1, . . . ,Wd), (32)

with

Cµ : Rrµ−1×nµ×rµ −→ RM ,

(Cµ(Wµ))k =

[
n1,...,nd∑
j1,...,jd

U1(j1) · . . . ·Wµ(jµ) · . . . · Ud(jd)ϕj1(x
(k)
1 ) . . . ϕjd(x

(k)
d )

]
.

Note that Cµ is a linear tensor operator in RM×rµ−1×nµ×rµ , which we can transfer into a matrix
Cµ ∈ RM×rµ−1nµrµ by successive unfolding

RM×rµ−1×nµ×rµ −→ RM×rµ−1nµ×rµ −→ RM×rµ−1nµrµ .

DOI 10.20347/WIAS.PREPRINT.2896 Berlin 2021



M. Eigel, R. Schneider, D. Sommer 20

At the first stage, the operator Cµ acts on a tensor Wµ ∈ U ℓ
µ. At the second stage, it acts on

the left unfolding L(Wµ). And at the third stage, the matrix Cµ acts on the concatenation of the
columns of L(Wµ). By the previous section, this concatenation is given by Zµxµ. We hence have
Cµ(Wµ) = CµZµxµ, leading to

O(W ) =
d∑

µ=1

CµZµxµ = Ax,

where A = [C1Z1, . . . , Cd−1Zd−1, Cd] (note that Zd ≡ Id). We have thus transformed (31) to a
standard system of linear equations

x̂ = argmin
x∈RnX

∥Ax− y∥2 ⇐⇒ A⊺Ax̂ = A⊺y.

Once a solution is found by standard methods, we recover W from x̂ by reshaping of the component
vectors xµ.

Remark 3. We would like to make two remarks about the implementation. First, note that the matrices
Zµ do not have to be stored in order to compute the product CµZµ since we can compute

CµZµ = [Cµ[0 : rµ−1nµ]| . . . |Cµ[(rµ − 1)(rµ−1nµ) : rµrµ−1nµ]] · diag(Q⊥
µ , . . . , Q

⊥
µ )

= [Cµ[0 : rµ−1nµ]Q
⊥
µ | . . . |Cµ[(rµ − 1)(rµ−1nµ) : rµrµ−1nµ]Q

⊥
µ ].

Second, note that U ℓ
µ is 0-dimensional if rµ−1nµ − rµ = 0. In this case, the space consists only of the

tensor of constant zeros 0 ∈ Rrµ−1×nµ×rµ and hence Wµ = 0. No basis coefficients xµ need to be
computed. Consequently, the index µ can be skipped entirely during optimisation. By this, A and x
become

A = [C1Z1, . . . , Cµ−1Zµ−1, Cµ+1Zµ+1, . . . , Cd−1Zd−1, Cd],

x = (x⊺
1, . . . ,x

⊺
µ−1,x

⊺
µ+1, . . . ,x

⊺
d)

⊺.
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